llvmpipe: move bin-related structures and functions into new lp_bin.[ch]
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "lp_setup_context.h"
33 #include "lp_rast.h"
34 #include "util/u_math.h"
35 #include "util/u_memory.h"
36
37 #define NUM_CHANNELS 4
38
39 /**
40 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
41 */
42 static void constant_coef( struct lp_rast_triangle *tri,
43 unsigned slot,
44 const float value,
45 unsigned i )
46 {
47 tri->inputs.a0[slot][i] = value;
48 tri->inputs.dadx[slot][i] = 0;
49 tri->inputs.dady[slot][i] = 0;
50 }
51
52 /**
53 * Compute a0, dadx and dady for a linearly interpolated coefficient,
54 * for a triangle.
55 */
56 static void linear_coef( struct lp_rast_triangle *tri,
57 float oneoverarea,
58 unsigned slot,
59 const float (*v1)[4],
60 const float (*v2)[4],
61 const float (*v3)[4],
62 unsigned vert_attr,
63 unsigned i)
64 {
65 float a1 = v1[vert_attr][i];
66 float a2 = v2[vert_attr][i];
67 float a3 = v3[vert_attr][i];
68
69 float da12 = a1 - a2;
70 float da31 = a3 - a1;
71 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
72 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
73
74 tri->inputs.dadx[slot][i] = dadx;
75 tri->inputs.dady[slot][i] = dady;
76
77 /* calculate a0 as the value which would be sampled for the
78 * fragment at (0,0), taking into account that we want to sample at
79 * pixel centers, in other words (0.5, 0.5).
80 *
81 * this is neat but unfortunately not a good way to do things for
82 * triangles with very large values of dadx or dady as it will
83 * result in the subtraction and re-addition from a0 of a very
84 * large number, which means we'll end up loosing a lot of the
85 * fractional bits and precision from a0. the way to fix this is
86 * to define a0 as the sample at a pixel center somewhere near vmin
87 * instead - i'll switch to this later.
88 */
89 tri->inputs.a0[slot][i] = (v1[vert_attr][i] -
90 (dadx * (v1[0][0] - 0.5f) +
91 dady * (v1[0][1] - 0.5f)));
92 }
93
94
95 /**
96 * Compute a0, dadx and dady for a perspective-corrected interpolant,
97 * for a triangle.
98 * We basically multiply the vertex value by 1/w before computing
99 * the plane coefficients (a0, dadx, dady).
100 * Later, when we compute the value at a particular fragment position we'll
101 * divide the interpolated value by the interpolated W at that fragment.
102 */
103 static void perspective_coef( struct lp_rast_triangle *tri,
104 float oneoverarea,
105 unsigned slot,
106 const float (*v1)[4],
107 const float (*v2)[4],
108 const float (*v3)[4],
109 unsigned vert_attr,
110 unsigned i)
111 {
112 /* premultiply by 1/w (v[0][3] is always 1/w):
113 */
114 float a1 = v1[vert_attr][i] * v1[0][3];
115 float a2 = v2[vert_attr][i] * v2[0][3];
116 float a3 = v3[vert_attr][i] * v3[0][3];
117 float da12 = a1 - a2;
118 float da31 = a3 - a1;
119 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
120 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
121
122 tri->inputs.dadx[slot][i] = dadx;
123 tri->inputs.dady[slot][i] = dady;
124 tri->inputs.a0[slot][i] = (a1 -
125 (dadx * (v1[0][0] - 0.5f) +
126 dady * (v1[0][1] - 0.5f)));
127 }
128
129
130 /**
131 * Special coefficient setup for gl_FragCoord.
132 * X and Y are trivial, though Y has to be inverted for OpenGL.
133 * Z and W are copied from position_coef which should have already been computed.
