llvmpipe: native rasterization for lines
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "lp_perf.h"
36 #include "lp_setup_context.h"
37 #include "lp_setup_coef.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40
41 #define NUM_CHANNELS 4
42
43
44
45 static INLINE int
46 subpixel_snap(float a)
47 {
48 return util_iround(FIXED_ONE * a);
49 }
50
51 static INLINE float
52 fixed_to_float(int a)
53 {
54 return a * (1.0 / FIXED_ONE);
55 }
56
57
58
59
60
61
62
63 /**
64 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
65 * immediately after it.
66 * The memory is allocated from the per-scene pool, not per-tile.
67 * \param tri_size returns number of bytes allocated
68 * \param nr_inputs number of fragment shader inputs
69 * \return pointer to triangle space
70 */
71 struct lp_rast_triangle *
72 lp_setup_alloc_triangle(struct lp_scene *scene,
73 unsigned nr_inputs,
74 unsigned nr_planes,
75 unsigned *tri_size)
76 {
77 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
78 struct lp_rast_triangle *tri;
79 unsigned tri_bytes, bytes;
80 char *inputs;
81
82 tri_bytes = align(Offset(struct lp_rast_triangle, plane[nr_planes]), 16);
83 bytes = tri_bytes + (3 * input_array_sz);
84
85 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
86
87 if (tri) {
88 inputs = ((char *)tri) + tri_bytes;
89 tri->inputs.a0 = (float (*)[4]) inputs;
90 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
91 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
92
93 *tri_size = bytes;
94 }
95
96 return tri;
97 }
98
99 void
100 lp_setup_print_vertex(struct lp_setup_context *setup,
101 const char *name,
102 const float (*v)[4])
103 {
104 int i, j;
105
106 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
107 name,
108 v[0][0], v[0][1], v[0][2], v[0][3]);
109
110 for (i = 0; i < setup->fs.nr_inputs; i++) {
111 const float *in = v[setup->fs.input[i].src_index];
112
113 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
114 i,
115 name, setup->fs.input[i].src_index,
116 (setup->fs.input[i].usage_mask & 0x1) ? "x" : " ",
117 (setup->fs.input[i].usage_mask & 0x2) ? "y" : " ",
118 (setup->fs.input[i].usage_mask & 0x4) ? "z" : " ",
119 (setup->fs.input[i].usage_mask & 0x8) ? "w" : " ");
120
121 for (j = 0; j < 4; j++)
122 if (setup->fs.input[i].usage_mask & (1<<j))
123 debug_printf("%.5f ", in[j]);
124
125 debug_printf("\n");
126 }
127 }
128
129
130 /**
131 * Print triangle vertex attribs (for debug).
132 */
133 void
134 lp_setup_print_triangle(struct lp_setup_context *setup,
135 const float (*v0)[4],
136 const float (*v1)[4],
137 const float (*v2)[4])
138 {
139 debug_printf("triangle\n");
140
141 {
142 const float ex = v0[0][0] - v2[0][0];
143 const float ey = v0[0][1] - v2[0][1];
144 const float fx = v1[0][0] - v2[0][0];
145 const float fy = v1[0][1] - v2[0][1];
146
147 /* det = cross(e,f).z */
148 const float det = ex * fy - ey * fx;
149 if (det < 0.0f)
150 debug_printf(" - ccw\n");
151 else if (det > 0.0f)
152 debug_printf(" - cw\n");
153 else
154 debug_printf(" - zero area\n");
155 }
156
157 lp_setup_print_vertex(setup, "v0", v0);
158 lp_setup_print_vertex(setup, "v1", v1);
159 lp_setup_print_vertex(setup, "v2", v2);
160 }
161
162
163 lp_rast_cmd lp_rast_tri_tab[9] = {
164 NULL, /* should be impossible */
165 lp_rast_triangle_1,
166 lp_rast_triangle_2,
167 lp_rast_triangle_3,
168 lp_rast_triangle_4,
169 lp_rast_triangle_5,
170 lp_rast_triangle_6,
171 lp_rast_triangle_7,
172 lp_rast_triangle_8
173 };
174
175 /**
176 * Do basic setup for triangle rasterization and determine which
177 * framebuffer tiles are touched. Put the triangle in the scene's
178 * bins for the tiles which we overlap.
