iris: Initialize ice->state.prim_mode to an invalid value
[mesa.git] / src / gallium / drivers / iris / iris_state.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included
12 * in all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
15 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
18 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
19 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
20 * DEALINGS IN THE SOFTWARE.
21 */
22
23 /**
24 * @file iris_state.c
25 *
26 * ============================= GENXML CODE =============================
27 * [This file is compiled once per generation.]
28 * =======================================================================
29 *
30 * This is the main state upload code.
31 *
32 * Gallium uses Constant State Objects, or CSOs, for most state. Large,
33 * complex, or highly reusable state can be created once, and bound and
34 * rebound multiple times. This is modeled with the pipe->create_*_state()
35 * and pipe->bind_*_state() hooks. Highly dynamic or inexpensive state is
36 * streamed out on the fly, via pipe->set_*_state() hooks.
37 *
38 * OpenGL involves frequently mutating context state, which is mirrored in
39 * core Mesa by highly mutable data structures. However, most applications
40 * typically draw the same things over and over - from frame to frame, most
41 * of the same objects are still visible and need to be redrawn. So, rather
42 * than inventing new state all the time, applications usually mutate to swap
43 * between known states that we've seen before.
44 *
45 * Gallium isolates us from this mutation by tracking API state, and
46 * distilling it into a set of Constant State Objects, or CSOs. Large,
47 * complex, or typically reusable state can be created once, then reused
48 * multiple times. Drivers can create and store their own associated data.
49 * This create/bind model corresponds to the pipe->create_*_state() and
50 * pipe->bind_*_state() driver hooks.
51 *
52 * Some state is cheap to create, or expected to be highly dynamic. Rather
53 * than creating and caching piles of CSOs for these, Gallium simply streams
54 * them out, via the pipe->set_*_state() driver hooks.
55 *
56 * To reduce draw time overhead, we try to compute as much state at create
57 * time as possible. Wherever possible, we translate the Gallium pipe state
58 * to 3DSTATE commands, and store those commands in the CSO. At draw time,
59 * we can simply memcpy them into a batch buffer.
60 *
61 * No hardware matches the abstraction perfectly, so some commands require
62 * information from multiple CSOs. In this case, we can store two copies
63 * of the packet (one in each CSO), and simply | together their DWords at
64 * draw time. Sometimes the second set is trivial (one or two fields), so
65 * we simply pack it at draw time.
66 *
67 * There are two main components in the file below. First, the CSO hooks
68 * create/bind/track state. The second are the draw-time upload functions,
69 * iris_upload_render_state() and iris_upload_compute_state(), which read
70 * the context state and emit the commands into the actual batch.
71 */
72
73 #include <stdio.h>
74 #include <errno.h>
75
76 #if HAVE_VALGRIND
77 #include <valgrind.h>
78 #include <memcheck.h>
79 #define VG(x) x
80 #ifdef DEBUG
81 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
82 #endif
83 #else
84 #define VG(x)
85 #endif
86
87 #include "pipe/p_defines.h"
88 #include "pipe/p_state.h"
89 #include "pipe/p_context.h"
90 #include "pipe/p_screen.h"
91 #include "util/u_dual_blend.h"
92 #include "util/u_inlines.h"
93 #include "util/u_format.h"
94 #include "util/u_framebuffer.h"
95 #include "util/u_transfer.h"
96 #include "util/u_upload_mgr.h"
97 #include "util/u_viewport.h"
98 #include "drm-uapi/i915_drm.h"
99 #include "nir.h"
100 #include "intel/compiler/brw_compiler.h"
101 #include "intel/common/gen_l3_config.h"
102 #include "intel/common/gen_sample_positions.h"
103 #include "iris_batch.h"
104 #include "iris_context.h"
105 #include "iris_defines.h"
106 #include "iris_pipe.h"
107 #include "iris_resource.h"
108
109 #include "iris_genx_macros.h"
110 #include "intel/common/gen_guardband.h"
111
112 #if GEN_GEN == 8
113 #define MOCS_PTE 0x18
114 #define MOCS_WB 0x78
115 #else
116 #define MOCS_PTE (1 << 1)
117 #define MOCS_WB (2 << 1)
118 #endif
119
120 static uint32_t
121 mocs(const struct iris_bo *bo)
122 {
123 return bo && bo->external ? MOCS_PTE : MOCS_WB;
124 }
125
126 /**
127 * Statically assert that PIPE_* enums match the hardware packets.
128 * (As long as they match, we don't need to translate them.)
129 */
130 UNUSED static void pipe_asserts()
131 {
132 #define PIPE_ASSERT(x) STATIC_ASSERT((int)x)
133
134 /* pipe_logicop happens to match the hardware. */
135 PIPE_ASSERT(PIPE_LOGICOP_CLEAR == LOGICOP_CLEAR);
136 PIPE_ASSERT(PIPE_LOGICOP_NOR == LOGICOP_NOR);
137 PIPE_ASSERT(PIPE_LOGICOP_AND_INVERTED == LOGICOP_AND_INVERTED);
138 PIPE_ASSERT(PIPE_LOGICOP_COPY_INVERTED == LOGICOP_COPY_INVERTED);
139 PIPE_ASSERT(PIPE_LOGICOP_AND_REVERSE == LOGICOP_AND_REVERSE);
140 PIPE_ASSERT(PIPE_LOGICOP_INVERT == LOGICOP_INVERT);
141 PIPE_ASSERT(PIPE_LOGICOP_XOR == LOGICOP_XOR);
142 PIPE_ASSERT(PIPE_LOGICOP_NAND == LOGICOP_NAND);
143 PIPE_ASSERT(PIPE_LOGICOP_AND == LOGICOP_AND);
144 PIPE_ASSERT(PIPE_LOGICOP_EQUIV == LOGICOP_EQUIV);
145 PIPE_ASSERT(PIPE_LOGICOP_NOOP == LOGICOP_NOOP);
146 PIPE_ASSERT(PIPE_LOGICOP_OR_INVERTED == LOGICOP_OR_INVERTED);
147 PIPE_ASSERT(PIPE_LOGICOP_COPY == LOGICOP_COPY);
148 PIPE_ASSERT(PIPE_LOGICOP_OR_REVERSE == LOGICOP_OR_REVERSE);
149 PIPE_ASSERT(PIPE_LOGICOP_OR == LOGICOP_OR);
150 PIPE_ASSERT(PIPE_LOGICOP_SET == LOGICOP_SET);
151
152 /* pipe_blend_func happens to match the hardware. */
153 PIPE_ASSERT(PIPE_BLENDFACTOR_ONE == BLENDFACTOR_ONE);
154 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_COLOR == BLENDFACTOR_SRC_COLOR);
155 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA == BLENDFACTOR_SRC_ALPHA);
156 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_ALPHA == BLENDFACTOR_DST_ALPHA);
157 PIPE_ASSERT(PIPE_BLENDFACTOR_DST_COLOR == BLENDFACTOR_DST_COLOR);
158 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE == BLENDFACTOR_SRC_ALPHA_SATURATE);
159 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_COLOR == BLENDFACTOR_CONST_COLOR);
160 PIPE_ASSERT(PIPE_BLENDFACTOR_CONST_ALPHA == BLENDFACTOR_CONST_ALPHA);
161 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_COLOR == BLENDFACTOR_SRC1_COLOR);
162 PIPE_ASSERT(PIPE_BLENDFACTOR_SRC1_ALPHA == BLENDFACTOR_SRC1_ALPHA);
163 PIPE_ASSERT(PIPE_BLENDFACTOR_ZERO == BLENDFACTOR_ZERO);
164 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_COLOR == BLENDFACTOR_INV_SRC_COLOR);
165 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC_ALPHA == BLENDFACTOR_INV_SRC_ALPHA);
166 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_ALPHA == BLENDFACTOR_INV_DST_ALPHA);
167 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_DST_COLOR == BLENDFACTOR_INV_DST_COLOR);
168 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_COLOR == BLENDFACTOR_INV_CONST_COLOR);
169 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_CONST_ALPHA == BLENDFACTOR_INV_CONST_ALPHA);
170 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_COLOR == BLENDFACTOR_INV_SRC1_COLOR);
171 PIPE_ASSERT(PIPE_BLENDFACTOR_INV_SRC1_ALPHA == BLENDFACTOR_INV_SRC1_ALPHA);
172
173 /* pipe_blend_func happens to match the hardware. */
174 PIPE_ASSERT(PIPE_BLEND_ADD == BLENDFUNCTION_ADD);
175 PIPE_ASSERT(PIPE_BLEND_SUBTRACT == BLENDFUNCTION_SUBTRACT);
176 PIPE_ASSERT(PIPE_BLEND_REVERSE_SUBTRACT == BLENDFUNCTION_REVERSE_SUBTRACT);
177 PIPE_ASSERT(PIPE_BLEND_MIN == BLENDFUNCTION_MIN);
178 PIPE_ASSERT(PIPE_BLEND_MAX == BLENDFUNCTION_MAX);
179
180 /* pipe_stencil_op happens to match the hardware. */
181 PIPE_ASSERT(PIPE_STENCIL_OP_KEEP == STENCILOP_KEEP);
182 PIPE_ASSERT(PIPE_STENCIL_OP_ZERO == STENCILOP_ZERO);
183 PIPE_ASSERT(PIPE_STENCIL_OP_REPLACE == STENCILOP_REPLACE);
184 PIPE_ASSERT(PIPE_STENCIL_OP_INCR == STENCILOP_INCRSAT);
185 PIPE_ASSERT(PIPE_STENCIL_OP_DECR == STENCILOP_DECRSAT);
186 PIPE_ASSERT(PIPE_STENCIL_OP_INCR_WRAP == STENCILOP_INCR);
187 PIPE_ASSERT(PIPE_STENCIL_OP_DECR_WRAP == STENCILOP_DECR);
188 PIPE_ASSERT(PIPE_STENCIL_OP_INVERT == STENCILOP_INVERT);
189
190 /* pipe_sprite_coord_mode happens to match 3DSTATE_SBE */
191 PIPE_ASSERT(PIPE_SPRITE_COORD_UPPER_LEFT == UPPERLEFT);
192 PIPE_ASSERT(PIPE_SPRITE_COORD_LOWER_LEFT == LOWERLEFT);
193 #undef PIPE_ASSERT
194 }
195
196 static unsigned
197 translate_prim_type(enum pipe_prim_type prim, uint8_t verts_per_patch)
198 {
199 static const unsigned map[] = {
200 [PIPE_PRIM_POINTS] = _3DPRIM_POINTLIST,
201 [PIPE_PRIM_LINES] = _3DPRIM_LINELIST,
202 [PIPE_PRIM_LINE_LOOP] = _3DPRIM_LINELOOP,
203 [PIPE_PRIM_LINE_STRIP] = _3DPRIM_LINESTRIP,
204 [PIPE_PRIM_TRIANGLES] = _3DPRIM_TRILIST,
205 [PIPE_PRIM_TRIANGLE_STRIP] = _3DPRIM_TRISTRIP,
206 [PIPE_PRIM_TRIANGLE_FAN] = _3DPRIM_TRIFAN,
207 [PIPE_PRIM_QUADS] = _3DPRIM_QUADLIST,
208 [PIPE_PRIM_QUAD_STRIP] = _3DPRIM_QUADSTRIP,
209 [PIPE_PRIM_POLYGON] = _3DPRIM_POLYGON,
210 [PIPE_PRIM_LINES_ADJACENCY] = _3DPRIM_LINELIST_ADJ,
211 [PIPE_PRIM_LINE_STRIP_ADJACENCY] = _3DPRIM_LINESTRIP_ADJ,
212 [PIPE_PRIM_TRIANGLES_ADJACENCY] = _3DPRIM_TRILIST_ADJ,
213 [PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY] = _3DPRIM_TRISTRIP_ADJ,
214 [PIPE_PRIM_PATCHES] = _3DPRIM_PATCHLIST_1 - 1,
215 };
216
217 return map[prim] + (prim == PIPE_PRIM_PATCHES ? verts_per_patch : 0);
218 }
219
220 static unsigned
221 translate_compare_func(enum pipe_compare_func pipe_func)
222 {
223 static const unsigned map[] = {
224 [PIPE_FUNC_NEVER] = COMPAREFUNCTION_NEVER,
225 [PIPE_FUNC_LESS] = COMPAREFUNCTION_LESS,
226 [PIPE_FUNC_EQUAL] = COMPAREFUNCTION_EQUAL,
227 [PIPE_FUNC_LEQUAL] = COMPAREFUNCTION_LEQUAL,
228 [PIPE_FUNC_GREATER] = COMPAREFUNCTION_GREATER,
229 [PIPE_FUNC_NOTEQUAL] = COMPAREFUNCTION_NOTEQUAL,
230 [PIPE_FUNC_GEQUAL] = COMPAREFUNCTION_GEQUAL,
231 [PIPE_FUNC_ALWAYS] = COMPAREFUNCTION_ALWAYS,
232 };
233 return map[pipe_func];
234 }
235
236 static unsigned
237 translate_shadow_func(enum pipe_compare_func pipe_func)
238 {
239 /* Gallium specifies the result of shadow comparisons as:
240 *
241 * 1 if ref <op> texel,
242 * 0 otherwise.
243 *
244 * The hardware does:
245 *
246 * 0 if texel <op> ref,
247 * 1 otherwise.
248 *
249 * So we need to flip the operator and also negate.
250 */
251 static const unsigned map[] = {
252 [PIPE_FUNC_NEVER] = PREFILTEROPALWAYS,
253 [PIPE_FUNC_LESS] = PREFILTEROPLEQUAL,
254 [PIPE_FUNC_EQUAL] = PREFILTEROPNOTEQUAL,
255 [PIPE_FUNC_LEQUAL] = PREFILTEROPLESS,
256 [PIPE_FUNC_GREATER] = PREFILTEROPGEQUAL,
257 [PIPE_FUNC_NOTEQUAL] = PREFILTEROPEQUAL,
258 [PIPE_FUNC_GEQUAL] = PREFILTEROPGREATER,
259 [PIPE_FUNC_ALWAYS] = PREFILTEROPNEVER,
260 };
261 return map[pipe_func];
262 }
263
264 static unsigned
265 translate_cull_mode(unsigned pipe_face)
266 {
267 static const unsigned map[4] = {
268 [PIPE_FACE_NONE] = CULLMODE_NONE,
269 [PIPE_FACE_FRONT] = CULLMODE_FRONT,
270 [PIPE_FACE_BACK] = CULLMODE_BACK,
271 [PIPE_FACE_FRONT_AND_BACK] = CULLMODE_BOTH,
272 };
273 return map[pipe_face];
274 }
275
276 static unsigned
277 translate_fill_mode(unsigned pipe_polymode)
278 {
279 static const unsigned map[4] = {
280 [PIPE_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
281 [PIPE_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
282 [PIPE_POLYGON_MODE_POINT] = FILL_MODE_POINT,
283 [PIPE_POLYGON_MODE_FILL_RECTANGLE] = FILL_MODE_SOLID,
284 };
285 return map[pipe_polymode];
286 }
287
288 static unsigned
289 translate_mip_filter(enum pipe_tex_mipfilter pipe_mip)
290 {
291 static const unsigned map[] = {
292 [PIPE_TEX_MIPFILTER_NEAREST] = MIPFILTER_NEAREST,
293 [PIPE_TEX_MIPFILTER_LINEAR] = MIPFILTER_LINEAR,
294 [PIPE_TEX_MIPFILTER_NONE] = MIPFILTER_NONE,
295 };
296 return map[pipe_mip];
297 }
298
299 static uint32_t
300 translate_wrap(unsigned pipe_wrap)
301 {
302 static const unsigned map[] = {
303 [PIPE_TEX_WRAP_REPEAT] = TCM_WRAP,
304 [PIPE_TEX_WRAP_CLAMP] = TCM_HALF_BORDER,
305 [PIPE_TEX_WRAP_CLAMP_TO_EDGE] = TCM_CLAMP,
306 [PIPE_TEX_WRAP_CLAMP_TO_BORDER] = TCM_CLAMP_BORDER,
307 [PIPE_TEX_WRAP_MIRROR_REPEAT] = TCM_MIRROR,
308 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE] = TCM_MIRROR_ONCE,
309
310 /* These are unsupported. */
311 [PIPE_TEX_WRAP_MIRROR_CLAMP] = -1,
312 [PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER] = -1,
313 };
314 return map[pipe_wrap];
315 }
316
317 /**
318 * Allocate space for some indirect state.
319 *
320 * Return a pointer to the map (to fill it out) and a state ref (for
321 * referring to the state in GPU commands).
322 */
323 static void *
324 upload_state(struct u_upload_mgr *uploader,
325 struct iris_state_ref *ref,
326 unsigned size,
327 unsigned alignment)
328 {
329 void *p = NULL;
330 u_upload_alloc(uploader, 0, size, alignment, &ref->offset, &ref->res, &p);
331 return p;
332 }
333
334 /**
335 * Stream out temporary/short-lived state.
336 *
337 * This allocates space, pins the BO, and includes the BO address in the
338 * returned offset (which works because all state lives in 32-bit memory
339 * zones).
340 */
341 static uint32_t *
342 stream_state(struct iris_batch *batch,
343 struct u_upload_mgr *uploader,
344 struct pipe_resource **out_res,
345 unsigned size,
346 unsigned alignment,
347 uint32_t *out_offset)
348 {
349 void *ptr = NULL;
350
351 u_upload_alloc(uploader, 0, size, alignment, out_offset, out_res, &ptr);
352
353 struct iris_bo *bo = iris_resource_bo(*out_res);
354 iris_use_pinned_bo(batch, bo, false);
355
356 *out_offset += iris_bo_offset_from_base_address(bo);
357
358 iris_record_state_size(batch->state_sizes, *out_offset, size);
359
360 return ptr;
361 }
362
363 /**
364 * stream_state() + memcpy.
365 */
366 static uint32_t
367 emit_state(struct iris_batch *batch,
368 struct u_upload_mgr *uploader,
369 struct pipe_resource **out_res,
370 const void *data,
371 unsigned size,
372 unsigned alignment)
373 {
374 unsigned offset = 0;
375 uint32_t *map =
376 stream_state(batch, uploader, out_res, size, alignment, &offset);
377
378 if (map)
379 memcpy(map, data, size);
380
381 return offset;
382 }
383
384 /**
385 * Did field 'x' change between 'old_cso' and 'new_cso'?
386 *
387 * (If so, we may want to set some dirty flags.)
388 */
389 #define cso_changed(x) (!old_cso || (old_cso->x != new_cso->x))
390 #define cso_changed_memcmp(x) \
391 (!old_cso || memcmp(old_cso->x, new_cso->x, sizeof(old_cso->x)) != 0)
392
393 static void
394 flush_before_state_base_change(struct iris_batch *batch)
395 {
396 /* Flush before emitting STATE_BASE_ADDRESS.
397 *
398 * This isn't documented anywhere in the PRM. However, it seems to be
399 * necessary prior to changing the surface state base adress. We've
400 * seen issues in Vulkan where we get GPU hangs when using multi-level
401 * command buffers which clear depth, reset state base address, and then
402 * go render stuff.
403 *
404 * Normally, in GL, we would trust the kernel to do sufficient stalls
405 * and flushes prior to executing our batch. However, it doesn't seem
406 * as if the kernel's flushing is always sufficient and we don't want to
407 * rely on it.
408 *
409 * We make this an end-of-pipe sync instead of a normal flush because we
410 * do not know the current status of the GPU. On Haswell at least,
411 * having a fast-clear operation in flight at the same time as a normal
412 * rendering operation can cause hangs. Since the kernel's flushing is
413 * insufficient, we need to ensure that any rendering operations from
414 * other processes are definitely complete before we try to do our own
415 * rendering. It's a bit of a big hammer but it appears to work.
416 */
417 iris_emit_end_of_pipe_sync(batch,
418 "change STATE_BASE_ADDRESS (flushes)",
419 PIPE_CONTROL_RENDER_TARGET_FLUSH |
420 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
421 PIPE_CONTROL_DATA_CACHE_FLUSH);
422 }
423
424 static void
425 flush_after_state_base_change(struct iris_batch *batch)
426 {
427 /* After re-setting the surface state base address, we have to do some
428 * cache flusing so that the sampler engine will pick up the new
429 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
430 * Shared Function > 3D Sampler > State > State Caching (page 96):
431 *
432 * Coherency with system memory in the state cache, like the texture
433 * cache is handled partially by software. It is expected that the
434 * command stream or shader will issue Cache Flush operation or
435 * Cache_Flush sampler message to ensure that the L1 cache remains
436 * coherent with system memory.
437 *
438 * [...]
439 *
440 * Whenever the value of the Dynamic_State_Base_Addr,
441 * Surface_State_Base_Addr are altered, the L1 state cache must be
442 * invalidated to ensure the new surface or sampler state is fetched
443 * from system memory.
444 *
445 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
446 * which, according the PIPE_CONTROL instruction documentation in the
447 * Broadwell PRM:
448 *
449 * Setting this bit is independent of any other bit in this packet.
450 * This bit controls the invalidation of the L1 and L2 state caches
451 * at the top of the pipe i.e. at the parsing time.
452 *
453 * Unfortunately, experimentation seems to indicate that state cache
454 * invalidation through a PIPE_CONTROL does nothing whatsoever in
455 * regards to surface state and binding tables. In stead, it seems that
456 * invalidating the texture cache is what is actually needed.
457 *
458 * XXX: As far as we have been able to determine through
459 * experimentation, shows that flush the texture cache appears to be
460 * sufficient. The theory here is that all of the sampling/rendering
461 * units cache the binding table in the texture cache. However, we have
462 * yet to be able to actually confirm this.
463 */
464 iris_emit_end_of_pipe_sync(batch,
465 "change STATE_BASE_ADDRESS (invalidates)",
466 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
467 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
468 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
469 }
470
471 static void
472 _iris_emit_lri(struct iris_batch *batch, uint32_t reg, uint32_t val)
473 {
474 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
475 lri.RegisterOffset = reg;
476 lri.DataDWord = val;
477 }
478 }
479 #define iris_emit_lri(b, r, v) _iris_emit_lri(b, GENX(r##_num), v)
480
481 static void
482 _iris_emit_lrr(struct iris_batch *batch, uint32_t dst, uint32_t src)
483 {
484 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
485 lrr.SourceRegisterAddress = src;
486 lrr.DestinationRegisterAddress = dst;
487 }
488 }
489
490 static void
491 emit_pipeline_select(struct iris_batch *batch, uint32_t pipeline)
492 {
493 #if GEN_GEN >= 8 && GEN_GEN < 10
494 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
495 *
496 * Software must clear the COLOR_CALC_STATE Valid field in
497 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
498 * with Pipeline Select set to GPGPU.
499 *
500 * The internal hardware docs recommend the same workaround for Gen9
501 * hardware too.
502 */
503 if (pipeline == GPGPU)
504 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
505 #endif
506
507
508 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
509 * PIPELINE_SELECT [DevBWR+]":
510 *
511 * "Project: DEVSNB+
512 *
513 * Software must ensure all the write caches are flushed through a
514 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
515 * command to invalidate read only caches prior to programming
516 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode."
517 */
518 iris_emit_pipe_control_flush(batch,
519 "workaround: PIPELINE_SELECT flushes (1/2)",
520 PIPE_CONTROL_RENDER_TARGET_FLUSH |
521 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
522 PIPE_CONTROL_DATA_CACHE_FLUSH |
523 PIPE_CONTROL_CS_STALL);
524
525 iris_emit_pipe_control_flush(batch,
526 "workaround: PIPELINE_SELECT flushes (2/2)",
527 PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
528 PIPE_CONTROL_CONST_CACHE_INVALIDATE |
529 PIPE_CONTROL_STATE_CACHE_INVALIDATE |
530 PIPE_CONTROL_INSTRUCTION_INVALIDATE);
531
532 iris_emit_cmd(batch, GENX(PIPELINE_SELECT), sel) {
533 #if GEN_GEN >= 9
534 sel.MaskBits = 3;
535 #endif
536 sel.PipelineSelection = pipeline;
537 }
538 }
539
540 UNUSED static void
541 init_glk_barrier_mode(struct iris_batch *batch, uint32_t value)
542 {
543 #if GEN_GEN == 9
544 /* Project: DevGLK
545 *
546 * "This chicken bit works around a hardware issue with barrier
547 * logic encountered when switching between GPGPU and 3D pipelines.
548 * To workaround the issue, this mode bit should be set after a
549 * pipeline is selected."
550 */
551 uint32_t reg_val;
552 iris_pack_state(GENX(SLICE_COMMON_ECO_CHICKEN1), &reg_val, reg) {
553 reg.GLKBarrierMode = value;
554 reg.GLKBarrierModeMask = 1;
555 }
556 iris_emit_lri(batch, SLICE_COMMON_ECO_CHICKEN1, reg_val);
557 #endif
558 }
559
560 static void
561 init_state_base_address(struct iris_batch *batch)
562 {
563 flush_before_state_base_change(batch);
564
565 /* We program most base addresses once at context initialization time.
566 * Each base address points at a 4GB memory zone, and never needs to
567 * change. See iris_bufmgr.h for a description of the memory zones.
568 *
569 * The one exception is Surface State Base Address, which needs to be
570 * updated occasionally. See iris_binder.c for the details there.
571 */
572 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
573 sba.GeneralStateMOCS = MOCS_WB;
574 sba.StatelessDataPortAccessMOCS = MOCS_WB;
575 sba.DynamicStateMOCS = MOCS_WB;
576 sba.IndirectObjectMOCS = MOCS_WB;
577 sba.InstructionMOCS = MOCS_WB;
578 sba.SurfaceStateMOCS = MOCS_WB;
579
580 sba.GeneralStateBaseAddressModifyEnable = true;
581 sba.DynamicStateBaseAddressModifyEnable = true;
582 sba.IndirectObjectBaseAddressModifyEnable = true;
583 sba.InstructionBaseAddressModifyEnable = true;
584 sba.GeneralStateBufferSizeModifyEnable = true;
585 sba.DynamicStateBufferSizeModifyEnable = true;
586 #if (GEN_GEN >= 9)
587 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
588 sba.BindlessSurfaceStateMOCS = MOCS_WB;
589 #endif
590 sba.IndirectObjectBufferSizeModifyEnable = true;
591 sba.InstructionBuffersizeModifyEnable = true;
592
593 sba.InstructionBaseAddress = ro_bo(NULL, IRIS_MEMZONE_SHADER_START);
594 sba.DynamicStateBaseAddress = ro_bo(NULL, IRIS_MEMZONE_DYNAMIC_START);
595
596 sba.GeneralStateBufferSize = 0xfffff;
597 sba.IndirectObjectBufferSize = 0xfffff;
598 sba.InstructionBufferSize = 0xfffff;
599 sba.DynamicStateBufferSize = 0xfffff;
600 }
601
602 flush_after_state_base_change(batch);
603 }
604
605 static void
606 iris_emit_l3_config(struct iris_batch *batch, const struct gen_l3_config *cfg,
607 bool has_slm, bool wants_dc_cache)
608 {
609 uint32_t reg_val;
610
611 #if GEN_GEN >= 12
612 #define L3_ALLOCATION_REG GENX(L3ALLOC)
613 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
614 #else
615 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
616 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
617 #endif
618
619 iris_pack_state(L3_ALLOCATION_REG, &reg_val, reg) {
620 #if GEN_GEN < 12
621 reg.SLMEnable = has_slm;
622 #endif
623 #if GEN_GEN == 11
624 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
625 * in L3CNTLREG register. The default setting of the bit is not the
626 * desirable behavior.
627 */
628 reg.ErrorDetectionBehaviorControl = true;
629 reg.UseFullWays = true;
630 #endif
631 reg.URBAllocation = cfg->n[GEN_L3P_URB];
632 reg.ROAllocation = cfg->n[GEN_L3P_RO];
633 reg.DCAllocation = cfg->n[GEN_L3P_DC];
634 reg.AllAllocation = cfg->n[GEN_L3P_ALL];
635 }
636 _iris_emit_lri(batch, L3_ALLOCATION_REG_num, reg_val);
637 }
638
639 static void
640 iris_emit_default_l3_config(struct iris_batch *batch,
641 const struct gen_device_info *devinfo,
642 bool compute)
643 {
644 bool wants_dc_cache = true;
645 bool has_slm = compute;
646 const struct gen_l3_weights w =
647 gen_get_default_l3_weights(devinfo, wants_dc_cache, has_slm);
648 const struct gen_l3_config *cfg = gen_get_l3_config(devinfo, w);
649 iris_emit_l3_config(batch, cfg, has_slm, wants_dc_cache);
650 }
651
652 #if GEN_GEN == 9 || GEN_GEN == 10
653 static void
654 iris_enable_obj_preemption(struct iris_batch *batch, bool enable)
655 {
656 uint32_t reg_val;
657
658 /* A fixed function pipe flush is required before modifying this field */
659 iris_emit_end_of_pipe_sync(batch, enable ? "enable preemption"
660 : "disable preemption",
661 PIPE_CONTROL_RENDER_TARGET_FLUSH);
662
663 /* enable object level preemption */
664 iris_pack_state(GENX(CS_CHICKEN1), &reg_val, reg) {
665 reg.ReplayMode = enable;
666 reg.ReplayModeMask = true;
667 }
668 iris_emit_lri(batch, CS_CHICKEN1, reg_val);
669 }
670 #endif
671
672 #if GEN_GEN == 11
673 static void
674 iris_upload_slice_hashing_state(struct iris_batch *batch)
675 {
676 const struct gen_device_info *devinfo = &batch->screen->devinfo;
677 int subslices_delta =
678 devinfo->ppipe_subslices[0] - devinfo->ppipe_subslices[1];
679 if (subslices_delta == 0)
680 return;
681
682 struct iris_context *ice = NULL;
683 ice = container_of(batch, ice, batches[IRIS_BATCH_RENDER]);
684 assert(&ice->batches[IRIS_BATCH_RENDER] == batch);
685
686 unsigned size = GENX(SLICE_HASH_TABLE_length) * 4;
687 uint32_t hash_address;
688 struct pipe_resource *tmp = NULL;
689 uint32_t *map =
690 stream_state(batch, ice->state.dynamic_uploader, &tmp,
691 size, 64, &hash_address);
692 pipe_resource_reference(&tmp, NULL);
693
694 struct GENX(SLICE_HASH_TABLE) table0 = {
695 .Entry = {
696 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
697 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
698 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
699 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
700 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
701 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
702 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
703 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
704 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
705 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
706 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
707 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
708 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 },
709 { 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1 },
710 { 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0 },
711 { 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1 }
712 }
713 };
714
715 struct GENX(SLICE_HASH_TABLE) table1 = {
716 .Entry = {
717 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
718 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
719 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
720 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
721 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
722 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
723 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
724 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
725 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
726 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
727 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
728 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
729 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 },
730 { 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0 },
731 { 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1 },
732 { 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0 }
733 }
734 };
735
736 const struct GENX(SLICE_HASH_TABLE) *table =
737 subslices_delta < 0 ? &table0 : &table1;
738 GENX(SLICE_HASH_TABLE_pack)(NULL, map, table);
739
740 iris_emit_cmd(batch, GENX(3DSTATE_SLICE_TABLE_STATE_POINTERS), ptr) {
741 ptr.SliceHashStatePointerValid = true;
742 ptr.SliceHashTableStatePointer = hash_address;
743 }
744
745 iris_emit_cmd(batch, GENX(3DSTATE_3D_MODE), mode) {
746 mode.SliceHashingTableEnable = true;
747 }
748 }
749 #endif
750
751 /**
752 * Upload the initial GPU state for a render context.
753 *
754 * This sets some invariant state that needs to be programmed a particular
755 * way, but we never actually change.
756 */
757 static void
758 iris_init_render_context(struct iris_screen *screen,
759 struct iris_batch *batch,
760 struct iris_vtable *vtbl,
761 struct pipe_debug_callback *dbg)
762 {
763 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
764 uint32_t reg_val;
765
766 emit_pipeline_select(batch, _3D);
767
768 iris_emit_default_l3_config(batch, devinfo, false);
769
770 init_state_base_address(batch);
771
772 #if GEN_GEN >= 9
773 iris_pack_state(GENX(CS_DEBUG_MODE2), &reg_val, reg) {
774 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
775 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
776 }
777 iris_emit_lri(batch, CS_DEBUG_MODE2, reg_val);
778 #else
779 iris_pack_state(GENX(INSTPM), &reg_val, reg) {
780 reg.CONSTANT_BUFFERAddressOffsetDisable = true;
781 reg.CONSTANT_BUFFERAddressOffsetDisableMask = true;
782 }
783 iris_emit_lri(batch, INSTPM, reg_val);
784 #endif
785
786 #if GEN_GEN == 9
787 iris_pack_state(GENX(CACHE_MODE_1), &reg_val, reg) {
788 reg.FloatBlendOptimizationEnable = true;
789 reg.FloatBlendOptimizationEnableMask = true;
790 reg.PartialResolveDisableInVC = true;
791 reg.PartialResolveDisableInVCMask = true;
792 }
793 iris_emit_lri(batch, CACHE_MODE_1, reg_val);
794
795 if (devinfo->is_geminilake)
796 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_3D_HULL);
797 #endif
798
799 #if GEN_GEN == 11
800 iris_pack_state(GENX(SAMPLER_MODE), &reg_val, reg) {
801 reg.HeaderlessMessageforPreemptableContexts = 1;
802 reg.HeaderlessMessageforPreemptableContextsMask = 1;
803 }
804 iris_emit_lri(batch, SAMPLER_MODE, reg_val);
805
806 /* Bit 1 must be set in HALF_SLICE_CHICKEN7. */
807 iris_pack_state(GENX(HALF_SLICE_CHICKEN7), &reg_val, reg) {
808 reg.EnabledTexelOffsetPrecisionFix = 1;
809 reg.EnabledTexelOffsetPrecisionFixMask = 1;
810 }
811 iris_emit_lri(batch, HALF_SLICE_CHICKEN7, reg_val);
812
813 /* Hardware specification recommends disabling repacking for the
814 * compatibility with decompression mechanism in display controller.
815 */
816 if (devinfo->disable_ccs_repack) {
817 iris_pack_state(GENX(CACHE_MODE_0), &reg_val, reg) {
818 reg.DisableRepackingforCompression = true;
819 reg.DisableRepackingforCompressionMask = true;
820 }
821 iris_emit_lri(batch, CACHE_MODE_0, reg_val);
822 }
823
824 iris_upload_slice_hashing_state(batch);
825 #endif
826
827 #if GEN_GEN >= 11
828 /* WA_220160979: Enable Hardware filtering of Semi-Pipelined State in WM */
829 iris_pack_state(GENX(COMMON_SLICE_CHICKEN4), &reg_val, reg) {
830 reg.EnableHardwareFilteringinWM = true;
831 reg.EnableHardwareFilteringinWMMask = true;
832 }
833 iris_emit_lri(batch, COMMON_SLICE_CHICKEN4, reg_val);
834 #endif
835
836 /* 3DSTATE_DRAWING_RECTANGLE is non-pipelined, so we want to avoid
837 * changing it dynamically. We set it to the maximum size here, and
838 * instead include the render target dimensions in the viewport, so
839 * viewport extents clipping takes care of pruning stray geometry.
840 */
841 iris_emit_cmd(batch, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
842 rect.ClippedDrawingRectangleXMax = UINT16_MAX;
843 rect.ClippedDrawingRectangleYMax = UINT16_MAX;
844 }
845
846 /* Set the initial MSAA sample positions. */
847 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_PATTERN), pat) {
848 GEN_SAMPLE_POS_1X(pat._1xSample);
849 GEN_SAMPLE_POS_2X(pat._2xSample);
850 GEN_SAMPLE_POS_4X(pat._4xSample);
851 GEN_SAMPLE_POS_8X(pat._8xSample);
852 #if GEN_GEN >= 9
853 GEN_SAMPLE_POS_16X(pat._16xSample);
854 #endif
855 }
856
857 /* Use the legacy AA line coverage computation. */
858 iris_emit_cmd(batch, GENX(3DSTATE_AA_LINE_PARAMETERS), foo);
859
860 /* Disable chromakeying (it's for media) */
861 iris_emit_cmd(batch, GENX(3DSTATE_WM_CHROMAKEY), foo);
862
863 /* We want regular rendering, not special HiZ operations. */
864 iris_emit_cmd(batch, GENX(3DSTATE_WM_HZ_OP), foo);
865
866 /* No polygon stippling offsets are necessary. */
867 /* TODO: may need to set an offset for origin-UL framebuffers */
868 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_OFFSET), foo);
869
870 /* Set a static partitioning of the push constant area. */
871 /* TODO: this may be a bad idea...could starve the push ringbuffers... */
872 for (int i = 0; i <= MESA_SHADER_FRAGMENT; i++) {
873 iris_emit_cmd(batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
874 alloc._3DCommandSubOpcode = 18 + i;
875 alloc.ConstantBufferOffset = 6 * i;
876 alloc.ConstantBufferSize = i == MESA_SHADER_FRAGMENT ? 8 : 6;
877 }
878 }
879
880 #if GEN_GEN == 10
881 /* Gen11+ is enabled for us by the kernel. */
882 iris_enable_obj_preemption(batch, true);
883 #endif
884 }
885
886 static void
887 iris_init_compute_context(struct iris_screen *screen,
888 struct iris_batch *batch,
889 struct iris_vtable *vtbl,
890 struct pipe_debug_callback *dbg)
891 {
892 UNUSED const struct gen_device_info *devinfo = &screen->devinfo;
893
894 emit_pipeline_select(batch, GPGPU);
895
896 iris_emit_default_l3_config(batch, devinfo, true);
897
898 init_state_base_address(batch);
899
900 #if GEN_GEN == 9
901 if (devinfo->is_geminilake)
902 init_glk_barrier_mode(batch, GLK_BARRIER_MODE_GPGPU);
903 #endif
904 }
905
906 struct iris_vertex_buffer_state {
907 /** The VERTEX_BUFFER_STATE hardware structure. */
908 uint32_t state[GENX(VERTEX_BUFFER_STATE_length)];
909
910 /** The resource to source vertex data from. */
911 struct pipe_resource *resource;
912 };
913
914 struct iris_depth_buffer_state {
915 /* Depth/HiZ/Stencil related hardware packets. */
916 uint32_t packets[GENX(3DSTATE_DEPTH_BUFFER_length) +
917 GENX(3DSTATE_STENCIL_BUFFER_length) +
918 GENX(3DSTATE_HIER_DEPTH_BUFFER_length) +
919 GENX(3DSTATE_CLEAR_PARAMS_length)];
920 };
921
922 /**
923 * Generation-specific context state (ice->state.genx->...).
