Merge branch 'master' into pipe-video
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "util/u_rect.h"
35 #include "util/u_sse.h"
36 #include "lp_perf.h"
37 #include "lp_setup_context.h"
38 #include "lp_rast.h"
39 #include "lp_state_fs.h"
40 #include "lp_state_setup.h"
41
42 #define NUM_CHANNELS 4
43
44 #if defined(PIPE_ARCH_SSE)
45 #include <emmintrin.h>
46 #endif
47
48 static INLINE int
49 subpixel_snap(float a)
50 {
51 return util_iround(FIXED_ONE * a);
52 }
53
54 static INLINE float
55 fixed_to_float(int a)
56 {
57 return a * (1.0 / FIXED_ONE);
58 }
59
60
61
62
63
64
65
66 /**
67 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
68 * immediately after it.
69 * The memory is allocated from the per-scene pool, not per-tile.
70 * \param tri_size returns number of bytes allocated
71 * \param num_inputs number of fragment shader inputs
72 * \return pointer to triangle space
73 */
74 struct lp_rast_triangle *
75 lp_setup_alloc_triangle(struct lp_scene *scene,
76 unsigned nr_inputs,
77 unsigned nr_planes,
78 unsigned *tri_size)
79 {
80 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
81 unsigned plane_sz = nr_planes * sizeof(struct lp_rast_plane);
82 struct lp_rast_triangle *tri;
83
84 *tri_size = (sizeof(struct lp_rast_triangle) +
85 3 * input_array_sz +
86 plane_sz);
87
88 tri = lp_scene_alloc_aligned( scene, *tri_size, 16 );
89 if (tri == NULL)
90 return NULL;
91
92 tri->inputs.stride = input_array_sz;
93
94 {
95 char *a = (char *)tri;
96 char *b = (char *)&GET_PLANES(tri)[nr_planes];
97 assert(b - a == *tri_size);
98 }
99
100 return tri;
101 }
102
103 void
104 lp_setup_print_vertex(struct lp_setup_context *setup,
105 const char *name,
106 const float (*v)[4])
107 {
108 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
109 int i, j;
110
111 debug_printf(" wpos (%s[0]) xyzw %f %f %f %f\n",
112 name,
113 v[0][0], v[0][1], v[0][2], v[0][3]);
114
115 for (i = 0; i < key->num_inputs; i++) {
116 const float *in = v[key->inputs[i].src_index];
117
118 debug_printf(" in[%d] (%s[%d]) %s%s%s%s ",
119 i,
120 name, key->inputs[i].src_index,
121 (key->inputs[i].usage_mask & 0x1) ? "x" : " ",
122 (key->inputs[i].usage_mask & 0x2) ? "y" : " ",
123 (key->inputs[i].usage_mask & 0x4) ? "z" : " ",
124 (key->inputs[i].usage_mask & 0x8) ? "w" : " ");
125
126 for (j = 0; j < 4; j++)
127 if (key->inputs[i].usage_mask & (1<<j))
128 debug_printf("%.5f ", in[j]);
129
130 debug_printf("\n");
131 }
132 }
133
134
135 /**
136 * Print triangle vertex attribs (for debug).