179 */
180 static void
181 do_triangle_ccw(struct lp_setup_context *setup,
182 const float (*v0)[4],
183 const float (*v1)[4],
184 const float (*v2)[4],
185 boolean frontfacing )
186 {
187
188 struct lp_scene *scene = lp_setup_get_current_scene(setup);
189 struct lp_fragment_shader_variant *variant = setup->fs.current.variant;
190 struct lp_rast_triangle *tri;
191 int x[3];
192 int y[3];
193 float dy01, dy20;
194 float dx01, dx20;
195 float oneoverarea;
196 struct lp_tri_info info;
197 int area;
198 struct u_rect bbox;
199 int ix0, ix1, iy0, iy1;
200 unsigned tri_bytes;
201 int i;
202 int nr_planes = 3;
203
204 if (0)
205 lp_setup_print_triangle(setup, v0, v1, v2);
206
207 if (setup->scissor_test) {
208 nr_planes = 7;
209 }
210 else {
211 nr_planes = 3;
212 }
213
214 /* x/y positions in fixed point */
215 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
216 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
217 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
218 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
219 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
220 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
221
222
223 /* Bounding rectangle (in pixels) */
224 {
225 /* Yes this is necessary to accurately calculate bounding boxes
226 * with the two fill-conventions we support. GL (normally) ends
227 * up needing a bottom-left fill convention, which requires
228 * slightly different rounding.
229 */
230 int adj = (setup->pixel_offset != 0) ? 1 : 0;
231
232 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
233 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
234 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
235 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
236
237 /* Inclusive coordinates:
238 */
239 bbox.x1--;
240 bbox.y1--;
241 }
242
243 if (bbox.x1 < bbox.x0 ||
244 bbox.y1 < bbox.y0) {
245 if (0) debug_printf("empty bounding box\n");
246 LP_COUNT(nr_culled_tris);
247 return;
248 }
249
250 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
251 if (0) debug_printf("offscreen\n");
252 LP_COUNT(nr_culled_tris);
253 return;
254 }
255
256 u_rect_find_intersection(&setup->draw_region, &bbox);
257
258 tri = lp_setup_alloc_triangle(scene,
259 setup->fs.nr_inputs,
260 nr_planes,
261 &tri_bytes);
262 if (!tri)
263 return;
264
265 #ifdef DEBUG
266 tri->v[0][0] = v0[0][0];
267 tri->v[1][0] = v1[0][0];
268 tri->v[2][0] = v2[0][0];
269 tri->v[0][1] = v0[0][1];
270 tri->v[1][1] = v1[0][1];
271 tri->v[2][1] = v2[0][1];
272 #endif
273
274 tri->plane[0].dcdy = x[0] - x[1];
275 tri->plane[1].dcdy = x[1] - x[2];
276 tri->plane[2].dcdy = x[2] - x[0];
277
278 tri->plane[0].dcdx = y[0] - y[1];
279 tri->plane[1].dcdx = y[1] - y[2];
280 tri->plane[2].dcdx = y[2] - y[0];
281
282 area = (tri->plane[0].dcdy * tri->plane[2].dcdx -
283 tri->plane[2].dcdy * tri->plane[0].dcdx);
284
285 LP_COUNT(nr_tris);
286
287 /* Cull non-ccw and zero-sized triangles.
288 *
289 * XXX: subject to overflow??