924 *
925 * Most state can go in iris_context directly, but these encode hardware
926 * packets which vary by generation.
927 */
928 struct iris_genx_state {
929 struct iris_vertex_buffer_state vertex_buffers[33];
930 uint32_t last_index_buffer[GENX(3DSTATE_INDEX_BUFFER_length)];
931
932 struct iris_depth_buffer_state depth_buffer;
933
934 uint32_t so_buffers[4 * GENX(3DSTATE_SO_BUFFER_length)];
935
936 #if GEN_GEN == 9
937 /* Is object level preemption enabled? */
938 bool object_preemption;
939 #endif
940
941 struct {
942 #if GEN_GEN == 8
943 struct brw_image_param image_param[PIPE_MAX_SHADER_IMAGES];
944 #endif
945 } shaders[MESA_SHADER_STAGES];
946 };
947
948 /**
949 * The pipe->set_blend_color() driver hook.
950 *
951 * This corresponds to our COLOR_CALC_STATE.
952 */
953 static void
954 iris_set_blend_color(struct pipe_context *ctx,
955 const struct pipe_blend_color *state)
956 {
957 struct iris_context *ice = (struct iris_context *) ctx;
958
959 /* Our COLOR_CALC_STATE is exactly pipe_blend_color, so just memcpy */
960 memcpy(&ice->state.blend_color, state, sizeof(struct pipe_blend_color));
961 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
962 }
963
964 /**
965 * Gallium CSO for blend state (see pipe_blend_state).
966 */
967 struct iris_blend_state {
968 /** Partial 3DSTATE_PS_BLEND */
969 uint32_t ps_blend[GENX(3DSTATE_PS_BLEND_length)];
970
971 /** Partial BLEND_STATE */
972 uint32_t blend_state[GENX(BLEND_STATE_length) +
973 BRW_MAX_DRAW_BUFFERS * GENX(BLEND_STATE_ENTRY_length)];
974
975 bool alpha_to_coverage; /* for shader key */
976
977 /** Bitfield of whether blending is enabled for RT[i] - for aux resolves */
978 uint8_t blend_enables;
979
980 /** Bitfield of whether color writes are enabled for RT[i] */
981 uint8_t color_write_enables;
982
983 /** Does RT[0] use dual color blending? */
984 bool dual_color_blending;
985 };
986
987 static enum pipe_blendfactor
988 fix_blendfactor(enum pipe_blendfactor f, bool alpha_to_one)
989 {
990 if (alpha_to_one) {
991 if (f == PIPE_BLENDFACTOR_SRC1_ALPHA)
992 return PIPE_BLENDFACTOR_ONE;
993
994 if (f == PIPE_BLENDFACTOR_INV_SRC1_ALPHA)
995 return PIPE_BLENDFACTOR_ZERO;
996 }
997
998 return f;
999 }
1000
1001 /**
1002 * The pipe->create_blend_state() driver hook.
1003 *
1004 * Translates a pipe_blend_state into iris_blend_state.
1005 */
1006 static void *
1007 iris_create_blend_state(struct pipe_context *ctx,
1008 const struct pipe_blend_state *state)
1009 {
1010 struct iris_blend_state *cso = malloc(sizeof(struct iris_blend_state));
1011 uint32_t *blend_entry = cso->blend_state + GENX(BLEND_STATE_length);
1012
1013 cso->blend_enables = 0;
1014 cso->color_write_enables = 0;
1015 STATIC_ASSERT(BRW_MAX_DRAW_BUFFERS <= 8);
1016
1017 cso->alpha_to_coverage = state->alpha_to_coverage;
1018
1019 bool indep_alpha_blend = false;
1020
1021 for (int i = 0; i < BRW_MAX_DRAW_BUFFERS; i++) {
1022 const struct pipe_rt_blend_state *rt =
1023 &state->rt[state->independent_blend_enable ? i : 0];
1024
1025 enum pipe_blendfactor src_rgb =
1026 fix_blendfactor(rt->rgb_src_factor, state->alpha_to_one);
1027 enum pipe_blendfactor src_alpha =
1028 fix_blendfactor(rt->alpha_src_factor, state->alpha_to_one);
1029 enum pipe_blendfactor dst_rgb =
1030 fix_blendfactor(rt->rgb_dst_factor, state->alpha_to_one);
1031 enum pipe_blendfactor dst_alpha =
1032 fix_blendfactor(rt->alpha_dst_factor, state->alpha_to_one);
1033
1034 if (rt->rgb_func != rt->alpha_func ||
1035 src_rgb != src_alpha || dst_rgb != dst_alpha)
1036 indep_alpha_blend = true;
1037
1038 if (rt->blend_enable)
1039 cso->blend_enables |= 1u << i;
1040
1041 if (rt->colormask)
1042 cso->color_write_enables |= 1u << i;
1043
1044 iris_pack_state(GENX(BLEND_STATE_ENTRY), blend_entry, be) {
1045 be.LogicOpEnable = state->logicop_enable;
1046 be.LogicOpFunction = state->logicop_func;
1047
1048 be.PreBlendSourceOnlyClampEnable = false;
1049 be.ColorClampRange = COLORCLAMP_RTFORMAT;
1050 be.PreBlendColorClampEnable = true;
1051 be.PostBlendColorClampEnable = true;
1052
1053 be.ColorBufferBlendEnable = rt->blend_enable;
1054
1055 be.ColorBlendFunction = rt->rgb_func;
1056 be.AlphaBlendFunction = rt->alpha_func;
1057 be.SourceBlendFactor = src_rgb;
1058 be.SourceAlphaBlendFactor = src_alpha;
1059 be.DestinationBlendFactor = dst_rgb;
1060 be.DestinationAlphaBlendFactor = dst_alpha;
1061
1062 be.WriteDisableRed = !(rt->colormask & PIPE_MASK_R);
1063 be.WriteDisableGreen = !(rt->colormask & PIPE_MASK_G);
1064 be.WriteDisableBlue = !(rt->colormask & PIPE_MASK_B);
1065 be.WriteDisableAlpha = !(rt->colormask & PIPE_MASK_A);
1066 }
1067 blend_entry += GENX(BLEND_STATE_ENTRY_length);
1068 }
1069
1070 iris_pack_command(GENX(3DSTATE_PS_BLEND), cso->ps_blend, pb) {
1071 /* pb.HasWriteableRT is filled in at draw time.
1072 * pb.AlphaTestEnable is filled in at draw time.
1073 *
1074 * pb.ColorBufferBlendEnable is filled in at draw time so we can avoid
1075 * setting it when dual color blending without an appropriate shader.
1076 */
1077
1078 pb.AlphaToCoverageEnable = state->alpha_to_coverage;
1079 pb.IndependentAlphaBlendEnable = indep_alpha_blend;
1080
1081 pb.SourceBlendFactor =
1082 fix_blendfactor(state->rt[0].rgb_src_factor, state->alpha_to_one);
1083 pb.SourceAlphaBlendFactor =
1084 fix_blendfactor(state->rt[0].alpha_src_factor, state->alpha_to_one);
1085 pb.DestinationBlendFactor =
1086 fix_blendfactor(state->rt[0].rgb_dst_factor, state->alpha_to_one);
1087 pb.DestinationAlphaBlendFactor =
1088 fix_blendfactor(state->rt[0].alpha_dst_factor, state->alpha_to_one);
1089 }
1090
1091 iris_pack_state(GENX(BLEND_STATE), cso->blend_state, bs) {
1092 bs.AlphaToCoverageEnable = state->alpha_to_coverage;
1093 bs.IndependentAlphaBlendEnable = indep_alpha_blend;
1094 bs.AlphaToOneEnable = state->alpha_to_one;
1095 bs.AlphaToCoverageDitherEnable = state->alpha_to_coverage;
1096 bs.ColorDitherEnable = state->dither;
1097 /* bl.AlphaTestEnable and bs.AlphaTestFunction are filled in later. */
1098 }
1099
1100 cso->dual_color_blending = util_blend_state_is_dual(state, 0);
1101
1102 return cso;
1103 }
1104
1105 /**
1106 * The pipe->bind_blend_state() driver hook.
1107 *
1108 * Bind a blending CSO and flag related dirty bits.
1109 */
1110 static void
1111 iris_bind_blend_state(struct pipe_context *ctx, void *state)
1112 {
1113 struct iris_context *ice = (struct iris_context *) ctx;
1114 struct iris_blend_state *cso = state;
1115
1116 ice->state.cso_blend = cso;
1117 ice->state.blend_enables = cso ? cso->blend_enables : 0;
1118
1119 ice->state.dirty |= IRIS_DIRTY_PS_BLEND;
1120 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1121 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1122 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_BLEND];
1123 }
1124
1125 /**
1126 * Return true if the FS writes to any color outputs which are not disabled
1127 * via color masking.
1128 */
1129 static bool
1130 has_writeable_rt(const struct iris_blend_state *cso_blend,
1131 const struct shader_info *fs_info)
1132 {
1133 if (!fs_info)
1134 return false;
1135
1136 unsigned rt_outputs = fs_info->outputs_written >> FRAG_RESULT_DATA0;
1137
1138 if (fs_info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR))
1139 rt_outputs = (1 << BRW_MAX_DRAW_BUFFERS) - 1;
1140
1141 return cso_blend->color_write_enables & rt_outputs;
1142 }
1143
1144 /**
1145 * Gallium CSO for depth, stencil, and alpha testing state.
1146 */
1147 struct iris_depth_stencil_alpha_state {
1148 /** Partial 3DSTATE_WM_DEPTH_STENCIL. */
1149 uint32_t wmds[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
1150
1151 /** Outbound to BLEND_STATE, 3DSTATE_PS_BLEND, COLOR_CALC_STATE. */
1152 struct pipe_alpha_state alpha;
1153
1154 /** Outbound to resolve and cache set tracking. */
1155 bool depth_writes_enabled;
1156 bool stencil_writes_enabled;
1157 };
1158
1159 /**
1160 * The pipe->create_depth_stencil_alpha_state() driver hook.
1161 *
1162 * We encode most of 3DSTATE_WM_DEPTH_STENCIL, and just save off the alpha
1163 * testing state since we need pieces of it in a variety of places.
1164 */
1165 static void *
1166 iris_create_zsa_state(struct pipe_context *ctx,
1167 const struct pipe_depth_stencil_alpha_state *state)
1168 {
1169 struct iris_depth_stencil_alpha_state *cso =
1170 malloc(sizeof(struct iris_depth_stencil_alpha_state));
1171
1172 bool two_sided_stencil = state->stencil[1].enabled;
1173
1174 cso->alpha = state->alpha;
1175 cso->depth_writes_enabled = state->depth.writemask;
1176 cso->stencil_writes_enabled =
1177 state->stencil[0].writemask != 0 ||
1178 (two_sided_stencil && state->stencil[1].writemask != 0);
1179
1180 /* The state tracker needs to optimize away EQUAL writes for us. */
1181 assert(!(state->depth.func == PIPE_FUNC_EQUAL && state->depth.writemask));
1182
1183 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), cso->wmds, wmds) {
1184 wmds.StencilFailOp = state->stencil[0].fail_op;
1185 wmds.StencilPassDepthFailOp = state->stencil[0].zfail_op;
1186 wmds.StencilPassDepthPassOp = state->stencil[0].zpass_op;
1187 wmds.StencilTestFunction =
1188 translate_compare_func(state->stencil[0].func);
1189 wmds.BackfaceStencilFailOp = state->stencil[1].fail_op;
1190 wmds.BackfaceStencilPassDepthFailOp = state->stencil[1].zfail_op;
1191 wmds.BackfaceStencilPassDepthPassOp = state->stencil[1].zpass_op;
1192 wmds.BackfaceStencilTestFunction =
1193 translate_compare_func(state->stencil[1].func);
1194 wmds.DepthTestFunction = translate_compare_func(state->depth.func);
1195 wmds.DoubleSidedStencilEnable = two_sided_stencil;
1196 wmds.StencilTestEnable = state->stencil[0].enabled;
1197 wmds.StencilBufferWriteEnable =
1198 state->stencil[0].writemask != 0 ||
1199 (two_sided_stencil && state->stencil[1].writemask != 0);
1200 wmds.DepthTestEnable = state->depth.enabled;
1201 wmds.DepthBufferWriteEnable = state->depth.writemask;
1202 wmds.StencilTestMask = state->stencil[0].valuemask;
1203 wmds.StencilWriteMask = state->stencil[0].writemask;
1204 wmds.BackfaceStencilTestMask = state->stencil[1].valuemask;
1205 wmds.BackfaceStencilWriteMask = state->stencil[1].writemask;
1206 /* wmds.[Backface]StencilReferenceValue are merged later */
1207 }
1208
1209 return cso;
1210 }
1211
1212 /**
1213 * The pipe->bind_depth_stencil_alpha_state() driver hook.
1214 *
1215 * Bind a depth/stencil/alpha CSO and flag related dirty bits.
1216 */
1217 static void
1218 iris_bind_zsa_state(struct pipe_context *ctx, void *state)
1219 {
1220 struct iris_context *ice = (struct iris_context *) ctx;
1221 struct iris_depth_stencil_alpha_state *old_cso = ice->state.cso_zsa;
1222 struct iris_depth_stencil_alpha_state *new_cso = state;
1223
1224 if (new_cso) {
1225 if (cso_changed(alpha.ref_value))
1226 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
1227
1228 if (cso_changed(alpha.enabled))
1229 ice->state.dirty |= IRIS_DIRTY_PS_BLEND | IRIS_DIRTY_BLEND_STATE;
1230
1231 if (cso_changed(alpha.func))
1232 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
1233
1234 if (cso_changed(depth_writes_enabled))
1235 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
1236
1237 ice->state.depth_writes_enabled = new_cso->depth_writes_enabled;
1238 ice->state.stencil_writes_enabled = new_cso->stencil_writes_enabled;
1239 }
1240
1241 ice->state.cso_zsa = new_cso;
1242 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1243 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
1244 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_DEPTH_STENCIL_ALPHA];
1245 }
1246
1247 /**
1248 * Gallium CSO for rasterizer state.
1249 */
1250 struct iris_rasterizer_state {
1251 uint32_t sf[GENX(3DSTATE_SF_length)];
1252 uint32_t clip[GENX(3DSTATE_CLIP_length)];
1253 uint32_t raster[GENX(3DSTATE_RASTER_length)];
1254 uint32_t wm[GENX(3DSTATE_WM_length)];
1255 uint32_t line_stipple[GENX(3DSTATE_LINE_STIPPLE_length)];
1256
1257 uint8_t num_clip_plane_consts;
1258 bool clip_halfz; /* for CC_VIEWPORT */
1259 bool depth_clip_near; /* for CC_VIEWPORT */
1260 bool depth_clip_far; /* for CC_VIEWPORT */
1261 bool flatshade; /* for shader state */
1262 bool flatshade_first; /* for stream output */
1263 bool clamp_fragment_color; /* for shader state */
1264 bool light_twoside; /* for shader state */
1265 bool rasterizer_discard; /* for 3DSTATE_STREAMOUT and 3DSTATE_CLIP */
1266 bool half_pixel_center; /* for 3DSTATE_MULTISAMPLE */
1267 bool line_stipple_enable;
1268 bool poly_stipple_enable;
1269 bool multisample;
1270 bool force_persample_interp;
1271 bool conservative_rasterization;
1272 bool fill_mode_point_or_line;
1273 enum pipe_sprite_coord_mode sprite_coord_mode; /* PIPE_SPRITE_* */
1274 uint16_t sprite_coord_enable;
1275 };
1276
1277 static float
1278 get_line_width(const struct pipe_rasterizer_state *state)
1279 {
1280 float line_width = state->line_width;
1281
1282 /* From the OpenGL 4.4 spec:
1283 *
1284 * "The actual width of non-antialiased lines is determined by rounding
1285 * the supplied width to the nearest integer, then clamping it to the
1286 * implementation-dependent maximum non-antialiased line width."
1287 */
1288 if (!state->multisample && !state->line_smooth)
1289 line_width = roundf(state->line_width);
1290
1291 if (!state->multisample && state->line_smooth && line_width < 1.5f) {
1292 /* For 1 pixel line thickness or less, the general anti-aliasing
1293 * algorithm gives up, and a garbage line is generated. Setting a
1294 * Line Width of 0.0 specifies the rasterization of the "thinnest"
1295 * (one-pixel-wide), non-antialiased lines.
1296 *
1297 * Lines rendered with zero Line Width are rasterized using the
1298 * "Grid Intersection Quantization" rules as specified by the
1299 * "Zero-Width (Cosmetic) Line Rasterization" section of the docs.
1300 */
1301 line_width = 0.0f;
1302 }
1303
1304 return line_width;
1305 }
1306
1307 /**
1308 * The pipe->create_rasterizer_state() driver hook.
1309 */
1310 static void *
1311 iris_create_rasterizer_state(struct pipe_context *ctx,
1312 const struct pipe_rasterizer_state *state)
1313 {
1314 struct iris_rasterizer_state *cso =
1315 malloc(sizeof(struct iris_rasterizer_state));
1316
1317 cso->multisample = state->multisample;
1318 cso->force_persample_interp = state->force_persample_interp;
1319 cso->clip_halfz = state->clip_halfz;
1320 cso->depth_clip_near = state->depth_clip_near;
1321 cso->depth_clip_far = state->depth_clip_far;
1322 cso->flatshade = state->flatshade;
1323 cso->flatshade_first = state->flatshade_first;
1324 cso->clamp_fragment_color = state->clamp_fragment_color;
1325 cso->light_twoside = state->light_twoside;
1326 cso->rasterizer_discard = state->rasterizer_discard;
1327 cso->half_pixel_center = state->half_pixel_center;
1328 cso->sprite_coord_mode = state->sprite_coord_mode;
1329 cso->sprite_coord_enable = state->sprite_coord_enable;
1330 cso->line_stipple_enable = state->line_stipple_enable;
1331 cso->poly_stipple_enable = state->poly_stipple_enable;
1332 cso->conservative_rasterization =
1333 state->conservative_raster_mode == PIPE_CONSERVATIVE_RASTER_POST_SNAP;
1334
1335 cso->fill_mode_point_or_line =
1336 state->fill_front == PIPE_POLYGON_MODE_LINE ||
1337 state->fill_front == PIPE_POLYGON_MODE_POINT ||
1338 state->fill_back == PIPE_POLYGON_MODE_LINE ||
1339 state->fill_back == PIPE_POLYGON_MODE_POINT;
1340
1341 if (state->clip_plane_enable != 0)
1342 cso->num_clip_plane_consts = util_logbase2(state->clip_plane_enable) + 1;
1343 else
1344 cso->num_clip_plane_consts = 0;
1345
1346 float line_width = get_line_width(state);
1347
1348 iris_pack_command(GENX(3DSTATE_SF), cso->sf, sf) {
1349 sf.StatisticsEnable = true;
1350 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1351 sf.LineEndCapAntialiasingRegionWidth =
1352 state->line_smooth ? _10pixels : _05pixels;
1353 sf.LastPixelEnable = state->line_last_pixel;
1354 sf.LineWidth = line_width;
1355 sf.SmoothPointEnable = (state->point_smooth || state->multisample) &&
1356 !state->point_quad_rasterization;
1357 sf.PointWidthSource = state->point_size_per_vertex ? Vertex : State;
1358 sf.PointWidth = state->point_size;
1359
1360 if (state->flatshade_first) {
1361 sf.TriangleFanProvokingVertexSelect = 1;
1362 } else {
1363 sf.TriangleStripListProvokingVertexSelect = 2;
1364 sf.TriangleFanProvokingVertexSelect = 2;
1365 sf.LineStripListProvokingVertexSelect = 1;
1366 }
1367 }
1368
1369 iris_pack_command(GENX(3DSTATE_RASTER), cso->raster, rr) {
1370 rr.FrontWinding = state->front_ccw ? CounterClockwise : Clockwise;
1371 rr.CullMode = translate_cull_mode(state->cull_face);
1372 rr.FrontFaceFillMode = translate_fill_mode(state->fill_front);
1373 rr.BackFaceFillMode = translate_fill_mode(state->fill_back);
1374 rr.DXMultisampleRasterizationEnable = state->multisample;
1375 rr.GlobalDepthOffsetEnableSolid = state->offset_tri;
1376 rr.GlobalDepthOffsetEnableWireframe = state->offset_line;
1377 rr.GlobalDepthOffsetEnablePoint = state->offset_point;
1378 rr.GlobalDepthOffsetConstant = state->offset_units * 2;
1379 rr.GlobalDepthOffsetScale = state->offset_scale;
1380 rr.GlobalDepthOffsetClamp = state->offset_clamp;
1381 rr.SmoothPointEnable = state->point_smooth;
1382 rr.AntialiasingEnable = state->line_smooth;
1383 rr.ScissorRectangleEnable = state->scissor;
1384 #if GEN_GEN >= 9
1385 rr.ViewportZNearClipTestEnable = state->depth_clip_near;
1386 rr.ViewportZFarClipTestEnable = state->depth_clip_far;
1387 rr.ConservativeRasterizationEnable =
1388 cso->conservative_rasterization;
1389 #else
1390 rr.ViewportZClipTestEnable = (state->depth_clip_near || state->depth_clip_far);
1391 #endif
1392 }
1393
1394 iris_pack_command(GENX(3DSTATE_CLIP), cso->clip, cl) {
1395 /* cl.NonPerspectiveBarycentricEnable is filled in at draw time from
1396 * the FS program; cl.ForceZeroRTAIndexEnable is filled in from the FB.
1397 */
1398 cl.EarlyCullEnable = true;
1399 cl.UserClipDistanceClipTestEnableBitmask = state->clip_plane_enable;
1400 cl.ForceUserClipDistanceClipTestEnableBitmask = true;
1401 cl.APIMode = state->clip_halfz ? APIMODE_D3D : APIMODE_OGL;
1402 cl.GuardbandClipTestEnable = true;
1403 cl.ClipEnable = true;
1404 cl.MinimumPointWidth = 0.125;
1405 cl.MaximumPointWidth = 255.875;
1406
1407 if (state->flatshade_first) {
1408 cl.TriangleFanProvokingVertexSelect = 1;
1409 } else {
1410 cl.TriangleStripListProvokingVertexSelect = 2;
1411 cl.TriangleFanProvokingVertexSelect = 2;
1412 cl.LineStripListProvokingVertexSelect = 1;
1413 }
1414 }
1415
1416 iris_pack_command(GENX(3DSTATE_WM), cso->wm, wm) {
1417 /* wm.BarycentricInterpolationMode and wm.EarlyDepthStencilControl are
1418 * filled in at draw time from the FS program.
1419 */
1420 wm.LineAntialiasingRegionWidth = _10pixels;
1421 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1422 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1423 wm.LineStippleEnable = state->line_stipple_enable;
1424 wm.PolygonStippleEnable = state->poly_stipple_enable;
1425 }
1426
1427 /* Remap from 0..255 back to 1..256 */
1428 const unsigned line_stipple_factor = state->line_stipple_factor + 1;
1429
1430 iris_pack_command(GENX(3DSTATE_LINE_STIPPLE), cso->line_stipple, line) {
1431 if (state->line_stipple_enable) {
1432 line.LineStipplePattern = state->line_stipple_pattern;
1433 line.LineStippleInverseRepeatCount = 1.0f / line_stipple_factor;
1434 line.LineStippleRepeatCount = line_stipple_factor;
1435 }
1436 }
1437
1438 return cso;
1439 }
1440
1441 /**
1442 * The pipe->bind_rasterizer_state() driver hook.
1443 *
1444 * Bind a rasterizer CSO and flag related dirty bits.
1445 */
1446 static void
1447 iris_bind_rasterizer_state(struct pipe_context *ctx, void *state)
1448 {
1449 struct iris_context *ice = (struct iris_context *) ctx;
1450 struct iris_rasterizer_state *old_cso = ice->state.cso_rast;
1451 struct iris_rasterizer_state *new_cso = state;
1452
1453 if (new_cso) {
1454 /* Try to avoid re-emitting 3DSTATE_LINE_STIPPLE, it's non-pipelined */
1455 if (cso_changed_memcmp(line_stipple))
1456 ice->state.dirty |= IRIS_DIRTY_LINE_STIPPLE;
1457
1458 if (cso_changed(half_pixel_center))
1459 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
1460
1461 if (cso_changed(line_stipple_enable) || cso_changed(poly_stipple_enable))
1462 ice->state.dirty |= IRIS_DIRTY_WM;
1463
1464 if (cso_changed(rasterizer_discard))
1465 ice->state.dirty |= IRIS_DIRTY_STREAMOUT | IRIS_DIRTY_CLIP;
1466
1467 if (cso_changed(flatshade_first))
1468 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
1469
1470 if (cso_changed(depth_clip_near) || cso_changed(depth_clip_far) ||
1471 cso_changed(clip_halfz))
1472 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
1473
1474 if (cso_changed(sprite_coord_enable) ||
1475 cso_changed(sprite_coord_mode) ||
1476 cso_changed(light_twoside))
1477 ice->state.dirty |= IRIS_DIRTY_SBE;
1478
1479 if (cso_changed(conservative_rasterization))
1480 ice->state.dirty |= IRIS_DIRTY_FS;
1481 }
1482
1483 ice->state.cso_rast = new_cso;
1484 ice->state.dirty |= IRIS_DIRTY_RASTER;
1485 ice->state.dirty |= IRIS_DIRTY_CLIP;
1486 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_RASTERIZER];
1487 }
1488
1489 /**
1490 * Return true if the given wrap mode requires the border color to exist.
1491 *
1492 * (We can skip uploading it if the sampler isn't going to use it.)
1493 */
1494 static bool
1495 wrap_mode_needs_border_color(unsigned wrap_mode)
1496 {
1497 return wrap_mode == TCM_CLAMP_BORDER || wrap_mode == TCM_HALF_BORDER;
1498 }
1499
1500 /**
1501 * Gallium CSO for sampler state.
1502 */
1503 struct iris_sampler_state {
1504 union pipe_color_union border_color;
1505 bool needs_border_color;
1506
1507 uint32_t sampler_state[GENX(SAMPLER_STATE_length)];
1508 };
1509
1510 /**
1511 * The pipe->create_sampler_state() driver hook.
1512 *
1513 * We fill out SAMPLER_STATE (except for the border color pointer), and
1514 * store that on the CPU. It doesn't make sense to upload it to a GPU
1515 * buffer object yet, because 3DSTATE_SAMPLER_STATE_POINTERS requires
1516 * all bound sampler states to be in contiguous memor.
1517 */
1518 static void *
1519 iris_create_sampler_state(struct pipe_context *ctx,
1520 const struct pipe_sampler_state *state)
1521 {
1522 struct iris_sampler_state *cso = CALLOC_STRUCT(iris_sampler_state);
1523
1524 if (!cso)
1525 return NULL;
1526
1527 STATIC_ASSERT(PIPE_TEX_FILTER_NEAREST == MAPFILTER_NEAREST);
1528 STATIC_ASSERT(PIPE_TEX_FILTER_LINEAR == MAPFILTER_LINEAR);
1529
1530 unsigned wrap_s = translate_wrap(state->wrap_s);
1531 unsigned wrap_t = translate_wrap(state->wrap_t);
1532 unsigned wrap_r = translate_wrap(state->wrap_r);
1533
1534 memcpy(&cso->border_color, &state->border_color, sizeof(cso->border_color));
1535
1536 cso->needs_border_color = wrap_mode_needs_border_color(wrap_s) ||
1537 wrap_mode_needs_border_color(wrap_t) ||
1538 wrap_mode_needs_border_color(wrap_r);
1539
1540 float min_lod = state->min_lod;
1541 unsigned mag_img_filter = state->mag_img_filter;
1542
1543 // XXX: explain this code ported from ilo...I don't get it at all...
1544 if (state->min_mip_filter == PIPE_TEX_MIPFILTER_NONE &&
1545 state->min_lod > 0.0f) {
1546 min_lod = 0.0f;
1547 mag_img_filter = state->min_img_filter;
1548 }
1549
1550 iris_pack_state(GENX(SAMPLER_STATE), cso->sampler_state, samp) {
1551 samp.TCXAddressControlMode = wrap_s;
1552 samp.TCYAddressControlMode = wrap_t;
1553 samp.TCZAddressControlMode = wrap_r;
1554 samp.CubeSurfaceControlMode = state->seamless_cube_map;
1555 samp.NonnormalizedCoordinateEnable = !state->normalized_coords;
1556 samp.MinModeFilter = state->min_img_filter;
1557 samp.MagModeFilter = mag_img_filter;
1558 samp.MipModeFilter = translate_mip_filter(state->min_mip_filter);
1559 samp.MaximumAnisotropy = RATIO21;
1560
1561 if (state->max_anisotropy >= 2) {
1562 if (state->min_img_filter == PIPE_TEX_FILTER_LINEAR) {
1563 samp.MinModeFilter = MAPFILTER_ANISOTROPIC;
1564 samp.AnisotropicAlgorithm = EWAApproximation;
1565 }
1566
1567 if (state->mag_img_filter == PIPE_TEX_FILTER_LINEAR)
1568 samp.MagModeFilter = MAPFILTER_ANISOTROPIC;
1569
1570 samp.MaximumAnisotropy =
1571 MIN2((state->max_anisotropy - 2) / 2, RATIO161);
1572 }
1573
1574 /* Set address rounding bits if not using nearest filtering. */
1575 if (state->min_img_filter != PIPE_TEX_FILTER_NEAREST) {
1576 samp.UAddressMinFilterRoundingEnable = true;
1577 samp.VAddressMinFilterRoundingEnable = true;
1578 samp.RAddressMinFilterRoundingEnable = true;
1579 }
1580
1581 if (state->mag_img_filter != PIPE_TEX_FILTER_NEAREST) {
1582 samp.UAddressMagFilterRoundingEnable = true;
1583 samp.VAddressMagFilterRoundingEnable = true;
1584 samp.RAddressMagFilterRoundingEnable = true;
1585 }
1586
1587 if (state->compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE)
1588 samp.ShadowFunction = translate_shadow_func(state->compare_func);
1589
1590 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
1591
1592 samp.LODPreClampMode = CLAMP_MODE_OGL;
1593 samp.MinLOD = CLAMP(min_lod, 0, hw_max_lod);
1594 samp.MaxLOD = CLAMP(state->max_lod, 0, hw_max_lod);
1595 samp.TextureLODBias = CLAMP(state->lod_bias, -16, 15);
1596
1597 /* .BorderColorPointer is filled in by iris_bind_sampler_states. */
1598 }
1599
1600 return cso;
1601 }
1602
1603 /**
1604 * The pipe->bind_sampler_states() driver hook.
1605 */
1606 static void
1607 iris_bind_sampler_states(struct pipe_context *ctx,
1608 enum pipe_shader_type p_stage,
1609 unsigned start, unsigned count,
1610 void **states)
1611 {
1612 struct iris_context *ice = (struct iris_context *) ctx;
1613 gl_shader_stage stage = stage_from_pipe(p_stage);
1614 struct iris_shader_state *shs = &ice->state.shaders[stage];
1615
1616 assert(start + count <= IRIS_MAX_TEXTURE_SAMPLERS);
1617
1618 bool dirty = false;
1619
1620 for (int i = 0; i < count; i++) {
1621 if (shs->samplers[start + i] != states[i]) {
1622 shs->samplers[start + i] = states[i];
1623 dirty = true;
1624 }
1625 }
1626
1627 if (dirty)
1628 ice->state.dirty |= IRIS_DIRTY_SAMPLER_STATES_VS << stage;
1629 }
1630
1631 /**
1632 * Upload the sampler states into a contiguous area of GPU memory, for
1633 * for 3DSTATE_SAMPLER_STATE_POINTERS_*.
1634 *
1635 * Also fill out the border color state pointers.
1636 */
1637 static void
1638 iris_upload_sampler_states(struct iris_context *ice, gl_shader_stage stage)
1639 {
1640 struct iris_shader_state *shs = &ice->state.shaders[stage];
1641 const struct shader_info *info = iris_get_shader_info(ice, stage);
1642
1643 /* We assume the state tracker will call pipe->bind_sampler_states()
1644 * if the program's number of textures changes.
1645 */
1646 unsigned count = info ? util_last_bit(info->textures_used) : 0;
1647
1648 if (!count)
1649 return;
1650
1651 /* Assemble the SAMPLER_STATEs into a contiguous table that lives
1652 * in the dynamic state memory zone, so we can point to it via the
1653 * 3DSTATE_SAMPLER_STATE_POINTERS_* commands.
1654 */
1655 unsigned size = count * 4 * GENX(SAMPLER_STATE_length);
1656 uint32_t *map =
1657 upload_state(ice->state.dynamic_uploader, &shs->sampler_table, size, 32);
1658 if (unlikely(!map))
1659 return;
1660
1661 struct pipe_resource *res = shs->sampler_table.res;
1662 shs->sampler_table.offset +=
1663 iris_bo_offset_from_base_address(iris_resource_bo(res));
1664
1665 iris_record_state_size(ice->state.sizes, shs->sampler_table.offset, size);
1666
1667 /* Make sure all land in the same BO */
1668 iris_border_color_pool_reserve(ice, IRIS_MAX_TEXTURE_SAMPLERS);
1669
1670 ice->state.need_border_colors &= ~(1 << stage);
1671
1672 for (int i = 0; i < count; i++) {
1673 struct iris_sampler_state *state = shs->samplers[i];
1674 struct iris_sampler_view *tex = shs->textures[i];
1675
1676 if (!state) {
1677 memset(map, 0, 4 * GENX(SAMPLER_STATE_length));
1678 } else if (!state->needs_border_color) {
1679 memcpy(map, state->sampler_state, 4 * GENX(SAMPLER_STATE_length));
1680 } else {
1681 ice->state.need_border_colors |= 1 << stage;
1682
1683 /* We may need to swizzle the border color for format faking.
1684 * A/LA formats are faked as R/RG with 000R or R00G swizzles.
1685 * This means we need to move the border color's A channel into
1686 * the R or G channels so that those read swizzles will move it
1687 * back into A.
1688 */
1689 union pipe_color_union *color = &state->border_color;
1690 union pipe_color_union tmp;
1691 if (tex) {
1692 enum pipe_format internal_format = tex->res->internal_format;
1693
1694 if (util_format_is_alpha(internal_format)) {
1695 unsigned char swz[4] = {
1696 PIPE_SWIZZLE_W, PIPE_SWIZZLE_0,
1697 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1698 };
1699 util_format_apply_color_swizzle(&tmp, color, swz, true);
1700 color = &tmp;
1701 } else if (util_format_is_luminance_alpha(internal_format) &&
1702 internal_format != PIPE_FORMAT_L8A8_SRGB) {
1703 unsigned char swz[4] = {
1704 PIPE_SWIZZLE_X, PIPE_SWIZZLE_W,
1705 PIPE_SWIZZLE_0, PIPE_SWIZZLE_0
1706 };
1707 util_format_apply_color_swizzle(&tmp, color, swz, true);
1708 color = &tmp;
1709 }
1710 }
1711
1712 /* Stream out the border color and merge the pointer. */
1713 uint32_t offset = iris_upload_border_color(ice, color);
1714
1715 uint32_t dynamic[GENX(SAMPLER_STATE_length)];
1716 iris_pack_state(GENX(SAMPLER_STATE), dynamic, dyns) {
1717 dyns.BorderColorPointer = offset;
1718 }
1719
1720 for (uint32_t j = 0; j < GENX(SAMPLER_STATE_length); j++)
1721 map[j] = state->sampler_state[j] | dynamic[j];
1722 }
1723
1724 map += GENX(SAMPLER_STATE_length);
1725 }
1726 }
1727
1728 static enum isl_channel_select
1729 fmt_swizzle(const struct iris_format_info *fmt, enum pipe_swizzle swz)
1730 {
1731 switch (swz) {
1732 case PIPE_SWIZZLE_X: return fmt->swizzle.r;
1733 case PIPE_SWIZZLE_Y: return fmt->swizzle.g;
1734 case PIPE_SWIZZLE_Z: return fmt->swizzle.b;
1735 case PIPE_SWIZZLE_W: return fmt->swizzle.a;
1736 case PIPE_SWIZZLE_1: return SCS_ONE;
1737 case PIPE_SWIZZLE_0: return SCS_ZERO;
1738 default: unreachable("invalid swizzle");
1739 }
1740 }
1741
1742 static void
1743 fill_buffer_surface_state(struct isl_device *isl_dev,
1744 struct iris_resource *res,
1745 void *map,
1746 enum isl_format format,
1747 struct isl_swizzle swizzle,
1748 unsigned offset,
1749 unsigned size)
1750 {
1751 const struct isl_format_layout *fmtl = isl_format_get_layout(format);
1752 const unsigned cpp = format == ISL_FORMAT_RAW ? 1 : fmtl->bpb / 8;
1753
1754 /* The ARB_texture_buffer_specification says:
1755 *
1756 * "The number of texels in the buffer texture's texel array is given by
1757 *
1758 * floor(<buffer_size> / (<components> * sizeof(<base_type>)),
1759 *
1760 * where <buffer_size> is the size of the buffer object, in basic
1761 * machine units and <components> and <base_type> are the element count
1762 * and base data type for elements, as specified in Table X.1. The
1763 * number of texels in the texel array is then clamped to the
1764 * implementation-dependent limit MAX_TEXTURE_BUFFER_SIZE_ARB."
