llvmpipe: clamp maxx,maxy to framebuffer size (in terms of tiles)
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "lp_setup_context.h"
33 #include "lp_rast.h"
34 #include "util/u_math.h"
35 #include "util/u_memory.h"
36
37 #define NUM_CHANNELS 4
38
39 /**
40 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
41 */
42 static void constant_coef( struct lp_rast_triangle *tri,
43 unsigned slot,
44 const float value,
45 unsigned i )
46 {
47 tri->inputs.a0[slot][i] = value;
48 tri->inputs.dadx[slot][i] = 0;
49 tri->inputs.dady[slot][i] = 0;
50 }
51
52 /**
53 * Compute a0, dadx and dady for a linearly interpolated coefficient,
54 * for a triangle.
55 */
56 static void linear_coef( struct lp_rast_triangle *tri,
57 float oneoverarea,
58 unsigned slot,
59 const float (*v1)[4],
60 const float (*v2)[4],
61 const float (*v3)[4],
62 unsigned vert_attr,
63 unsigned i)
64 {
65 float a1 = v1[vert_attr][i];
66 float a2 = v2[vert_attr][i];
67 float a3 = v3[vert_attr][i];
68
69 float da12 = a1 - a2;
70 float da31 = a3 - a1;
71 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
72 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
73
74 tri->inputs.dadx[slot][i] = dadx;
75 tri->inputs.dady[slot][i] = dady;
76
77 /* calculate a0 as the value which would be sampled for the
78 * fragment at (0,0), taking into account that we want to sample at
79 * pixel centers, in other words (0.5, 0.5).
80 *
81 * this is neat but unfortunately not a good way to do things for
82 * triangles with very large values of dadx or dady as it will
83 * result in the subtraction and re-addition from a0 of a very
84 * large number, which means we'll end up loosing a lot of the
85 * fractional bits and precision from a0. the way to fix this is
86 * to define a0 as the sample at a pixel center somewhere near vmin
87 * instead - i'll switch to this later.
88 */
89 tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
90 (dadx * (v1[0][0] - 0.5f) +
91 dady * (v1[0][1] - 0.5f)));
92 }
93
94
95 /**
96 * Compute a0, dadx and dady for a perspective-corrected interpolant,
97 * for a triangle.
98 * We basically multiply the vertex value by 1/w before computing
99 * the plane coefficients (a0, dadx, dady).
100 * Later, when we compute the value at a particular fragment position we'll
101 * divide the interpolated value by the interpolated W at that fragment.
102 */
103 static void perspective_coef( struct lp_rast_triangle *tri,
104 float oneoverarea,
105 unsigned slot,
106 const float (*v1)[4],
107 const float (*v2)[4],
108 const float (*v3)[4],
109 unsigned vert_attr,
110 unsigned i)
111 {
112 /* premultiply by 1/w (v[0][3] is always 1/w):
113 */
114 float a1 = v1[vert_attr][i] * v1[0][3];
115 float a2 = v2[vert_attr][i] * v2[0][3];
116 float a3 = v3[vert_attr][i] * v3[0][3];
117 float da12 = a1 - a2;
118 float da31 = a3 - a1;
119 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
120 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
121
122 tri->inputs.dadx[slot][i] = dadx;
123 tri->inputs.dady[slot][i] = dady;
124 tri->inputs.a0[slot][i] = (a1 -
125 (dadx * (v1[0][0] - 0.5f) +
126 dady * (v1[0][1] - 0.5f)));
127 }
128
129
130 /**
131 * Special coefficient setup for gl_FragCoord.
132 * X and Y are trivial, though Y has to be inverted for OpenGL.
133 * Z and W are copied from position_coef which should have already been computed.