137 */
138 void
139 lp_setup_print_triangle(struct lp_setup_context *setup,
140 const float (*v0)[4],
141 const float (*v1)[4],
142 const float (*v2)[4])
143 {
144 debug_printf("triangle\n");
145
146 {
147 const float ex = v0[0][0] - v2[0][0];
148 const float ey = v0[0][1] - v2[0][1];
149 const float fx = v1[0][0] - v2[0][0];
150 const float fy = v1[0][1] - v2[0][1];
151
152 /* det = cross(e,f).z */
153 const float det = ex * fy - ey * fx;
154 if (det < 0.0f)
155 debug_printf(" - ccw\n");
156 else if (det > 0.0f)
157 debug_printf(" - cw\n");
158 else
159 debug_printf(" - zero area\n");
160 }
161
162 lp_setup_print_vertex(setup, "v0", v0);
163 lp_setup_print_vertex(setup, "v1", v1);
164 lp_setup_print_vertex(setup, "v2", v2);
165 }
166
167
168 #define MAX_PLANES 8
169 static unsigned
170 lp_rast_tri_tab[MAX_PLANES+1] = {
171 0, /* should be impossible */
172 LP_RAST_OP_TRIANGLE_1,
173 LP_RAST_OP_TRIANGLE_2,
174 LP_RAST_OP_TRIANGLE_3,
175 LP_RAST_OP_TRIANGLE_4,
176 LP_RAST_OP_TRIANGLE_5,
177 LP_RAST_OP_TRIANGLE_6,
178 LP_RAST_OP_TRIANGLE_7,
179 LP_RAST_OP_TRIANGLE_8
180 };
181
182
183
184 /**
185 * The primitive covers the whole tile- shade whole tile.
186 *
187 * \param tx, ty the tile position in tiles, not pixels
188 */
189 static boolean
190 lp_setup_whole_tile(struct lp_setup_context *setup,
191 const struct lp_rast_shader_inputs *inputs,
192 int tx, int ty)
193 {
194 struct lp_scene *scene = setup->scene;
195
196 LP_COUNT(nr_fully_covered_64);
197
198 /* if variant is opaque and scissor doesn't effect the tile */
199 if (inputs->opaque) {
200 if (!scene->fb.zsbuf) {
201 /*
202 * All previous rendering will be overwritten so reset the bin.
203 */
204 lp_scene_bin_reset( scene, tx, ty );
205 }
206
207 LP_COUNT(nr_shade_opaque_64);
208 return lp_scene_bin_cmd_with_state( scene, tx, ty,
209 setup->fs.stored,
210 LP_RAST_OP_SHADE_TILE_OPAQUE,
211 lp_rast_arg_inputs(inputs) );
212 } else {
213 LP_COUNT(nr_shade_64);
214 return lp_scene_bin_cmd_with_state( scene, tx, ty,
215 setup->fs.stored,
216 LP_RAST_OP_SHADE_TILE,
217 lp_rast_arg_inputs(inputs) );
218 }
219 }
220
221
222 /**
223 * Do basic setup for triangle rasterization and determine which
224 * framebuffer tiles are touched. Put the triangle in the scene's
225 * bins for the tiles which we overlap.
226 */
227 static boolean
228 do_triangle_ccw(struct lp_setup_context *setup,
229 const float (*v0)[4],
230 const float (*v1)[4],
231 const float (*v2)[4],
232 boolean frontfacing )
233 {
234 struct lp_scene *scene = setup->scene;
235 const struct lp_setup_variant_key *key = &setup->setup.variant->key;
236 struct lp_rast_triangle *tri;
237 struct lp_rast_plane *plane;
238 int x[4];
239 int y[4];
240 struct u_rect bbox;
241 unsigned tri_bytes;
242 int nr_planes = 3;
243
244 if (0)
245 lp_setup_print_triangle(setup, v0, v1, v2);
246
247 if (setup->scissor_test) {
248 nr_planes = 7;
249 }
250 else {
251 nr_planes = 3;
252 }
253
254 /* x/y positions in fixed point */
255 x[0] = subpixel_snap(v0[0][0] - setup->pixel_offset);
256 x[1] = subpixel_snap(v1[0][0] - setup->pixel_offset);
257 x[2] = subpixel_snap(v2[0][0] - setup->pixel_offset);
258 x[3] = 0;
259 y[0] = subpixel_snap(v0[0][1] - setup->pixel_offset);
260 y[1] = subpixel_snap(v1[0][1] - setup->pixel_offset);
261 y[2] = subpixel_snap(v2[0][1] - setup->pixel_offset);
262 y[3] = 0;
263
264
265 /* Bounding rectangle (in pixels) */
266 {
267 /* Yes this is necessary to accurately calculate bounding boxes
268 * with the two fill-conventions we support. GL (normally) ends
269 * up needing a bottom-left fill convention, which requires
270 * slightly different rounding.