1765 *
1766 * We need to clamp the size in bytes to MAX_TEXTURE_BUFFER_SIZE * stride,
1767 * so that when ISL divides by stride to obtain the number of texels, that
1768 * texel count is clamped to MAX_TEXTURE_BUFFER_SIZE.
1769 */
1770 unsigned final_size =
1771 MIN3(size, res->bo->size - res->offset - offset,
1772 IRIS_MAX_TEXTURE_BUFFER_SIZE * cpp);
1773
1774 isl_buffer_fill_state(isl_dev, map,
1775 .address = res->bo->gtt_offset + res->offset + offset,
1776 .size_B = final_size,
1777 .format = format,
1778 .swizzle = swizzle,
1779 .stride_B = cpp,
1780 .mocs = mocs(res->bo));
1781 }
1782
1783 #define SURFACE_STATE_ALIGNMENT 64
1784
1785 /**
1786 * Allocate several contiguous SURFACE_STATE structures, one for each
1787 * supported auxiliary surface mode.
1788 */
1789 static void *
1790 alloc_surface_states(struct u_upload_mgr *mgr,
1791 struct iris_state_ref *ref,
1792 unsigned aux_usages)
1793 {
1794 const unsigned surf_size = 4 * GENX(RENDER_SURFACE_STATE_length);
1795
1796 /* If this changes, update this to explicitly align pointers */
1797 STATIC_ASSERT(surf_size == SURFACE_STATE_ALIGNMENT);
1798
1799 assert(aux_usages != 0);
1800
1801 void *map =
1802 upload_state(mgr, ref, util_bitcount(aux_usages) * surf_size,
1803 SURFACE_STATE_ALIGNMENT);
1804
1805 ref->offset += iris_bo_offset_from_base_address(iris_resource_bo(ref->res));
1806
1807 return map;
1808 }
1809
1810 #if GEN_GEN == 8
1811 /**
1812 * Return an ISL surface for use with non-coherent render target reads.
1813 *
1814 * In a few complex cases, we can't use the SURFACE_STATE for normal render
1815 * target writes. We need to make a separate one for sampling which refers
1816 * to the single slice of the texture being read.
1817 */
1818 static void
1819 get_rt_read_isl_surf(const struct gen_device_info *devinfo,
1820 struct iris_resource *res,
1821 enum pipe_texture_target target,
1822 struct isl_view *view,
1823 uint32_t *tile_x_sa,
1824 uint32_t *tile_y_sa,
1825 struct isl_surf *surf)
1826 {
1827
1828 *surf = res->surf;
1829
1830 const enum isl_dim_layout dim_layout =
1831 iris_get_isl_dim_layout(devinfo, res->surf.tiling, target);
1832
1833 surf->dim = target_to_isl_surf_dim(target);
1834
1835 if (surf->dim_layout == dim_layout)
1836 return;
1837
1838 /* The layout of the specified texture target is not compatible with the
1839 * actual layout of the miptree structure in memory -- You're entering
1840 * dangerous territory, this can only possibly work if you only intended
1841 * to access a single level and slice of the texture, and the hardware
1842 * supports the tile offset feature in order to allow non-tile-aligned
1843 * base offsets, since we'll have to point the hardware to the first
1844 * texel of the level instead of relying on the usual base level/layer
1845 * controls.
1846 */
1847 assert(view->levels == 1 && view->array_len == 1);
1848 assert(*tile_x_sa == 0 && *tile_y_sa == 0);
1849
1850 res->offset += iris_resource_get_tile_offsets(res, view->base_level,
1851 view->base_array_layer,
1852 tile_x_sa, tile_y_sa);
1853 const unsigned l = view->base_level;
1854
1855 surf->logical_level0_px.width = minify(surf->logical_level0_px.width, l);
1856 surf->logical_level0_px.height = surf->dim <= ISL_SURF_DIM_1D ? 1 :
1857 minify(surf->logical_level0_px.height, l);
1858 surf->logical_level0_px.depth = surf->dim <= ISL_SURF_DIM_2D ? 1 :
1859 minify(surf->logical_level0_px.depth, l);
1860
1861 surf->logical_level0_px.array_len = 1;
1862 surf->levels = 1;
1863 surf->dim_layout = dim_layout;
1864
1865 view->base_level = 0;
1866 view->base_array_layer = 0;
1867 }
1868 #endif
1869
1870 static void
1871 fill_surface_state(struct isl_device *isl_dev,
1872 void *map,
1873 struct iris_resource *res,
1874 struct isl_surf *surf,
1875 struct isl_view *view,
1876 unsigned aux_usage,
1877 uint32_t tile_x_sa,
1878 uint32_t tile_y_sa)
1879 {
1880 struct isl_surf_fill_state_info f = {
1881 .surf = surf,
1882 .view = view,
1883 .mocs = mocs(res->bo),
1884 .address = res->bo->gtt_offset + res->offset,
1885 .x_offset_sa = tile_x_sa,
1886 .y_offset_sa = tile_y_sa,
1887 };
1888
1889 assert(!iris_resource_unfinished_aux_import(res));
1890
1891 if (aux_usage != ISL_AUX_USAGE_NONE) {
1892 f.aux_surf = &res->aux.surf;
1893 f.aux_usage = aux_usage;
1894 f.aux_address = res->aux.bo->gtt_offset + res->aux.offset;
1895
1896 struct iris_bo *clear_bo = NULL;
1897 uint64_t clear_offset = 0;
1898 f.clear_color =
1899 iris_resource_get_clear_color(res, &clear_bo, &clear_offset);
1900 if (clear_bo) {
1901 f.clear_address = clear_bo->gtt_offset + clear_offset;
1902 f.use_clear_address = isl_dev->info->gen > 9;
1903 }
1904 }
1905
1906 isl_surf_fill_state_s(isl_dev, map, &f);
1907 }
1908
1909 /**
1910 * The pipe->create_sampler_view() driver hook.
1911 */
1912 static struct pipe_sampler_view *
1913 iris_create_sampler_view(struct pipe_context *ctx,
1914 struct pipe_resource *tex,
1915 const struct pipe_sampler_view *tmpl)
1916 {
1917 struct iris_context *ice = (struct iris_context *) ctx;
1918 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
1919 const struct gen_device_info *devinfo = &screen->devinfo;
1920 struct iris_sampler_view *isv = calloc(1, sizeof(struct iris_sampler_view));
1921
1922 if (!isv)
1923 return NULL;
1924
1925 /* initialize base object */
1926 isv->base = *tmpl;
1927 isv->base.context = ctx;
1928 isv->base.texture = NULL;
1929 pipe_reference_init(&isv->base.reference, 1);
1930 pipe_resource_reference(&isv->base.texture, tex);
1931
1932 if (util_format_is_depth_or_stencil(tmpl->format)) {
1933 struct iris_resource *zres, *sres;
1934 const struct util_format_description *desc =
1935 util_format_description(tmpl->format);
1936
1937 iris_get_depth_stencil_resources(tex, &zres, &sres);
1938
1939 tex = util_format_has_depth(desc) ? &zres->base : &sres->base;
1940 }
1941
1942 isv->res = (struct iris_resource *) tex;
1943
1944 void *map = alloc_surface_states(ice->state.surface_uploader,
1945 &isv->surface_state,
1946 isv->res->aux.sampler_usages);
1947 if (!unlikely(map))
1948 return NULL;
1949
1950 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_TEXTURE_BIT;
1951
1952 if (isv->base.target == PIPE_TEXTURE_CUBE ||
1953 isv->base.target == PIPE_TEXTURE_CUBE_ARRAY)
1954 usage |= ISL_SURF_USAGE_CUBE_BIT;
1955
1956 const struct iris_format_info fmt =
1957 iris_format_for_usage(devinfo, tmpl->format, usage);
1958
1959 isv->clear_color = isv->res->aux.clear_color;
1960
1961 isv->view = (struct isl_view) {
1962 .format = fmt.fmt,
1963 .swizzle = (struct isl_swizzle) {
1964 .r = fmt_swizzle(&fmt, tmpl->swizzle_r),
1965 .g = fmt_swizzle(&fmt, tmpl->swizzle_g),
1966 .b = fmt_swizzle(&fmt, tmpl->swizzle_b),
1967 .a = fmt_swizzle(&fmt, tmpl->swizzle_a),
1968 },
1969 .usage = usage,
1970 };
1971
1972 /* Fill out SURFACE_STATE for this view. */
1973 if (tmpl->target != PIPE_BUFFER) {
1974 isv->view.base_level = tmpl->u.tex.first_level;
1975 isv->view.levels = tmpl->u.tex.last_level - tmpl->u.tex.first_level + 1;
1976 // XXX: do I need to port f9fd0cf4790cb2a530e75d1a2206dbb9d8af7cb2?
1977 isv->view.base_array_layer = tmpl->u.tex.first_layer;
1978 isv->view.array_len =
1979 tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
1980
1981 if (iris_resource_unfinished_aux_import(isv->res))
1982 iris_resource_finish_aux_import(&screen->base, isv->res);
1983
1984 unsigned aux_modes = isv->res->aux.sampler_usages;
1985 while (aux_modes) {
1986 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
1987
1988 /* If we have a multisampled depth buffer, do not create a sampler
1989 * surface state with HiZ.
1990 */
1991 fill_surface_state(&screen->isl_dev, map, isv->res, &isv->res->surf,
1992 &isv->view, aux_usage, 0, 0);
1993
1994 map += SURFACE_STATE_ALIGNMENT;
1995 }
1996 } else {
1997 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
1998 isv->view.format, isv->view.swizzle,
1999 tmpl->u.buf.offset, tmpl->u.buf.size);
2000 }
2001
2002 return &isv->base;
2003 }
2004
2005 static void
2006 iris_sampler_view_destroy(struct pipe_context *ctx,
2007 struct pipe_sampler_view *state)
2008 {
2009 struct iris_sampler_view *isv = (void *) state;
2010 pipe_resource_reference(&state->texture, NULL);
2011 pipe_resource_reference(&isv->surface_state.res, NULL);
2012 free(isv);
2013 }
2014
2015 /**
2016 * The pipe->create_surface() driver hook.
2017 *
2018 * In Gallium nomenclature, "surfaces" are a view of a resource that
2019 * can be bound as a render target or depth/stencil buffer.
2020 */
2021 static struct pipe_surface *
2022 iris_create_surface(struct pipe_context *ctx,
2023 struct pipe_resource *tex,
2024 const struct pipe_surface *tmpl)
2025 {
2026 struct iris_context *ice = (struct iris_context *) ctx;
2027 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2028 const struct gen_device_info *devinfo = &screen->devinfo;
2029
2030 isl_surf_usage_flags_t usage = 0;
2031 if (tmpl->writable)
2032 usage = ISL_SURF_USAGE_STORAGE_BIT;
2033 else if (util_format_is_depth_or_stencil(tmpl->format))
2034 usage = ISL_SURF_USAGE_DEPTH_BIT;
2035 else
2036 usage = ISL_SURF_USAGE_RENDER_TARGET_BIT;
2037
2038 const struct iris_format_info fmt =
2039 iris_format_for_usage(devinfo, tmpl->format, usage);
2040
2041 if ((usage & ISL_SURF_USAGE_RENDER_TARGET_BIT) &&
2042 !isl_format_supports_rendering(devinfo, fmt.fmt)) {
2043 /* Framebuffer validation will reject this invalid case, but it
2044 * hasn't had the opportunity yet. In the meantime, we need to
2045 * avoid hitting ISL asserts about unsupported formats below.
2046 */
2047 return NULL;
2048 }
2049
2050 struct iris_surface *surf = calloc(1, sizeof(struct iris_surface));
2051 struct pipe_surface *psurf = &surf->base;
2052 struct iris_resource *res = (struct iris_resource *) tex;
2053
2054 if (!surf)
2055 return NULL;
2056
2057 pipe_reference_init(&psurf->reference, 1);
2058 pipe_resource_reference(&psurf->texture, tex);
2059 psurf->context = ctx;
2060 psurf->format = tmpl->format;
2061 psurf->width = tex->width0;
2062 psurf->height = tex->height0;
2063 psurf->texture = tex;
2064 psurf->u.tex.first_layer = tmpl->u.tex.first_layer;
2065 psurf->u.tex.last_layer = tmpl->u.tex.last_layer;
2066 psurf->u.tex.level = tmpl->u.tex.level;
2067
2068 uint32_t array_len = tmpl->u.tex.last_layer - tmpl->u.tex.first_layer + 1;
2069
2070 struct isl_view *view = &surf->view;
2071 *view = (struct isl_view) {
2072 .format = fmt.fmt,
2073 .base_level = tmpl->u.tex.level,
2074 .levels = 1,
2075 .base_array_layer = tmpl->u.tex.first_layer,
2076 .array_len = array_len,
2077 .swizzle = ISL_SWIZZLE_IDENTITY,
2078 .usage = usage,
2079 };
2080
2081 #if GEN_GEN == 8
2082 enum pipe_texture_target target = (tex->target == PIPE_TEXTURE_3D &&
2083 array_len == 1) ? PIPE_TEXTURE_2D :
2084 tex->target == PIPE_TEXTURE_1D_ARRAY ?
2085 PIPE_TEXTURE_2D_ARRAY : tex->target;
2086
2087 struct isl_view *read_view = &surf->read_view;
2088 *read_view = (struct isl_view) {
2089 .format = fmt.fmt,
2090 .base_level = tmpl->u.tex.level,
2091 .levels = 1,
2092 .base_array_layer = tmpl->u.tex.first_layer,
2093 .array_len = array_len,
2094 .swizzle = ISL_SWIZZLE_IDENTITY,
2095 .usage = ISL_SURF_USAGE_TEXTURE_BIT,
2096 };
2097 #endif
2098
2099 surf->clear_color = res->aux.clear_color;
2100
2101 /* Bail early for depth/stencil - we don't want SURFACE_STATE for them. */
2102 if (res->surf.usage & (ISL_SURF_USAGE_DEPTH_BIT |
2103 ISL_SURF_USAGE_STENCIL_BIT))
2104 return psurf;
2105
2106
2107 void *map = alloc_surface_states(ice->state.surface_uploader,
2108 &surf->surface_state,
2109 res->aux.possible_usages);
2110 if (!unlikely(map)) {
2111 pipe_resource_reference(&surf->surface_state.res, NULL);
2112 return NULL;
2113 }
2114
2115 #if GEN_GEN == 8
2116 void *map_read = alloc_surface_states(ice->state.surface_uploader,
2117 &surf->surface_state_read,
2118 res->aux.possible_usages);
2119 if (!unlikely(map_read)) {
2120 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2121 return NULL;
2122 }
2123 #endif
2124
2125 if (!isl_format_is_compressed(res->surf.format)) {
2126 if (iris_resource_unfinished_aux_import(res))
2127 iris_resource_finish_aux_import(&screen->base, res);
2128
2129 /* This is a normal surface. Fill out a SURFACE_STATE for each possible
2130 * auxiliary surface mode and return the pipe_surface.
2131 */
2132 unsigned aux_modes = res->aux.possible_usages;
2133 while (aux_modes) {
2134 #if GEN_GEN == 8
2135 uint32_t offset = res->offset;
2136 #endif
2137 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
2138 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2139 view, aux_usage, 0, 0);
2140 map += SURFACE_STATE_ALIGNMENT;
2141
2142 #if GEN_GEN == 8
2143 struct isl_surf surf;
2144 uint32_t tile_x_sa = 0, tile_y_sa = 0;
2145 get_rt_read_isl_surf(devinfo, res, target, read_view,
2146 &tile_x_sa, &tile_y_sa, &surf);
2147 fill_surface_state(&screen->isl_dev, map_read, res, &surf, read_view,
2148 aux_usage, tile_x_sa, tile_y_sa);
2149 /* Restore offset because we change offset in case of handling
2150 * non_coherent fb fetch
2151 */
2152 res->offset = offset;
2153 map_read += SURFACE_STATE_ALIGNMENT;
2154 #endif
2155 }
2156
2157 return psurf;
2158 }
2159
2160 /* The resource has a compressed format, which is not renderable, but we
2161 * have a renderable view format. We must be attempting to upload blocks
2162 * of compressed data via an uncompressed view.
2163 *
2164 * In this case, we can assume there are no auxiliary buffers, a single
2165 * miplevel, and that the resource is single-sampled. Gallium may try
2166 * and create an uncompressed view with multiple layers, however.
2167 */
2168 assert(!isl_format_is_compressed(fmt.fmt));
2169 assert(res->aux.possible_usages == 1 << ISL_AUX_USAGE_NONE);
2170 assert(res->surf.samples == 1);
2171 assert(view->levels == 1);
2172
2173 struct isl_surf isl_surf;
2174 uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
2175
2176 if (view->base_level > 0) {
2177 /* We can't rely on the hardware's miplevel selection with such
2178 * a substantial lie about the format, so we select a single image
2179 * using the Tile X/Y Offset fields. In this case, we can't handle
2180 * multiple array slices.
2181 *
2182 * On Broadwell, HALIGN and VALIGN are specified in pixels and are
2183 * hard-coded to align to exactly the block size of the compressed
2184 * texture. This means that, when reinterpreted as a non-compressed
2185 * texture, the tile offsets may be anything and we can't rely on
2186 * X/Y Offset.
2187 *
2188 * Return NULL to force the state tracker to take fallback paths.
2189 */
2190 if (view->array_len > 1 || GEN_GEN == 8)
2191 return NULL;
2192
2193 const bool is_3d = res->surf.dim == ISL_SURF_DIM_3D;
2194 isl_surf_get_image_surf(&screen->isl_dev, &res->surf,
2195 view->base_level,
2196 is_3d ? 0 : view->base_array_layer,
2197 is_3d ? view->base_array_layer : 0,
2198 &isl_surf,
2199 &offset_B, &tile_x_sa, &tile_y_sa);
2200
2201 /* We use address and tile offsets to access a single level/layer
2202 * as a subimage, so reset level/layer so it doesn't offset again.
2203 */
2204 view->base_array_layer = 0;
2205 view->base_level = 0;
2206 } else {
2207 /* Level 0 doesn't require tile offsets, and the hardware can find
2208 * array slices using QPitch even with the format override, so we
2209 * can allow layers in this case. Copy the original ISL surface.
2210 */
2211 memcpy(&isl_surf, &res->surf, sizeof(isl_surf));
2212 }
2213
2214 /* Scale down the image dimensions by the block size. */
2215 const struct isl_format_layout *fmtl =
2216 isl_format_get_layout(res->surf.format);
2217 isl_surf.format = fmt.fmt;
2218 isl_surf.logical_level0_px = isl_surf_get_logical_level0_el(&isl_surf);
2219 isl_surf.phys_level0_sa = isl_surf_get_phys_level0_el(&isl_surf);
2220 tile_x_sa /= fmtl->bw;
2221 tile_y_sa /= fmtl->bh;
2222
2223 psurf->width = isl_surf.logical_level0_px.width;
2224 psurf->height = isl_surf.logical_level0_px.height;
2225
2226 struct isl_surf_fill_state_info f = {
2227 .surf = &isl_surf,
2228 .view = view,
2229 .mocs = mocs(res->bo),
2230 .address = res->bo->gtt_offset + offset_B,
2231 .x_offset_sa = tile_x_sa,
2232 .y_offset_sa = tile_y_sa,
2233 };
2234
2235 isl_surf_fill_state_s(&screen->isl_dev, map, &f);
2236 return psurf;
2237 }
2238
2239 #if GEN_GEN < 9
2240 static void
2241 fill_default_image_param(struct brw_image_param *param)
2242 {
2243 memset(param, 0, sizeof(*param));
2244 /* Set the swizzling shifts to all-ones to effectively disable swizzling --
2245 * See emit_address_calculation() in brw_fs_surface_builder.cpp for a more
2246 * detailed explanation of these parameters.
2247 */
2248 param->swizzling[0] = 0xff;
2249 param->swizzling[1] = 0xff;
2250 }
2251
2252 static void
2253 fill_buffer_image_param(struct brw_image_param *param,
2254 enum pipe_format pfmt,
2255 unsigned size)
2256 {
2257 const unsigned cpp = util_format_get_blocksize(pfmt);
2258
2259 fill_default_image_param(param);
2260 param->size[0] = size / cpp;
2261 param->stride[0] = cpp;
2262 }
2263 #else
2264 #define isl_surf_fill_image_param(x, ...)
2265 #define fill_default_image_param(x, ...)
2266 #define fill_buffer_image_param(x, ...)
2267 #endif
2268
2269 /**
2270 * The pipe->set_shader_images() driver hook.
2271 */
2272 static void
2273 iris_set_shader_images(struct pipe_context *ctx,
2274 enum pipe_shader_type p_stage,
2275 unsigned start_slot, unsigned count,
2276 const struct pipe_image_view *p_images)
2277 {
2278 struct iris_context *ice = (struct iris_context *) ctx;
2279 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2280 const struct gen_device_info *devinfo = &screen->devinfo;
2281 gl_shader_stage stage = stage_from_pipe(p_stage);
2282 struct iris_shader_state *shs = &ice->state.shaders[stage];
2283 #if GEN_GEN == 8
2284 struct iris_genx_state *genx = ice->state.genx;
2285 struct brw_image_param *image_params = genx->shaders[stage].image_param;
2286 #endif
2287
2288 shs->bound_image_views &= ~u_bit_consecutive(start_slot, count);
2289
2290 for (unsigned i = 0; i < count; i++) {
2291 struct iris_image_view *iv = &shs->image[start_slot + i];
2292
2293 if (p_images && p_images[i].resource) {
2294 const struct pipe_image_view *img = &p_images[i];
2295 struct iris_resource *res = (void *) img->resource;
2296
2297 void *map =
2298 alloc_surface_states(ice->state.surface_uploader,
2299 &iv->surface_state, 1 << ISL_AUX_USAGE_NONE);
2300 if (!unlikely(map))
2301 return;
2302
2303 util_copy_image_view(&iv->base, img);
2304
2305 shs->bound_image_views |= 1 << (start_slot + i);
2306
2307 res->bind_history |= PIPE_BIND_SHADER_IMAGE;
2308
2309 isl_surf_usage_flags_t usage = ISL_SURF_USAGE_STORAGE_BIT;
2310 enum isl_format isl_fmt =
2311 iris_format_for_usage(devinfo, img->format, usage).fmt;
2312
2313 bool untyped_fallback = false;
2314
2315 if (img->shader_access & PIPE_IMAGE_ACCESS_READ) {
2316 /* On Gen8, try to use typed surfaces reads (which support a
2317 * limited number of formats), and if not possible, fall back
2318 * to untyped reads.
2319 */
2320 untyped_fallback = GEN_GEN == 8 &&
2321 !isl_has_matching_typed_storage_image_format(devinfo, isl_fmt);
2322
2323 if (untyped_fallback)
2324 isl_fmt = ISL_FORMAT_RAW;
2325 else
2326 isl_fmt = isl_lower_storage_image_format(devinfo, isl_fmt);
2327 }
2328
2329 if (res->base.target != PIPE_BUFFER) {
2330 struct isl_view view = {
2331 .format = isl_fmt,
2332 .base_level = img->u.tex.level,
2333 .levels = 1,
2334 .base_array_layer = img->u.tex.first_layer,
2335 .array_len = img->u.tex.last_layer - img->u.tex.first_layer + 1,
2336 .swizzle = ISL_SWIZZLE_IDENTITY,
2337 .usage = usage,
2338 };
2339
2340 if (untyped_fallback) {
2341 fill_buffer_surface_state(&screen->isl_dev, res, map,
2342 isl_fmt, ISL_SWIZZLE_IDENTITY,
2343 0, res->bo->size);
2344 } else {
2345 /* Images don't support compression */
2346 unsigned aux_modes = 1 << ISL_AUX_USAGE_NONE;
2347 while (aux_modes) {
2348 enum isl_aux_usage usage = u_bit_scan(&aux_modes);
2349
2350 fill_surface_state(&screen->isl_dev, map, res, &res->surf,
2351 &view, usage, 0, 0);
2352
2353 map += SURFACE_STATE_ALIGNMENT;
2354 }
2355 }
2356
2357 isl_surf_fill_image_param(&screen->isl_dev,
2358 &image_params[start_slot + i],
2359 &res->surf, &view);
2360 } else {
2361 util_range_add(&res->valid_buffer_range, img->u.buf.offset,
2362 img->u.buf.offset + img->u.buf.size);
2363
2364 fill_buffer_surface_state(&screen->isl_dev, res, map,
2365 isl_fmt, ISL_SWIZZLE_IDENTITY,
2366 img->u.buf.offset, img->u.buf.size);
2367 fill_buffer_image_param(&image_params[start_slot + i],
2368 img->format, img->u.buf.size);
2369 }
2370 } else {
2371 pipe_resource_reference(&iv->base.resource, NULL);
2372 pipe_resource_reference(&iv->surface_state.res, NULL);
2373 fill_default_image_param(&image_params[start_slot + i]);
2374 }
2375 }
2376
2377 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2378 ice->state.dirty |=
2379 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2380 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2381
2382 /* Broadwell also needs brw_image_params re-uploaded */
2383 if (GEN_GEN < 9) {
2384 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2385 shs->sysvals_need_upload = true;
2386 }
2387 }
2388
2389
2390 /**
2391 * The pipe->set_sampler_views() driver hook.
2392 */
2393 static void
2394 iris_set_sampler_views(struct pipe_context *ctx,
2395 enum pipe_shader_type p_stage,
2396 unsigned start, unsigned count,
2397 struct pipe_sampler_view **views)
2398 {
2399 struct iris_context *ice = (struct iris_context *) ctx;
2400 gl_shader_stage stage = stage_from_pipe(p_stage);
2401 struct iris_shader_state *shs = &ice->state.shaders[stage];
2402
2403 shs->bound_sampler_views &= ~u_bit_consecutive(start, count);
2404
2405 for (unsigned i = 0; i < count; i++) {
2406 struct pipe_sampler_view *pview = views ? views[i] : NULL;
2407 pipe_sampler_view_reference((struct pipe_sampler_view **)
2408 &shs->textures[start + i], pview);
2409 struct iris_sampler_view *view = (void *) pview;
2410 if (view) {
2411 view->res->bind_history |= PIPE_BIND_SAMPLER_VIEW;
2412 shs->bound_sampler_views |= 1 << (start + i);
2413 }
2414 }
2415
2416 ice->state.dirty |= (IRIS_DIRTY_BINDINGS_VS << stage);
2417 ice->state.dirty |=
2418 stage == MESA_SHADER_COMPUTE ? IRIS_DIRTY_COMPUTE_RESOLVES_AND_FLUSHES
2419 : IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2420 }
2421
2422 /**
2423 * The pipe->set_tess_state() driver hook.
2424 */
2425 static void
2426 iris_set_tess_state(struct pipe_context *ctx,
2427 const float default_outer_level[4],
2428 const float default_inner_level[2])
2429 {
2430 struct iris_context *ice = (struct iris_context *) ctx;
2431 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_TESS_CTRL];
2432
2433 memcpy(&ice->state.default_outer_level[0], &default_outer_level[0], 4 * sizeof(float));
2434 memcpy(&ice->state.default_inner_level[0], &default_inner_level[0], 2 * sizeof(float));
2435
2436 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_TCS;
2437 shs->sysvals_need_upload = true;
2438 }
2439
2440 static void
2441 iris_surface_destroy(struct pipe_context *ctx, struct pipe_surface *p_surf)
2442 {
2443 struct iris_surface *surf = (void *) p_surf;
2444 pipe_resource_reference(&p_surf->texture, NULL);
2445 pipe_resource_reference(&surf->surface_state.res, NULL);
2446 pipe_resource_reference(&surf->surface_state_read.res, NULL);
2447 free(surf);
2448 }
2449
2450 static void
2451 iris_set_clip_state(struct pipe_context *ctx,
2452 const struct pipe_clip_state *state)
2453 {
2454 struct iris_context *ice = (struct iris_context *) ctx;
2455 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_VERTEX];
2456 struct iris_shader_state *gshs = &ice->state.shaders[MESA_SHADER_GEOMETRY];
2457 struct iris_shader_state *tshs = &ice->state.shaders[MESA_SHADER_TESS_EVAL];
2458
2459 memcpy(&ice->state.clip_planes, state, sizeof(*state));
2460
2461 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS | IRIS_DIRTY_CONSTANTS_GS |
2462 IRIS_DIRTY_CONSTANTS_TES;
2463 shs->sysvals_need_upload = true;
2464 gshs->sysvals_need_upload = true;
2465 tshs->sysvals_need_upload = true;
2466 }
2467
2468 /**
2469 * The pipe->set_polygon_stipple() driver hook.
2470 */
2471 static void
2472 iris_set_polygon_stipple(struct pipe_context *ctx,
2473 const struct pipe_poly_stipple *state)
2474 {
2475 struct iris_context *ice = (struct iris_context *) ctx;
2476 memcpy(&ice->state.poly_stipple, state, sizeof(*state));
2477 ice->state.dirty |= IRIS_DIRTY_POLYGON_STIPPLE;
2478 }
2479
2480 /**
2481 * The pipe->set_sample_mask() driver hook.
2482 */
2483 static void
2484 iris_set_sample_mask(struct pipe_context *ctx, unsigned sample_mask)
2485 {
2486 struct iris_context *ice = (struct iris_context *) ctx;
2487
2488 /* We only support 16x MSAA, so we have 16 bits of sample maks.
2489 * st/mesa may pass us 0xffffffff though, meaning "enable all samples".
2490 */
2491 ice->state.sample_mask = sample_mask & 0xffff;
2492 ice->state.dirty |= IRIS_DIRTY_SAMPLE_MASK;
2493 }
2494
2495 /**
2496 * The pipe->set_scissor_states() driver hook.
2497 *
2498 * This corresponds to our SCISSOR_RECT state structures. It's an
2499 * exact match, so we just store them, and memcpy them out later.
2500 */
2501 static void
2502 iris_set_scissor_states(struct pipe_context *ctx,
2503 unsigned start_slot,
2504 unsigned num_scissors,
2505 const struct pipe_scissor_state *rects)
2506 {
2507 struct iris_context *ice = (struct iris_context *) ctx;
2508
2509 for (unsigned i = 0; i < num_scissors; i++) {
2510 if (rects[i].minx == rects[i].maxx || rects[i].miny == rects[i].maxy) {
2511 /* If the scissor was out of bounds and got clamped to 0 width/height
2512 * at the bounds, the subtraction of 1 from maximums could produce a
2513 * negative number and thus not clip anything. Instead, just provide
2514 * a min > max scissor inside the bounds, which produces the expected
2515 * no rendering.
2516 */
2517 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2518 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
2519 };
2520 } else {
2521 ice->state.scissors[start_slot + i] = (struct pipe_scissor_state) {
2522 .minx = rects[i].minx, .miny = rects[i].miny,
2523 .maxx = rects[i].maxx - 1, .maxy = rects[i].maxy - 1,
2524 };
2525 }
2526 }
2527
2528 ice->state.dirty |= IRIS_DIRTY_SCISSOR_RECT;
2529 }
2530
2531 /**
2532 * The pipe->set_stencil_ref() driver hook.
2533 *
2534 * This is added to 3DSTATE_WM_DEPTH_STENCIL dynamically at draw time.
2535 */
2536 static void
2537 iris_set_stencil_ref(struct pipe_context *ctx,
2538 const struct pipe_stencil_ref *state)
2539 {
2540 struct iris_context *ice = (struct iris_context *) ctx;
2541 memcpy(&ice->state.stencil_ref, state, sizeof(*state));
2542 if (GEN_GEN == 8)
2543 ice->state.dirty |= IRIS_DIRTY_COLOR_CALC_STATE;
2544 else
2545 ice->state.dirty |= IRIS_DIRTY_WM_DEPTH_STENCIL;
2546 }
2547
2548 static float
2549 viewport_extent(const struct pipe_viewport_state *state, int axis, float sign)
2550 {
2551 return copysignf(state->scale[axis], sign) + state->translate[axis];
2552 }
2553
2554 /**
2555 * The pipe->set_viewport_states() driver hook.
2556 *
2557 * This corresponds to our SF_CLIP_VIEWPORT states. We can't calculate
2558 * the guardband yet, as we need the framebuffer dimensions, but we can
2559 * at least fill out the rest.
2560 */
2561 static void
2562 iris_set_viewport_states(struct pipe_context *ctx,
2563 unsigned start_slot,
2564 unsigned count,
2565 const struct pipe_viewport_state *states)
2566 {
2567 struct iris_context *ice = (struct iris_context *) ctx;
2568
2569 memcpy(&ice->state.viewports[start_slot], states, sizeof(*states) * count);
2570
2571 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2572
2573 if (ice->state.cso_rast && (!ice->state.cso_rast->depth_clip_near ||
2574 !ice->state.cso_rast->depth_clip_far))
2575 ice->state.dirty |= IRIS_DIRTY_CC_VIEWPORT;
2576 }
2577
2578 /**
2579 * The pipe->set_framebuffer_state() driver hook.
2580 *
2581 * Sets the current draw FBO, including color render targets, depth,
2582 * and stencil buffers.
2583 */
2584 static void
2585 iris_set_framebuffer_state(struct pipe_context *ctx,
2586 const struct pipe_framebuffer_state *state)
2587 {
2588 struct iris_context *ice = (struct iris_context *) ctx;
2589 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2590 struct isl_device *isl_dev = &screen->isl_dev;
2591 struct pipe_framebuffer_state *cso = &ice->state.framebuffer;
2592 struct iris_resource *zres;
2593 struct iris_resource *stencil_res;
2594
2595 unsigned samples = util_framebuffer_get_num_samples(state);
2596 unsigned layers = util_framebuffer_get_num_layers(state);
2597
2598 if (cso->samples != samples) {
2599 ice->state.dirty |= IRIS_DIRTY_MULTISAMPLE;
2600
2601 /* We need to toggle 3DSTATE_PS::32 Pixel Dispatch Enable */
2602 if (GEN_GEN >= 9 && (cso->samples == 16 || samples == 16))
2603 ice->state.dirty |= IRIS_DIRTY_FS;
2604 }
2605
2606 if (cso->nr_cbufs != state->nr_cbufs) {
2607 ice->state.dirty |= IRIS_DIRTY_BLEND_STATE;
2608 }
2609
2610 if ((cso->layers == 0) != (layers == 0)) {
2611 ice->state.dirty |= IRIS_DIRTY_CLIP;
2612 }
2613
2614 if (cso->width != state->width || cso->height != state->height) {
2615 ice->state.dirty |= IRIS_DIRTY_SF_CL_VIEWPORT;
2616 }
2617
2618 if (cso->zsbuf || state->zsbuf) {
2619 ice->state.dirty |= IRIS_DIRTY_DEPTH_BUFFER;
2620 }
2621
2622 util_copy_framebuffer_state(cso, state);
2623 cso->samples = samples;
2624 cso->layers = layers;
2625
2626 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
2627
2628 struct isl_view view = {
2629 .base_level = 0,
2630 .levels = 1,
2631 .base_array_layer = 0,
2632 .array_len = 1,
2633 .swizzle = ISL_SWIZZLE_IDENTITY,
2634 };
2635
2636 struct isl_depth_stencil_hiz_emit_info info = { .view = &view };
2637
2638 if (cso->zsbuf) {
2639 iris_get_depth_stencil_resources(cso->zsbuf->texture, &zres,
2640 &stencil_res);
2641
2642 view.base_level = cso->zsbuf->u.tex.level;
2643 view.base_array_layer = cso->zsbuf->u.tex.first_layer;
2644 view.array_len =
2645 cso->zsbuf->u.tex.last_layer - cso->zsbuf->u.tex.first_layer + 1;
2646
2647 if (zres) {
2648 view.usage |= ISL_SURF_USAGE_DEPTH_BIT;
2649
2650 info.depth_surf = &zres->surf;
2651 info.depth_address = zres->bo->gtt_offset + zres->offset;
2652 info.mocs = mocs(zres->bo);
2653
2654 view.format = zres->surf.format;
2655
2656 if (iris_resource_level_has_hiz(zres, view.base_level)) {
2657 info.hiz_usage = ISL_AUX_USAGE_HIZ;
2658 info.hiz_surf = &zres->aux.surf;
2659 info.hiz_address = zres->aux.bo->gtt_offset + zres->aux.offset;
2660 }
2661 }
2662
2663 if (stencil_res) {
2664 view.usage |= ISL_SURF_USAGE_STENCIL_BIT;
2665 info.stencil_surf = &stencil_res->surf;
2666 info.stencil_address = stencil_res->bo->gtt_offset + stencil_res->offset;
2667 if (!zres) {
2668 view.format = stencil_res->surf.format;
2669 info.mocs = mocs(stencil_res->bo);
2670 }
2671 }
2672 }
2673
2674 isl_emit_depth_stencil_hiz_s(isl_dev, cso_z->packets, &info);
2675
2676 /* Make a null surface for unbound buffers */
2677 void *null_surf_map =
2678 upload_state(ice->state.surface_uploader, &ice->state.null_fb,
2679 4 * GENX(RENDER_SURFACE_STATE_length), 64);
2680 isl_null_fill_state(&screen->isl_dev, null_surf_map,
2681 isl_extent3d(MAX2(cso->width, 1),
2682 MAX2(cso->height, 1),
2683 cso->layers ? cso->layers : 1));
2684 ice->state.null_fb.offset +=
2685 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.null_fb.res));
2686
2687 /* Render target change */
2688 ice->state.dirty |= IRIS_DIRTY_BINDINGS_FS;
2689
2690 ice->state.dirty |= IRIS_DIRTY_RENDER_RESOLVES_AND_FLUSHES;
2691
2692 ice->state.dirty |= ice->state.dirty_for_nos[IRIS_NOS_FRAMEBUFFER];
2693
2694 #if GEN_GEN == 11
2695 // XXX: we may want to flag IRIS_DIRTY_MULTISAMPLE (or SAMPLE_MASK?)