290 */
291 if (area <= 0) {
292 lp_scene_putback_data( scene, tri_bytes );
293 LP_COUNT(nr_culled_tris);
294 return;
295 }
296
297
298 /*
299 */
300 dx01 = v0[0][0] - v1[0][0];
301 dy01 = v0[0][1] - v1[0][1];
302 dx20 = v2[0][0] - v0[0][0];
303 dy20 = v2[0][1] - v0[0][1];
304 oneoverarea = 1.0f / (dx01 * dy20 - dx20 * dy01);
305
306 info.v0 = v0;
307 info.v1 = v1;
308 info.v2 = v2;
309 info.frontfacing = frontfacing;
310 info.x0_center = v0[0][0] - setup->pixel_offset;
311 info.y0_center = v0[0][1] - setup->pixel_offset;
312 info.dx01_ooa = dx01 * oneoverarea;
313 info.dx20_ooa = dx20 * oneoverarea;
314 info.dy01_ooa = dy01 * oneoverarea;
315 info.dy20_ooa = dy20 * oneoverarea;
316
317 /* Setup parameter interpolants:
318 */
319 lp_setup_tri_coef( setup, &tri->inputs, &info );
320
321 tri->inputs.facing = frontfacing ? 1.0F : -1.0F;
322 tri->inputs.state = setup->fs.stored;
323
324
325
326 for (i = 0; i < 3; i++) {
327 struct lp_rast_plane *plane = &tri->plane[i];
328
329 /* half-edge constants, will be interated over the whole render
330 * target.
331 */
332 plane->c = plane->dcdx * x[i] - plane->dcdy * y[i];
333
334 /* correct for top-left vs. bottom-left fill convention.
335 *
336 * note that we're overloading gl_rasterization_rules to mean
337 * both (0.5,0.5) pixel centers *and* bottom-left filling
338 * convention.
339 *
340 * GL actually has a top-left filling convention, but GL's
341 * notion of "top" differs from gallium's...
342 *
343 * Also, sometimes (in FBO cases) GL will render upside down
344 * to its usual method, in which case it will probably want
345 * to use the opposite, top-left convention.
346 */
347 if (plane->dcdx < 0) {
348 /* both fill conventions want this - adjust for left edges */
349 plane->c++;
350 }
351 else if (plane->dcdx == 0) {
352 if (setup->pixel_offset == 0) {
353 /* correct for top-left fill convention:
354 */
355 if (plane->dcdy > 0) plane->c++;
356 }
357 else {
358 /* correct for bottom-left fill convention:
359 */
360 if (plane->dcdy < 0) plane->c++;
361 }
362 }
363
364 plane->dcdx *= FIXED_ONE;
365 plane->dcdy *= FIXED_ONE;
366
367 /* find trivial reject offsets for each edge for a single-pixel
368 * sized block. These will be scaled up at each recursive level to
369 * match the active blocksize. Scaling in this way works best if
370 * the blocks are square.
371 */
372 plane->eo = 0;
373 if (plane->dcdx < 0) plane->eo -= plane->dcdx;
374 if (plane->dcdy > 0) plane->eo += plane->dcdy;
375
376 /* Calculate trivial accept offsets from the above.
377 */
378 plane->ei = plane->dcdy - plane->dcdx - plane->eo;
379 }
380
381
382 /*
383 * When rasterizing scissored tris, use the intersection of the
384 * triangle bounding box and the scissor rect to generate the
385 * scissor planes.
386 *
387 * This permits us to cut off the triangle "tails" that are present
388 * in the intermediate recursive levels caused when two of the
389 * triangles edges don't diverge quickly enough to trivially reject
390 * exterior blocks from the triangle.
391 *
392 * It's not really clear if it's worth worrying about these tails,
393 * but since we generate the planes for each scissored tri, it's
394 * free to trim them in this case.
395 *
396 * Note that otherwise, the scissor planes only vary in 'C' value,
397 * and even then only on state-changes. Could alternatively store
398 * these planes elsewhere.