134 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
135 */
136 static void
137 setup_fragcoord_coef(struct lp_rast_triangle *tri,
138 float oneoverarea,
139 unsigned slot,
140 const float (*v1)[4],
141 const float (*v2)[4],
142 const float (*v3)[4])
143 {
144 /*X*/
145 tri->inputs.a0[slot][0] = 0.0;
146 tri->inputs.dadx[slot][0] = 1.0;
147 tri->inputs.dady[slot][0] = 0.0;
148 /*Y*/
149 tri->inputs.a0[slot][1] = 0.0;
150 tri->inputs.dadx[slot][1] = 0.0;
151 tri->inputs.dady[slot][1] = 1.0;
152 /*Z*/
153 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
154 /*W*/
155 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
156 }
157
158
159 static void setup_facing_coef( struct lp_rast_triangle *tri,
160 unsigned slot,
161 boolean frontface )
162 {
163 constant_coef( tri, slot, 1.0f - frontface, 0 );
164 constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
165 constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
166 constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
167 }
168
169
170 /**
171 * Compute the tri->coef[] array dadx, dady, a0 values.
172 */
173 static void setup_tri_coefficients( struct setup_context *setup,
174 struct lp_rast_triangle *tri,
175 float oneoverarea,
176 const float (*v1)[4],
177 const float (*v2)[4],
178 const float (*v3)[4],
179 boolean frontface)
180 {
181 unsigned slot;
182
183 /* Allocate space for the a0, dadx and dady arrays
184 */
185 {
186 unsigned bytes;
187 bytes = (setup->fs.nr_inputs + 1) * 4 * sizeof(float);
188 tri->inputs.a0 = lp_bin_alloc_aligned( &setup->data, bytes, 16 );
189 tri->inputs.dadx = lp_bin_alloc_aligned( &setup->data, bytes, 16 );
190 tri->inputs.dady = lp_bin_alloc_aligned( &setup->data, bytes, 16 );
191 }
192
193 /* The internal position input is in slot zero:
194 */
195 setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
196
197 /* setup interpolation for all the remaining attributes:
198 */
199 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
200 unsigned vert_attr = setup->fs.input[slot].src_index;
201 unsigned i;
202
203 switch (setup->fs.input[slot].interp) {
204 case LP_INTERP_CONSTANT:
205 for (i = 0; i < NUM_CHANNELS; i++)
206 constant_coef(tri, slot+1, v3[vert_attr][i], i);
207 break;
208
209 case LP_INTERP_LINEAR:
210 for (i = 0; i < NUM_CHANNELS; i++)
211 linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
212 break;
213
214 case LP_INTERP_PERSPECTIVE:
215 for (i = 0; i < NUM_CHANNELS; i++)
216 perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
217 break;
218
219 case LP_INTERP_POSITION:
220 /* XXX: fix me - duplicates the values in slot zero.
221 */
222 setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
223 break;
224
225 case LP_INTERP_FACING:
226 setup_facing_coef(tri, slot+1, frontface);
227 break;
228
229 default:
230 assert(0);
231 }
232 }
233 }
234
235
236
237 static inline int subpixel_snap( float a )
238 {
239 return util_iround(FIXED_ONE * a);
240 }
241
242
243 #define MIN3(a,b,c) MIN2(MIN2(a,b),c)
244 #define MAX3(a,b,c) MAX2(MAX2(a,b),c)
245
246 /**
247 * Do basic setup for triangle rasterization and determine which
248 * framebuffer tiles are touched. Put the triangle in the bins for the
249 * tiles which we overlap.
250 */
251 static void
252 do_triangle_ccw(struct setup_context *setup,
253 const float (*v1)[4],
254 const float (*v2)[4],
255 const float (*v3)[4],
256 boolean frontfacing )
257 {
258 /* x/y positions in fixed point */
259 const int x1 = subpixel_snap(v1[0][0]);
260 const int x2 = subpixel_snap(v2[0][0]);
261 const int x3 = subpixel_snap(v3[0][0]);
262 const int y1 = subpixel_snap(v1[0][1]);
263 const int y2 = subpixel_snap(v2[0][1]);
264 const int y3 = subpixel_snap(v3[0][1]);
265
266 struct lp_rast_triangle *tri = lp_bin_alloc( &setup->data, sizeof *tri );
267 float area, oneoverarea;
268 int minx, maxx, miny, maxy;
269
270 tri->dx12 = x1 - x2;
271 tri->dx23 = x2 - x3;
272 tri->dx31 = x3 - x1;
273
274 tri->dy12 = y1 - y2;
275 tri->dy23 = y2 - y3;
276 tri->dy31 = y3 - y1;
277
278 area = (tri->dx12 * tri->dy31 -
279 tri->dx31 * tri->dy12);
280
281 /* Cull non-ccw and zero-sized triangles.