134 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
135 */
136 static void
137 setup_fragcoord_coef(struct lp_rast_triangle *tri,
138 float oneoverarea,
139 unsigned slot,
140 const float (*v1)[4],
141 const float (*v2)[4],
142 const float (*v3)[4])
143 {
144 /*X*/
145 tri->inputs.a0[slot][0] = 0.0;
146 tri->inputs.dadx[slot][0] = 1.0;
147 tri->inputs.dady[slot][0] = 0.0;
148 /*Y*/
149 tri->inputs.a0[slot][1] = 0.0;
150 tri->inputs.dadx[slot][1] = 0.0;
151 tri->inputs.dady[slot][1] = 1.0;
152 /*Z*/
153 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
154 /*W*/
155 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
156 }
157
158
159 static void setup_facing_coef( struct lp_rast_triangle *tri,
160 unsigned slot,
161 boolean frontface )
162 {
163 constant_coef( tri, slot, 1.0f - frontface, 0 );
164 constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
165 constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
166 constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
167 }
168
169
170 /**
171 * Compute the tri->coef[] array dadx, dady, a0 values.
172 */
173 static void setup_tri_coefficients( struct setup_context *setup,
174 struct lp_rast_triangle *tri,
175 float oneoverarea,
176 const float (*v1)[4],
177 const float (*v2)[4],
178 const float (*v3)[4],
179 boolean frontface)
180 {
181 struct lp_scene *scene = lp_setup_get_current_scene(setup);
182 unsigned slot;
183
184 /* Allocate space for the a0, dadx and dady arrays
185 */
186 {
187 unsigned bytes;
188 bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
189 tri->inputs.a0 = lp_scene_alloc_aligned( scene, bytes, 16 );
190 tri->inputs.dadx = lp_scene_alloc_aligned( scene, bytes, 16 );
191 tri->inputs.dady = lp_scene_alloc_aligned( scene, bytes, 16 );
192 }
193
194 /* The internal position input is in slot zero:
195 */
196 setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
197
198 /* setup interpolation for all the remaining attributes:
199 */
200 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
201 unsigned vert_attr = setup->fs.input[slot].src_index;
202 unsigned i;
203
204 switch (setup->fs.input[slot].interp) {
205 case LP_INTERP_CONSTANT:
206 for (i = 0; i < NUM_CHANNELS; i++)
207 constant_coef(tri, slot+1, v3[vert_attr][i], i);
208 break;
209
210 case LP_INTERP_LINEAR:
211 for (i = 0; i < NUM_CHANNELS; i++)
212 linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
213 break;
214
215 case LP_INTERP_PERSPECTIVE:
216 for (i = 0; i < NUM_CHANNELS; i++)
217 perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
218 break;
219
220 case LP_INTERP_POSITION:
221 /* XXX: fix me - duplicates the values in slot zero.
222 */
223 setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
224 break;
225
226 case LP_INTERP_FACING:
227 setup_facing_coef(tri, slot+1, frontface);
228 break;
229
230 default:
231 assert(0);
232 }
233 }
234 }
235
236
237
238 static inline int subpixel_snap( float a )
239 {
240 return util_iround(FIXED_ONE * a);
241 }
242
243
244 /**
245 * Do basic setup for triangle rasterization and determine which
246 * framebuffer tiles are touched. Put the triangle in the scene's
247 * bins for the tiles which we overlap.
248 */
249 static void
250 do_triangle_ccw(struct setup_context *setup,
251 const float (*v1)[4],
252 const float (*v2)[4],
253 const float (*v3)[4],
254 boolean frontfacing )
255 {
256 /* x/y positions in fixed point */
257 const int x1 = subpixel_snap(v1[0][0]);
258 const int x2 = subpixel_snap(v2[0][0]);
259 const int x3 = subpixel_snap(v3[0][0]);
260 const int y1 = subpixel_snap(v1[0][1]);
261 const int y2 = subpixel_snap(v2[0][1]);
262 const int y3 = subpixel_snap(v3[0][1]);
263
264 struct lp_scene *scene = lp_setup_get_current_scene(setup);
265 struct lp_rast_triangle *tri = lp_scene_alloc_aligned( scene, sizeof *tri, 16 );
266 float area, oneoverarea;
267 int minx, maxx, miny, maxy;
268
269 tri->dx12 = x1 - x2;
270 tri->dx23 = x2 - x3;
271 tri->dx31 = x3 - x1;
272
273 tri->dy12 = y1 - y2;
274 tri->dy23 = y2 - y3;
275 tri->dy31 = y3 - y1;
276
277 area = (tri->dx12 * tri->dy31 -
278 tri->dx31 * tri->dy12);
279
280 /* Cull non-ccw and zero-sized triangles.