2696 // XXX: see commit 979fc1bc9bcc64027ff2cfafd285676f31b930a6
2697
2698 /* The PIPE_CONTROL command description says:
2699 *
2700 * "Whenever a Binding Table Index (BTI) used by a Render Target Message
2701 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2702 * Target Cache Flush by enabling this bit. When render target flush
2703 * is set due to new association of BTI, PS Scoreboard Stall bit must
2704 * be set in this packet."
2705 */
2706 // XXX: does this need to happen at 3DSTATE_BTP_PS time?
2707 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
2708 "workaround: RT BTI change [draw]",
2709 PIPE_CONTROL_RENDER_TARGET_FLUSH |
2710 PIPE_CONTROL_STALL_AT_SCOREBOARD);
2711 #endif
2712 }
2713
2714 /**
2715 * The pipe->set_constant_buffer() driver hook.
2716 *
2717 * This uploads any constant data in user buffers, and references
2718 * any UBO resources containing constant data.
2719 */
2720 static void
2721 iris_set_constant_buffer(struct pipe_context *ctx,
2722 enum pipe_shader_type p_stage, unsigned index,
2723 const struct pipe_constant_buffer *input)
2724 {
2725 struct iris_context *ice = (struct iris_context *) ctx;
2726 gl_shader_stage stage = stage_from_pipe(p_stage);
2727 struct iris_shader_state *shs = &ice->state.shaders[stage];
2728 struct pipe_shader_buffer *cbuf = &shs->constbuf[index];
2729
2730 if (input && input->buffer_size && (input->buffer || input->user_buffer)) {
2731 shs->bound_cbufs |= 1u << index;
2732
2733 if (input->user_buffer) {
2734 void *map = NULL;
2735 pipe_resource_reference(&cbuf->buffer, NULL);
2736 u_upload_alloc(ice->ctx.const_uploader, 0, input->buffer_size, 64,
2737 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2738
2739 if (!cbuf->buffer) {
2740 /* Allocation was unsuccessful - just unbind */
2741 iris_set_constant_buffer(ctx, p_stage, index, NULL);
2742 return;
2743 }
2744
2745 assert(map);
2746 memcpy(map, input->user_buffer, input->buffer_size);
2747 } else if (input->buffer) {
2748 pipe_resource_reference(&cbuf->buffer, input->buffer);
2749
2750 cbuf->buffer_offset = input->buffer_offset;
2751 }
2752
2753 cbuf->buffer_size =
2754 MIN2(input->buffer_size,
2755 iris_resource_bo(cbuf->buffer)->size - cbuf->buffer_offset);
2756
2757 struct iris_resource *res = (void *) cbuf->buffer;
2758 res->bind_history |= PIPE_BIND_CONSTANT_BUFFER;
2759
2760 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2761 &shs->constbuf_surf_state[index],
2762 false);
2763 } else {
2764 shs->bound_cbufs &= ~(1u << index);
2765 pipe_resource_reference(&cbuf->buffer, NULL);
2766 pipe_resource_reference(&shs->constbuf_surf_state[index].res, NULL);
2767 }
2768
2769 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << stage;
2770 // XXX: maybe not necessary all the time...?
2771 // XXX: we need 3DS_BTP to commit these changes, and if we fell back to
2772 // XXX: pull model we may need actual new bindings...
2773 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2774 }
2775
2776 static void
2777 upload_sysvals(struct iris_context *ice,
2778 gl_shader_stage stage)
2779 {
2780 UNUSED struct iris_genx_state *genx = ice->state.genx;
2781 struct iris_shader_state *shs = &ice->state.shaders[stage];
2782
2783 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
2784 if (!shader || shader->num_system_values == 0)
2785 return;
2786
2787 assert(shader->num_cbufs > 0);
2788
2789 unsigned sysval_cbuf_index = shader->num_cbufs - 1;
2790 struct pipe_shader_buffer *cbuf = &shs->constbuf[sysval_cbuf_index];
2791 unsigned upload_size = shader->num_system_values * sizeof(uint32_t);
2792 uint32_t *map = NULL;
2793
2794 assert(sysval_cbuf_index < PIPE_MAX_CONSTANT_BUFFERS);
2795 u_upload_alloc(ice->ctx.const_uploader, 0, upload_size, 64,
2796 &cbuf->buffer_offset, &cbuf->buffer, (void **) &map);
2797
2798 for (int i = 0; i < shader->num_system_values; i++) {
2799 uint32_t sysval = shader->system_values[i];
2800 uint32_t value = 0;
2801
2802 if (BRW_PARAM_DOMAIN(sysval) == BRW_PARAM_DOMAIN_IMAGE) {
2803 #if GEN_GEN == 8
2804 unsigned img = BRW_PARAM_IMAGE_IDX(sysval);
2805 unsigned offset = BRW_PARAM_IMAGE_OFFSET(sysval);
2806 struct brw_image_param *param =
2807 &genx->shaders[stage].image_param[img];
2808
2809 assert(offset < sizeof(struct brw_image_param));
2810 value = ((uint32_t *) param)[offset];
2811 #endif
2812 } else if (sysval == BRW_PARAM_BUILTIN_ZERO) {
2813 value = 0;
2814 } else if (BRW_PARAM_BUILTIN_IS_CLIP_PLANE(sysval)) {
2815 int plane = BRW_PARAM_BUILTIN_CLIP_PLANE_IDX(sysval);
2816 int comp = BRW_PARAM_BUILTIN_CLIP_PLANE_COMP(sysval);
2817 value = fui(ice->state.clip_planes.ucp[plane][comp]);
2818 } else if (sysval == BRW_PARAM_BUILTIN_PATCH_VERTICES_IN) {
2819 if (stage == MESA_SHADER_TESS_CTRL) {
2820 value = ice->state.vertices_per_patch;
2821 } else {
2822 assert(stage == MESA_SHADER_TESS_EVAL);
2823 const struct shader_info *tcs_info =
2824 iris_get_shader_info(ice, MESA_SHADER_TESS_CTRL);
2825 if (tcs_info)
2826 value = tcs_info->tess.tcs_vertices_out;
2827 else
2828 value = ice->state.vertices_per_patch;
2829 }
2830 } else if (sysval >= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X &&
2831 sysval <= BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_W) {
2832 unsigned i = sysval - BRW_PARAM_BUILTIN_TESS_LEVEL_OUTER_X;
2833 value = fui(ice->state.default_outer_level[i]);
2834 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_X) {
2835 value = fui(ice->state.default_inner_level[0]);
2836 } else if (sysval == BRW_PARAM_BUILTIN_TESS_LEVEL_INNER_Y) {
2837 value = fui(ice->state.default_inner_level[1]);
2838 } else {
2839 assert(!"unhandled system value");
2840 }
2841
2842 *map++ = value;
2843 }
2844
2845 cbuf->buffer_size = upload_size;
2846 iris_upload_ubo_ssbo_surf_state(ice, cbuf,
2847 &shs->constbuf_surf_state[sysval_cbuf_index], false);
2848
2849 shs->sysvals_need_upload = false;
2850 }
2851
2852 /**
2853 * The pipe->set_shader_buffers() driver hook.
2854 *
2855 * This binds SSBOs and ABOs. Unfortunately, we need to stream out
2856 * SURFACE_STATE here, as the buffer offset may change each time.
2857 */
2858 static void
2859 iris_set_shader_buffers(struct pipe_context *ctx,
2860 enum pipe_shader_type p_stage,
2861 unsigned start_slot, unsigned count,
2862 const struct pipe_shader_buffer *buffers,
2863 unsigned writable_bitmask)
2864 {
2865 struct iris_context *ice = (struct iris_context *) ctx;
2866 gl_shader_stage stage = stage_from_pipe(p_stage);
2867 struct iris_shader_state *shs = &ice->state.shaders[stage];
2868
2869 unsigned modified_bits = u_bit_consecutive(start_slot, count);
2870
2871 shs->bound_ssbos &= ~modified_bits;
2872 shs->writable_ssbos &= ~modified_bits;
2873 shs->writable_ssbos |= writable_bitmask << start_slot;
2874
2875 for (unsigned i = 0; i < count; i++) {
2876 if (buffers && buffers[i].buffer) {
2877 struct iris_resource *res = (void *) buffers[i].buffer;
2878 struct pipe_shader_buffer *ssbo = &shs->ssbo[start_slot + i];
2879 struct iris_state_ref *surf_state =
2880 &shs->ssbo_surf_state[start_slot + i];
2881 pipe_resource_reference(&ssbo->buffer, &res->base);
2882 ssbo->buffer_offset = buffers[i].buffer_offset;
2883 ssbo->buffer_size =
2884 MIN2(buffers[i].buffer_size, res->bo->size - ssbo->buffer_offset);
2885
2886 shs->bound_ssbos |= 1 << (start_slot + i);
2887
2888 iris_upload_ubo_ssbo_surf_state(ice, ssbo, surf_state, true);
2889
2890 res->bind_history |= PIPE_BIND_SHADER_BUFFER;
2891
2892 util_range_add(&res->valid_buffer_range, ssbo->buffer_offset,
2893 ssbo->buffer_offset + ssbo->buffer_size);
2894 } else {
2895 pipe_resource_reference(&shs->ssbo[start_slot + i].buffer, NULL);
2896 pipe_resource_reference(&shs->ssbo_surf_state[start_slot + i].res,
2897 NULL);
2898 }
2899 }
2900
2901 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << stage;
2902 }
2903
2904 static void
2905 iris_delete_state(struct pipe_context *ctx, void *state)
2906 {
2907 free(state);
2908 }
2909
2910 /**
2911 * The pipe->set_vertex_buffers() driver hook.
2912 *
2913 * This translates pipe_vertex_buffer to our 3DSTATE_VERTEX_BUFFERS packet.
2914 */
2915 static void
2916 iris_set_vertex_buffers(struct pipe_context *ctx,
2917 unsigned start_slot, unsigned count,
2918 const struct pipe_vertex_buffer *buffers)
2919 {
2920 struct iris_context *ice = (struct iris_context *) ctx;
2921 struct iris_genx_state *genx = ice->state.genx;
2922
2923 ice->state.bound_vertex_buffers &= ~u_bit_consecutive64(start_slot, count);
2924
2925 for (unsigned i = 0; i < count; i++) {
2926 const struct pipe_vertex_buffer *buffer = buffers ? &buffers[i] : NULL;
2927 struct iris_vertex_buffer_state *state =
2928 &genx->vertex_buffers[start_slot + i];
2929
2930 if (!buffer) {
2931 pipe_resource_reference(&state->resource, NULL);
2932 continue;
2933 }
2934
2935 /* We may see user buffers that are NULL bindings. */
2936 assert(!(buffer->is_user_buffer && buffer->buffer.user != NULL));
2937
2938 pipe_resource_reference(&state->resource, buffer->buffer.resource);
2939 struct iris_resource *res = (void *) state->resource;
2940
2941 if (res) {
2942 ice->state.bound_vertex_buffers |= 1ull << (start_slot + i);
2943 res->bind_history |= PIPE_BIND_VERTEX_BUFFER;
2944 }
2945
2946 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
2947 vb.VertexBufferIndex = start_slot + i;
2948 vb.AddressModifyEnable = true;
2949 vb.BufferPitch = buffer->stride;
2950 if (res) {
2951 vb.BufferSize = res->bo->size - (int) buffer->buffer_offset;
2952 vb.BufferStartingAddress =
2953 ro_bo(NULL, res->bo->gtt_offset + (int) buffer->buffer_offset);
2954 vb.MOCS = mocs(res->bo);
2955 } else {
2956 vb.NullVertexBuffer = true;
2957 }
2958 }
2959 }
2960
2961 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
2962 }
2963
2964 /**
2965 * Gallium CSO for vertex elements.
2966 */
2967 struct iris_vertex_element_state {
2968 uint32_t vertex_elements[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
2969 uint32_t vf_instancing[33 * GENX(3DSTATE_VF_INSTANCING_length)];
2970 uint32_t edgeflag_ve[GENX(VERTEX_ELEMENT_STATE_length)];
2971 uint32_t edgeflag_vfi[GENX(3DSTATE_VF_INSTANCING_length)];
2972 unsigned count;
2973 };
2974
2975 /**
2976 * The pipe->create_vertex_elements() driver hook.
2977 *
2978 * This translates pipe_vertex_element to our 3DSTATE_VERTEX_ELEMENTS
2979 * and 3DSTATE_VF_INSTANCING commands. The vertex_elements and vf_instancing
2980 * arrays are ready to be emitted at draw time if no EdgeFlag or SGVs are
2981 * needed. In these cases we will need information available at draw time.
2982 * We setup edgeflag_ve and edgeflag_vfi as alternatives last
2983 * 3DSTATE_VERTEX_ELEMENT and 3DSTATE_VF_INSTANCING that can be used at
2984 * draw time if we detect that EdgeFlag is needed by the Vertex Shader.
2985 */
2986 static void *
2987 iris_create_vertex_elements(struct pipe_context *ctx,
2988 unsigned count,
2989 const struct pipe_vertex_element *state)
2990 {
2991 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
2992 const struct gen_device_info *devinfo = &screen->devinfo;
2993 struct iris_vertex_element_state *cso =
2994 malloc(sizeof(struct iris_vertex_element_state));
2995
2996 cso->count = count;
2997
2998 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS), cso->vertex_elements, ve) {
2999 ve.DWordLength =
3000 1 + GENX(VERTEX_ELEMENT_STATE_length) * MAX2(count, 1) - 2;
3001 }
3002
3003 uint32_t *ve_pack_dest = &cso->vertex_elements[1];
3004 uint32_t *vfi_pack_dest = cso->vf_instancing;
3005
3006 if (count == 0) {
3007 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3008 ve.Valid = true;
3009 ve.SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT;
3010 ve.Component0Control = VFCOMP_STORE_0;
3011 ve.Component1Control = VFCOMP_STORE_0;
3012 ve.Component2Control = VFCOMP_STORE_0;
3013 ve.Component3Control = VFCOMP_STORE_1_FP;
3014 }
3015
3016 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3017 }
3018 }
3019
3020 for (int i = 0; i < count; i++) {
3021 const struct iris_format_info fmt =
3022 iris_format_for_usage(devinfo, state[i].src_format, 0);
3023 unsigned comp[4] = { VFCOMP_STORE_SRC, VFCOMP_STORE_SRC,
3024 VFCOMP_STORE_SRC, VFCOMP_STORE_SRC };
3025
3026 switch (isl_format_get_num_channels(fmt.fmt)) {
3027 case 0: comp[0] = VFCOMP_STORE_0; /* fallthrough */
3028 case 1: comp[1] = VFCOMP_STORE_0; /* fallthrough */
3029 case 2: comp[2] = VFCOMP_STORE_0; /* fallthrough */
3030 case 3:
3031 comp[3] = isl_format_has_int_channel(fmt.fmt) ? VFCOMP_STORE_1_INT
3032 : VFCOMP_STORE_1_FP;
3033 break;
3034 }
3035 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
3036 ve.EdgeFlagEnable = false;
3037 ve.VertexBufferIndex = state[i].vertex_buffer_index;
3038 ve.Valid = true;
3039 ve.SourceElementOffset = state[i].src_offset;
3040 ve.SourceElementFormat = fmt.fmt;
3041 ve.Component0Control = comp[0];
3042 ve.Component1Control = comp[1];
3043 ve.Component2Control = comp[2];
3044 ve.Component3Control = comp[3];
3045 }
3046
3047 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
3048 vi.VertexElementIndex = i;
3049 vi.InstancingEnable = state[i].instance_divisor > 0;
3050 vi.InstanceDataStepRate = state[i].instance_divisor;
3051 }
3052
3053 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
3054 vfi_pack_dest += GENX(3DSTATE_VF_INSTANCING_length);
3055 }
3056
3057 /* An alternative version of the last VE and VFI is stored so it
3058 * can be used at draw time in case Vertex Shader uses EdgeFlag
3059 */
3060 if (count) {
3061 const unsigned edgeflag_index = count - 1;
3062 const struct iris_format_info fmt =
3063 iris_format_for_usage(devinfo, state[edgeflag_index].src_format, 0);
3064 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), cso->edgeflag_ve, ve) {
3065 ve.EdgeFlagEnable = true ;
3066 ve.VertexBufferIndex = state[edgeflag_index].vertex_buffer_index;
3067 ve.Valid = true;
3068 ve.SourceElementOffset = state[edgeflag_index].src_offset;
3069 ve.SourceElementFormat = fmt.fmt;
3070 ve.Component0Control = VFCOMP_STORE_SRC;
3071 ve.Component1Control = VFCOMP_STORE_0;
3072 ve.Component2Control = VFCOMP_STORE_0;
3073 ve.Component3Control = VFCOMP_STORE_0;
3074 }
3075 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), cso->edgeflag_vfi, vi) {
3076 /* The vi.VertexElementIndex of the EdgeFlag Vertex Element is filled
3077 * at draw time, as it should change if SGVs are emitted.
3078 */
3079 vi.InstancingEnable = state[edgeflag_index].instance_divisor > 0;
3080 vi.InstanceDataStepRate = state[edgeflag_index].instance_divisor;
3081 }
3082 }
3083
3084 return cso;
3085 }
3086
3087 /**
3088 * The pipe->bind_vertex_elements_state() driver hook.
3089 */
3090 static void
3091 iris_bind_vertex_elements_state(struct pipe_context *ctx, void *state)
3092 {
3093 struct iris_context *ice = (struct iris_context *) ctx;
3094 struct iris_vertex_element_state *old_cso = ice->state.cso_vertex_elements;
3095 struct iris_vertex_element_state *new_cso = state;
3096
3097 /* 3DSTATE_VF_SGVs overrides the last VE, so if the count is changing,
3098 * we need to re-emit it to ensure we're overriding the right one.
3099 */
3100 if (new_cso && cso_changed(count))
3101 ice->state.dirty |= IRIS_DIRTY_VF_SGVS;
3102
3103 ice->state.cso_vertex_elements = state;
3104 ice->state.dirty |= IRIS_DIRTY_VERTEX_ELEMENTS;
3105 }
3106
3107 /**
3108 * The pipe->create_stream_output_target() driver hook.
3109 *
3110 * "Target" here refers to a destination buffer. We translate this into
3111 * a 3DSTATE_SO_BUFFER packet. We can handle most fields, but don't yet
3112 * know which buffer this represents, or whether we ought to zero the
3113 * write-offsets, or append. Those are handled in the set() hook.
3114 */
3115 static struct pipe_stream_output_target *
3116 iris_create_stream_output_target(struct pipe_context *ctx,
3117 struct pipe_resource *p_res,
3118 unsigned buffer_offset,
3119 unsigned buffer_size)
3120 {
3121 struct iris_resource *res = (void *) p_res;
3122 struct iris_stream_output_target *cso = calloc(1, sizeof(*cso));
3123 if (!cso)
3124 return NULL;
3125
3126 res->bind_history |= PIPE_BIND_STREAM_OUTPUT;
3127
3128 pipe_reference_init(&cso->base.reference, 1);
3129 pipe_resource_reference(&cso->base.buffer, p_res);
3130 cso->base.buffer_offset = buffer_offset;
3131 cso->base.buffer_size = buffer_size;
3132 cso->base.context = ctx;
3133
3134 util_range_add(&res->valid_buffer_range, buffer_offset,
3135 buffer_offset + buffer_size);
3136
3137 upload_state(ctx->stream_uploader, &cso->offset, sizeof(uint32_t), 4);
3138
3139 return &cso->base;
3140 }
3141
3142 static void
3143 iris_stream_output_target_destroy(struct pipe_context *ctx,
3144 struct pipe_stream_output_target *state)
3145 {
3146 struct iris_stream_output_target *cso = (void *) state;
3147
3148 pipe_resource_reference(&cso->base.buffer, NULL);
3149 pipe_resource_reference(&cso->offset.res, NULL);
3150
3151 free(cso);
3152 }
3153
3154 /**
3155 * The pipe->set_stream_output_targets() driver hook.
3156 *
3157 * At this point, we know which targets are bound to a particular index,
3158 * and also whether we want to append or start over. We can finish the
3159 * 3DSTATE_SO_BUFFER packets we started earlier.
3160 */
3161 static void
3162 iris_set_stream_output_targets(struct pipe_context *ctx,
3163 unsigned num_targets,
3164 struct pipe_stream_output_target **targets,
3165 const unsigned *offsets)
3166 {
3167 struct iris_context *ice = (struct iris_context *) ctx;
3168 struct iris_genx_state *genx = ice->state.genx;
3169 uint32_t *so_buffers = genx->so_buffers;
3170
3171 const bool active = num_targets > 0;
3172 if (ice->state.streamout_active != active) {
3173 ice->state.streamout_active = active;
3174 ice->state.dirty |= IRIS_DIRTY_STREAMOUT;
3175
3176 /* We only emit 3DSTATE_SO_DECL_LIST when streamout is active, because
3177 * it's a non-pipelined command. If we're switching streamout on, we
3178 * may have missed emitting it earlier, so do so now. (We're already
3179 * taking a stall to update 3DSTATE_SO_BUFFERS anyway...)
3180 */
3181 if (active) {
3182 ice->state.dirty |= IRIS_DIRTY_SO_DECL_LIST;
3183 } else {
3184 uint32_t flush = 0;
3185 for (int i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
3186 struct iris_stream_output_target *tgt =
3187 (void *) ice->state.so_target[i];
3188 if (tgt) {
3189 struct iris_resource *res = (void *) tgt->base.buffer;
3190
3191 flush |= iris_flush_bits_for_history(res);
3192 iris_dirty_for_history(ice, res);
3193 }
3194 }
3195 iris_emit_pipe_control_flush(&ice->batches[IRIS_BATCH_RENDER],
3196 "make streamout results visible", flush);
3197 }
3198 }
3199
3200 for (int i = 0; i < 4; i++) {
3201 pipe_so_target_reference(&ice->state.so_target[i],
3202 i < num_targets ? targets[i] : NULL);
3203 }
3204
3205 /* No need to update 3DSTATE_SO_BUFFER unless SOL is active. */
3206 if (!active)
3207 return;
3208
3209 for (unsigned i = 0; i < 4; i++,
3210 so_buffers += GENX(3DSTATE_SO_BUFFER_length)) {
3211
3212 struct iris_stream_output_target *tgt = (void *) ice->state.so_target[i];
3213 unsigned offset = offsets[i];
3214
3215 if (!tgt) {
3216 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob)
3217 sob.SOBufferIndex = i;
3218 continue;
3219 }
3220
3221 struct iris_resource *res = (void *) tgt->base.buffer;
3222
3223 /* Note that offsets[i] will either be 0, causing us to zero
3224 * the value in the buffer, or 0xFFFFFFFF, which happens to mean
3225 * "continue appending at the existing offset."
3226 */
3227 assert(offset == 0 || offset == 0xFFFFFFFF);
3228
3229 /* We might be called by Begin (offset = 0), Pause, then Resume
3230 * (offset = 0xFFFFFFFF) before ever drawing (where these commands
3231 * will actually be sent to the GPU). In this case, we don't want
3232 * to append - we still want to do our initial zeroing.
3233 */
3234 if (!tgt->zeroed)
3235 offset = 0;
3236
3237 iris_pack_command(GENX(3DSTATE_SO_BUFFER), so_buffers, sob) {
3238 sob.SurfaceBaseAddress =
3239 rw_bo(NULL, res->bo->gtt_offset + tgt->base.buffer_offset);
3240 sob.SOBufferEnable = true;
3241 sob.StreamOffsetWriteEnable = true;
3242 sob.StreamOutputBufferOffsetAddressEnable = true;
3243 sob.MOCS = mocs(res->bo);
3244
3245 sob.SurfaceSize = MAX2(tgt->base.buffer_size / 4, 1) - 1;
3246
3247 sob.SOBufferIndex = i;
3248 sob.StreamOffset = offset;
3249 sob.StreamOutputBufferOffsetAddress =
3250 rw_bo(NULL, iris_resource_bo(tgt->offset.res)->gtt_offset +
3251 tgt->offset.offset);
3252 }
3253 }
3254
3255 ice->state.dirty |= IRIS_DIRTY_SO_BUFFERS;
3256 }
3257
3258 /**
3259 * An iris-vtable helper for encoding the 3DSTATE_SO_DECL_LIST and
3260 * 3DSTATE_STREAMOUT packets.
3261 *
3262 * 3DSTATE_SO_DECL_LIST is a list of shader outputs we want the streamout
3263 * hardware to record. We can create it entirely based on the shader, with
3264 * no dynamic state dependencies.
3265 *
3266 * 3DSTATE_STREAMOUT is an annoying mix of shader-based information and
3267 * state-based settings. We capture the shader-related ones here, and merge
3268 * the rest in at draw time.
3269 */
3270 static uint32_t *
3271 iris_create_so_decl_list(const struct pipe_stream_output_info *info,
3272 const struct brw_vue_map *vue_map)
3273 {
3274 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3275 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3276 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3277 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3278 int max_decls = 0;
3279 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3280
3281 memset(so_decl, 0, sizeof(so_decl));
3282
3283 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3284 * command feels strange -- each dword pair contains a SO_DECL per stream.
3285 */
3286 for (unsigned i = 0; i < info->num_outputs; i++) {
3287 const struct pipe_stream_output *output = &info->output[i];
3288 const int buffer = output->output_buffer;
3289 const int varying = output->register_index;
3290 const unsigned stream_id = output->stream;
3291 assert(stream_id < MAX_VERTEX_STREAMS);
3292
3293 buffer_mask[stream_id] |= 1 << buffer;
3294
3295 assert(vue_map->varying_to_slot[varying] >= 0);
3296
3297 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3298 * array. Instead, it simply increments DstOffset for the following
3299 * input by the number of components that should be skipped.
3300 *
3301 * Our hardware is unusual in that it requires us to program SO_DECLs
3302 * for fake "hole" components, rather than simply taking the offset
3303 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3304 * program as many size = 4 holes as we can, then a final hole to
3305 * accommodate the final 1, 2, or 3 remaining.
3306 */
3307 int skip_components = output->dst_offset - next_offset[buffer];
3308
3309 while (skip_components > 0) {
3310 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3311 .HoleFlag = 1,
3312 .OutputBufferSlot = output->output_buffer,
3313 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3314 };
3315 skip_components -= 4;
3316 }
3317
3318 next_offset[buffer] = output->dst_offset + output->num_components;
3319
3320 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3321 .OutputBufferSlot = output->output_buffer,
3322 .RegisterIndex = vue_map->varying_to_slot[varying],
3323 .ComponentMask =
3324 ((1 << output->num_components) - 1) << output->start_component,
3325 };
3326
3327 if (decls[stream_id] > max_decls)
3328 max_decls = decls[stream_id];
3329 }
3330
3331 unsigned dwords = GENX(3DSTATE_STREAMOUT_length) + (3 + 2 * max_decls);
3332 uint32_t *map = ralloc_size(NULL, sizeof(uint32_t) * dwords);
3333 uint32_t *so_decl_map = map + GENX(3DSTATE_STREAMOUT_length);
3334
3335 iris_pack_command(GENX(3DSTATE_STREAMOUT), map, sol) {
3336 int urb_entry_read_offset = 0;
3337 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3338 urb_entry_read_offset;
3339
3340 /* We always read the whole vertex. This could be reduced at some
3341 * point by reading less and offsetting the register index in the
3342 * SO_DECLs.
3343 */
3344 sol.Stream0VertexReadOffset = urb_entry_read_offset;
3345 sol.Stream0VertexReadLength = urb_entry_read_length - 1;
3346 sol.Stream1VertexReadOffset = urb_entry_read_offset;
3347 sol.Stream1VertexReadLength = urb_entry_read_length - 1;
3348 sol.Stream2VertexReadOffset = urb_entry_read_offset;
3349 sol.Stream2VertexReadLength = urb_entry_read_length - 1;
3350 sol.Stream3VertexReadOffset = urb_entry_read_offset;
3351 sol.Stream3VertexReadLength = urb_entry_read_length - 1;
3352
3353 /* Set buffer pitches; 0 means unbound. */
3354 sol.Buffer0SurfacePitch = 4 * info->stride[0];
3355 sol.Buffer1SurfacePitch = 4 * info->stride[1];
3356 sol.Buffer2SurfacePitch = 4 * info->stride[2];
3357 sol.Buffer3SurfacePitch = 4 * info->stride[3];
3358 }
3359
3360 iris_pack_command(GENX(3DSTATE_SO_DECL_LIST), so_decl_map, list) {
3361 list.DWordLength = 3 + 2 * max_decls - 2;
3362 list.StreamtoBufferSelects0 = buffer_mask[0];
3363 list.StreamtoBufferSelects1 = buffer_mask[1];
3364 list.StreamtoBufferSelects2 = buffer_mask[2];
3365 list.StreamtoBufferSelects3 = buffer_mask[3];
3366 list.NumEntries0 = decls[0];
3367 list.NumEntries1 = decls[1];
3368 list.NumEntries2 = decls[2];
3369 list.NumEntries3 = decls[3];
3370 }
3371
3372 for (int i = 0; i < max_decls; i++) {
3373 iris_pack_state(GENX(SO_DECL_ENTRY), so_decl_map + 3 + i * 2, entry) {
3374 entry.Stream0Decl = so_decl[0][i];
3375 entry.Stream1Decl = so_decl[1][i];
3376 entry.Stream2Decl = so_decl[2][i];
3377 entry.Stream3Decl = so_decl[3][i];
3378 }
3379 }
3380
3381 return map;
3382 }
3383
3384 static void
3385 iris_compute_sbe_urb_read_interval(uint64_t fs_input_slots,
3386 const struct brw_vue_map *last_vue_map,
3387 bool two_sided_color,
3388 unsigned *out_offset,
3389 unsigned *out_length)
3390 {
3391 /* The compiler computes the first URB slot without considering COL/BFC
3392 * swizzling (because it doesn't know whether it's enabled), so we need
3393 * to do that here too. This may result in a smaller offset, which
3394 * should be safe.
3395 */
3396 const unsigned first_slot =
3397 brw_compute_first_urb_slot_required(fs_input_slots, last_vue_map);
3398
3399 /* This becomes the URB read offset (counted in pairs of slots). */
3400 assert(first_slot % 2 == 0);
3401 *out_offset = first_slot / 2;
3402
3403 /* We need to adjust the inputs read to account for front/back color
3404 * swizzling, as it can make the URB length longer.
3405 */
3406 for (int c = 0; c <= 1; c++) {
3407 if (fs_input_slots & (VARYING_BIT_COL0 << c)) {
3408 /* If two sided color is enabled, the fragment shader's gl_Color
3409 * (COL0) input comes from either the gl_FrontColor (COL0) or
3410 * gl_BackColor (BFC0) input varyings. Mark BFC as used, too.
3411 */
3412 if (two_sided_color)
3413 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3414
3415 /* If front color isn't written, we opt to give them back color
3416 * instead of an undefined value. Switch from COL to BFC.
3417 */
3418 if (last_vue_map->varying_to_slot[VARYING_SLOT_COL0 + c] == -1) {
3419 fs_input_slots &= ~(VARYING_BIT_COL0 << c);
3420 fs_input_slots |= (VARYING_BIT_BFC0 << c);
3421 }
3422 }
3423 }
3424
3425 /* Compute the minimum URB Read Length necessary for the FS inputs.
3426 *
3427 * From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
3428 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
3429 *
3430 * "This field should be set to the minimum length required to read the
3431 * maximum source attribute. The maximum source attribute is indicated
3432 * by the maximum value of the enabled Attribute # Source Attribute if
3433 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
3434 * enable is not set.
3435 * read_length = ceiling((max_source_attr + 1) / 2)
3436 *
3437 * [errata] Corruption/Hang possible if length programmed larger than
3438 * recommended"
3439 *
3440 * Similar text exists for Ivy Bridge.
3441 *
3442 * We find the last URB slot that's actually read by the FS.
3443 */
3444 unsigned last_read_slot = last_vue_map->num_slots - 1;
3445 while (last_read_slot > first_slot && !(fs_input_slots &
3446 (1ull << last_vue_map->slot_to_varying[last_read_slot])))
3447 --last_read_slot;
3448
3449 /* The URB read length is the difference of the two, counted in pairs. */
3450 *out_length = DIV_ROUND_UP(last_read_slot - first_slot + 1, 2);
3451 }
3452
3453 static void
3454 iris_emit_sbe_swiz(struct iris_batch *batch,
3455 const struct iris_context *ice,
3456 unsigned urb_read_offset,
3457 unsigned sprite_coord_enables)
3458 {
3459 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = {};
3460 const struct brw_wm_prog_data *wm_prog_data = (void *)
3461 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3462 const struct brw_vue_map *vue_map = ice->shaders.last_vue_map;
3463 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3464
3465 /* XXX: this should be generated when putting programs in place */
3466
3467 for (int fs_attr = 0; fs_attr < VARYING_SLOT_MAX; fs_attr++) {
3468 const int input_index = wm_prog_data->urb_setup[fs_attr];
3469 if (input_index < 0 || input_index >= 16)
3470 continue;
3471
3472 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr =
3473 &attr_overrides[input_index];
3474 int slot = vue_map->varying_to_slot[fs_attr];
3475
3476 /* Viewport and Layer are stored in the VUE header. We need to override
3477 * them to zero if earlier stages didn't write them, as GL requires that
3478 * they read back as zero when not explicitly set.
3479 */
3480 switch (fs_attr) {
3481 case VARYING_SLOT_VIEWPORT:
3482 case VARYING_SLOT_LAYER:
3483 attr->ComponentOverrideX = true;
3484 attr->ComponentOverrideW = true;
3485 attr->ConstantSource = CONST_0000;
3486
3487 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
3488 attr->ComponentOverrideY = true;
3489 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
3490 attr->ComponentOverrideZ = true;
3491 continue;
3492
3493 case VARYING_SLOT_PRIMITIVE_ID:
3494 /* Override if the previous shader stage didn't write gl_PrimitiveID. */
3495 if (slot == -1) {
3496 attr->ComponentOverrideX = true;
3497 attr->ComponentOverrideY = true;
3498 attr->ComponentOverrideZ = true;
3499 attr->ComponentOverrideW = true;
3500 attr->ConstantSource = PRIM_ID;
3501 continue;
3502 }
3503
3504 default:
3505 break;
3506 }
3507
3508 if (sprite_coord_enables & (1 << input_index))
3509 continue;
3510
3511 /* If there was only a back color written but not front, use back
3512 * as the color instead of undefined.
3513 */
3514 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
3515 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
3516 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
3517 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
3518
3519 /* Not written by the previous stage - undefined. */
3520 if (slot == -1) {
3521 attr->ComponentOverrideX = true;
3522 attr->ComponentOverrideY = true;
3523 attr->ComponentOverrideZ = true;
3524 attr->ComponentOverrideW = true;
3525 attr->ConstantSource = CONST_0001_FLOAT;
3526 continue;
3527 }
3528
3529 /* Compute the location of the attribute relative to the read offset,
3530 * which is counted in 256-bit increments (two 128-bit VUE slots).
3531 */
3532 const int source_attr = slot - 2 * urb_read_offset;
3533 assert(source_attr >= 0 && source_attr <= 32);
3534 attr->SourceAttribute = source_attr;
3535
3536 /* If we are doing two-sided color, and the VUE slot following this one
3537 * represents a back-facing color, then we need to instruct the SF unit
3538 * to do back-facing swizzling.