282 *
283 * XXX: subject to overflow??
284 */
285 if (area <= 0) {
286 lp_bin_putback_data( &setup->data, sizeof *tri );
287 return;
288 }
289
290 /* Bounding rectangle (in pixels) */
291 tri->minx = (MIN3(x1, x2, x3) + 0xf) >> FIXED_ORDER;
292 tri->maxx = (MAX3(x1, x2, x3) + 0xf) >> FIXED_ORDER;
293 tri->miny = (MIN3(y1, y2, y3) + 0xf) >> FIXED_ORDER;
294 tri->maxy = (MAX3(y1, y2, y3) + 0xf) >> FIXED_ORDER;
295
296 if (tri->miny == tri->maxy ||
297 tri->minx == tri->maxx) {
298 lp_bin_putback_data( &setup->data, sizeof *tri );
299 return;
300 }
301
302 /*
303 */
304 oneoverarea = ((float)FIXED_ONE) / (float)area;
305
306 /* Setup parameter interpolants:
307 */
308 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
309
310 /* half-edge constants, will be interated over the whole
311 * rendertarget.
312 */
313 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
314 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
315 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
316
317 /* correct for top-left fill convention:
318 */
319 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
320 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
321 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
322
323 tri->dy12 *= FIXED_ONE;
324 tri->dy23 *= FIXED_ONE;
325 tri->dy31 *= FIXED_ONE;
326
327 tri->dx12 *= FIXED_ONE;
328 tri->dx23 *= FIXED_ONE;
329 tri->dx31 *= FIXED_ONE;
330
331 /* find trivial reject offsets for each edge for a single-pixel
332 * sized block. These will be scaled up at each recursive level to
333 * match the active blocksize. Scaling in this way works best if
334 * the blocks are square.
335 */
336 tri->eo1 = 0;
337 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
338 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
339
340 tri->eo2 = 0;
341 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
342 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
343
344 tri->eo3 = 0;
345 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
346 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
347
348 /* Calculate trivial accept offsets from the above.
349 */
350 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
351 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
352 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
353
354 {
355 int xstep1 = -tri->dy12;
356 int xstep2 = -tri->dy23;
357 int xstep3 = -tri->dy31;
358
359 int ystep1 = tri->dx12;
360 int ystep2 = tri->dx23;
361 int ystep3 = tri->dx31;
362
363 int ix, iy;
364 int i = 0;
365
366 int c1 = 0;
367 int c2 = 0;
368 int c3 = 0;
369
370 for (iy = 0; iy < 4; iy++) {
371 int cx1 = c1;
372 int cx2 = c2;
373 int cx3 = c3;
374
375 for (ix = 0; ix < 4; ix++, i++) {
376 tri->step[0][i] = cx1;
377 tri->step[1][i] = cx2;
378 tri->step[2][i] = cx3;
379 cx1 += xstep1;
380 cx2 += xstep2;
381 cx3 += xstep3;
382 }
383
384 c1 += ystep1;
385 c2 += ystep2;
386 c3 += ystep3;
387 }
388 }
389
390 /*
391 * All fields of 'tri' are now set. The remaining code here is
392 * concerned with binning.