281 *
282 * XXX: subject to overflow??
283 */
284 if (area <= 0) {
285 lp_scene_putback_data( scene, sizeof *tri );
286 return;
287 }
288
289 /* Bounding rectangle (in pixels) */
290 tri->minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
291 tri->maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
292 tri->miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
293 tri->maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
294
295 if (tri->miny == tri->maxy ||
296 tri->minx == tri->maxx) {
297 lp_scene_putback_data( scene, sizeof *tri );
298 return;
299 }
300
301 /*
302 */
303 oneoverarea = ((float)FIXED_ONE) / (float)area;
304
305 /* Setup parameter interpolants:
306 */
307 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
308
309 /* half-edge constants, will be interated over the whole
310 * rendertarget.
311 */
312 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
313 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
314 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
315
316 /* correct for top-left fill convention:
317 */
318 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
319 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
320 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
321
322 tri->dy12 *= FIXED_ONE;
323 tri->dy23 *= FIXED_ONE;
324 tri->dy31 *= FIXED_ONE;
325
326 tri->dx12 *= FIXED_ONE;
327 tri->dx23 *= FIXED_ONE;
328 tri->dx31 *= FIXED_ONE;
329
330 /* find trivial reject offsets for each edge for a single-pixel
331 * sized block. These will be scaled up at each recursive level to
332 * match the active blocksize. Scaling in this way works best if
333 * the blocks are square.
334 */
335 tri->eo1 = 0;
336 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
337 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
338
339 tri->eo2 = 0;
340 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
341 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
342
343 tri->eo3 = 0;
344 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
345 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
346
347 /* Calculate trivial accept offsets from the above.
348 */
349 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
350 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
351 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
352
353 {
354 const int xstep1 = -tri->dy12;
355 const int xstep2 = -tri->dy23;
356 const int xstep3 = -tri->dy31;
357
358 const int ystep1 = tri->dx12;
359 const int ystep2 = tri->dx23;
360 const int ystep3 = tri->dx31;
361
362 int qx, qy, ix, iy;
363 int i = 0;
364
365 for (qy = 0; qy < 2; qy++) {
366 for (qx = 0; qx < 2; qx++) {
367 for (iy = 0; iy < 2; iy++) {
368 for (ix = 0; ix < 2; ix++, i++) {
369 int x = qx * 2 + ix;
370 int y = qy * 2 + iy;
371 tri->inputs.step[0][i] = x * xstep1 + y * ystep1;
372 tri->inputs.step[1][i] = x * xstep2 + y * ystep2;
373 tri->inputs.step[2][i] = x * xstep3 + y * ystep3;
374 }
375 }
376 }
377 }
378 }
379
380 /*
381 * All fields of 'tri' are now set. The remaining code here is
382 * concerned with binning.
383 */
384
385 /* Convert to tile coordinates:
386 */
387 minx = tri->minx / TILE_SIZE;
388 miny = tri->miny / TILE_SIZE;
389 maxx = tri->maxx / TILE_SIZE;
390 maxy = tri->maxy / TILE_SIZE;
391
392 /* Clamp maxx, maxy to framebuffer size
393 */
394 maxx = MIN2(maxx, scene->tiles_x - 1);
395 maxy = MIN2(maxy, scene->tiles_y - 1);
396
397 /* Determine which tile(s) intersect the triangle's bounding box
398 */
399 if (miny == maxy && minx == maxx)
400 {
401 /* Triangle is contained in a single tile:
402 */
403 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
404 lp_rast_arg_triangle(tri) );
405 }
406 else
407 {
408 int c1 = (tri->c1 +
409 tri->dx12 * miny * TILE_SIZE -
410 tri->dy12 * minx * TILE_SIZE);
411 int c2 = (tri->c2 +
412 tri->dx23 * miny * TILE_SIZE -
413 tri->dy23 * minx * TILE_SIZE);
414 int c3 = (tri->c3 +
415 tri->dx31 * miny * TILE_SIZE -
416 tri->dy31 * minx * TILE_SIZE);
417
418 int ei1 = tri->ei1 << TILE_ORDER;
419 int ei2 = tri->ei2 << TILE_ORDER;
420 int ei3 = tri->ei3 << TILE_ORDER;
421
422 int eo1 = tri->eo1 << TILE_ORDER;
423 int eo2 = tri->eo2 << TILE_ORDER;
424 int eo3 = tri->eo3 << TILE_ORDER;
425
426 int xstep1 = -(tri->dy12 << TILE_ORDER);
427 int xstep2 = -(tri->dy23 << TILE_ORDER);
428 int xstep3 = -(tri->dy31 << TILE_ORDER);
429
430 int ystep1 = tri->dx12 << TILE_ORDER;
431 int ystep2 = tri->dx23 << TILE_ORDER;
432 int ystep3 = tri->dx31 << TILE_ORDER;
433 int x, y;
434
435
436 /* Trivially accept or reject blocks, else jump to per-pixel
437 * examination above.