399 */
400 if (nr_planes == 7) {
401 tri->plane[3].dcdx = -1;
402 tri->plane[3].dcdy = 0;
403 tri->plane[3].c = 1-bbox.x0;
404 tri->plane[3].ei = 0;
405 tri->plane[3].eo = 1;
406
407 tri->plane[4].dcdx = 1;
408 tri->plane[4].dcdy = 0;
409 tri->plane[4].c = bbox.x1+1;
410 tri->plane[4].ei = -1;
411 tri->plane[4].eo = 0;
412
413 tri->plane[5].dcdx = 0;
414 tri->plane[5].dcdy = 1;
415 tri->plane[5].c = 1-bbox.y0;
416 tri->plane[5].ei = 0;
417 tri->plane[5].eo = 1;
418
419 tri->plane[6].dcdx = 0;
420 tri->plane[6].dcdy = -1;
421 tri->plane[6].c = bbox.y1+1;
422 tri->plane[6].ei = -1;
423 tri->plane[6].eo = 0;
424 }
425
426
427 /*
428 * All fields of 'tri' are now set. The remaining code here is
429 * concerned with binning.
430 */
431
432 /* Convert to tile coordinates, and inclusive ranges:
433 */
434 if (nr_planes == 3) {
435 int ix0 = bbox.x0 / 16;
436 int iy0 = bbox.y0 / 16;
437 int ix1 = bbox.x1 / 16;
438 int iy1 = bbox.y1 / 16;
439
440 if (iy0 == iy1 && ix0 == ix1)
441 {
442
443 /* Triangle is contained in a single 16x16 block:
444 */
445 int mask = (ix0 & 3) | ((iy0 & 3) << 4);
446
447 lp_scene_bin_command( scene, ix0/4, iy0/4,
448 lp_rast_triangle_3_16,
449 lp_rast_arg_triangle(tri, mask) );
450 return;
451 }
452 }
453
454 ix0 = bbox.x0 / TILE_SIZE;
455 iy0 = bbox.y0 / TILE_SIZE;
456 ix1 = bbox.x1 / TILE_SIZE;
457 iy1 = bbox.y1 / TILE_SIZE;
458
459 /*
460 * Clamp to framebuffer size
461 */
462 assert(ix0 == MAX2(ix0, 0));
463 assert(iy0 == MAX2(iy0, 0));
464 assert(ix1 == MIN2(ix1, scene->tiles_x - 1));
465 assert(iy1 == MIN2(iy1, scene->tiles_y - 1));
466
467 /* Determine which tile(s) intersect the triangle's bounding box
468 */
469 if (iy0 == iy1 && ix0 == ix1)
470 {
471 /* Triangle is contained in a single tile:
472 */
473 lp_scene_bin_command( scene, ix0, iy0,
474 lp_rast_tri_tab[nr_planes],
475 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
476 }
477 else
478 {
479 int c[7];
480 int ei[7];
481 int eo[7];
482 int xstep[7];
483 int ystep[7];
484 int x, y;
485
486 for (i = 0; i < nr_planes; i++) {
487 c[i] = (tri->plane[i].c +
488 tri->plane[i].dcdy * iy0 * TILE_SIZE -
489 tri->plane[i].dcdx * ix0 * TILE_SIZE);
490
491 ei[i] = tri->plane[i].ei << TILE_ORDER;
492 eo[i] = tri->plane[i].eo << TILE_ORDER;
493 xstep[i] = -(tri->plane[i].dcdx << TILE_ORDER);
494 ystep[i] = tri->plane[i].dcdy << TILE_ORDER;
495 }
496
497
498
499 /* Test tile-sized blocks against the triangle.
500 * Discard blocks fully outside the tri. If the block is fully
501 * contained inside the tri, bin an lp_rast_shade_tile command.
502 * Else, bin a lp_rast_triangle command.