393 */
394
395 /* Convert to tile coordinates:
396 */
397 minx = tri->minx / TILE_SIZE;
398 miny = tri->miny / TILE_SIZE;
399 maxx = tri->maxx / TILE_SIZE;
400 maxy = tri->maxy / TILE_SIZE;
401
402 /* Determine which tile(s) intersect the triangle's bounding box
403 */
404 if (miny == maxy && minx == maxx)
405 {
406 /* Triangle is contained in a single tile:
407 */
408 lp_bin_command( &setup->tile[minx][miny], lp_rast_triangle,
409 lp_rast_arg_triangle(tri) );
410 }
411 else
412 {
413 int c1 = (tri->c1 +
414 tri->dx12 * miny * TILE_SIZE -
415 tri->dy12 * minx * TILE_SIZE);
416 int c2 = (tri->c2 +
417 tri->dx23 * miny * TILE_SIZE -
418 tri->dy23 * minx * TILE_SIZE);
419 int c3 = (tri->c3 +
420 tri->dx31 * miny * TILE_SIZE -
421 tri->dy31 * minx * TILE_SIZE);
422
423 int ei1 = tri->ei1 << TILE_ORDER;
424 int ei2 = tri->ei2 << TILE_ORDER;
425 int ei3 = tri->ei3 << TILE_ORDER;
426
427 int eo1 = tri->eo1 << TILE_ORDER;
428 int eo2 = tri->eo2 << TILE_ORDER;
429 int eo3 = tri->eo3 << TILE_ORDER;
430
431 int xstep1 = -(tri->dy12 << TILE_ORDER);
432 int xstep2 = -(tri->dy23 << TILE_ORDER);
433 int xstep3 = -(tri->dy31 << TILE_ORDER);
434
435 int ystep1 = tri->dx12 << TILE_ORDER;
436 int ystep2 = tri->dx23 << TILE_ORDER;
437 int ystep3 = tri->dx31 << TILE_ORDER;
438 int x, y;
439
440
441 /* Trivially accept or reject blocks, else jump to per-pixel
442 * examination above.
443 */
444 for (y = miny; y <= maxy; y++)
445 {
446 int cx1 = c1;
447 int cx2 = c2;
448 int cx3 = c3;
449 int in = 0;
450
451 for (x = minx; x <= maxx; x++)
452 {
453 if (cx1 + eo1 < 0 ||
454 cx2 + eo2 < 0 ||
455 cx3 + eo3 < 0)
456 {
457 /* do nothing */
458 if (in)
459 break;
460 }
461 else if (cx1 + ei1 > 0 &&
462 cx2 + ei2 > 0 &&
463 cx3 + ei3 > 0)
464 {
465 in = 1;
466 /* triangle covers the whole tile- shade whole tile */
467 lp_bin_command( &setup->tile[x][y],
468 lp_rast_shade_tile,
469 lp_rast_arg_inputs(&tri->inputs) );
470 }
471 else
472 {
473 in = 1;
474 /* shade partial tile */
475 lp_bin_command( &setup->tile[x][y],
476 lp_rast_triangle,
477 lp_rast_arg_triangle(tri) );
478 }
479
480 /* Iterate cx values across the region:
481 */
482 cx1 += xstep1;
483 cx2 += xstep2;
484 cx3 += xstep3;
485 }
486
487 /* Iterate c values down the region:
488 */
489 c1 += ystep1;
490 c2 += ystep2;
491 c3 += ystep3;
492 }
493 }
494 }
495
496 static void triangle_cw( struct setup_context *setup,
497 const float (*v0)[4],
498 const float (*v1)[4],
499 const float (*v2)[4] )
500 {
501 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
502 }
503
504 static void triangle_ccw( struct setup_context *setup,
505 const float (*v0)[4],
506 const float (*v1)[4],
507 const float (*v2)[4] )
508 {
509 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
510 }
511
512 static void triangle_both( struct setup_context *setup,
513 const float (*v0)[4],
514 const float (*v1)[4],
515 const float (*v2)[4] )
516 {
517 /* edge vectors e = v0 - v2, f = v1 - v2 */
518 const float ex = v0[0][0] - v2[0][0];
519 const float ey = v0[0][1] - v2[0][1];
520 const float fx = v1[0][0] - v2[0][0];
521 const float fy = v1[0][1] - v2[0][1];
522
523 /* det = cross(e,f).z */
524 if (ex * fy - ey * fx < 0)
525 triangle_ccw( setup, v0, v1, v2 );
526 else
527 triangle_cw( setup, v0, v1, v2 );
528 }
529
530 static void triangle_nop( struct setup_context *setup,
531 const float (*v0)[4],
532 const float (*v1)[4],
533 const float (*v2)[4] )
534 {
535 }
536
537
538 void
539 lp_setup_choose_triangle( struct setup_context *setup )
540 {
541 switch (setup->cullmode) {
542 case PIPE_WINDING_NONE:
543 setup->triangle = triangle_both;
544 break;
545 case PIPE_WINDING_CCW:
546 setup->triangle = triangle_cw;
547 break;
548 case PIPE_WINDING_CW:
549 setup->triangle = triangle_ccw;
550 break;
551 default:
552 setup->triangle = triangle_nop;
553 break;
554 }
555 }
556
557