438 */
439 for (y = miny; y <= maxy; y++)
440 {
441 int cx1 = c1;
442 int cx2 = c2;
443 int cx3 = c3;
444 int in = 0;
445
446 for (x = minx; x <= maxx; x++)
447 {
448 if (cx1 + eo1 < 0 ||
449 cx2 + eo2 < 0 ||
450 cx3 + eo3 < 0)
451 {
452 /* do nothing */
453 if (in)
454 break;
455 }
456 else if (cx1 + ei1 > 0 &&
457 cx2 + ei2 > 0 &&
458 cx3 + ei3 > 0)
459 {
460 in = 1;
461 /* triangle covers the whole tile- shade whole tile */
462 lp_scene_bin_command( scene, x, y,
463 lp_rast_shade_tile,
464 lp_rast_arg_inputs(&tri->inputs) );
465 }
466 else
467 {
468 in = 1;
469 /* shade partial tile */
470 lp_scene_bin_command( scene, x, y,
471 lp_rast_triangle,
472 lp_rast_arg_triangle(tri) );
473 }
474
475 /* Iterate cx values across the region:
476 */
477 cx1 += xstep1;
478 cx2 += xstep2;
479 cx3 += xstep3;
480 }
481
482 /* Iterate c values down the region:
483 */
484 c1 += ystep1;
485 c2 += ystep2;
486 c3 += ystep3;
487 }
488 }
489 }
490
491 static void triangle_cw( struct setup_context *setup,
492 const float (*v0)[4],
493 const float (*v1)[4],
494 const float (*v2)[4] )
495 {
496 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
497 }
498
499 static void triangle_ccw( struct setup_context *setup,
500 const float (*v0)[4],
501 const float (*v1)[4],
502 const float (*v2)[4] )
503 {
504 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
505 }
506
507 static void triangle_both( struct setup_context *setup,
508 const float (*v0)[4],
509 const float (*v1)[4],
510 const float (*v2)[4] )
511 {
512 /* edge vectors e = v0 - v2, f = v1 - v2 */
513 const float ex = v0[0][0] - v2[0][0];
514 const float ey = v0[0][1] - v2[0][1];
515 const float fx = v1[0][0] - v2[0][0];
516 const float fy = v1[0][1] - v2[0][1];
517
518 /* det = cross(e,f).z */
519 if (ex * fy - ey * fx < 0)
520 triangle_ccw( setup, v0, v1, v2 );
521 else
522 triangle_cw( setup, v0, v1, v2 );
523 }
524
525 static void triangle_nop( struct setup_context *setup,
526 const float (*v0)[4],
527 const float (*v1)[4],
528 const float (*v2)[4] )
529 {
530 }
531
532
533 void
534 lp_setup_choose_triangle( struct setup_context *setup )
535 {
536 switch (setup->cullmode) {
537 case PIPE_WINDING_NONE:
538 setup->triangle = triangle_both;
539 break;
540 case PIPE_WINDING_CCW:
541 setup->triangle = triangle_cw;
542 break;
543 case PIPE_WINDING_CW:
544 setup->triangle = triangle_ccw;
545 break;
546 default:
547 setup->triangle = triangle_nop;
548 break;
549 }
550 }
551
552