503 */
504 for (y = iy0; y <= iy1; y++)
505 {
506 boolean in = FALSE; /* are we inside the triangle? */
507 int cx[7];
508
509 for (i = 0; i < nr_planes; i++)
510 cx[i] = c[i];
511
512 for (x = ix0; x <= ix1; x++)
513 {
514 int out = 0;
515 int partial = 0;
516
517 for (i = 0; i < nr_planes; i++) {
518 int planeout = cx[i] + eo[i];
519 int planepartial = cx[i] + ei[i] - 1;
520 out |= (planeout >> 31);
521 partial |= (planepartial >> 31) & (1<<i);
522 }
523
524 if (out) {
525 /* do nothing */
526 if (in)
527 break; /* exiting triangle, all done with this row */
528 LP_COUNT(nr_empty_64);
529 }
530 else if (partial) {
531 /* Not trivially accepted by at least one plane -
532 * rasterize/shade partial tile
533 */
534 int count = util_bitcount(partial);
535 in = TRUE;
536 lp_scene_bin_command( scene, x, y,
537 lp_rast_tri_tab[count],
538 lp_rast_arg_triangle(tri, partial) );
539
540 LP_COUNT(nr_partially_covered_64);
541 }
542 else {
543 /* triangle covers the whole tile- shade whole tile */
544 LP_COUNT(nr_fully_covered_64);
545 in = TRUE;
546 if (variant->opaque &&
547 !setup->fb.zsbuf) {
548 lp_scene_bin_reset( scene, x, y );
549 }
550 lp_scene_bin_command( scene, x, y,
551 lp_rast_shade_tile,
552 lp_rast_arg_inputs(&tri->inputs) );
553 }
554
555 /* Iterate cx values across the region:
556 */
557 for (i = 0; i < nr_planes; i++)
558 cx[i] += xstep[i];
559 }
560
561 /* Iterate c values down the region:
562 */
563 for (i = 0; i < nr_planes; i++)
564 c[i] += ystep[i];
565 }
566 }
567 }
568
569
570 /**
571 * Draw triangle if it's CW, cull otherwise.
572 */
573 static void triangle_cw( struct lp_setup_context *setup,
574 const float (*v0)[4],
575 const float (*v1)[4],
576 const float (*v2)[4] )
577 {
578 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
579 }
580
581
582 /**
583 * Draw triangle if it's CCW, cull otherwise.
584 */
585 static void triangle_ccw( struct lp_setup_context *setup,
586 const float (*v0)[4],
587 const float (*v1)[4],
588 const float (*v2)[4] )
589 {
590 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
591 }
592
593
594
595 /**
596 * Draw triangle whether it's CW or CCW.
597 */
598 static void triangle_both( struct lp_setup_context *setup,
599 const float (*v0)[4],
600 const float (*v1)[4],
601 const float (*v2)[4] )
602 {
603 /* edge vectors e = v0 - v2, f = v1 - v2 */
604 const float ex = v0[0][0] - v2[0][0];
605 const float ey = v0[0][1] - v2[0][1];
606 const float fx = v1[0][0] - v2[0][0];
607 const float fy = v1[0][1] - v2[0][1];
608
609 /* det = cross(e,f).z */
610 const float det = ex * fy - ey * fx;
611 if (det < 0.0f)
612 triangle_ccw( setup, v0, v1, v2 );
613 else if (det > 0.0f)
614 triangle_cw( setup, v0, v1, v2 );
615 }
616
617
618 static void triangle_nop( struct lp_setup_context *setup,
619 const float (*v0)[4],
620 const float (*v1)[4],
621 const float (*v2)[4] )
622 {
623 }
624
625
626 void
627 lp_setup_choose_triangle( struct lp_setup_context *setup )
628 {
629 switch (setup->cullmode) {
630 case PIPE_FACE_NONE:
631 setup->triangle = triangle_both;
632 break;
633 case PIPE_FACE_BACK:
634 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
635 break;
636 case PIPE_FACE_FRONT:
637 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
638 break;
639 default:
640 setup->triangle = triangle_nop;
641 break;
642 }
643 }