3539 */
3540 if (cso_rast->light_twoside &&
3541 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
3542 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
3543 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
3544 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1)))
3545 attr->SwizzleSelect = INPUTATTR_FACING;
3546 }
3547
3548 iris_emit_cmd(batch, GENX(3DSTATE_SBE_SWIZ), sbes) {
3549 for (int i = 0; i < 16; i++)
3550 sbes.Attribute[i] = attr_overrides[i];
3551 }
3552 }
3553
3554 static unsigned
3555 iris_calculate_point_sprite_overrides(const struct brw_wm_prog_data *prog_data,
3556 const struct iris_rasterizer_state *cso)
3557 {
3558 unsigned overrides = 0;
3559
3560 if (prog_data->urb_setup[VARYING_SLOT_PNTC] != -1)
3561 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_PNTC];
3562
3563 for (int i = 0; i < 8; i++) {
3564 if ((cso->sprite_coord_enable & (1 << i)) &&
3565 prog_data->urb_setup[VARYING_SLOT_TEX0 + i] != -1)
3566 overrides |= 1 << prog_data->urb_setup[VARYING_SLOT_TEX0 + i];
3567 }
3568
3569 return overrides;
3570 }
3571
3572 static void
3573 iris_emit_sbe(struct iris_batch *batch, const struct iris_context *ice)
3574 {
3575 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3576 const struct brw_wm_prog_data *wm_prog_data = (void *)
3577 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
3578 const struct shader_info *fs_info =
3579 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
3580
3581 unsigned urb_read_offset, urb_read_length;
3582 iris_compute_sbe_urb_read_interval(fs_info->inputs_read,
3583 ice->shaders.last_vue_map,
3584 cso_rast->light_twoside,
3585 &urb_read_offset, &urb_read_length);
3586
3587 unsigned sprite_coord_overrides =
3588 iris_calculate_point_sprite_overrides(wm_prog_data, cso_rast);
3589
3590 iris_emit_cmd(batch, GENX(3DSTATE_SBE), sbe) {
3591 sbe.AttributeSwizzleEnable = true;
3592 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3593 sbe.PointSpriteTextureCoordinateOrigin = cso_rast->sprite_coord_mode;
3594 sbe.VertexURBEntryReadOffset = urb_read_offset;
3595 sbe.VertexURBEntryReadLength = urb_read_length;
3596 sbe.ForceVertexURBEntryReadOffset = true;
3597 sbe.ForceVertexURBEntryReadLength = true;
3598 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3599 sbe.PointSpriteTextureCoordinateEnable = sprite_coord_overrides;
3600 #if GEN_GEN >= 9
3601 for (int i = 0; i < 32; i++) {
3602 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3603 }
3604 #endif
3605 }
3606
3607 iris_emit_sbe_swiz(batch, ice, urb_read_offset, sprite_coord_overrides);
3608 }
3609
3610 /* ------------------------------------------------------------------- */
3611
3612 /**
3613 * Populate VS program key fields based on the current state.
3614 */
3615 static void
3616 iris_populate_vs_key(const struct iris_context *ice,
3617 const struct shader_info *info,
3618 gl_shader_stage last_stage,
3619 struct brw_vs_prog_key *key)
3620 {
3621 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3622
3623 if (info->clip_distance_array_size == 0 &&
3624 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3625 last_stage == MESA_SHADER_VERTEX)
3626 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3627 }
3628
3629 /**
3630 * Populate TCS program key fields based on the current state.
3631 */
3632 static void
3633 iris_populate_tcs_key(const struct iris_context *ice,
3634 struct brw_tcs_prog_key *key)
3635 {
3636 }
3637
3638 /**
3639 * Populate TES program key fields based on the current state.
3640 */
3641 static void
3642 iris_populate_tes_key(const struct iris_context *ice,
3643 const struct shader_info *info,
3644 gl_shader_stage last_stage,
3645 struct brw_tes_prog_key *key)
3646 {
3647 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3648
3649 if (info->clip_distance_array_size == 0 &&
3650 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3651 last_stage == MESA_SHADER_TESS_EVAL)
3652 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3653 }
3654
3655 /**
3656 * Populate GS program key fields based on the current state.
3657 */
3658 static void
3659 iris_populate_gs_key(const struct iris_context *ice,
3660 const struct shader_info *info,
3661 gl_shader_stage last_stage,
3662 struct brw_gs_prog_key *key)
3663 {
3664 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
3665
3666 if (info->clip_distance_array_size == 0 &&
3667 (info->outputs_written & (VARYING_BIT_POS | VARYING_BIT_CLIP_VERTEX)) &&
3668 last_stage == MESA_SHADER_GEOMETRY)
3669 key->nr_userclip_plane_consts = cso_rast->num_clip_plane_consts;
3670 }
3671
3672 /**
3673 * Populate FS program key fields based on the current state.
3674 */
3675 static void
3676 iris_populate_fs_key(const struct iris_context *ice,
3677 const struct shader_info *info,
3678 struct brw_wm_prog_key *key)
3679 {
3680 struct iris_screen *screen = (void *) ice->ctx.screen;
3681 const struct pipe_framebuffer_state *fb = &ice->state.framebuffer;
3682 const struct iris_depth_stencil_alpha_state *zsa = ice->state.cso_zsa;
3683 const struct iris_rasterizer_state *rast = ice->state.cso_rast;
3684 const struct iris_blend_state *blend = ice->state.cso_blend;
3685
3686 key->nr_color_regions = fb->nr_cbufs;
3687
3688 key->clamp_fragment_color = rast->clamp_fragment_color;
3689
3690 key->alpha_to_coverage = blend->alpha_to_coverage;
3691
3692 key->alpha_test_replicate_alpha = fb->nr_cbufs > 1 && zsa->alpha.enabled;
3693
3694 key->flat_shade = rast->flatshade &&
3695 (info->inputs_read & (VARYING_BIT_COL0 | VARYING_BIT_COL1));
3696
3697 key->persample_interp = rast->force_persample_interp;
3698 key->multisample_fbo = rast->multisample && fb->samples > 1;
3699
3700 key->coherent_fb_fetch = GEN_GEN >= 9;
3701
3702 key->force_dual_color_blend =
3703 screen->driconf.dual_color_blend_by_location &&
3704 (blend->blend_enables & 1) && blend->dual_color_blending;
3705
3706 /* TODO: Respect glHint for key->high_quality_derivatives */
3707 }
3708
3709 static void
3710 iris_populate_cs_key(const struct iris_context *ice,
3711 struct brw_cs_prog_key *key)
3712 {
3713 }
3714
3715 static uint64_t
3716 KSP(const struct iris_compiled_shader *shader)
3717 {
3718 struct iris_resource *res = (void *) shader->assembly.res;
3719 return iris_bo_offset_from_base_address(res->bo) + shader->assembly.offset;
3720 }
3721
3722 /* Gen11 workaround table #2056 WABTPPrefetchDisable suggests to disable
3723 * prefetching of binding tables in A0 and B0 steppings. XXX: Revisit
3724 * this WA on C0 stepping.
3725 *
3726 * TODO: Fill out SamplerCount for prefetching?
3727 */
3728
3729 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix, stage) \
3730 pkt.KernelStartPointer = KSP(shader); \
3731 pkt.BindingTableEntryCount = GEN_GEN == 11 ? 0 : \
3732 shader->bt.size_bytes / 4; \
3733 pkt.FloatingPointMode = prog_data->use_alt_mode; \
3734 \
3735 pkt.DispatchGRFStartRegisterForURBData = \
3736 prog_data->dispatch_grf_start_reg; \
3737 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
3738 pkt.prefix##URBEntryReadOffset = 0; \
3739 \
3740 pkt.StatisticsEnable = true; \
3741 pkt.Enable = true; \
3742 \
3743 if (prog_data->total_scratch) { \
3744 struct iris_bo *bo = \
3745 iris_get_scratch_space(ice, prog_data->total_scratch, stage); \
3746 uint32_t scratch_addr = bo->gtt_offset; \
3747 pkt.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11; \
3748 pkt.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr); \
3749 }
3750
3751 /**
3752 * Encode most of 3DSTATE_VS based on the compiled shader.
3753 */
3754 static void
3755 iris_store_vs_state(struct iris_context *ice,
3756 const struct gen_device_info *devinfo,
3757 struct iris_compiled_shader *shader)
3758 {
3759 struct brw_stage_prog_data *prog_data = shader->prog_data;
3760 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3761
3762 iris_pack_command(GENX(3DSTATE_VS), shader->derived_data, vs) {
3763 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex, MESA_SHADER_VERTEX);
3764 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
3765 vs.SIMD8DispatchEnable = true;
3766 vs.UserClipDistanceCullTestEnableBitmask =
3767 vue_prog_data->cull_distance_mask;
3768 }
3769 }
3770
3771 /**
3772 * Encode most of 3DSTATE_HS based on the compiled shader.
3773 */
3774 static void
3775 iris_store_tcs_state(struct iris_context *ice,
3776 const struct gen_device_info *devinfo,
3777 struct iris_compiled_shader *shader)
3778 {
3779 struct brw_stage_prog_data *prog_data = shader->prog_data;
3780 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3781 struct brw_tcs_prog_data *tcs_prog_data = (void *) prog_data;
3782
3783 iris_pack_command(GENX(3DSTATE_HS), shader->derived_data, hs) {
3784 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex, MESA_SHADER_TESS_CTRL);
3785
3786 hs.InstanceCount = tcs_prog_data->instances - 1;
3787 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
3788 hs.IncludeVertexHandles = true;
3789
3790 #if GEN_GEN >= 9
3791 hs.DispatchMode = vue_prog_data->dispatch_mode;
3792 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
3793 #endif
3794 }
3795 }
3796
3797 /**
3798 * Encode 3DSTATE_TE and most of 3DSTATE_DS based on the compiled shader.
3799 */
3800 static void
3801 iris_store_tes_state(struct iris_context *ice,
3802 const struct gen_device_info *devinfo,
3803 struct iris_compiled_shader *shader)
3804 {
3805 struct brw_stage_prog_data *prog_data = shader->prog_data;
3806 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3807 struct brw_tes_prog_data *tes_prog_data = (void *) prog_data;
3808
3809 uint32_t *te_state = (void *) shader->derived_data;
3810 uint32_t *ds_state = te_state + GENX(3DSTATE_TE_length);
3811
3812 iris_pack_command(GENX(3DSTATE_TE), te_state, te) {
3813 te.Partitioning = tes_prog_data->partitioning;
3814 te.OutputTopology = tes_prog_data->output_topology;
3815 te.TEDomain = tes_prog_data->domain;
3816 te.TEEnable = true;
3817 te.MaximumTessellationFactorOdd = 63.0;
3818 te.MaximumTessellationFactorNotOdd = 64.0;
3819 }
3820
3821 iris_pack_command(GENX(3DSTATE_DS), ds_state, ds) {
3822 INIT_THREAD_DISPATCH_FIELDS(ds, Patch, MESA_SHADER_TESS_EVAL);
3823
3824 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
3825 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
3826 ds.ComputeWCoordinateEnable =
3827 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
3828
3829 ds.UserClipDistanceCullTestEnableBitmask =
3830 vue_prog_data->cull_distance_mask;
3831 }
3832
3833 }
3834
3835 /**
3836 * Encode most of 3DSTATE_GS based on the compiled shader.
3837 */
3838 static void
3839 iris_store_gs_state(struct iris_context *ice,
3840 const struct gen_device_info *devinfo,
3841 struct iris_compiled_shader *shader)
3842 {
3843 struct brw_stage_prog_data *prog_data = shader->prog_data;
3844 struct brw_vue_prog_data *vue_prog_data = (void *) prog_data;
3845 struct brw_gs_prog_data *gs_prog_data = (void *) prog_data;
3846
3847 iris_pack_command(GENX(3DSTATE_GS), shader->derived_data, gs) {
3848 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex, MESA_SHADER_GEOMETRY);
3849
3850 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
3851 gs.OutputTopology = gs_prog_data->output_topology;
3852 gs.ControlDataHeaderSize =
3853 gs_prog_data->control_data_header_size_hwords;
3854 gs.InstanceControl = gs_prog_data->invocations - 1;
3855 gs.DispatchMode = DISPATCH_MODE_SIMD8;
3856 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
3857 gs.ControlDataFormat = gs_prog_data->control_data_format;
3858 gs.ReorderMode = TRAILING;
3859 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
3860 gs.MaximumNumberofThreads =
3861 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
3862 : (devinfo->max_gs_threads - 1);
3863
3864 if (gs_prog_data->static_vertex_count != -1) {
3865 gs.StaticOutput = true;
3866 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
3867 }
3868 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
3869
3870 gs.UserClipDistanceCullTestEnableBitmask =
3871 vue_prog_data->cull_distance_mask;
3872
3873 const int urb_entry_write_offset = 1;
3874 const uint32_t urb_entry_output_length =
3875 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
3876 urb_entry_write_offset;
3877
3878 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
3879 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
3880 }
3881 }
3882
3883 /**
3884 * Encode most of 3DSTATE_PS and 3DSTATE_PS_EXTRA based on the shader.
3885 */
3886 static void
3887 iris_store_fs_state(struct iris_context *ice,
3888 const struct gen_device_info *devinfo,
3889 struct iris_compiled_shader *shader)
3890 {
3891 struct brw_stage_prog_data *prog_data = shader->prog_data;
3892 struct brw_wm_prog_data *wm_prog_data = (void *) shader->prog_data;
3893
3894 uint32_t *ps_state = (void *) shader->derived_data;
3895 uint32_t *psx_state = ps_state + GENX(3DSTATE_PS_length);
3896
3897 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
3898 ps.VectorMaskEnable = true;
3899 // XXX: WABTPPrefetchDisable, see above, drop at C0
3900 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 :
3901 shader->bt.size_bytes / 4;
3902 ps.FloatingPointMode = prog_data->use_alt_mode;
3903 ps.MaximumNumberofThreadsPerPSD = 64 - (GEN_GEN == 8 ? 2 : 1);
3904
3905 ps.PushConstantEnable = prog_data->ubo_ranges[0].length > 0;
3906
3907 /* From the documentation for this packet:
3908 * "If the PS kernel does not need the Position XY Offsets to
3909 * compute a Position Value, then this field should be programmed
3910 * to POSOFFSET_NONE."
3911 *
3912 * "SW Recommendation: If the PS kernel needs the Position Offsets
3913 * to compute a Position XY value, this field should match Position
3914 * ZW Interpolation Mode to ensure a consistent position.xyzw
3915 * computation."
3916 *
3917 * We only require XY sample offsets. So, this recommendation doesn't
3918 * look useful at the moment. We might need this in future.
3919 */
3920 ps.PositionXYOffsetSelect =
3921 wm_prog_data->uses_pos_offset ? POSOFFSET_SAMPLE : POSOFFSET_NONE;
3922
3923 if (prog_data->total_scratch) {
3924 struct iris_bo *bo =
3925 iris_get_scratch_space(ice, prog_data->total_scratch,
3926 MESA_SHADER_FRAGMENT);
3927 uint32_t scratch_addr = bo->gtt_offset;
3928 ps.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
3929 ps.ScratchSpaceBasePointer = rw_bo(NULL, scratch_addr);
3930 }
3931 }
3932
3933 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
3934 psx.PixelShaderValid = true;
3935 psx.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
3936 psx.PixelShaderKillsPixel = wm_prog_data->uses_kill;
3937 psx.AttributeEnable = wm_prog_data->num_varying_inputs != 0;
3938 psx.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
3939 psx.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
3940 psx.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
3941 psx.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
3942
3943 #if GEN_GEN >= 9
3944 psx.PixelShaderPullsBary = wm_prog_data->pulls_bary;
3945 psx.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
3946 #endif
3947 }
3948 }
3949
3950 /**
3951 * Compute the size of the derived data (shader command packets).
3952 *
3953 * This must match the data written by the iris_store_xs_state() functions.
3954 */
3955 static void
3956 iris_store_cs_state(struct iris_context *ice,
3957 const struct gen_device_info *devinfo,
3958 struct iris_compiled_shader *shader)
3959 {
3960 struct brw_stage_prog_data *prog_data = shader->prog_data;
3961 struct brw_cs_prog_data *cs_prog_data = (void *) shader->prog_data;
3962 void *map = shader->derived_data;
3963
3964 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), map, desc) {
3965 desc.KernelStartPointer = KSP(shader);
3966 desc.ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs;
3967 desc.NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads;
3968 desc.SharedLocalMemorySize =
3969 encode_slm_size(GEN_GEN, prog_data->total_shared);
3970 desc.BarrierEnable = cs_prog_data->uses_barrier;
3971 desc.CrossThreadConstantDataReadLength =
3972 cs_prog_data->push.cross_thread.regs;
3973 }
3974 }
3975
3976 static unsigned
3977 iris_derived_program_state_size(enum iris_program_cache_id cache_id)
3978 {
3979 assert(cache_id <= IRIS_CACHE_BLORP);
3980
3981 static const unsigned dwords[] = {
3982 [IRIS_CACHE_VS] = GENX(3DSTATE_VS_length),
3983 [IRIS_CACHE_TCS] = GENX(3DSTATE_HS_length),
3984 [IRIS_CACHE_TES] = GENX(3DSTATE_TE_length) + GENX(3DSTATE_DS_length),
3985 [IRIS_CACHE_GS] = GENX(3DSTATE_GS_length),
3986 [IRIS_CACHE_FS] =
3987 GENX(3DSTATE_PS_length) + GENX(3DSTATE_PS_EXTRA_length),
3988 [IRIS_CACHE_CS] = GENX(INTERFACE_DESCRIPTOR_DATA_length),
3989 [IRIS_CACHE_BLORP] = 0,
3990 };
3991
3992 return sizeof(uint32_t) * dwords[cache_id];
3993 }
3994
3995 /**
3996 * Create any state packets corresponding to the given shader stage
3997 * (i.e. 3DSTATE_VS) and save them as "derived data" in the shader variant.
3998 * This means that we can look up a program in the in-memory cache and
3999 * get most of the state packet without having to reconstruct it.
4000 */
4001 static void
4002 iris_store_derived_program_state(struct iris_context *ice,
4003 enum iris_program_cache_id cache_id,
4004 struct iris_compiled_shader *shader)
4005 {
4006 struct iris_screen *screen = (void *) ice->ctx.screen;
4007 const struct gen_device_info *devinfo = &screen->devinfo;
4008
4009 switch (cache_id) {
4010 case IRIS_CACHE_VS:
4011 iris_store_vs_state(ice, devinfo, shader);
4012 break;
4013 case IRIS_CACHE_TCS:
4014 iris_store_tcs_state(ice, devinfo, shader);
4015 break;
4016 case IRIS_CACHE_TES:
4017 iris_store_tes_state(ice, devinfo, shader);
4018 break;
4019 case IRIS_CACHE_GS:
4020 iris_store_gs_state(ice, devinfo, shader);
4021 break;
4022 case IRIS_CACHE_FS:
4023 iris_store_fs_state(ice, devinfo, shader);
4024 break;
4025 case IRIS_CACHE_CS:
4026 iris_store_cs_state(ice, devinfo, shader);
4027 case IRIS_CACHE_BLORP:
4028 break;
4029 default:
4030 break;
4031 }
4032 }
4033
4034 /* ------------------------------------------------------------------- */
4035
4036 static const uint32_t push_constant_opcodes[] = {
4037 [MESA_SHADER_VERTEX] = 21,
4038 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
4039 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
4040 [MESA_SHADER_GEOMETRY] = 22,
4041 [MESA_SHADER_FRAGMENT] = 23,
4042 [MESA_SHADER_COMPUTE] = 0,
4043 };
4044
4045 static uint32_t
4046 use_null_surface(struct iris_batch *batch, struct iris_context *ice)
4047 {
4048 struct iris_bo *state_bo = iris_resource_bo(ice->state.unbound_tex.res);
4049
4050 iris_use_pinned_bo(batch, state_bo, false);
4051
4052 return ice->state.unbound_tex.offset;
4053 }
4054
4055 static uint32_t
4056 use_null_fb_surface(struct iris_batch *batch, struct iris_context *ice)
4057 {
4058 /* If set_framebuffer_state() was never called, fall back to 1x1x1 */
4059 if (!ice->state.null_fb.res)
4060 return use_null_surface(batch, ice);
4061
4062 struct iris_bo *state_bo = iris_resource_bo(ice->state.null_fb.res);
4063
4064 iris_use_pinned_bo(batch, state_bo, false);
4065
4066 return ice->state.null_fb.offset;
4067 }
4068
4069 static uint32_t
4070 surf_state_offset_for_aux(struct iris_resource *res,
4071 unsigned aux_modes,
4072 enum isl_aux_usage aux_usage)
4073 {
4074 return SURFACE_STATE_ALIGNMENT *
4075 util_bitcount(aux_modes & ((1 << aux_usage) - 1));
4076 }
4077
4078 #if GEN_GEN == 9
4079 static void
4080 surf_state_update_clear_value(struct iris_batch *batch,
4081 struct iris_resource *res,
4082 struct iris_state_ref *state,
4083 unsigned aux_modes,
4084 enum isl_aux_usage aux_usage)
4085 {
4086 struct isl_device *isl_dev = &batch->screen->isl_dev;
4087 struct iris_bo *state_bo = iris_resource_bo(state->res);
4088 uint64_t real_offset = state->offset + IRIS_MEMZONE_BINDER_START;
4089 uint32_t offset_into_bo = real_offset - state_bo->gtt_offset;
4090 uint32_t clear_offset = offset_into_bo +
4091 isl_dev->ss.clear_value_offset +
4092 surf_state_offset_for_aux(res, aux_modes, aux_usage);
4093 uint32_t *color = res->aux.clear_color.u32;
4094
4095 assert(isl_dev->ss.clear_value_size == 16);
4096
4097 if (aux_usage == ISL_AUX_USAGE_HIZ) {
4098 iris_emit_pipe_control_write(batch, "update fast clear value (Z)",
4099 PIPE_CONTROL_WRITE_IMMEDIATE,
4100 state_bo, clear_offset, color[0]);
4101 } else {
4102 iris_emit_pipe_control_write(batch, "update fast clear color (RG__)",
4103 PIPE_CONTROL_WRITE_IMMEDIATE,
4104 state_bo, clear_offset,
4105 (uint64_t) color[0] |
4106 (uint64_t) color[1] << 32);
4107 iris_emit_pipe_control_write(batch, "update fast clear color (__BA)",
4108 PIPE_CONTROL_WRITE_IMMEDIATE,
4109 state_bo, clear_offset + 8,
4110 (uint64_t) color[2] |
4111 (uint64_t) color[3] << 32);
4112 }
4113
4114 iris_emit_pipe_control_flush(batch,
4115 "update fast clear: state cache invalidate",
4116 PIPE_CONTROL_FLUSH_ENABLE |
4117 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
4118 }
4119 #endif
4120
4121 static void
4122 update_clear_value(struct iris_context *ice,
4123 struct iris_batch *batch,
4124 struct iris_resource *res,
4125 struct iris_state_ref *state,
4126 unsigned all_aux_modes,
4127 struct isl_view *view)
4128 {
4129 UNUSED struct isl_device *isl_dev = &batch->screen->isl_dev;
4130 UNUSED unsigned aux_modes = all_aux_modes;
4131
4132 /* We only need to update the clear color in the surface state for gen8 and
4133 * gen9. Newer gens can read it directly from the clear color state buffer.
4134 */
4135 #if GEN_GEN == 9
4136 /* Skip updating the ISL_AUX_USAGE_NONE surface state */
4137 aux_modes &= ~(1 << ISL_AUX_USAGE_NONE);
4138
4139 while (aux_modes) {
4140 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4141
4142 surf_state_update_clear_value(batch, res, state, all_aux_modes,
4143 aux_usage);
4144 }
4145 #elif GEN_GEN == 8
4146 pipe_resource_reference(&state->res, NULL);
4147
4148 void *map = alloc_surface_states(ice->state.surface_uploader,
4149 state, all_aux_modes);
4150 while (aux_modes) {
4151 enum isl_aux_usage aux_usage = u_bit_scan(&aux_modes);
4152 fill_surface_state(isl_dev, map, res, &res->surf, view, aux_usage, 0, 0);
4153 map += SURFACE_STATE_ALIGNMENT;
4154 }
4155 #endif
4156 }
4157
4158 /**
4159 * Add a surface to the validation list, as well as the buffer containing
4160 * the corresponding SURFACE_STATE.
4161 *
4162 * Returns the binding table entry (offset to SURFACE_STATE).
4163 */
4164 static uint32_t
4165 use_surface(struct iris_context *ice,
4166 struct iris_batch *batch,
4167 struct pipe_surface *p_surf,
4168 bool writeable,
4169 enum isl_aux_usage aux_usage,
4170 bool is_read_surface)
4171 {
4172 struct iris_surface *surf = (void *) p_surf;
4173 struct iris_resource *res = (void *) p_surf->texture;
4174 uint32_t offset = 0;
4175
4176 iris_use_pinned_bo(batch, iris_resource_bo(p_surf->texture), writeable);
4177 if (GEN_GEN == 8 && is_read_surface) {
4178 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state_read.res), false);
4179 } else {
4180 iris_use_pinned_bo(batch, iris_resource_bo(surf->surface_state.res), false);
4181 }
4182
4183 if (res->aux.bo) {
4184 iris_use_pinned_bo(batch, res->aux.bo, writeable);
4185 if (res->aux.clear_color_bo)
4186 iris_use_pinned_bo(batch, res->aux.clear_color_bo, false);
4187
4188 if (memcmp(&res->aux.clear_color, &surf->clear_color,
4189 sizeof(surf->clear_color)) != 0) {
4190 update_clear_value(ice, batch, res, &surf->surface_state,
4191 res->aux.possible_usages, &surf->view);
4192 if (GEN_GEN == 8) {
4193 update_clear_value(ice, batch, res, &surf->surface_state_read,
4194 res->aux.possible_usages, &surf->read_view);
4195 }
4196 surf->clear_color = res->aux.clear_color;
4197 }
4198 }
4199
4200 offset = (GEN_GEN == 8 && is_read_surface) ? surf->surface_state_read.offset
4201 : surf->surface_state.offset;
4202
4203 return offset +
4204 surf_state_offset_for_aux(res, res->aux.possible_usages, aux_usage);
4205 }
4206
4207 static uint32_t
4208 use_sampler_view(struct iris_context *ice,
4209 struct iris_batch *batch,
4210 struct iris_sampler_view *isv)
4211 {
4212 // XXX: ASTC hacks
4213 enum isl_aux_usage aux_usage =
4214 iris_resource_texture_aux_usage(ice, isv->res, isv->view.format, 0);
4215
4216 iris_use_pinned_bo(batch, isv->res->bo, false);
4217 iris_use_pinned_bo(batch, iris_resource_bo(isv->surface_state.res), false);
4218
4219 if (isv->res->aux.bo) {
4220 iris_use_pinned_bo(batch, isv->res->aux.bo, false);
4221 if (isv->res->aux.clear_color_bo)
4222 iris_use_pinned_bo(batch, isv->res->aux.clear_color_bo, false);
4223 if (memcmp(&isv->res->aux.clear_color, &isv->clear_color,
4224 sizeof(isv->clear_color)) != 0) {
4225 update_clear_value(ice, batch, isv->res, &isv->surface_state,
4226 isv->res->aux.sampler_usages, &isv->view);
4227 isv->clear_color = isv->res->aux.clear_color;
4228 }
4229 }
4230
4231 return isv->surface_state.offset +
4232 surf_state_offset_for_aux(isv->res, isv->res->aux.sampler_usages,
4233 aux_usage);
4234 }
4235
4236 static uint32_t
4237 use_ubo_ssbo(struct iris_batch *batch,
4238 struct iris_context *ice,
4239 struct pipe_shader_buffer *buf,
4240 struct iris_state_ref *surf_state,
4241 bool writable)
4242 {
4243 if (!buf->buffer)
4244 return use_null_surface(batch, ice);
4245
4246 iris_use_pinned_bo(batch, iris_resource_bo(buf->buffer), writable);
4247 iris_use_pinned_bo(batch, iris_resource_bo(surf_state->res), false);
4248
4249 return surf_state->offset;
4250 }
4251
4252 static uint32_t
4253 use_image(struct iris_batch *batch, struct iris_context *ice,
4254 struct iris_shader_state *shs, int i)
4255 {
4256 struct iris_image_view *iv = &shs->image[i];
4257 struct iris_resource *res = (void *) iv->base.resource;
4258
4259 if (!res)
4260 return use_null_surface(batch, ice);
4261
4262 bool write = iv->base.shader_access & PIPE_IMAGE_ACCESS_WRITE;
4263
4264 iris_use_pinned_bo(batch, res->bo, write);
4265 iris_use_pinned_bo(batch, iris_resource_bo(iv->surface_state.res), false);
4266
4267 if (res->aux.bo)
4268 iris_use_pinned_bo(batch, res->aux.bo, write);
4269
4270 return iv->surface_state.offset;
4271 }
4272
4273 #define push_bt_entry(addr) \
4274 assert(addr >= binder_addr); \
4275 assert(s < shader->bt.size_bytes / sizeof(uint32_t)); \
4276 if (!pin_only) bt_map[s++] = (addr) - binder_addr;
4277
4278 #define bt_assert(section) \
4279 if (!pin_only && shader->bt.used_mask[section] != 0) \
4280 assert(shader->bt.offsets[section] == s);
4281
4282 /**
4283 * Populate the binding table for a given shader stage.
4284 *
4285 * This fills out the table of pointers to surfaces required by the shader,
4286 * and also adds those buffers to the validation list so the kernel can make
4287 * resident before running our batch.
4288 */
4289 static void
4290 iris_populate_binding_table(struct iris_context *ice,
4291 struct iris_batch *batch,
4292 gl_shader_stage stage,
4293 bool pin_only)
4294 {
4295 const struct iris_binder *binder = &ice->state.binder;
4296 struct iris_uncompiled_shader *ish = ice->shaders.uncompiled[stage];
4297 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4298 if (!shader)
4299 return;
4300
4301 struct iris_binding_table *bt = &shader->bt;
4302 UNUSED struct brw_stage_prog_data *prog_data = shader->prog_data;
4303 struct iris_shader_state *shs = &ice->state.shaders[stage];
4304 uint32_t binder_addr = binder->bo->gtt_offset;
4305
4306 uint32_t *bt_map = binder->map + binder->bt_offset[stage];
4307 int s = 0;
4308
4309 const struct shader_info *info = iris_get_shader_info(ice, stage);
4310 if (!info) {
4311 /* TCS passthrough doesn't need a binding table. */
4312 assert(stage == MESA_SHADER_TESS_CTRL);
4313 return;
4314 }
4315
4316 if (stage == MESA_SHADER_COMPUTE &&
4317 shader->bt.used_mask[IRIS_SURFACE_GROUP_CS_WORK_GROUPS]) {
4318 /* surface for gl_NumWorkGroups */
4319 struct iris_state_ref *grid_data = &ice->state.grid_size;
4320 struct iris_state_ref *grid_state = &ice->state.grid_surf_state;
4321 iris_use_pinned_bo(batch, iris_resource_bo(grid_data->res), false);
4322 iris_use_pinned_bo(batch, iris_resource_bo(grid_state->res), false);
4323 push_bt_entry(grid_state->offset);
4324 }
4325
4326 if (stage == MESA_SHADER_FRAGMENT) {
4327 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4328 /* Note that cso_fb->nr_cbufs == fs_key->nr_color_regions. */
4329 if (cso_fb->nr_cbufs) {
4330 for (unsigned i = 0; i < cso_fb->nr_cbufs; i++) {
4331 uint32_t addr;
4332 if (cso_fb->cbufs[i]) {
4333 addr = use_surface(ice, batch, cso_fb->cbufs[i], true,
4334 ice->state.draw_aux_usage[i], false);
4335 } else {
4336 addr = use_null_fb_surface(batch, ice);
4337 }
4338 push_bt_entry(addr);
4339 }
4340 } else {
4341 uint32_t addr = use_null_fb_surface(batch, ice);
4342 push_bt_entry(addr);
4343 }
4344 }
4345
4346 #define foreach_surface_used(index, group) \
4347 bt_assert(group); \
4348 for (int index = 0; index < bt->sizes[group]; index++) \
4349 if (iris_group_index_to_bti(bt, group, index) != \
4350 IRIS_SURFACE_NOT_USED)
4351
4352 foreach_surface_used(i, IRIS_SURFACE_GROUP_RENDER_TARGET_READ) {
4353 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4354 uint32_t addr;
4355 if (cso_fb->cbufs[i]) {
4356 addr = use_surface(ice, batch, cso_fb->cbufs[i],
4357 true, ice->state.draw_aux_usage[i], true);
4358 push_bt_entry(addr);
4359 }
4360 }
4361
4362 foreach_surface_used(i, IRIS_SURFACE_GROUP_TEXTURE) {
4363 struct iris_sampler_view *view = shs->textures[i];
4364 uint32_t addr = view ? use_sampler_view(ice, batch, view)
4365 : use_null_surface(batch, ice);
4366 push_bt_entry(addr);
4367 }
4368
4369 foreach_surface_used(i, IRIS_SURFACE_GROUP_IMAGE) {
4370 uint32_t addr = use_image(batch, ice, shs, i);
4371 push_bt_entry(addr);
4372 }
4373
4374 foreach_surface_used(i, IRIS_SURFACE_GROUP_UBO) {
4375 uint32_t addr;
4376
4377 if (i == bt->sizes[IRIS_SURFACE_GROUP_UBO] - 1) {
4378 if (ish->const_data) {
4379 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data), false);
4380 iris_use_pinned_bo(batch, iris_resource_bo(ish->const_data_state.res),
4381 false);
4382 addr = ish->const_data_state.offset;
4383 } else {
4384 /* This can only happen with INTEL_DISABLE_COMPACT_BINDING_TABLE=1. */
4385 addr = use_null_surface(batch, ice);
4386 }
4387 } else {
4388 addr = use_ubo_ssbo(batch, ice, &shs->constbuf[i],
4389 &shs->constbuf_surf_state[i], false);
4390 }
4391
4392 push_bt_entry(addr);
4393 }
4394
4395 foreach_surface_used(i, IRIS_SURFACE_GROUP_SSBO) {
4396 uint32_t addr =
4397 use_ubo_ssbo(batch, ice, &shs->ssbo[i], &shs->ssbo_surf_state[i],
4398 shs->writable_ssbos & (1u << i));
4399 push_bt_entry(addr);
4400 }
4401
4402 #if 0
4403 /* XXX: YUV surfaces not implemented yet */
4404 bt_assert(plane_start[1], ...);
4405 bt_assert(plane_start[2], ...);
4406 #endif
4407 }
4408
4409 static void
4410 iris_use_optional_res(struct iris_batch *batch,
4411 struct pipe_resource *res,
4412 bool writeable)
4413 {
4414 if (res) {
4415 struct iris_bo *bo = iris_resource_bo(res);
4416 iris_use_pinned_bo(batch, bo, writeable);
4417 }
4418 }
4419
4420 static void
4421 pin_depth_and_stencil_buffers(struct iris_batch *batch,
4422 struct pipe_surface *zsbuf,
4423 struct iris_depth_stencil_alpha_state *cso_zsa)
4424 {
4425 if (!zsbuf)
4426 return;
4427
4428 struct iris_resource *zres, *sres;
4429 iris_get_depth_stencil_resources(zsbuf->texture, &zres, &sres);
4430
4431 if (zres) {
4432 iris_use_pinned_bo(batch, zres->bo, cso_zsa->depth_writes_enabled);
4433 if (zres->aux.bo) {
4434 iris_use_pinned_bo(batch, zres->aux.bo,
4435 cso_zsa->depth_writes_enabled);
4436 }
4437 }
4438
4439 if (sres) {
4440 iris_use_pinned_bo(batch, sres->bo, cso_zsa->stencil_writes_enabled);
4441 }
4442 }
4443
4444 /* ------------------------------------------------------------------- */
4445
4446 /**
4447 * Pin any BOs which were installed by a previous batch, and restored
4448 * via the hardware logical context mechanism.
4449 *
4450 * We don't need to re-emit all state every batch - the hardware context
4451 * mechanism will save and restore it for us. This includes pointers to
4452 * various BOs...which won't exist unless we ask the kernel to pin them
4453 * by adding them to the validation list.
4454 *
4455 * We can skip buffers if we've re-emitted those packets, as we're
4456 * overwriting those stale pointers with new ones, and don't actually
4457 * refer to the old BOs.
4458 */
4459 static void
4460 iris_restore_render_saved_bos(struct iris_context *ice,
4461 struct iris_batch *batch,
4462 const struct pipe_draw_info *draw)
4463 {
4464 struct iris_genx_state *genx = ice->state.genx;
4465
4466 const uint64_t clean = ~ice->state.dirty;
4467
4468 if (clean & IRIS_DIRTY_CC_VIEWPORT) {
4469 iris_use_optional_res(batch, ice->state.last_res.cc_vp, false);
4470 }
4471
4472 if (clean & IRIS_DIRTY_SF_CL_VIEWPORT) {
4473 iris_use_optional_res(batch, ice->state.last_res.sf_cl_vp, false);
4474 }
4475
4476 if (clean & IRIS_DIRTY_BLEND_STATE) {
4477 iris_use_optional_res(batch, ice->state.last_res.blend, false);
4478 }
4479
4480 if (clean & IRIS_DIRTY_COLOR_CALC_STATE) {
4481 iris_use_optional_res(batch, ice->state.last_res.color_calc, false);
4482 }
4483
4484 if (clean & IRIS_DIRTY_SCISSOR_RECT) {
4485 iris_use_optional_res(batch, ice->state.last_res.scissor, false);
4486 }
4487
4488 if (ice->state.streamout_active && (clean & IRIS_DIRTY_SO_BUFFERS)) {
4489 for (int i = 0; i < 4; i++) {
4490 struct iris_stream_output_target *tgt =
4491 (void *) ice->state.so_target[i];
4492 if (tgt) {
4493 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
4494 true);
4495 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
4496 true);
4497 }
4498 }
4499 }
4500
4501 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4502 if (!(clean & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4503 continue;
4504
4505 struct iris_shader_state *shs = &ice->state.shaders[stage];
4506 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4507
4508 if (!shader)
4509 continue;
4510
4511 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4512
4513 for (int i = 0; i < 4; i++) {
4514 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4515
4516 if (range->length == 0)
4517 continue;
4518
4519 /* Range block is a binding table index, map back to UBO index. */
4520 unsigned block_index = iris_bti_to_group_index(
4521 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4522 assert(block_index != IRIS_SURFACE_NOT_USED);
4523
4524 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4525 struct iris_resource *res = (void *) cbuf->buffer;
4526
4527 if (res)
4528 iris_use_pinned_bo(batch, res->bo, false);
4529 else
4530 iris_use_pinned_bo(batch, batch->screen->workaround_bo, false);
4531 }
4532 }
4533
4534 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4535 if (clean & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4536 /* Re-pin any buffers referred to by the binding table. */
4537 iris_populate_binding_table(ice, batch, stage, true);
4538 }
4539 }
4540
4541 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4542 struct iris_shader_state *shs = &ice->state.shaders[stage];
4543 struct pipe_resource *res = shs->sampler_table.res;
4544 if (res)
4545 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4546 }
4547
4548 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4549 if (clean & (IRIS_DIRTY_VS << stage)) {
4550 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4551
4552 if (shader) {
4553 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4554 iris_use_pinned_bo(batch, bo, false);
4555
4556 struct brw_stage_prog_data *prog_data = shader->prog_data;
4557
4558 if (prog_data->total_scratch > 0) {
4559 struct iris_bo *bo =
4560 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4561 iris_use_pinned_bo(batch, bo, true);
4562 }
4563 }
4564 }
4565 }
4566
4567 if ((clean & IRIS_DIRTY_DEPTH_BUFFER) &&
4568 (clean & IRIS_DIRTY_WM_DEPTH_STENCIL)) {
4569 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4570 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
4571 }
4572
4573 iris_use_optional_res(batch, ice->state.last_res.index_buffer, false);
4574
4575 if (clean & IRIS_DIRTY_VERTEX_BUFFERS) {
4576 uint64_t bound = ice->state.bound_vertex_buffers;
4577 while (bound) {
4578 const int i = u_bit_scan64(&bound);
4579 struct pipe_resource *res = genx->vertex_buffers[i].resource;
4580 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4581 }
4582 }
4583 }
4584
4585 static void
4586 iris_restore_compute_saved_bos(struct iris_context *ice,
4587 struct iris_batch *batch,
4588 const struct pipe_grid_info *grid)
4589 {
4590 const uint64_t clean = ~ice->state.dirty;
4591
4592 const int stage = MESA_SHADER_COMPUTE;
4593 struct iris_shader_state *shs = &ice->state.shaders[stage];
4594
4595 if (clean & IRIS_DIRTY_BINDINGS_CS) {
4596 /* Re-pin any buffers referred to by the binding table. */
4597 iris_populate_binding_table(ice, batch, stage, true);
4598 }
4599
4600 struct pipe_resource *sampler_res = shs->sampler_table.res;
4601 if (sampler_res)
4602 iris_use_pinned_bo(batch, iris_resource_bo(sampler_res), false);
4603
4604 if ((clean & IRIS_DIRTY_SAMPLER_STATES_CS) &&
4605 (clean & IRIS_DIRTY_BINDINGS_CS) &&
4606 (clean & IRIS_DIRTY_CONSTANTS_CS) &&
4607 (clean & IRIS_DIRTY_CS)) {
4608 iris_use_optional_res(batch, ice->state.last_res.cs_desc, false);
4609 }
4610
4611 if (clean & IRIS_DIRTY_CS) {
4612 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4613
4614 if (shader) {
4615 struct iris_bo *bo = iris_resource_bo(shader->assembly.res);
4616 iris_use_pinned_bo(batch, bo, false);
4617
4618 struct iris_bo *curbe_bo =
4619 iris_resource_bo(ice->state.last_res.cs_thread_ids);
4620 iris_use_pinned_bo(batch, curbe_bo, false);
4621
4622 struct brw_stage_prog_data *prog_data = shader->prog_data;
4623
4624 if (prog_data->total_scratch > 0) {
4625 struct iris_bo *bo =
4626 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4627 iris_use_pinned_bo(batch, bo, true);
4628 }
4629 }
4630 }
4631 }
4632
4633 /**
4634 * Possibly emit STATE_BASE_ADDRESS to update Surface State Base Address.
4635 */
4636 static void
4637 iris_update_surface_base_address(struct iris_batch *batch,
4638 struct iris_binder *binder)
4639 {
4640 if (batch->last_surface_base_address == binder->bo->gtt_offset)
4641 return;
4642
4643 flush_before_state_base_change(batch);
4644
4645 iris_emit_cmd(batch, GENX(STATE_BASE_ADDRESS), sba) {
4646 sba.SurfaceStateBaseAddressModifyEnable = true;
4647 sba.SurfaceStateBaseAddress = ro_bo(binder->bo, 0);
4648
4649 /* The hardware appears to pay attention to the MOCS fields even
4650 * if you don't set the "Address Modify Enable" bit for the base.
4651 */
4652 sba.GeneralStateMOCS = MOCS_WB;
4653 sba.StatelessDataPortAccessMOCS = MOCS_WB;
4654 sba.DynamicStateMOCS = MOCS_WB;
4655 sba.IndirectObjectMOCS = MOCS_WB;
4656 sba.InstructionMOCS = MOCS_WB;
4657 sba.SurfaceStateMOCS = MOCS_WB;
4658 #if GEN_GEN >= 9
4659 sba.BindlessSurfaceStateMOCS = MOCS_WB;
4660 #endif
4661 }
4662
4663 flush_after_state_base_change(batch);
4664
4665 batch->last_surface_base_address = binder->bo->gtt_offset;
4666 }
4667
4668 static inline void
4669 iris_viewport_zmin_zmax(const struct pipe_viewport_state *vp, bool halfz,
4670 bool window_space_position, float *zmin, float *zmax)
4671 {
4672 if (window_space_position) {
4673 *zmin = 0.f;
4674 *zmax = 1.f;
4675 return;
4676 }
4677 util_viewport_zmin_zmax(vp, halfz, zmin, zmax);
4678 }
4679
4680 static void
4681 iris_upload_dirty_render_state(struct iris_context *ice,
4682 struct iris_batch *batch,
4683 const struct pipe_draw_info *draw)
4684 {
4685 const uint64_t dirty = ice->state.dirty;
4686
4687 if (!(dirty & IRIS_ALL_DIRTY_FOR_RENDER))
4688 return;
4689
4690 struct iris_genx_state *genx = ice->state.genx;
4691 struct iris_binder *binder = &ice->state.binder;
4692 struct brw_wm_prog_data *wm_prog_data = (void *)
4693 ice->shaders.prog[MESA_SHADER_FRAGMENT]->prog_data;
4694
4695 if (dirty & IRIS_DIRTY_CC_VIEWPORT) {
4696 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
4697 uint32_t cc_vp_address;
4698
4699 /* XXX: could avoid streaming for depth_clip [0,1] case. */
4700 uint32_t *cc_vp_map =
4701 stream_state(batch, ice->state.dynamic_uploader,
4702 &ice->state.last_res.cc_vp,
4703 4 * ice->state.num_viewports *
4704 GENX(CC_VIEWPORT_length), 32, &cc_vp_address);
4705 for (int i = 0; i < ice->state.num_viewports; i++) {
4706 float zmin, zmax;
4707 iris_viewport_zmin_zmax(&ice->state.viewports[i], cso_rast->clip_halfz,
4708 ice->state.window_space_position,
4709 &zmin, &zmax);
4710 if (cso_rast->depth_clip_near)
4711 zmin = 0.0;
4712 if (cso_rast->depth_clip_far)
4713 zmax = 1.0;
4714
4715 iris_pack_state(GENX(CC_VIEWPORT), cc_vp_map, ccv) {
4716 ccv.MinimumDepth = zmin;
4717 ccv.MaximumDepth = zmax;
4718 }
4719
4720 cc_vp_map += GENX(CC_VIEWPORT_length);
4721 }
4722
4723 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
4724 ptr.CCViewportPointer = cc_vp_address;
4725 }
4726 }
4727
4728 if (dirty & IRIS_DIRTY_SF_CL_VIEWPORT) {
4729 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4730 uint32_t sf_cl_vp_address;
4731 uint32_t *vp_map =
4732 stream_state(batch, ice->state.dynamic_uploader,
4733 &ice->state.last_res.sf_cl_vp,
4734 4 * ice->state.num_viewports *
4735 GENX(SF_CLIP_VIEWPORT_length), 64, &sf_cl_vp_address);
4736
4737 for (unsigned i = 0; i < ice->state.num_viewports; i++) {
4738 const struct pipe_viewport_state *state = &ice->state.viewports[i];
4739 float gb_xmin, gb_xmax, gb_ymin, gb_ymax;
4740
4741 float vp_xmin = viewport_extent(state, 0, -1.0f);
4742 float vp_xmax = viewport_extent(state, 0, 1.0f);
4743 float vp_ymin = viewport_extent(state, 1, -1.0f);
4744 float vp_ymax = viewport_extent(state, 1, 1.0f);
4745
4746 gen_calculate_guardband_size(cso_fb->width, cso_fb->height,
4747 state->scale[0], state->scale[1],
4748 state->translate[0], state->translate[1],
4749 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
4750
4751 iris_pack_state(GENX(SF_CLIP_VIEWPORT), vp_map, vp) {
4752 vp.ViewportMatrixElementm00 = state->scale[0];
4753 vp.ViewportMatrixElementm11 = state->scale[1];
4754 vp.ViewportMatrixElementm22 = state->scale[2];
4755 vp.ViewportMatrixElementm30 = state->translate[0];
4756 vp.ViewportMatrixElementm31 = state->translate[1];
4757 vp.ViewportMatrixElementm32 = state->translate[2];
4758 vp.XMinClipGuardband = gb_xmin;
4759 vp.XMaxClipGuardband = gb_xmax;
4760 vp.YMinClipGuardband = gb_ymin;
4761 vp.YMaxClipGuardband = gb_ymax;
4762 vp.XMinViewPort = MAX2(vp_xmin, 0);
4763 vp.XMaxViewPort = MIN2(vp_xmax, cso_fb->width) - 1;
4764 vp.YMinViewPort = MAX2(vp_ymin, 0);
4765 vp.YMaxViewPort = MIN2(vp_ymax, cso_fb->height) - 1;
4766 }
4767
4768 vp_map += GENX(SF_CLIP_VIEWPORT_length);
4769 }
4770
4771 iris_emit_cmd(batch, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
4772 ptr.SFClipViewportPointer = sf_cl_vp_address;
4773 }
4774 }
4775
4776 if (dirty & IRIS_DIRTY_URB) {
4777 unsigned size[4];
4778
4779 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
4780 if (!ice->shaders.prog[i]) {
4781 size[i] = 1;
4782 } else {
4783 struct brw_vue_prog_data *vue_prog_data =
4784 (void *) ice->shaders.prog[i]->prog_data;
4785 size[i] = vue_prog_data->urb_entry_size;
4786 }
4787 assert(size[i] != 0);
4788 }
4789
4790 genX(emit_urb_setup)(ice, batch, size,
4791 ice->shaders.prog[MESA_SHADER_TESS_EVAL] != NULL,
4792 ice->shaders.prog[MESA_SHADER_GEOMETRY] != NULL);
4793 }
4794
4795 if (dirty & IRIS_DIRTY_BLEND_STATE) {
4796 struct iris_blend_state *cso_blend = ice->state.cso_blend;
4797 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4798 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
4799 const int header_dwords = GENX(BLEND_STATE_length);
4800
4801 /* Always write at least one BLEND_STATE - the final RT message will
4802 * reference BLEND_STATE[0] even if there aren't color writes. There
4803 * may still be alpha testing, computed depth, and so on.
4804 */
4805 const int rt_dwords =
4806 MAX2(cso_fb->nr_cbufs, 1) * GENX(BLEND_STATE_ENTRY_length);
4807
4808 uint32_t blend_offset;
4809 uint32_t *blend_map =
4810 stream_state(batch, ice->state.dynamic_uploader,
4811 &ice->state.last_res.blend,
4812 4 * (header_dwords + rt_dwords), 64, &blend_offset);
4813
4814 uint32_t blend_state_header;
4815 iris_pack_state(GENX(BLEND_STATE), &blend_state_header, bs) {
4816 bs.AlphaTestEnable = cso_zsa->alpha.enabled;
4817 bs.AlphaTestFunction = translate_compare_func(cso_zsa->alpha.func);
4818 }
4819
4820 blend_map[0] = blend_state_header | cso_blend->blend_state[0];
4821 memcpy(&blend_map[1], &cso_blend->blend_state[1], 4 * rt_dwords);
4822
4823 iris_emit_cmd(batch, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
4824 ptr.BlendStatePointer = blend_offset;
4825 ptr.BlendStatePointerValid = true;
4826 }
4827 }
4828
4829 if (dirty & IRIS_DIRTY_COLOR_CALC_STATE) {
4830 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
4831 #if GEN_GEN == 8
4832 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
4833 #endif
4834 uint32_t cc_offset;
4835 void *cc_map =
4836 stream_state(batch, ice->state.dynamic_uploader,
4837 &ice->state.last_res.color_calc,
4838 sizeof(uint32_t) * GENX(COLOR_CALC_STATE_length),
4839 64, &cc_offset);
4840 iris_pack_state(GENX(COLOR_CALC_STATE), cc_map, cc) {
4841 cc.AlphaTestFormat = ALPHATEST_FLOAT32;
4842 cc.AlphaReferenceValueAsFLOAT32 = cso->alpha.ref_value;
4843 cc.BlendConstantColorRed = ice->state.blend_color.color[0];
4844 cc.BlendConstantColorGreen = ice->state.blend_color.color[1];
4845 cc.BlendConstantColorBlue = ice->state.blend_color.color[2];
4846 cc.BlendConstantColorAlpha = ice->state.blend_color.color[3];
4847 #if GEN_GEN == 8
4848 cc.StencilReferenceValue = p_stencil_refs->ref_value[0];
4849 cc.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
4850 #endif
4851 }
4852 iris_emit_cmd(batch, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
4853 ptr.ColorCalcStatePointer = cc_offset;
4854 ptr.ColorCalcStatePointerValid = true;
4855 }
4856 }
4857
4858 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4859 if (!(dirty & (IRIS_DIRTY_CONSTANTS_VS << stage)))
4860 continue;
4861
4862 struct iris_shader_state *shs = &ice->state.shaders[stage];
4863 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4864
4865 if (!shader)
4866 continue;
4867
4868 if (shs->sysvals_need_upload)
4869 upload_sysvals(ice, stage);
4870
4871 struct brw_stage_prog_data *prog_data = (void *) shader->prog_data;
4872
4873 iris_emit_cmd(batch, GENX(3DSTATE_CONSTANT_VS), pkt) {
4874 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
4875 if (prog_data) {
4876 /* The Skylake PRM contains the following restriction:
4877 *
4878 * "The driver must ensure The following case does not occur
4879 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
4880 * buffer 3 read length equal to zero committed followed by a
4881 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
4882 * zero committed."
4883 *
4884 * To avoid this, we program the buffers in the highest slots.
4885 * This way, slot 0 is only used if slot 3 is also used.
4886 */
4887 int n = 3;
4888
4889 for (int i = 3; i >= 0; i--) {
4890 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
4891
4892 if (range->length == 0)
4893 continue;
4894
4895 /* Range block is a binding table index, map back to UBO index. */
4896 unsigned block_index = iris_bti_to_group_index(
4897 &shader->bt, IRIS_SURFACE_GROUP_UBO, range->block);
4898 assert(block_index != IRIS_SURFACE_NOT_USED);
4899
4900 struct pipe_shader_buffer *cbuf = &shs->constbuf[block_index];
4901 struct iris_resource *res = (void *) cbuf->buffer;
4902
4903 assert(cbuf->buffer_offset % 32 == 0);
4904
4905 pkt.ConstantBody.ReadLength[n] = range->length;
4906 pkt.ConstantBody.Buffer[n] =
4907 res ? ro_bo(res->bo, range->start * 32 + cbuf->buffer_offset)
4908 : ro_bo(batch->screen->workaround_bo, 0);
4909 n--;
4910 }
4911 }
4912 }
4913 }
4914
4915 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4916 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4917 iris_emit_cmd(batch, GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), ptr) {
4918 ptr._3DCommandSubOpcode = 38 + stage;
4919 ptr.PointertoVSBindingTable = binder->bt_offset[stage];
4920 }
4921 }
4922 }
4923
4924 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4925 if (dirty & (IRIS_DIRTY_BINDINGS_VS << stage)) {
4926 iris_populate_binding_table(ice, batch, stage, false);
4927 }
4928 }
4929
4930 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4931 if (!(dirty & (IRIS_DIRTY_SAMPLER_STATES_VS << stage)) ||
4932 !ice->shaders.prog[stage])
4933 continue;
4934
4935 iris_upload_sampler_states(ice, stage);
4936
4937 struct iris_shader_state *shs = &ice->state.shaders[stage];
4938 struct pipe_resource *res = shs->sampler_table.res;
4939 if (res)
4940 iris_use_pinned_bo(batch, iris_resource_bo(res), false);
4941
4942 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4943 ptr._3DCommandSubOpcode = 43 + stage;
4944 ptr.PointertoVSSamplerState = shs->sampler_table.offset;
4945 }
4946 }
4947
4948 if (ice->state.need_border_colors)
4949 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
4950
4951 if (dirty & IRIS_DIRTY_MULTISAMPLE) {
4952 iris_emit_cmd(batch, GENX(3DSTATE_MULTISAMPLE), ms) {
4953 ms.PixelLocation =
4954 ice->state.cso_rast->half_pixel_center ? CENTER : UL_CORNER;
4955 if (ice->state.framebuffer.samples > 0)
4956 ms.NumberofMultisamples = ffs(ice->state.framebuffer.samples) - 1;
4957 }
4958 }
4959
4960 if (dirty & IRIS_DIRTY_SAMPLE_MASK) {
4961 iris_emit_cmd(batch, GENX(3DSTATE_SAMPLE_MASK), ms) {
4962 ms.SampleMask = ice->state.sample_mask;
4963 }
4964 }
4965
4966 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
4967 if (!(dirty & (IRIS_DIRTY_VS << stage)))
4968 continue;
4969
4970 struct iris_compiled_shader *shader = ice->shaders.prog[stage];
4971
4972 if (shader) {
4973 struct brw_stage_prog_data *prog_data = shader->prog_data;
4974 struct iris_resource *cache = (void *) shader->assembly.res;
4975 iris_use_pinned_bo(batch, cache->bo, false);
4976
4977 if (prog_data->total_scratch > 0) {
4978 struct iris_bo *bo =
4979 iris_get_scratch_space(ice, prog_data->total_scratch, stage);
4980 iris_use_pinned_bo(batch, bo, true);
4981 }
4982
4983 if (stage == MESA_SHADER_FRAGMENT) {
4984 UNUSED struct iris_rasterizer_state *cso = ice->state.cso_rast;
4985 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
4986
4987 uint32_t ps_state[GENX(3DSTATE_PS_length)] = {0};
4988 iris_pack_command(GENX(3DSTATE_PS), ps_state, ps) {
4989 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
4990 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
4991 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
4992
4993 /* The docs for 3DSTATE_PS::32 Pixel Dispatch Enable say:
4994 *
4995 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16,
4996 * SIMD32 Dispatch must not be enabled for PER_PIXEL dispatch
4997 * mode."
4998 *
4999 * 16x MSAA only exists on Gen9+, so we can skip this on Gen8.
5000 */
5001 if (GEN_GEN >= 9 && cso_fb->samples == 16 &&
5002 !wm_prog_data->persample_dispatch) {
5003 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
5004 ps._32PixelDispatchEnable = false;
5005 }
5006
5007 ps.DispatchGRFStartRegisterForConstantSetupData0 =
5008 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
5009 ps.DispatchGRFStartRegisterForConstantSetupData1 =
5010 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
5011 ps.DispatchGRFStartRegisterForConstantSetupData2 =
5012 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
5013
5014 ps.KernelStartPointer0 = KSP(shader) +
5015 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
5016 ps.KernelStartPointer1 = KSP(shader) +
5017 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
5018 ps.KernelStartPointer2 = KSP(shader) +
5019 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
5020 }
5021
5022 uint32_t psx_state[GENX(3DSTATE_PS_EXTRA_length)] = {0};
5023 iris_pack_command(GENX(3DSTATE_PS_EXTRA), psx_state, psx) {
5024 #if GEN_GEN >= 9
5025 if (!wm_prog_data->uses_sample_mask)
5026 psx.InputCoverageMaskState = ICMS_NONE;
5027 else if (wm_prog_data->post_depth_coverage)
5028 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
5029 else if (wm_prog_data->inner_coverage &&
5030 cso->conservative_rasterization)
5031 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
5032 else
5033 psx.InputCoverageMaskState = ICMS_NORMAL;
5034 #else
5035 psx.PixelShaderUsesInputCoverageMask =
5036 wm_prog_data->uses_sample_mask;
5037 #endif
5038 }
5039
5040 uint32_t *shader_ps = (uint32_t *) shader->derived_data;
5041 uint32_t *shader_psx = shader_ps + GENX(3DSTATE_PS_length);
5042 iris_emit_merge(batch, shader_ps, ps_state,
5043 GENX(3DSTATE_PS_length));
5044 iris_emit_merge(batch, shader_psx, psx_state,
5045 GENX(3DSTATE_PS_EXTRA_length));
5046 } else {
5047 iris_batch_emit(batch, shader->derived_data,
5048 iris_derived_program_state_size(stage));
5049 }
5050 } else {
5051 if (stage == MESA_SHADER_TESS_EVAL) {
5052 iris_emit_cmd(batch, GENX(3DSTATE_HS), hs);
5053 iris_emit_cmd(batch, GENX(3DSTATE_TE), te);
5054 iris_emit_cmd(batch, GENX(3DSTATE_DS), ds);
5055 } else if (stage == MESA_SHADER_GEOMETRY) {
5056 iris_emit_cmd(batch, GENX(3DSTATE_GS), gs);
5057 }
5058 }
5059 }
5060
5061 if (ice->state.streamout_active) {
5062 if (dirty & IRIS_DIRTY_SO_BUFFERS) {
5063 iris_batch_emit(batch, genx->so_buffers,
5064 4 * 4 * GENX(3DSTATE_SO_BUFFER_length));
5065 for (int i = 0; i < 4; i++) {
5066 struct iris_stream_output_target *tgt =
5067 (void *) ice->state.so_target[i];
5068 if (tgt) {
5069 tgt->zeroed = true;
5070 iris_use_pinned_bo(batch, iris_resource_bo(tgt->base.buffer),
5071 true);
5072 iris_use_pinned_bo(batch, iris_resource_bo(tgt->offset.res),
5073 true);
5074 }
5075 }
5076 }
5077
5078 if ((dirty & IRIS_DIRTY_SO_DECL_LIST) && ice->state.streamout) {
5079 uint32_t *decl_list =
5080 ice->state.streamout + GENX(3DSTATE_STREAMOUT_length);
5081 iris_batch_emit(batch, decl_list, 4 * ((decl_list[0] & 0xff) + 2));
5082 }
5083
5084 if (dirty & IRIS_DIRTY_STREAMOUT) {
5085 const struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5086
5087 uint32_t dynamic_sol[GENX(3DSTATE_STREAMOUT_length)];
5088 iris_pack_command(GENX(3DSTATE_STREAMOUT), dynamic_sol, sol) {
5089 sol.SOFunctionEnable = true;
5090 sol.SOStatisticsEnable = true;
5091
5092 sol.RenderingDisable = cso_rast->rasterizer_discard &&
5093 !ice->state.prims_generated_query_active;
5094 sol.ReorderMode = cso_rast->flatshade_first ? LEADING : TRAILING;
5095 }
5096
5097 assert(ice->state.streamout);
5098
5099 iris_emit_merge(batch, ice->state.streamout, dynamic_sol,
5100 GENX(3DSTATE_STREAMOUT_length));
5101 }
5102 } else {
5103 if (dirty & IRIS_DIRTY_STREAMOUT) {
5104 iris_emit_cmd(batch, GENX(3DSTATE_STREAMOUT), sol);
5105 }
5106 }
5107
5108 if (dirty & IRIS_DIRTY_CLIP) {
5109 struct iris_rasterizer_state *cso_rast = ice->state.cso_rast;
5110 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5111
5112 bool gs_or_tes = ice->shaders.prog[MESA_SHADER_GEOMETRY] ||
5113 ice->shaders.prog[MESA_SHADER_TESS_EVAL];
5114 bool points_or_lines = cso_rast->fill_mode_point_or_line ||
5115 (gs_or_tes ? ice->shaders.output_topology_is_points_or_lines
5116 : ice->state.prim_is_points_or_lines);
5117
5118 uint32_t dynamic_clip[GENX(3DSTATE_CLIP_length)];
5119 iris_pack_command(GENX(3DSTATE_CLIP), &dynamic_clip, cl) {
5120 cl.StatisticsEnable = ice->state.statistics_counters_enabled;
5121 if (cso_rast->rasterizer_discard)
5122 cl.ClipMode = CLIPMODE_REJECT_ALL;
5123 else if (ice->state.window_space_position)
5124 cl.ClipMode = CLIPMODE_ACCEPT_ALL;
5125 else
5126 cl.ClipMode = CLIPMODE_NORMAL;
5127
5128 cl.PerspectiveDivideDisable = ice->state.window_space_position;
5129 cl.ViewportXYClipTestEnable = !points_or_lines;
5130
5131 if (wm_prog_data->barycentric_interp_modes &
5132 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
5133 cl.NonPerspectiveBarycentricEnable = true;
5134
5135 cl.ForceZeroRTAIndexEnable = cso_fb->layers == 0;
5136 cl.MaximumVPIndex = ice->state.num_viewports - 1;
5137 }
5138 iris_emit_merge(batch, cso_rast->clip, dynamic_clip,
5139 ARRAY_SIZE(cso_rast->clip));
5140 }
5141
5142 if (dirty & IRIS_DIRTY_RASTER) {
5143 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5144 iris_batch_emit(batch, cso->raster, sizeof(cso->raster));
5145
5146 uint32_t dynamic_sf[GENX(3DSTATE_SF_length)];
5147 iris_pack_command(GENX(3DSTATE_SF), &dynamic_sf, sf) {
5148 sf.ViewportTransformEnable = !ice->state.window_space_position;
5149 }
5150 iris_emit_merge(batch, cso->sf, dynamic_sf,
5151 ARRAY_SIZE(dynamic_sf));
5152 }
5153
5154 if (dirty & IRIS_DIRTY_WM) {
5155 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5156 uint32_t dynamic_wm[GENX(3DSTATE_WM_length)];
5157
5158 iris_pack_command(GENX(3DSTATE_WM), &dynamic_wm, wm) {
5159 wm.StatisticsEnable = ice->state.statistics_counters_enabled;
5160
5161 wm.BarycentricInterpolationMode =
5162 wm_prog_data->barycentric_interp_modes;
5163
5164 if (wm_prog_data->early_fragment_tests)
5165 wm.EarlyDepthStencilControl = EDSC_PREPS;
5166 else if (wm_prog_data->has_side_effects)
5167 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
5168
5169 /* We could skip this bit if color writes are enabled. */
5170 if (wm_prog_data->has_side_effects || wm_prog_data->uses_kill)
5171 wm.ForceThreadDispatchEnable = ForceON;
5172 }
5173 iris_emit_merge(batch, cso->wm, dynamic_wm, ARRAY_SIZE(cso->wm));
5174 }
5175
5176 if (dirty & IRIS_DIRTY_SBE) {
5177 iris_emit_sbe(batch, ice);
5178 }
5179
5180 if (dirty & IRIS_DIRTY_PS_BLEND) {
5181 struct iris_blend_state *cso_blend = ice->state.cso_blend;
5182 struct iris_depth_stencil_alpha_state *cso_zsa = ice->state.cso_zsa;
5183 const struct shader_info *fs_info =
5184 iris_get_shader_info(ice, MESA_SHADER_FRAGMENT);
5185
5186 uint32_t dynamic_pb[GENX(3DSTATE_PS_BLEND_length)];
5187 iris_pack_command(GENX(3DSTATE_PS_BLEND), &dynamic_pb, pb) {
5188 pb.HasWriteableRT = has_writeable_rt(cso_blend, fs_info);
5189 pb.AlphaTestEnable = cso_zsa->alpha.enabled;
5190
5191 /* The dual source blending docs caution against using SRC1 factors
5192 * when the shader doesn't use a dual source render target write.
5193 * Empirically, this can lead to GPU hangs, and the results are
5194 * undefined anyway, so simply disable blending to avoid the hang.
5195 */
5196 pb.ColorBufferBlendEnable = (cso_blend->blend_enables & 1) &&
5197 (!cso_blend->dual_color_blending || wm_prog_data->dual_src_blend);
5198 }
5199
5200 iris_emit_merge(batch, cso_blend->ps_blend, dynamic_pb,
5201 ARRAY_SIZE(cso_blend->ps_blend));
5202 }
5203
5204 if (dirty & IRIS_DIRTY_WM_DEPTH_STENCIL) {
5205 struct iris_depth_stencil_alpha_state *cso = ice->state.cso_zsa;
5206 #if GEN_GEN >= 9
5207 struct pipe_stencil_ref *p_stencil_refs = &ice->state.stencil_ref;
5208 uint32_t stencil_refs[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
5209 iris_pack_command(GENX(3DSTATE_WM_DEPTH_STENCIL), &stencil_refs, wmds) {
5210 wmds.StencilReferenceValue = p_stencil_refs->ref_value[0];
5211 wmds.BackfaceStencilReferenceValue = p_stencil_refs->ref_value[1];
5212 }
5213 iris_emit_merge(batch, cso->wmds, stencil_refs, ARRAY_SIZE(cso->wmds));
5214 #else
5215 iris_batch_emit(batch, cso->wmds, sizeof(cso->wmds));
5216 #endif
5217 }
5218
5219 if (dirty & IRIS_DIRTY_SCISSOR_RECT) {
5220 uint32_t scissor_offset =
5221 emit_state(batch, ice->state.dynamic_uploader,
5222 &ice->state.last_res.scissor,
5223 ice->state.scissors,
5224 sizeof(struct pipe_scissor_state) *
5225 ice->state.num_viewports, 32);
5226
5227 iris_emit_cmd(batch, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
5228 ptr.ScissorRectPointer = scissor_offset;
5229 }
5230 }
5231
5232 if (dirty & IRIS_DIRTY_DEPTH_BUFFER) {
5233 struct iris_depth_buffer_state *cso_z = &ice->state.genx->depth_buffer;
5234
5235 /* Do not emit the clear params yets. We need to update the clear value
5236 * first.
5237 */
5238 uint32_t clear_length = GENX(3DSTATE_CLEAR_PARAMS_length) * 4;
5239 uint32_t cso_z_size = sizeof(cso_z->packets) - clear_length;
5240 iris_batch_emit(batch, cso_z->packets, cso_z_size);
5241
5242 union isl_color_value clear_value = { .f32 = { 0, } };
5243
5244 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5245 if (cso_fb->zsbuf) {
5246 struct iris_resource *zres, *sres;
5247 iris_get_depth_stencil_resources(cso_fb->zsbuf->texture,
5248 &zres, &sres);
5249 if (zres && zres->aux.bo)
5250 clear_value = iris_resource_get_clear_color(zres, NULL, NULL);
5251 }
5252
5253 uint32_t clear_params[GENX(3DSTATE_CLEAR_PARAMS_length)];
5254 iris_pack_command(GENX(3DSTATE_CLEAR_PARAMS), clear_params, clear) {
5255 clear.DepthClearValueValid = true;
5256 clear.DepthClearValue = clear_value.f32[0];
5257 }
5258 iris_batch_emit(batch, clear_params, clear_length);
5259 }
5260
5261 if (dirty & (IRIS_DIRTY_DEPTH_BUFFER | IRIS_DIRTY_WM_DEPTH_STENCIL)) {
5262 /* Listen for buffer changes, and also write enable changes. */
5263 struct pipe_framebuffer_state *cso_fb = &ice->state.framebuffer;
5264 pin_depth_and_stencil_buffers(batch, cso_fb->zsbuf, ice->state.cso_zsa);
5265 }
5266
5267 if (dirty & IRIS_DIRTY_POLYGON_STIPPLE) {
5268 iris_emit_cmd(batch, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
5269 for (int i = 0; i < 32; i++) {
5270 poly.PatternRow[i] = ice->state.poly_stipple.stipple[i];
5271 }
5272 }
5273 }
5274
5275 if (dirty & IRIS_DIRTY_LINE_STIPPLE) {
5276 struct iris_rasterizer_state *cso = ice->state.cso_rast;
5277 iris_batch_emit(batch, cso->line_stipple, sizeof(cso->line_stipple));
5278 }
5279
5280 if (dirty & IRIS_DIRTY_VF_TOPOLOGY) {
5281 iris_emit_cmd(batch, GENX(3DSTATE_VF_TOPOLOGY), topo) {
5282 topo.PrimitiveTopologyType =
5283 translate_prim_type(draw->mode, draw->vertices_per_patch);
5284 }
5285 }
5286
5287 if (dirty & IRIS_DIRTY_VERTEX_BUFFERS) {
5288 int count = util_bitcount64(ice->state.bound_vertex_buffers);
5289 int dynamic_bound = ice->state.bound_vertex_buffers;
5290
5291 if (ice->state.vs_uses_draw_params) {
5292 if (ice->draw.draw_params_offset == 0) {
5293 u_upload_data(ice->ctx.stream_uploader, 0, sizeof(ice->draw.params),
5294 4, &ice->draw.params, &ice->draw.draw_params_offset,
5295 &ice->draw.draw_params_res);
5296 }
5297 assert(ice->draw.draw_params_res);
5298
5299 struct iris_vertex_buffer_state *state =
5300 &(ice->state.genx->vertex_buffers[count]);
5301 pipe_resource_reference(&state->resource, ice->draw.draw_params_res);
5302 struct iris_resource *res = (void *) state->resource;
5303
5304 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5305 vb.VertexBufferIndex = count;
5306 vb.AddressModifyEnable = true;
5307 vb.BufferPitch = 0;
5308 vb.BufferSize = res->bo->size - ice->draw.draw_params_offset;
5309 vb.BufferStartingAddress =
5310 ro_bo(NULL, res->bo->gtt_offset +
5311 (int) ice->draw.draw_params_offset);
5312 vb.MOCS = mocs(res->bo);
5313 }
5314 dynamic_bound |= 1ull << count;
5315 count++;
5316 }
5317
5318 if (ice->state.vs_uses_derived_draw_params) {
5319 u_upload_data(ice->ctx.stream_uploader, 0,
5320 sizeof(ice->draw.derived_params), 4,
5321 &ice->draw.derived_params,
5322 &ice->draw.derived_draw_params_offset,
5323 &ice->draw.derived_draw_params_res);
5324
5325 struct iris_vertex_buffer_state *state =
5326 &(ice->state.genx->vertex_buffers[count]);
5327 pipe_resource_reference(&state->resource,
5328 ice->draw.derived_draw_params_res);
5329 struct iris_resource *res = (void *) ice->draw.derived_draw_params_res;
5330
5331 iris_pack_state(GENX(VERTEX_BUFFER_STATE), state->state, vb) {
5332 vb.VertexBufferIndex = count;
5333 vb.AddressModifyEnable = true;
5334 vb.BufferPitch = 0;
5335 vb.BufferSize =
5336 res->bo->size - ice->draw.derived_draw_params_offset;
5337 vb.BufferStartingAddress =
5338 ro_bo(NULL, res->bo->gtt_offset +
5339 (int) ice->draw.derived_draw_params_offset);
5340 vb.MOCS = mocs(res->bo);
5341 }
5342 dynamic_bound |= 1ull << count;
5343 count++;
5344 }
5345
5346 if (count) {
5347 /* The VF cache designers cut corners, and made the cache key's
5348 * <VertexBufferIndex, Memory Address> tuple only consider the bottom
5349 * 32 bits of the address. If you have two vertex buffers which get
5350 * placed exactly 4 GiB apart and use them in back-to-back draw calls,
5351 * you can get collisions (even within a single batch).
5352 *
5353 * So, we need to do a VF cache invalidate if the buffer for a VB
5354 * slot slot changes [48:32] address bits from the previous time.
5355 */
5356 unsigned flush_flags = 0;
5357
5358 uint64_t bound = dynamic_bound;
5359 while (bound) {
5360 const int i = u_bit_scan64(&bound);
5361 uint16_t high_bits = 0;
5362
5363 struct iris_resource *res =
5364 (void *) genx->vertex_buffers[i].resource;
5365 if (res) {
5366 iris_use_pinned_bo(batch, res->bo, false);
5367
5368 high_bits = res->bo->gtt_offset >> 32ull;
5369 if (high_bits != ice->state.last_vbo_high_bits[i]) {
5370 flush_flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE |
5371 PIPE_CONTROL_CS_STALL;
5372 ice->state.last_vbo_high_bits[i] = high_bits;
5373 }
5374 }
5375 }
5376
5377 if (flush_flags) {
5378 iris_emit_pipe_control_flush(batch,
5379 "workaround: VF cache 32-bit key [VB]",
5380 flush_flags);
5381 }
5382
5383 const unsigned vb_dwords = GENX(VERTEX_BUFFER_STATE_length);
5384
5385 uint32_t *map =
5386 iris_get_command_space(batch, 4 * (1 + vb_dwords * count));
5387 _iris_pack_command(batch, GENX(3DSTATE_VERTEX_BUFFERS), map, vb) {
5388 vb.DWordLength = (vb_dwords * count + 1) - 2;
5389 }
5390 map += 1;
5391
5392 bound = dynamic_bound;
5393 while (bound) {
5394 const int i = u_bit_scan64(&bound);
5395 memcpy(map, genx->vertex_buffers[i].state,
5396 sizeof(uint32_t) * vb_dwords);
5397 map += vb_dwords;
5398 }
5399 }
5400 }
5401
5402 if (dirty & IRIS_DIRTY_VERTEX_ELEMENTS) {
5403 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5404 const unsigned entries = MAX2(cso->count, 1);
5405 if (!(ice->state.vs_needs_sgvs_element ||
5406 ice->state.vs_uses_derived_draw_params ||
5407 ice->state.vs_needs_edge_flag)) {
5408 iris_batch_emit(batch, cso->vertex_elements, sizeof(uint32_t) *
5409 (1 + entries * GENX(VERTEX_ELEMENT_STATE_length)));
5410 } else {
5411 uint32_t dynamic_ves[1 + 33 * GENX(VERTEX_ELEMENT_STATE_length)];
5412 const unsigned dyn_count = cso->count +
5413 ice->state.vs_needs_sgvs_element +
5414 ice->state.vs_uses_derived_draw_params;
5415
5416 iris_pack_command(GENX(3DSTATE_VERTEX_ELEMENTS),
5417 &dynamic_ves, ve) {
5418 ve.DWordLength =
5419 1 + GENX(VERTEX_ELEMENT_STATE_length) * dyn_count - 2;
5420 }
5421 memcpy(&dynamic_ves[1], &cso->vertex_elements[1],
5422 (cso->count - ice->state.vs_needs_edge_flag) *
5423 GENX(VERTEX_ELEMENT_STATE_length) * sizeof(uint32_t));
5424 uint32_t *ve_pack_dest =
5425 &dynamic_ves[1 + (cso->count - ice->state.vs_needs_edge_flag) *
5426 GENX(VERTEX_ELEMENT_STATE_length)];
5427
5428 if (ice->state.vs_needs_sgvs_element) {
5429 uint32_t base_ctrl = ice->state.vs_uses_draw_params ?
5430 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
5431 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5432 ve.Valid = true;
5433 ve.VertexBufferIndex =
5434 util_bitcount64(ice->state.bound_vertex_buffers);
5435 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5436 ve.Component0Control = base_ctrl;
5437 ve.Component1Control = base_ctrl;
5438 ve.Component2Control = VFCOMP_STORE_0;
5439 ve.Component3Control = VFCOMP_STORE_0;
5440 }
5441 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5442 }
5443 if (ice->state.vs_uses_derived_draw_params) {
5444 iris_pack_state(GENX(VERTEX_ELEMENT_STATE), ve_pack_dest, ve) {
5445 ve.Valid = true;
5446 ve.VertexBufferIndex =
5447 util_bitcount64(ice->state.bound_vertex_buffers) +
5448 ice->state.vs_uses_draw_params;
5449 ve.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
5450 ve.Component0Control = VFCOMP_STORE_SRC;
5451 ve.Component1Control = VFCOMP_STORE_SRC;
5452 ve.Component2Control = VFCOMP_STORE_0;
5453 ve.Component3Control = VFCOMP_STORE_0;
5454 }
5455 ve_pack_dest += GENX(VERTEX_ELEMENT_STATE_length);
5456 }
5457 if (ice->state.vs_needs_edge_flag) {
5458 for (int i = 0; i < GENX(VERTEX_ELEMENT_STATE_length); i++)
5459 ve_pack_dest[i] = cso->edgeflag_ve[i];
5460 }
5461
5462 iris_batch_emit(batch, &dynamic_ves, sizeof(uint32_t) *
5463 (1 + dyn_count * GENX(VERTEX_ELEMENT_STATE_length)));
5464 }
5465
5466 if (!ice->state.vs_needs_edge_flag) {
5467 iris_batch_emit(batch, cso->vf_instancing, sizeof(uint32_t) *
5468 entries * GENX(3DSTATE_VF_INSTANCING_length));
5469 } else {
5470 assert(cso->count > 0);
5471 const unsigned edgeflag_index = cso->count - 1;
5472 uint32_t dynamic_vfi[33 * GENX(3DSTATE_VF_INSTANCING_length)];
5473 memcpy(&dynamic_vfi[0], cso->vf_instancing, edgeflag_index *
5474 GENX(3DSTATE_VF_INSTANCING_length) * sizeof(uint32_t));
5475
5476 uint32_t *vfi_pack_dest = &dynamic_vfi[0] +
5477 edgeflag_index * GENX(3DSTATE_VF_INSTANCING_length);
5478 iris_pack_command(GENX(3DSTATE_VF_INSTANCING), vfi_pack_dest, vi) {
5479 vi.VertexElementIndex = edgeflag_index +
5480 ice->state.vs_needs_sgvs_element +
5481 ice->state.vs_uses_derived_draw_params;
5482 }
5483 for (int i = 0; i < GENX(3DSTATE_VF_INSTANCING_length); i++)
5484 vfi_pack_dest[i] |= cso->edgeflag_vfi[i];
5485
5486 iris_batch_emit(batch, &dynamic_vfi[0], sizeof(uint32_t) *
5487 entries * GENX(3DSTATE_VF_INSTANCING_length));
5488 }
5489 }
5490
5491 if (dirty & IRIS_DIRTY_VF_SGVS) {
5492 const struct brw_vs_prog_data *vs_prog_data = (void *)
5493 ice->shaders.prog[MESA_SHADER_VERTEX]->prog_data;
5494 struct iris_vertex_element_state *cso = ice->state.cso_vertex_elements;
5495
5496 iris_emit_cmd(batch, GENX(3DSTATE_VF_SGVS), sgv) {
5497 if (vs_prog_data->uses_vertexid) {
5498 sgv.VertexIDEnable = true;
5499 sgv.VertexIDComponentNumber = 2;
5500 sgv.VertexIDElementOffset =
5501 cso->count - ice->state.vs_needs_edge_flag;
5502 }
5503
5504 if (vs_prog_data->uses_instanceid) {
5505 sgv.InstanceIDEnable = true;
5506 sgv.InstanceIDComponentNumber = 3;
5507 sgv.InstanceIDElementOffset =
5508 cso->count - ice->state.vs_needs_edge_flag;
5509 }
5510 }
5511 }
5512
5513 if (dirty & IRIS_DIRTY_VF) {
5514 iris_emit_cmd(batch, GENX(3DSTATE_VF), vf) {
5515 if (draw->primitive_restart) {
5516 vf.IndexedDrawCutIndexEnable = true;
5517 vf.CutIndex = draw->restart_index;
5518 }
5519 }
5520 }
5521
5522 if (dirty & IRIS_DIRTY_VF_STATISTICS) {
5523 iris_emit_cmd(batch, GENX(3DSTATE_VF_STATISTICS), vf) {
5524 vf.StatisticsEnable = true;
5525 }
5526 }
5527
5528 if (ice->state.current_hash_scale != 1)
5529 genX(emit_hashing_mode)(ice, batch, UINT_MAX, UINT_MAX, 1);
5530
5531 /* TODO: Gen8 PMA fix */
5532 }
5533
5534 static void
5535 iris_upload_render_state(struct iris_context *ice,
5536 struct iris_batch *batch,
5537 const struct pipe_draw_info *draw)
5538 {
5539 bool use_predicate = ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT;
5540
5541 /* Always pin the binder. If we're emitting new binding table pointers,
5542 * we need it. If not, we're probably inheriting old tables via the
5543 * context, and need it anyway. Since true zero-bindings cases are
5544 * practically non-existent, just pin it and avoid last_res tracking.
5545 */
5546 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5547
5548 if (!batch->contains_draw) {
5549 iris_restore_render_saved_bos(ice, batch, draw);
5550 batch->contains_draw = true;
5551 }
5552
5553 iris_upload_dirty_render_state(ice, batch, draw);
5554
5555 if (draw->index_size > 0) {
5556 unsigned offset;
5557
5558 if (draw->has_user_indices) {
5559 u_upload_data(ice->ctx.stream_uploader, 0,
5560 draw->count * draw->index_size, 4, draw->index.user,
5561 &offset, &ice->state.last_res.index_buffer);
5562 } else {
5563 struct iris_resource *res = (void *) draw->index.resource;
5564 res->bind_history |= PIPE_BIND_INDEX_BUFFER;
5565
5566 pipe_resource_reference(&ice->state.last_res.index_buffer,
5567 draw->index.resource);
5568 offset = 0;
5569 }
5570
5571 struct iris_genx_state *genx = ice->state.genx;
5572 struct iris_bo *bo = iris_resource_bo(ice->state.last_res.index_buffer);
5573
5574 uint32_t ib_packet[GENX(3DSTATE_INDEX_BUFFER_length)];
5575 iris_pack_command(GENX(3DSTATE_INDEX_BUFFER), ib_packet, ib) {
5576 ib.IndexFormat = draw->index_size >> 1;
5577 ib.MOCS = mocs(bo);
5578 ib.BufferSize = bo->size - offset;
5579 ib.BufferStartingAddress = ro_bo(NULL, bo->gtt_offset + offset);
5580 }
5581
5582 if (memcmp(genx->last_index_buffer, ib_packet, sizeof(ib_packet)) != 0) {
5583 memcpy(genx->last_index_buffer, ib_packet, sizeof(ib_packet));
5584 iris_batch_emit(batch, ib_packet, sizeof(ib_packet));
5585 iris_use_pinned_bo(batch, bo, false);
5586 }
5587
5588 /* The VF cache key only uses 32-bits, see vertex buffer comment above */
5589 uint16_t high_bits = bo->gtt_offset >> 32ull;
5590 if (high_bits != ice->state.last_index_bo_high_bits) {
5591 iris_emit_pipe_control_flush(batch,
5592 "workaround: VF cache 32-bit key [IB]",
5593 PIPE_CONTROL_VF_CACHE_INVALIDATE |
5594 PIPE_CONTROL_CS_STALL);
5595 ice->state.last_index_bo_high_bits = high_bits;
5596 }
5597 }
5598
5599 #define _3DPRIM_END_OFFSET 0x2420
5600 #define _3DPRIM_START_VERTEX 0x2430
5601 #define _3DPRIM_VERTEX_COUNT 0x2434
5602 #define _3DPRIM_INSTANCE_COUNT 0x2438
5603 #define _3DPRIM_START_INSTANCE 0x243C
5604 #define _3DPRIM_BASE_VERTEX 0x2440
5605
5606 if (draw->indirect) {
5607 if (draw->indirect->indirect_draw_count) {
5608 use_predicate = true;
5609
5610 struct iris_bo *draw_count_bo =
5611 iris_resource_bo(draw->indirect->indirect_draw_count);
5612 unsigned draw_count_offset =
5613 draw->indirect->indirect_draw_count_offset;
5614
5615 iris_emit_pipe_control_flush(batch,
5616 "ensure indirect draw buffer is flushed",
5617 PIPE_CONTROL_FLUSH_ENABLE);
5618
5619 if (ice->state.predicate == IRIS_PREDICATE_STATE_USE_BIT) {
5620 struct gen_mi_builder b;
5621 gen_mi_builder_init(&b, batch);
5622
5623 /* comparison = draw id < draw count */
5624 struct gen_mi_value comparison =
5625 gen_mi_ult(&b, gen_mi_imm(draw->drawid),
5626 gen_mi_mem32(ro_bo(draw_count_bo,
5627 draw_count_offset)));
5628
5629 /* predicate = comparison & conditional rendering predicate */
5630 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_RESULT),
5631 gen_mi_iand(&b, comparison,
5632 gen_mi_reg32(CS_GPR(15))));
5633 } else {
5634 uint32_t mi_predicate;
5635
5636 /* Upload the id of the current primitive to MI_PREDICATE_SRC1. */
5637 ice->vtbl.load_register_imm64(batch, MI_PREDICATE_SRC1,
5638 draw->drawid);
5639 /* Upload the current draw count from the draw parameters buffer
5640 * to MI_PREDICATE_SRC0.
5641 */
5642 ice->vtbl.load_register_mem32(batch, MI_PREDICATE_SRC0,
5643 draw_count_bo, draw_count_offset);
5644 /* Zero the top 32-bits of MI_PREDICATE_SRC0 */
5645 ice->vtbl.load_register_imm32(batch, MI_PREDICATE_SRC0 + 4, 0);
5646
5647 if (draw->drawid == 0) {
5648 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOADINV |
5649 MI_PREDICATE_COMBINEOP_SET |
5650 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5651 } else {
5652 /* While draw_index < draw_count the predicate's result will be
5653 * (draw_index == draw_count) ^ TRUE = TRUE
5654 * When draw_index == draw_count the result is
5655 * (TRUE) ^ TRUE = FALSE
5656 * After this all results will be:
5657 * (FALSE) ^ FALSE = FALSE
5658 */
5659 mi_predicate = MI_PREDICATE | MI_PREDICATE_LOADOP_LOAD |
5660 MI_PREDICATE_COMBINEOP_XOR |
5661 MI_PREDICATE_COMPAREOP_SRCS_EQUAL;
5662 }
5663 iris_batch_emit(batch, &mi_predicate, sizeof(uint32_t));
5664 }
5665 }
5666 struct iris_bo *bo = iris_resource_bo(draw->indirect->buffer);
5667 assert(bo);
5668
5669 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5670 lrm.RegisterAddress = _3DPRIM_VERTEX_COUNT;
5671 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 0);
5672 }
5673 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5674 lrm.RegisterAddress = _3DPRIM_INSTANCE_COUNT;
5675 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 4);
5676 }
5677 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5678 lrm.RegisterAddress = _3DPRIM_START_VERTEX;
5679 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 8);
5680 }
5681 if (draw->index_size) {
5682 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5683 lrm.RegisterAddress = _3DPRIM_BASE_VERTEX;
5684 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5685 }
5686 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5687 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5688 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 16);
5689 }
5690 } else {
5691 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5692 lrm.RegisterAddress = _3DPRIM_START_INSTANCE;
5693 lrm.MemoryAddress = ro_bo(bo, draw->indirect->offset + 12);
5694 }
5695 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
5696 lri.RegisterOffset = _3DPRIM_BASE_VERTEX;
5697 lri.DataDWord = 0;
5698 }
5699 }
5700 } else if (draw->count_from_stream_output) {
5701 struct iris_stream_output_target *so =
5702 (void *) draw->count_from_stream_output;
5703
5704 /* XXX: Replace with actual cache tracking */
5705 iris_emit_pipe_control_flush(batch,
5706 "draw count from stream output stall",
5707 PIPE_CONTROL_CS_STALL);
5708
5709 struct gen_mi_builder b;
5710 gen_mi_builder_init(&b, batch);
5711
5712 struct iris_address addr =
5713 ro_bo(iris_resource_bo(so->offset.res), so->offset.offset);
5714 struct gen_mi_value offset =
5715 gen_mi_iadd_imm(&b, gen_mi_mem32(addr), -so->base.buffer_offset);
5716
5717 gen_mi_store(&b, gen_mi_reg32(_3DPRIM_VERTEX_COUNT),
5718 gen_mi_udiv32_imm(&b, offset, so->stride));
5719
5720 _iris_emit_lri(batch, _3DPRIM_START_VERTEX, 0);
5721 _iris_emit_lri(batch, _3DPRIM_BASE_VERTEX, 0);
5722 _iris_emit_lri(batch, _3DPRIM_START_INSTANCE, 0);
5723 _iris_emit_lri(batch, _3DPRIM_INSTANCE_COUNT, draw->instance_count);
5724 }
5725
5726 iris_emit_cmd(batch, GENX(3DPRIMITIVE), prim) {
5727 prim.VertexAccessType = draw->index_size > 0 ? RANDOM : SEQUENTIAL;
5728 prim.PredicateEnable = use_predicate;
5729
5730 if (draw->indirect || draw->count_from_stream_output) {
5731 prim.IndirectParameterEnable = true;
5732 } else {
5733 prim.StartInstanceLocation = draw->start_instance;
5734 prim.InstanceCount = draw->instance_count;
5735 prim.VertexCountPerInstance = draw->count;
5736
5737 prim.StartVertexLocation = draw->start;
5738
5739 if (draw->index_size) {
5740 prim.BaseVertexLocation += draw->index_bias;
5741 } else {
5742 prim.StartVertexLocation += draw->index_bias;
5743 }
5744 }
5745 }
5746 }
5747
5748 static void
5749 iris_upload_compute_state(struct iris_context *ice,
5750 struct iris_batch *batch,
5751 const struct pipe_grid_info *grid)
5752 {
5753 const uint64_t dirty = ice->state.dirty;
5754 struct iris_screen *screen = batch->screen;
5755 const struct gen_device_info *devinfo = &screen->devinfo;
5756 struct iris_binder *binder = &ice->state.binder;
5757 struct iris_shader_state *shs = &ice->state.shaders[MESA_SHADER_COMPUTE];
5758 struct iris_compiled_shader *shader =
5759 ice->shaders.prog[MESA_SHADER_COMPUTE];
5760 struct brw_stage_prog_data *prog_data = shader->prog_data;
5761 struct brw_cs_prog_data *cs_prog_data = (void *) prog_data;
5762
5763 /* Always pin the binder. If we're emitting new binding table pointers,
5764 * we need it. If not, we're probably inheriting old tables via the
5765 * context, and need it anyway. Since true zero-bindings cases are
5766 * practically non-existent, just pin it and avoid last_res tracking.
5767 */
5768 iris_use_pinned_bo(batch, ice->state.binder.bo, false);
5769
5770 if ((dirty & IRIS_DIRTY_CONSTANTS_CS) && shs->sysvals_need_upload)
5771 upload_sysvals(ice, MESA_SHADER_COMPUTE);
5772
5773 if (dirty & IRIS_DIRTY_BINDINGS_CS)
5774 iris_populate_binding_table(ice, batch, MESA_SHADER_COMPUTE, false);
5775
5776 if (dirty & IRIS_DIRTY_SAMPLER_STATES_CS)
5777 iris_upload_sampler_states(ice, MESA_SHADER_COMPUTE);
5778
5779 iris_use_optional_res(batch, shs->sampler_table.res, false);
5780 iris_use_pinned_bo(batch, iris_resource_bo(shader->assembly.res), false);
5781
5782 if (ice->state.need_border_colors)
5783 iris_use_pinned_bo(batch, ice->state.border_color_pool.bo, false);
5784
5785 if (dirty & IRIS_DIRTY_CS) {
5786 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
5787 *
5788 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
5789 * the only bits that are changed are scoreboard related: Scoreboard
5790 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard Delta. For
5791 * these scoreboard related states, a MEDIA_STATE_FLUSH is
5792 * sufficient."
5793 */
5794 iris_emit_pipe_control_flush(batch,
5795 "workaround: stall before MEDIA_VFE_STATE",
5796 PIPE_CONTROL_CS_STALL);
5797
5798 iris_emit_cmd(batch, GENX(MEDIA_VFE_STATE), vfe) {
5799 if (prog_data->total_scratch) {
5800 struct iris_bo *bo =
5801 iris_get_scratch_space(ice, prog_data->total_scratch,
5802 MESA_SHADER_COMPUTE);
5803 vfe.PerThreadScratchSpace = ffs(prog_data->total_scratch) - 11;
5804 vfe.ScratchSpaceBasePointer = rw_bo(bo, 0);
5805 }
5806
5807 vfe.MaximumNumberofThreads =
5808 devinfo->max_cs_threads * screen->subslice_total - 1;
5809 #if GEN_GEN < 11
5810 vfe.ResetGatewayTimer =
5811 Resettingrelativetimerandlatchingtheglobaltimestamp;
5812 #endif
5813 #if GEN_GEN == 8
5814 vfe.BypassGatewayControl = true;
5815 #endif
5816 vfe.NumberofURBEntries = 2;
5817 vfe.URBEntryAllocationSize = 2;
5818
5819 vfe.CURBEAllocationSize =
5820 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
5821 cs_prog_data->push.cross_thread.regs, 2);
5822 }
5823 }
5824
5825 /* TODO: Combine subgroup-id with cbuf0 so we can push regular uniforms */
5826 if (dirty & IRIS_DIRTY_CS) {
5827 uint32_t curbe_data_offset = 0;
5828 assert(cs_prog_data->push.cross_thread.dwords == 0 &&
5829 cs_prog_data->push.per_thread.dwords == 1 &&
5830 cs_prog_data->base.param[0] == BRW_PARAM_BUILTIN_SUBGROUP_ID);
5831 uint32_t *curbe_data_map =
5832 stream_state(batch, ice->state.dynamic_uploader,
5833 &ice->state.last_res.cs_thread_ids,
5834 ALIGN(cs_prog_data->push.total.size, 64), 64,
5835 &curbe_data_offset);
5836 assert(curbe_data_map);
5837 memset(curbe_data_map, 0x5a, ALIGN(cs_prog_data->push.total.size, 64));
5838 iris_fill_cs_push_const_buffer(cs_prog_data, curbe_data_map);
5839
5840 iris_emit_cmd(batch, GENX(MEDIA_CURBE_LOAD), curbe) {
5841 curbe.CURBETotalDataLength =
5842 ALIGN(cs_prog_data->push.total.size, 64);
5843 curbe.CURBEDataStartAddress = curbe_data_offset;
5844 }
5845 }
5846
5847 if (dirty & (IRIS_DIRTY_SAMPLER_STATES_CS |
5848 IRIS_DIRTY_BINDINGS_CS |
5849 IRIS_DIRTY_CONSTANTS_CS |
5850 IRIS_DIRTY_CS)) {
5851 uint32_t desc[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
5852
5853 iris_pack_state(GENX(INTERFACE_DESCRIPTOR_DATA), desc, idd) {
5854 idd.SamplerStatePointer = shs->sampler_table.offset;
5855 idd.BindingTablePointer = binder->bt_offset[MESA_SHADER_COMPUTE];
5856 }
5857
5858 for (int i = 0; i < GENX(INTERFACE_DESCRIPTOR_DATA_length); i++)
5859 desc[i] |= ((uint32_t *) shader->derived_data)[i];
5860
5861 iris_emit_cmd(batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
5862 load.InterfaceDescriptorTotalLength =
5863 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
5864 load.InterfaceDescriptorDataStartAddress =
5865 emit_state(batch, ice->state.dynamic_uploader,
5866 &ice->state.last_res.cs_desc, desc, sizeof(desc), 64);
5867 }
5868 }
5869
5870 uint32_t group_size = grid->block[0] * grid->block[1] * grid->block[2];
5871 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
5872 uint32_t right_mask;
5873
5874 if (remainder > 0)
5875 right_mask = ~0u >> (32 - remainder);
5876 else
5877 right_mask = ~0u >> (32 - cs_prog_data->simd_size);
5878
5879 #define GPGPU_DISPATCHDIMX 0x2500
5880 #define GPGPU_DISPATCHDIMY 0x2504
5881 #define GPGPU_DISPATCHDIMZ 0x2508
5882
5883 if (grid->indirect) {
5884 struct iris_state_ref *grid_size = &ice->state.grid_size;
5885 struct iris_bo *bo = iris_resource_bo(grid_size->res);
5886 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5887 lrm.RegisterAddress = GPGPU_DISPATCHDIMX;
5888 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 0);
5889 }
5890 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5891 lrm.RegisterAddress = GPGPU_DISPATCHDIMY;
5892 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 4);
5893 }
5894 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
5895 lrm.RegisterAddress = GPGPU_DISPATCHDIMZ;
5896 lrm.MemoryAddress = ro_bo(bo, grid_size->offset + 8);
5897 }
5898 }
5899
5900 iris_emit_cmd(batch, GENX(GPGPU_WALKER), ggw) {
5901 ggw.IndirectParameterEnable = grid->indirect != NULL;
5902 ggw.SIMDSize = cs_prog_data->simd_size / 16;
5903 ggw.ThreadDepthCounterMaximum = 0;
5904 ggw.ThreadHeightCounterMaximum = 0;
5905 ggw.ThreadWidthCounterMaximum = cs_prog_data->threads - 1;
5906 ggw.ThreadGroupIDXDimension = grid->grid[0];
5907 ggw.ThreadGroupIDYDimension = grid->grid[1];
5908 ggw.ThreadGroupIDZDimension = grid->grid[2];
5909 ggw.RightExecutionMask = right_mask;
5910 ggw.BottomExecutionMask = 0xffffffff;
5911 }
5912
5913 iris_emit_cmd(batch, GENX(MEDIA_STATE_FLUSH), msf);
5914
5915 if (!batch->contains_draw) {
5916 iris_restore_compute_saved_bos(ice, batch, grid);
5917 batch->contains_draw = true;
5918 }
5919 }
5920
5921 /**
5922 * State module teardown.
5923 */
5924 static void
5925 iris_destroy_state(struct iris_context *ice)
5926 {
5927 struct iris_genx_state *genx = ice->state.genx;
5928
5929 pipe_resource_reference(&ice->draw.draw_params_res, NULL);
5930 pipe_resource_reference(&ice->draw.derived_draw_params_res, NULL);
5931
5932 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
5933 while (bound_vbs) {
5934 const int i = u_bit_scan64(&bound_vbs);
5935 pipe_resource_reference(&genx->vertex_buffers[i].resource, NULL);
5936 }
5937 free(ice->state.genx);
5938
5939 for (int i = 0; i < 4; i++) {
5940 pipe_so_target_reference(&ice->state.so_target[i], NULL);
5941 }
5942
5943 for (unsigned i = 0; i < ice->state.framebuffer.nr_cbufs; i++) {
5944 pipe_surface_reference(&ice->state.framebuffer.cbufs[i], NULL);
5945 }
5946 pipe_surface_reference(&ice->state.framebuffer.zsbuf, NULL);
5947
5948 for (int stage = 0; stage < MESA_SHADER_STAGES; stage++) {
5949 struct iris_shader_state *shs = &ice->state.shaders[stage];
5950 pipe_resource_reference(&shs->sampler_table.res, NULL);
5951 for (int i = 0; i < PIPE_MAX_CONSTANT_BUFFERS; i++) {
5952 pipe_resource_reference(&shs->constbuf[i].buffer, NULL);
5953 pipe_resource_reference(&shs->constbuf_surf_state[i].res, NULL);
5954 }
5955 for (int i = 0; i < PIPE_MAX_SHADER_IMAGES; i++) {
5956 pipe_resource_reference(&shs->image[i].base.resource, NULL);
5957 pipe_resource_reference(&shs->image[i].surface_state.res, NULL);
5958 }
5959 for (int i = 0; i < PIPE_MAX_SHADER_BUFFERS; i++) {
5960 pipe_resource_reference(&shs->ssbo[i].buffer, NULL);
5961 pipe_resource_reference(&shs->ssbo_surf_state[i].res, NULL);
5962 }
5963 for (int i = 0; i < IRIS_MAX_TEXTURE_SAMPLERS; i++) {
5964 pipe_sampler_view_reference((struct pipe_sampler_view **)
5965 &shs->textures[i], NULL);
5966 }
5967 }
5968
5969 pipe_resource_reference(&ice->state.grid_size.res, NULL);
5970 pipe_resource_reference(&ice->state.grid_surf_state.res, NULL);
5971
5972 pipe_resource_reference(&ice->state.null_fb.res, NULL);
5973 pipe_resource_reference(&ice->state.unbound_tex.res, NULL);
5974
5975 pipe_resource_reference(&ice->state.last_res.cc_vp, NULL);
5976 pipe_resource_reference(&ice->state.last_res.sf_cl_vp, NULL);
5977 pipe_resource_reference(&ice->state.last_res.color_calc, NULL);
5978 pipe_resource_reference(&ice->state.last_res.scissor, NULL);
5979 pipe_resource_reference(&ice->state.last_res.blend, NULL);
5980 pipe_resource_reference(&ice->state.last_res.index_buffer, NULL);
5981 pipe_resource_reference(&ice->state.last_res.cs_thread_ids, NULL);
5982 pipe_resource_reference(&ice->state.last_res.cs_desc, NULL);
5983 }
5984
5985 /* ------------------------------------------------------------------- */
5986
5987 static void
5988 iris_rebind_buffer(struct iris_context *ice,
5989 struct iris_resource *res,
5990 uint64_t old_address)
5991 {
5992 struct pipe_context *ctx = &ice->ctx;
5993 struct iris_screen *screen = (void *) ctx->screen;
5994 struct iris_genx_state *genx = ice->state.genx;
5995
5996 assert(res->base.target == PIPE_BUFFER);
5997
5998 /* Buffers can't be framebuffer attachments, nor display related,
5999 * and we don't have upstream Clover support.
6000 */
6001 assert(!(res->bind_history & (PIPE_BIND_DEPTH_STENCIL |
6002 PIPE_BIND_RENDER_TARGET |
6003 PIPE_BIND_BLENDABLE |
6004 PIPE_BIND_DISPLAY_TARGET |
6005 PIPE_BIND_CURSOR |
6006 PIPE_BIND_COMPUTE_RESOURCE |
6007 PIPE_BIND_GLOBAL)));
6008
6009 if (res->bind_history & PIPE_BIND_VERTEX_BUFFER) {
6010 uint64_t bound_vbs = ice->state.bound_vertex_buffers;
6011 while (bound_vbs) {
6012 const int i = u_bit_scan64(&bound_vbs);
6013 struct iris_vertex_buffer_state *state = &genx->vertex_buffers[i];
6014
6015 /* Update the CPU struct */
6016 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_start) == 32);
6017 STATIC_ASSERT(GENX(VERTEX_BUFFER_STATE_BufferStartingAddress_bits) == 64);
6018 uint64_t *addr = (uint64_t *) &state->state[1];
6019
6020 if (*addr == old_address) {
6021 *addr = res->bo->gtt_offset;
6022 ice->state.dirty |= IRIS_DIRTY_VERTEX_BUFFERS;
6023 }
6024 }
6025 }
6026
6027 /* We don't need to handle PIPE_BIND_INDEX_BUFFER here: we re-emit
6028 * the 3DSTATE_INDEX_BUFFER packet whenever the address changes.
6029 *
6030 * There is also no need to handle these:
6031 * - PIPE_BIND_COMMAND_ARGS_BUFFER (emitted for every indirect draw)
6032 * - PIPE_BIND_QUERY_BUFFER (no persistent state references)
6033 */
6034
6035 if (res->bind_history & PIPE_BIND_STREAM_OUTPUT) {
6036 /* XXX: be careful about resetting vs appending... */
6037 assert(false);
6038 }
6039
6040 for (int s = MESA_SHADER_VERTEX; s < MESA_SHADER_STAGES; s++) {
6041 struct iris_shader_state *shs = &ice->state.shaders[s];
6042 enum pipe_shader_type p_stage = stage_to_pipe(s);
6043
6044 if (res->bind_history & PIPE_BIND_CONSTANT_BUFFER) {
6045 /* Skip constant buffer 0, it's for regular uniforms, not UBOs */
6046 uint32_t bound_cbufs = shs->bound_cbufs & ~1u;
6047 while (bound_cbufs) {
6048 const int i = u_bit_scan(&bound_cbufs);
6049 struct pipe_shader_buffer *cbuf = &shs->constbuf[i];
6050 struct iris_state_ref *surf_state = &shs->constbuf_surf_state[i];
6051
6052 if (res->bo == iris_resource_bo(cbuf->buffer)) {
6053 iris_upload_ubo_ssbo_surf_state(ice, cbuf, surf_state, false);
6054 ice->state.dirty |= IRIS_DIRTY_CONSTANTS_VS << s;
6055 }
6056 }
6057 }
6058
6059 if (res->bind_history & PIPE_BIND_SHADER_BUFFER) {
6060 uint32_t bound_ssbos = shs->bound_ssbos;
6061 while (bound_ssbos) {
6062 const int i = u_bit_scan(&bound_ssbos);
6063 struct pipe_shader_buffer *ssbo = &shs->ssbo[i];
6064
6065 if (res->bo == iris_resource_bo(ssbo->buffer)) {
6066 struct pipe_shader_buffer buf = {
6067 .buffer = &res->base,
6068 .buffer_offset = ssbo->buffer_offset,
6069 .buffer_size = ssbo->buffer_size,
6070 };
6071 iris_set_shader_buffers(ctx, p_stage, i, 1, &buf,
6072 (shs->writable_ssbos >> i) & 1);
6073 }
6074 }
6075 }
6076
6077 if (res->bind_history & PIPE_BIND_SAMPLER_VIEW) {
6078 uint32_t bound_sampler_views = shs->bound_sampler_views;
6079 while (bound_sampler_views) {
6080 const int i = u_bit_scan(&bound_sampler_views);
6081 struct iris_sampler_view *isv = shs->textures[i];
6082
6083 if (res->bo == iris_resource_bo(isv->base.texture)) {
6084 void *map = alloc_surface_states(ice->state.surface_uploader,
6085 &isv->surface_state,
6086 isv->res->aux.sampler_usages);
6087 assert(map);
6088 fill_buffer_surface_state(&screen->isl_dev, isv->res, map,
6089 isv->view.format, isv->view.swizzle,
6090 isv->base.u.buf.offset,
6091 isv->base.u.buf.size);
6092 ice->state.dirty |= IRIS_DIRTY_BINDINGS_VS << s;
6093 }
6094 }
6095 }
6096
6097 if (res->bind_history & PIPE_BIND_SHADER_IMAGE) {
6098 uint32_t bound_image_views = shs->bound_image_views;
6099 while (bound_image_views) {
6100 const int i = u_bit_scan(&bound_image_views);
6101 struct iris_image_view *iv = &shs->image[i];
6102
6103 if (res->bo == iris_resource_bo(iv->base.resource)) {
6104 iris_set_shader_images(ctx, p_stage, i, 1, &iv->base);
6105 }
6106 }
6107 }
6108 }
6109 }
6110
6111 /* ------------------------------------------------------------------- */
6112
6113 static void
6114 iris_load_register_reg32(struct iris_batch *batch, uint32_t dst,
6115 uint32_t src)
6116 {
6117 _iris_emit_lrr(batch, dst, src);
6118 }
6119
6120 static void
6121 iris_load_register_reg64(struct iris_batch *batch, uint32_t dst,
6122 uint32_t src)
6123 {
6124 _iris_emit_lrr(batch, dst, src);
6125 _iris_emit_lrr(batch, dst + 4, src + 4);
6126 }
6127
6128 static void
6129 iris_load_register_imm32(struct iris_batch *batch, uint32_t reg,
6130 uint32_t val)
6131 {
6132 _iris_emit_lri(batch, reg, val);
6133 }
6134
6135 static void
6136 iris_load_register_imm64(struct iris_batch *batch, uint32_t reg,
6137 uint64_t val)
6138 {
6139 _iris_emit_lri(batch, reg + 0, val & 0xffffffff);
6140 _iris_emit_lri(batch, reg + 4, val >> 32);
6141 }
6142
6143 /**
6144 * Emit MI_LOAD_REGISTER_MEM to load a 32-bit MMIO register from a buffer.
6145 */
6146 static void
6147 iris_load_register_mem32(struct iris_batch *batch, uint32_t reg,
6148 struct iris_bo *bo, uint32_t offset)
6149 {
6150 iris_emit_cmd(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
6151 lrm.RegisterAddress = reg;
6152 lrm.MemoryAddress = ro_bo(bo, offset);
6153 }
6154 }
6155
6156 /**
6157 * Load a 64-bit value from a buffer into a MMIO register via
6158 * two MI_LOAD_REGISTER_MEM commands.
6159 */
6160 static void
6161 iris_load_register_mem64(struct iris_batch *batch, uint32_t reg,
6162 struct iris_bo *bo, uint32_t offset)
6163 {
6164 iris_load_register_mem32(batch, reg + 0, bo, offset + 0);
6165 iris_load_register_mem32(batch, reg + 4, bo, offset + 4);
6166 }
6167
6168 static void
6169 iris_store_register_mem32(struct iris_batch *batch, uint32_t reg,
6170 struct iris_bo *bo, uint32_t offset,
6171 bool predicated)
6172 {
6173 iris_emit_cmd(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
6174 srm.RegisterAddress = reg;
6175 srm.MemoryAddress = rw_bo(bo, offset);
6176 srm.PredicateEnable = predicated;
6177 }
6178 }
6179
6180 static void
6181 iris_store_register_mem64(struct iris_batch *batch, uint32_t reg,
6182 struct iris_bo *bo, uint32_t offset,
6183 bool predicated)
6184 {
6185 iris_store_register_mem32(batch, reg + 0, bo, offset + 0, predicated);
6186 iris_store_register_mem32(batch, reg + 4, bo, offset + 4, predicated);
6187 }
6188
6189 static void
6190 iris_store_data_imm32(struct iris_batch *batch,
6191 struct iris_bo *bo, uint32_t offset,
6192 uint32_t imm)
6193 {
6194 iris_emit_cmd(batch, GENX(MI_STORE_DATA_IMM), sdi) {
6195 sdi.Address = rw_bo(bo, offset);
6196 sdi.ImmediateData = imm;
6197 }
6198 }
6199
6200 static void
6201 iris_store_data_imm64(struct iris_batch *batch,
6202 struct iris_bo *bo, uint32_t offset,
6203 uint64_t imm)
6204 {
6205 /* Can't use iris_emit_cmd because MI_STORE_DATA_IMM has a length of
6206 * 2 in genxml but it's actually variable length and we need 5 DWords.
6207 */
6208 void *map = iris_get_command_space(batch, 4 * 5);
6209 _iris_pack_command(batch, GENX(MI_STORE_DATA_IMM), map, sdi) {
6210 sdi.DWordLength = 5 - 2;
6211 sdi.Address = rw_bo(bo, offset);
6212 sdi.ImmediateData = imm;
6213 }
6214 }
6215
6216 static void
6217 iris_copy_mem_mem(struct iris_batch *batch,
6218 struct iris_bo *dst_bo, uint32_t dst_offset,
6219 struct iris_bo *src_bo, uint32_t src_offset,
6220 unsigned bytes)
6221 {
6222 /* MI_COPY_MEM_MEM operates on DWords. */
6223 assert(bytes % 4 == 0);
6224 assert(dst_offset % 4 == 0);
6225 assert(src_offset % 4 == 0);
6226
6227 for (unsigned i = 0; i < bytes; i += 4) {
6228 iris_emit_cmd(batch, GENX(MI_COPY_MEM_MEM), cp) {
6229 cp.DestinationMemoryAddress = rw_bo(dst_bo, dst_offset + i);
6230 cp.SourceMemoryAddress = ro_bo(src_bo, src_offset + i);
6231 }
6232 }
6233 }
6234
6235 /* ------------------------------------------------------------------- */
6236
6237 static unsigned
6238 flags_to_post_sync_op(uint32_t flags)
6239 {
6240 if (flags & PIPE_CONTROL_WRITE_IMMEDIATE)
6241 return WriteImmediateData;
6242
6243 if (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT)
6244 return WritePSDepthCount;
6245
6246 if (flags & PIPE_CONTROL_WRITE_TIMESTAMP)
6247 return WriteTimestamp;
6248
6249 return 0;
6250 }
6251
6252 /**
6253 * Do the given flags have a Post Sync or LRI Post Sync operation?
6254 */
6255 static enum pipe_control_flags
6256 get_post_sync_flags(enum pipe_control_flags flags)
6257 {
6258 flags &= PIPE_CONTROL_WRITE_IMMEDIATE |
6259 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6260 PIPE_CONTROL_WRITE_TIMESTAMP |
6261 PIPE_CONTROL_LRI_POST_SYNC_OP;
6262
6263 /* Only one "Post Sync Op" is allowed, and it's mutually exclusive with
6264 * "LRI Post Sync Operation". So more than one bit set would be illegal.
6265 */
6266 assert(util_bitcount(flags) <= 1);
6267
6268 return flags;
6269 }
6270
6271 #define IS_COMPUTE_PIPELINE(batch) (batch->name == IRIS_BATCH_COMPUTE)
6272
6273 /**
6274 * Emit a series of PIPE_CONTROL commands, taking into account any
6275 * workarounds necessary to actually accomplish the caller's request.
6276 *
6277 * Unless otherwise noted, spec quotations in this function come from:
6278 *
6279 * Synchronization of the 3D Pipeline > PIPE_CONTROL Command > Programming
6280 * Restrictions for PIPE_CONTROL.
6281 *
6282 * You should not use this function directly. Use the helpers in
6283 * iris_pipe_control.c instead, which may split the pipe control further.
6284 */
6285 static void
6286 iris_emit_raw_pipe_control(struct iris_batch *batch,
6287 const char *reason,
6288 uint32_t flags,
6289 struct iris_bo *bo,
6290 uint32_t offset,
6291 uint64_t imm)
6292 {
6293 UNUSED const struct gen_device_info *devinfo = &batch->screen->devinfo;
6294 enum pipe_control_flags post_sync_flags = get_post_sync_flags(flags);
6295 enum pipe_control_flags non_lri_post_sync_flags =
6296 post_sync_flags & ~PIPE_CONTROL_LRI_POST_SYNC_OP;
6297
6298 /* Recursive PIPE_CONTROL workarounds --------------------------------
6299 * (http://knowyourmeme.com/memes/xzibit-yo-dawg)
6300 *
6301 * We do these first because we want to look at the original operation,
6302 * rather than any workarounds we set.
6303 */
6304 if (GEN_GEN == 9 && (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE)) {
6305 /* The PIPE_CONTROL "VF Cache Invalidation Enable" bit description
6306 * lists several workarounds:
6307 *
6308 * "Project: SKL, KBL, BXT
6309 *
6310 * If the VF Cache Invalidation Enable is set to a 1 in a
6311 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields
6312 * sets to 0, with the VF Cache Invalidation Enable set to 0
6313 * needs to be sent prior to the PIPE_CONTROL with VF Cache
6314 * Invalidation Enable set to a 1."
6315 */
6316 iris_emit_raw_pipe_control(batch,
6317 "workaround: recursive VF cache invalidate",
6318 0, NULL, 0, 0);
6319 }
6320
6321 if (GEN_GEN == 9 && IS_COMPUTE_PIPELINE(batch) && post_sync_flags) {
6322 /* Project: SKL / Argument: LRI Post Sync Operation [23]
6323 *
6324 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6325 * programmed prior to programming a PIPECONTROL command with "LRI
6326 * Post Sync Operation" in GPGPU mode of operation (i.e when
6327 * PIPELINE_SELECT command is set to GPGPU mode of operation)."
6328 *
6329 * The same text exists a few rows below for Post Sync Op.
6330 */
6331 iris_emit_raw_pipe_control(batch,
6332 "workaround: CS stall before gpgpu post-sync",
6333 PIPE_CONTROL_CS_STALL, bo, offset, imm);
6334 }
6335
6336 if (GEN_GEN == 10 && (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH)) {
6337 /* Cannonlake:
6338 * "Before sending a PIPE_CONTROL command with bit 12 set, SW must issue
6339 * another PIPE_CONTROL with Render Target Cache Flush Enable (bit 12)
6340 * = 0 and Pipe Control Flush Enable (bit 7) = 1"
6341 */
6342 iris_emit_raw_pipe_control(batch,
6343 "workaround: PC flush before RT flush",
6344 PIPE_CONTROL_FLUSH_ENABLE, bo, offset, imm);
6345 }
6346
6347 /* "Flush Types" workarounds ---------------------------------------------
6348 * We do these now because they may add post-sync operations or CS stalls.
6349 */
6350
6351 if (GEN_GEN < 11 && flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) {
6352 /* Project: BDW, SKL+ (stopping at CNL) / Argument: VF Invalidate
6353 *
6354 * "'Post Sync Operation' must be enabled to 'Write Immediate Data' or
6355 * 'Write PS Depth Count' or 'Write Timestamp'."
6356 */
6357 if (!bo) {
6358 flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6359 post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6360 non_lri_post_sync_flags |= PIPE_CONTROL_WRITE_IMMEDIATE;
6361 bo = batch->screen->workaround_bo;
6362 }
6363 }
6364
6365 /* #1130 from Gen10 workarounds page:
6366 *
6367 * "Enable Depth Stall on every Post Sync Op if Render target Cache
6368 * Flush is not enabled in same PIPE CONTROL and Enable Pixel score
6369 * board stall if Render target cache flush is enabled."
6370 *
6371 * Applicable to CNL B0 and C0 steppings only.
6372 *
6373 * The wording here is unclear, and this workaround doesn't look anything
6374 * like the internal bug report recommendations, but leave it be for now...
6375 */
6376 if (GEN_GEN == 10) {
6377 if (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) {
6378 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6379 } else if (flags & non_lri_post_sync_flags) {
6380 flags |= PIPE_CONTROL_DEPTH_STALL;
6381 }
6382 }
6383
6384 if (flags & PIPE_CONTROL_DEPTH_STALL) {
6385 /* From the PIPE_CONTROL instruction table, bit 13 (Depth Stall Enable):
6386 *
6387 * "This bit must be DISABLED for operations other than writing
6388 * PS_DEPTH_COUNT."
6389 *
6390 * This seems like nonsense. An Ivybridge workaround requires us to
6391 * emit a PIPE_CONTROL with a depth stall and write immediate post-sync
6392 * operation. Gen8+ requires us to emit depth stalls and depth cache
6393 * flushes together. So, it's hard to imagine this means anything other
6394 * than "we originally intended this to be used for PS_DEPTH_COUNT".
6395 *
6396 * We ignore the supposed restriction and do nothing.
6397 */
6398 }
6399
6400 if (flags & (PIPE_CONTROL_RENDER_TARGET_FLUSH |
6401 PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6402 /* From the PIPE_CONTROL instruction table, bit 12 and bit 1:
6403 *
6404 * "This bit must be DISABLED for End-of-pipe (Read) fences,
6405 * PS_DEPTH_COUNT or TIMESTAMP queries."
6406 *
6407 * TODO: Implement end-of-pipe checking.
6408 */
6409 assert(!(post_sync_flags & (PIPE_CONTROL_WRITE_DEPTH_COUNT |
6410 PIPE_CONTROL_WRITE_TIMESTAMP)));
6411 }
6412
6413 if (GEN_GEN < 11 && (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD)) {
6414 /* From the PIPE_CONTROL instruction table, bit 1:
6415 *
6416 * "This bit is ignored if Depth Stall Enable is set.
6417 * Further, the render cache is not flushed even if Write Cache
6418 * Flush Enable bit is set."
6419 *
6420 * We assert that the caller doesn't do this combination, to try and
6421 * prevent mistakes. It shouldn't hurt the GPU, though.
6422 *
6423 * We skip this check on Gen11+ as the "Stall at Pixel Scoreboard"
6424 * and "Render Target Flush" combo is explicitly required for BTI
6425 * update workarounds.
6426 */
6427 assert(!(flags & (PIPE_CONTROL_DEPTH_STALL |
6428 PIPE_CONTROL_RENDER_TARGET_FLUSH)));
6429 }
6430
6431 /* PIPE_CONTROL page workarounds ------------------------------------- */
6432
6433 if (GEN_GEN <= 8 && (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE)) {
6434 /* From the PIPE_CONTROL page itself:
6435 *
6436 * "IVB, HSW, BDW
6437 * Restriction: Pipe_control with CS-stall bit set must be issued
6438 * before a pipe-control command that has the State Cache
6439 * Invalidate bit set."
6440 */
6441 flags |= PIPE_CONTROL_CS_STALL;
6442 }
6443
6444 if (flags & PIPE_CONTROL_FLUSH_LLC) {
6445 /* From the PIPE_CONTROL instruction table, bit 26 (Flush LLC):
6446 *
6447 * "Project: ALL
6448 * SW must always program Post-Sync Operation to "Write Immediate
6449 * Data" when Flush LLC is set."
6450 *
6451 * For now, we just require the caller to do it.
6452 */
6453 assert(flags & PIPE_CONTROL_WRITE_IMMEDIATE);
6454 }
6455
6456 /* "Post-Sync Operation" workarounds -------------------------------- */
6457
6458 /* Project: All / Argument: Global Snapshot Count Reset [19]
6459 *
6460 * "This bit must not be exercised on any product.
6461 * Requires stall bit ([20] of DW1) set."
6462 *
6463 * We don't use this, so we just assert that it isn't used. The
6464 * PIPE_CONTROL instruction page indicates that they intended this
6465 * as a debug feature and don't think it is useful in production,
6466 * but it may actually be usable, should we ever want to.
6467 */
6468 assert((flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) == 0);
6469
6470 if (flags & (PIPE_CONTROL_MEDIA_STATE_CLEAR |
6471 PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE)) {
6472 /* Project: All / Arguments:
6473 *
6474 * - Generic Media State Clear [16]
6475 * - Indirect State Pointers Disable [16]
6476 *
6477 * "Requires stall bit ([20] of DW1) set."
6478 *
6479 * Also, the PIPE_CONTROL instruction table, bit 16 (Generic Media
6480 * State Clear) says:
6481 *
6482 * "PIPECONTROL command with “Command Streamer Stall Enable” must be
6483 * programmed prior to programming a PIPECONTROL command with "Media
6484 * State Clear" set in GPGPU mode of operation"
6485 *
6486 * This is a subset of the earlier rule, so there's nothing to do.
6487 */
6488 flags |= PIPE_CONTROL_CS_STALL;
6489 }
6490
6491 if (flags & PIPE_CONTROL_STORE_DATA_INDEX) {
6492 /* Project: All / Argument: Store Data Index
6493 *
6494 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6495 * than '0'."
6496 *
6497 * For now, we just assert that the caller does this. We might want to
6498 * automatically add a write to the workaround BO...
6499 */
6500 assert(non_lri_post_sync_flags != 0);
6501 }
6502
6503 if (flags & PIPE_CONTROL_SYNC_GFDT) {
6504 /* Project: All / Argument: Sync GFDT
6505 *
6506 * "Post-Sync Operation ([15:14] of DW1) must be set to something other
6507 * than '0' or 0x2520[13] must be set."
6508 *
6509 * For now, we just assert that the caller does this.
6510 */
6511 assert(non_lri_post_sync_flags != 0);
6512 }
6513
6514 if (flags & PIPE_CONTROL_TLB_INVALIDATE) {
6515 /* Project: IVB+ / Argument: TLB inv
6516 *
6517 * "Requires stall bit ([20] of DW1) set."
6518 *
6519 * Also, from the PIPE_CONTROL instruction table:
6520 *
6521 * "Project: SKL+
6522 * Post Sync Operation or CS stall must be set to ensure a TLB
6523 * invalidation occurs. Otherwise no cycle will occur to the TLB
6524 * cache to invalidate."
6525 *
6526 * This is not a subset of the earlier rule, so there's nothing to do.
6527 */
6528 flags |= PIPE_CONTROL_CS_STALL;
6529 }
6530
6531 if (GEN_GEN == 9 && devinfo->gt == 4) {
6532 /* TODO: The big Skylake GT4 post sync op workaround */
6533 }
6534
6535 /* "GPGPU specific workarounds" (both post-sync and flush) ------------ */
6536
6537 if (IS_COMPUTE_PIPELINE(batch)) {
6538 if (GEN_GEN >= 9 && (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE)) {
6539 /* Project: SKL+ / Argument: Tex Invalidate
6540 * "Requires stall bit ([20] of DW) set for all GPGPU Workloads."
6541 */
6542 flags |= PIPE_CONTROL_CS_STALL;
6543 }
6544
6545 if (GEN_GEN == 8 && (post_sync_flags ||
6546 (flags & (PIPE_CONTROL_NOTIFY_ENABLE |
6547 PIPE_CONTROL_DEPTH_STALL |
6548 PIPE_CONTROL_RENDER_TARGET_FLUSH |
6549 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6550 PIPE_CONTROL_DATA_CACHE_FLUSH)))) {
6551 /* Project: BDW / Arguments:
6552 *
6553 * - LRI Post Sync Operation [23]
6554 * - Post Sync Op [15:14]
6555 * - Notify En [8]
6556 * - Depth Stall [13]
6557 * - Render Target Cache Flush [12]
6558 * - Depth Cache Flush [0]
6559 * - DC Flush Enable [5]
6560 *
6561 * "Requires stall bit ([20] of DW) set for all GPGPU and Media
6562 * Workloads."
6563 */
6564 flags |= PIPE_CONTROL_CS_STALL;
6565
6566 /* Also, from the PIPE_CONTROL instruction table, bit 20:
6567 *
6568 * "Project: BDW
6569 * This bit must be always set when PIPE_CONTROL command is
6570 * programmed by GPGPU and MEDIA workloads, except for the cases
6571 * when only Read Only Cache Invalidation bits are set (State
6572 * Cache Invalidation Enable, Instruction cache Invalidation
6573 * Enable, Texture Cache Invalidation Enable, Constant Cache
6574 * Invalidation Enable). This is to WA FFDOP CG issue, this WA
6575 * need not implemented when FF_DOP_CG is disable via "Fixed
6576 * Function DOP Clock Gate Disable" bit in RC_PSMI_CTRL register."
6577 *
6578 * It sounds like we could avoid CS stalls in some cases, but we
6579 * don't currently bother. This list isn't exactly the list above,
6580 * either...
6581 */
6582 }
6583 }
6584
6585 /* "Stall" workarounds ----------------------------------------------
6586 * These have to come after the earlier ones because we may have added
6587 * some additional CS stalls above.
6588 */
6589
6590 if (GEN_GEN < 9 && (flags & PIPE_CONTROL_CS_STALL)) {
6591 /* Project: PRE-SKL, VLV, CHV
6592 *
6593 * "[All Stepping][All SKUs]:
6594 *
6595 * One of the following must also be set:
6596 *
6597 * - Render Target Cache Flush Enable ([12] of DW1)
6598 * - Depth Cache Flush Enable ([0] of DW1)
6599 * - Stall at Pixel Scoreboard ([1] of DW1)
6600 * - Depth Stall ([13] of DW1)
6601 * - Post-Sync Operation ([13] of DW1)
6602 * - DC Flush Enable ([5] of DW1)"
6603 *
6604 * If we don't already have one of those bits set, we choose to add
6605 * "Stall at Pixel Scoreboard". Some of the other bits require a
6606 * CS stall as a workaround (see above), which would send us into
6607 * an infinite recursion of PIPE_CONTROLs. "Stall at Pixel Scoreboard"
6608 * appears to be safe, so we choose that.
6609 */
6610 const uint32_t wa_bits = PIPE_CONTROL_RENDER_TARGET_FLUSH |
6611 PIPE_CONTROL_DEPTH_CACHE_FLUSH |
6612 PIPE_CONTROL_WRITE_IMMEDIATE |
6613 PIPE_CONTROL_WRITE_DEPTH_COUNT |
6614 PIPE_CONTROL_WRITE_TIMESTAMP |
6615 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6616 PIPE_CONTROL_DEPTH_STALL |
6617 PIPE_CONTROL_DATA_CACHE_FLUSH;
6618 if (!(flags & wa_bits))
6619 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
6620 }
6621
6622 /* Emit --------------------------------------------------------------- */
6623
6624 if (INTEL_DEBUG & DEBUG_PIPE_CONTROL) {
6625 fprintf(stderr,
6626 " PC [%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%"PRIx64"]: %s\n",
6627 (flags & PIPE_CONTROL_FLUSH_ENABLE) ? "PipeCon " : "",
6628 (flags & PIPE_CONTROL_CS_STALL) ? "CS " : "",
6629 (flags & PIPE_CONTROL_STALL_AT_SCOREBOARD) ? "Scoreboard " : "",
6630 (flags & PIPE_CONTROL_VF_CACHE_INVALIDATE) ? "VF " : "",
6631 (flags & PIPE_CONTROL_RENDER_TARGET_FLUSH) ? "RT " : "",
6632 (flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE) ? "Const " : "",
6633 (flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE) ? "TC " : "",
6634 (flags & PIPE_CONTROL_DATA_CACHE_FLUSH) ? "DC " : "",
6635 (flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH) ? "ZFlush " : "",
6636 (flags & PIPE_CONTROL_DEPTH_STALL) ? "ZStall " : "",
6637 (flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE) ? "State " : "",
6638 (flags & PIPE_CONTROL_TLB_INVALIDATE) ? "TLB " : "",
6639 (flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE) ? "Inst " : "",
6640 (flags & PIPE_CONTROL_MEDIA_STATE_CLEAR) ? "MediaClear " : "",
6641 (flags & PIPE_CONTROL_NOTIFY_ENABLE) ? "Notify " : "",
6642 (flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET) ?
6643 "SnapRes" : "",
6644 (flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE) ?
6645 "ISPDis" : "",
6646 (flags & PIPE_CONTROL_WRITE_IMMEDIATE) ? "WriteImm " : "",
6647 (flags & PIPE_CONTROL_WRITE_DEPTH_COUNT) ? "WriteZCount " : "",
6648 (flags & PIPE_CONTROL_WRITE_TIMESTAMP) ? "WriteTimestamp " : "",
6649 imm, reason);
6650 }
6651
6652 iris_emit_cmd(batch, GENX(PIPE_CONTROL), pc) {
6653 pc.LRIPostSyncOperation = NoLRIOperation;
6654 pc.PipeControlFlushEnable = flags & PIPE_CONTROL_FLUSH_ENABLE;
6655 pc.DCFlushEnable = flags & PIPE_CONTROL_DATA_CACHE_FLUSH;
6656 pc.StoreDataIndex = 0;
6657 pc.CommandStreamerStallEnable = flags & PIPE_CONTROL_CS_STALL;
6658 pc.GlobalSnapshotCountReset =
6659 flags & PIPE_CONTROL_GLOBAL_SNAPSHOT_COUNT_RESET;
6660 pc.TLBInvalidate = flags & PIPE_CONTROL_TLB_INVALIDATE;
6661 pc.GenericMediaStateClear = flags & PIPE_CONTROL_MEDIA_STATE_CLEAR;
6662 pc.StallAtPixelScoreboard = flags & PIPE_CONTROL_STALL_AT_SCOREBOARD;
6663 pc.RenderTargetCacheFlushEnable =
6664 flags & PIPE_CONTROL_RENDER_TARGET_FLUSH;
6665 pc.DepthCacheFlushEnable = flags & PIPE_CONTROL_DEPTH_CACHE_FLUSH;
6666 pc.StateCacheInvalidationEnable =
6667 flags & PIPE_CONTROL_STATE_CACHE_INVALIDATE;
6668 pc.VFCacheInvalidationEnable = flags & PIPE_CONTROL_VF_CACHE_INVALIDATE;
6669 pc.ConstantCacheInvalidationEnable =
6670 flags & PIPE_CONTROL_CONST_CACHE_INVALIDATE;
6671 pc.PostSyncOperation = flags_to_post_sync_op(flags);
6672 pc.DepthStallEnable = flags & PIPE_CONTROL_DEPTH_STALL;
6673 pc.InstructionCacheInvalidateEnable =
6674 flags & PIPE_CONTROL_INSTRUCTION_INVALIDATE;
6675 pc.NotifyEnable = flags & PIPE_CONTROL_NOTIFY_ENABLE;
6676 pc.IndirectStatePointersDisable =
6677 flags & PIPE_CONTROL_INDIRECT_STATE_POINTERS_DISABLE;
6678 pc.TextureCacheInvalidationEnable =
6679 flags & PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
6680 pc.Address = rw_bo(bo, offset);
6681 pc.ImmediateData = imm;
6682 }
6683 }
6684
6685 void
6686 genX(emit_urb_setup)(struct iris_context *ice,
6687 struct iris_batch *batch,
6688 const unsigned size[4],
6689 bool tess_present, bool gs_present)
6690 {
6691 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6692 const unsigned push_size_kB = 32;
6693 unsigned entries[4];
6694 unsigned start[4];
6695
6696 ice->shaders.last_vs_entry_size = size[MESA_SHADER_VERTEX];
6697
6698 gen_get_urb_config(devinfo, 1024 * push_size_kB,
6699 1024 * ice->shaders.urb_size,
6700 tess_present, gs_present,
6701 size, entries, start);
6702
6703 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
6704 iris_emit_cmd(batch, GENX(3DSTATE_URB_VS), urb) {
6705 urb._3DCommandSubOpcode += i;
6706 urb.VSURBStartingAddress = start[i];
6707 urb.VSURBEntryAllocationSize = size[i] - 1;
6708 urb.VSNumberofURBEntries = entries[i];
6709 }
6710 }
6711 }
6712
6713 #if GEN_GEN == 9
6714 /**
6715 * Preemption on Gen9 has to be enabled or disabled in various cases.
6716 *
6717 * See these workarounds for preemption:
6718 * - WaDisableMidObjectPreemptionForGSLineStripAdj
6719 * - WaDisableMidObjectPreemptionForTrifanOrPolygon
6720 * - WaDisableMidObjectPreemptionForLineLoop
6721 * - WA#0798
6722 *
6723 * We don't put this in the vtable because it's only used on Gen9.
6724 */
6725 void
6726 gen9_toggle_preemption(struct iris_context *ice,
6727 struct iris_batch *batch,
6728 const struct pipe_draw_info *draw)
6729 {
6730 struct iris_genx_state *genx = ice->state.genx;
6731 bool object_preemption = true;
6732
6733 /* WaDisableMidObjectPreemptionForGSLineStripAdj
6734 *
6735 * "WA: Disable mid-draw preemption when draw-call is a linestrip_adj
6736 * and GS is enabled."
6737 */
6738 if (draw->mode == PIPE_PRIM_LINE_STRIP_ADJACENCY &&
6739 ice->shaders.prog[MESA_SHADER_GEOMETRY])
6740 object_preemption = false;
6741
6742 /* WaDisableMidObjectPreemptionForTrifanOrPolygon
6743 *
6744 * "TriFan miscompare in Execlist Preemption test. Cut index that is
6745 * on a previous context. End the previous, the resume another context
6746 * with a tri-fan or polygon, and the vertex count is corrupted. If we
6747 * prempt again we will cause corruption.
6748 *
6749 * WA: Disable mid-draw preemption when draw-call has a tri-fan."
6750 */
6751 if (draw->mode == PIPE_PRIM_TRIANGLE_FAN)
6752 object_preemption = false;
6753
6754 /* WaDisableMidObjectPreemptionForLineLoop
6755 *
6756 * "VF Stats Counters Missing a vertex when preemption enabled.
6757 *
6758 * WA: Disable mid-draw preemption when the draw uses a lineloop
6759 * topology."
6760 */
6761 if (draw->mode == PIPE_PRIM_LINE_LOOP)
6762 object_preemption = false;
6763
6764 /* WA#0798
6765 *
6766 * "VF is corrupting GAFS data when preempted on an instance boundary
6767 * and replayed with instancing enabled.
6768 *
6769 * WA: Disable preemption when using instanceing."
6770 */
6771 if (draw->instance_count > 1)
6772 object_preemption = false;
6773
6774 if (genx->object_preemption != object_preemption) {
6775 iris_enable_obj_preemption(batch, object_preemption);
6776 genx->object_preemption = object_preemption;
6777 }
6778 }
6779 #endif
6780
6781 static void
6782 iris_lost_genx_state(struct iris_context *ice, struct iris_batch *batch)
6783 {
6784 struct iris_genx_state *genx = ice->state.genx;
6785
6786 memset(genx->last_index_buffer, 0, sizeof(genx->last_index_buffer));
6787 }
6788
6789 static void
6790 iris_emit_mi_report_perf_count(struct iris_batch *batch,
6791 struct iris_bo *bo,
6792 uint32_t offset_in_bytes,
6793 uint32_t report_id)
6794 {
6795 iris_emit_cmd(batch, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
6796 mi_rpc.MemoryAddress = rw_bo(bo, offset_in_bytes);
6797 mi_rpc.ReportID = report_id;
6798 }
6799 }
6800
6801 /**
6802 * Update the pixel hashing modes that determine the balancing of PS threads
6803 * across subslices and slices.
6804 *
6805 * \param width Width bound of the rendering area (already scaled down if \p
6806 * scale is greater than 1).
6807 * \param height Height bound of the rendering area (already scaled down if \p
6808 * scale is greater than 1).
6809 * \param scale The number of framebuffer samples that could potentially be
6810 * affected by an individual channel of the PS thread. This is
6811 * typically one for single-sampled rendering, but for operations
6812 * like CCS resolves and fast clears a single PS invocation may
6813 * update a huge number of pixels, in which case a finer
6814 * balancing is desirable in order to maximally utilize the
6815 * bandwidth available. UINT_MAX can be used as shorthand for
6816 * "finest hashing mode available".
6817 */
6818 void
6819 genX(emit_hashing_mode)(struct iris_context *ice, struct iris_batch *batch,
6820 unsigned width, unsigned height, unsigned scale)
6821 {
6822 #if GEN_GEN == 9
6823 const struct gen_device_info *devinfo = &batch->screen->devinfo;
6824 const unsigned slice_hashing[] = {
6825 /* Because all Gen9 platforms with more than one slice require
6826 * three-way subslice hashing, a single "normal" 16x16 slice hashing
6827 * block is guaranteed to suffer from substantial imbalance, with one
6828 * subslice receiving twice as much work as the other two in the
6829 * slice.
6830 *
6831 * The performance impact of that would be particularly severe when
6832 * three-way hashing is also in use for slice balancing (which is the
6833 * case for all Gen9 GT4 platforms), because one of the slices
6834 * receives one every three 16x16 blocks in either direction, which
6835 * is roughly the periodicity of the underlying subslice imbalance
6836 * pattern ("roughly" because in reality the hardware's
6837 * implementation of three-way hashing doesn't do exact modulo 3
6838 * arithmetic, which somewhat decreases the magnitude of this effect
6839 * in practice). This leads to a systematic subslice imbalance
6840 * within that slice regardless of the size of the primitive. The
6841 * 32x32 hashing mode guarantees that the subslice imbalance within a
6842 * single slice hashing block is minimal, largely eliminating this
6843 * effect.
6844 */
6845 _32x32,
6846 /* Finest slice hashing mode available. */
6847 NORMAL
6848 };
6849 const unsigned subslice_hashing[] = {
6850 /* 16x16 would provide a slight cache locality benefit especially
6851 * visible in the sampler L1 cache efficiency of low-bandwidth
6852 * non-LLC platforms, but it comes at the cost of greater subslice
6853 * imbalance for primitives of dimensions approximately intermediate
6854 * between 16x4 and 16x16.
6855 */
6856 _16x4,
6857 /* Finest subslice hashing mode available. */
6858 _8x4
6859 };
6860 /* Dimensions of the smallest hashing block of a given hashing mode. If
6861 * the rendering area is smaller than this there can't possibly be any
6862 * benefit from switching to this mode, so we optimize out the
6863 * transition.
6864 */
6865 const unsigned min_size[][2] = {
6866 { 16, 4 },
6867 { 8, 4 }
6868 };
6869 const unsigned idx = scale > 1;
6870
6871 if (width > min_size[idx][0] || height > min_size[idx][1]) {
6872 uint32_t gt_mode;
6873
6874 iris_pack_state(GENX(GT_MODE), &gt_mode, reg) {
6875 reg.SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0);
6876 reg.SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0);
6877 reg.SubsliceHashing = subslice_hashing[idx];
6878 reg.SubsliceHashingMask = -1;
6879 };
6880
6881 iris_emit_raw_pipe_control(batch,
6882 "workaround: CS stall before GT_MODE LRI",
6883 PIPE_CONTROL_STALL_AT_SCOREBOARD |
6884 PIPE_CONTROL_CS_STALL,
6885 NULL, 0, 0);
6886
6887 iris_emit_lri(batch, GT_MODE, gt_mode);
6888
6889 ice->state.current_hash_scale = scale;
6890 }
6891 #endif
6892 }
6893
6894 void
6895 genX(init_state)(struct iris_context *ice)
6896 {
6897 struct pipe_context *ctx = &ice->ctx;
6898 struct iris_screen *screen = (struct iris_screen *)ctx->screen;
6899
6900 ctx->create_blend_state = iris_create_blend_state;
6901 ctx->create_depth_stencil_alpha_state = iris_create_zsa_state;
6902 ctx->create_rasterizer_state = iris_create_rasterizer_state;
6903 ctx->create_sampler_state = iris_create_sampler_state;
6904 ctx->create_sampler_view = iris_create_sampler_view;
6905 ctx->create_surface = iris_create_surface;
6906 ctx->create_vertex_elements_state = iris_create_vertex_elements;
6907 ctx->bind_blend_state = iris_bind_blend_state;
6908 ctx->bind_depth_stencil_alpha_state = iris_bind_zsa_state;
6909 ctx->bind_sampler_states = iris_bind_sampler_states;
6910 ctx->bind_rasterizer_state = iris_bind_rasterizer_state;
6911 ctx->bind_vertex_elements_state = iris_bind_vertex_elements_state;
6912 ctx->delete_blend_state = iris_delete_state;
6913 ctx->delete_depth_stencil_alpha_state = iris_delete_state;
6914 ctx->delete_rasterizer_state = iris_delete_state;
6915 ctx->delete_sampler_state = iris_delete_state;
6916 ctx->delete_vertex_elements_state = iris_delete_state;
6917 ctx->set_blend_color = iris_set_blend_color;
6918 ctx->set_clip_state = iris_set_clip_state;
6919 ctx->set_constant_buffer = iris_set_constant_buffer;
6920 ctx->set_shader_buffers = iris_set_shader_buffers;
6921 ctx->set_shader_images = iris_set_shader_images;
6922 ctx->set_sampler_views = iris_set_sampler_views;
6923 ctx->set_tess_state = iris_set_tess_state;
6924 ctx->set_framebuffer_state = iris_set_framebuffer_state;
6925 ctx->set_polygon_stipple = iris_set_polygon_stipple;
6926 ctx->set_sample_mask = iris_set_sample_mask;
6927 ctx->set_scissor_states = iris_set_scissor_states;
6928 ctx->set_stencil_ref = iris_set_stencil_ref;
6929 ctx->set_vertex_buffers = iris_set_vertex_buffers;
6930 ctx->set_viewport_states = iris_set_viewport_states;
6931 ctx->sampler_view_destroy = iris_sampler_view_destroy;
6932 ctx->surface_destroy = iris_surface_destroy;
6933 ctx->draw_vbo = iris_draw_vbo;
6934 ctx->launch_grid = iris_launch_grid;
6935 ctx->create_stream_output_target = iris_create_stream_output_target;
6936 ctx->stream_output_target_destroy = iris_stream_output_target_destroy;
6937 ctx->set_stream_output_targets = iris_set_stream_output_targets;
6938
6939 ice->vtbl.destroy_state = iris_destroy_state;
6940 ice->vtbl.init_render_context = iris_init_render_context;
6941 ice->vtbl.init_compute_context = iris_init_compute_context;
6942 ice->vtbl.upload_render_state = iris_upload_render_state;
6943 ice->vtbl.update_surface_base_address = iris_update_surface_base_address;
6944 ice->vtbl.upload_compute_state = iris_upload_compute_state;
6945 ice->vtbl.emit_raw_pipe_control = iris_emit_raw_pipe_control;
6946 ice->vtbl.emit_mi_report_perf_count = iris_emit_mi_report_perf_count;
6947 ice->vtbl.rebind_buffer = iris_rebind_buffer;
6948 ice->vtbl.load_register_reg32 = iris_load_register_reg32;
6949 ice->vtbl.load_register_reg64 = iris_load_register_reg64;
6950 ice->vtbl.load_register_imm32 = iris_load_register_imm32;
6951 ice->vtbl.load_register_imm64 = iris_load_register_imm64;
6952 ice->vtbl.load_register_mem32 = iris_load_register_mem32;
6953 ice->vtbl.load_register_mem64 = iris_load_register_mem64;
6954 ice->vtbl.store_register_mem32 = iris_store_register_mem32;
6955 ice->vtbl.store_register_mem64 = iris_store_register_mem64;
6956 ice->vtbl.store_data_imm32 = iris_store_data_imm32;
6957 ice->vtbl.store_data_imm64 = iris_store_data_imm64;
6958 ice->vtbl.copy_mem_mem = iris_copy_mem_mem;
6959 ice->vtbl.derived_program_state_size = iris_derived_program_state_size;
6960 ice->vtbl.store_derived_program_state = iris_store_derived_program_state;
6961 ice->vtbl.create_so_decl_list = iris_create_so_decl_list;
6962 ice->vtbl.populate_vs_key = iris_populate_vs_key;
6963 ice->vtbl.populate_tcs_key = iris_populate_tcs_key;
6964 ice->vtbl.populate_tes_key = iris_populate_tes_key;
6965 ice->vtbl.populate_gs_key = iris_populate_gs_key;
6966 ice->vtbl.populate_fs_key = iris_populate_fs_key;
6967 ice->vtbl.populate_cs_key = iris_populate_cs_key;
6968 ice->vtbl.mocs = mocs;
6969 ice->vtbl.lost_genx_state = iris_lost_genx_state;
6970
6971 ice->state.dirty = ~0ull;
6972
6973 ice->state.statistics_counters_enabled = true;
6974
6975 ice->state.sample_mask = 0xffff;
6976 ice->state.num_viewports = 1;
6977 ice->state.prim_mode = PIPE_PRIM_MAX;
6978 ice->state.genx = calloc(1, sizeof(struct iris_genx_state));
6979
6980 /* Make a 1x1x1 null surface for unbound textures */
6981 void *null_surf_map =
6982 upload_state(ice->state.surface_uploader, &ice->state.unbound_tex,
6983 4 * GENX(RENDER_SURFACE_STATE_length), 64);
6984 isl_null_fill_state(&screen->isl_dev, null_surf_map, isl_extent3d(1, 1, 1));
6985 ice->state.unbound_tex.offset +=
6986 iris_bo_offset_from_base_address(iris_resource_bo(ice->state.unbound_tex.res));
6987
6988 /* Default all scissor rectangles to be empty regions. */
6989 for (int i = 0; i < IRIS_MAX_VIEWPORTS; i++) {
6990 ice->state.scissors[i] = (struct pipe_scissor_state) {
6991 .minx = 1, .maxx = 0, .miny = 1, .maxy = 0,
6992 };
6993 }
6994 }