271 */
272 int adj = (setup->pixel_offset != 0) ? 1 : 0;
273
274 bbox.x0 = (MIN3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
275 bbox.x1 = (MAX3(x[0], x[1], x[2]) + (FIXED_ONE-1)) >> FIXED_ORDER;
276 bbox.y0 = (MIN3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
277 bbox.y1 = (MAX3(y[0], y[1], y[2]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
278
279 /* Inclusive coordinates:
280 */
281 bbox.x1--;
282 bbox.y1--;
283 }
284
285 if (bbox.x1 < bbox.x0 ||
286 bbox.y1 < bbox.y0) {
287 if (0) debug_printf("empty bounding box\n");
288 LP_COUNT(nr_culled_tris);
289 return TRUE;
290 }
291
292 if (!u_rect_test_intersection(&setup->draw_region, &bbox)) {
293 if (0) debug_printf("offscreen\n");
294 LP_COUNT(nr_culled_tris);
295 return TRUE;
296 }
297
298 u_rect_find_intersection(&setup->draw_region, &bbox);
299
300 tri = lp_setup_alloc_triangle(scene,
301 key->num_inputs,
302 nr_planes,
303 &tri_bytes);
304 if (!tri)
305 return FALSE;
306
307 #if 0
308 tri->v[0][0] = v0[0][0];
309 tri->v[1][0] = v1[0][0];
310 tri->v[2][0] = v2[0][0];
311 tri->v[0][1] = v0[0][1];
312 tri->v[1][1] = v1[0][1];
313 tri->v[2][1] = v2[0][1];
314 #endif
315
316 LP_COUNT(nr_tris);
317
318 /* Setup parameter interpolants:
319 */
320 setup->setup.variant->jit_function( v0,
321 v1,
322 v2,
323 frontfacing,
324 GET_A0(&tri->inputs),
325 GET_DADX(&tri->inputs),
326 GET_DADY(&tri->inputs) );
327
328 tri->inputs.frontfacing = frontfacing;
329 tri->inputs.disable = FALSE;
330 tri->inputs.opaque = setup->fs.current.variant->opaque;
331
332 if (0)
333 lp_dump_setup_coef(&setup->setup.variant->key,
334 (const float (*)[4])GET_A0(&tri->inputs),
335 (const float (*)[4])GET_DADX(&tri->inputs),
336 (const float (*)[4])GET_DADY(&tri->inputs));
337
338 plane = GET_PLANES(tri);
339
340 #if defined(PIPE_ARCH_SSE)
341 {
342 __m128i vertx, verty;
343 __m128i shufx, shufy;
344 __m128i dcdx, dcdy, c;
345 __m128i unused;
346 __m128i dcdx_neg_mask;
347 __m128i dcdy_neg_mask;
348 __m128i dcdx_zero_mask;
349 __m128i top_left_flag;
350 __m128i c_inc_mask, c_inc;
351 __m128i eo, p0, p1, p2;
352 __m128i zero = _mm_setzero_si128();
353
354 vertx = _mm_loadu_si128((__m128i *)x); /* vertex x coords */
355 verty = _mm_loadu_si128((__m128i *)y); /* vertex y coords */
356
357 shufx = _mm_shuffle_epi32(vertx, _MM_SHUFFLE(3,0,2,1));
358 shufy = _mm_shuffle_epi32(verty, _MM_SHUFFLE(3,0,2,1));
359
360 dcdx = _mm_sub_epi32(verty, shufy);
361 dcdy = _mm_sub_epi32(vertx, shufx);
362
363 dcdx_neg_mask = _mm_srai_epi32(dcdx, 31);
364 dcdx_zero_mask = _mm_cmpeq_epi32(dcdx, zero);
365 dcdy_neg_mask = _mm_srai_epi32(dcdy, 31);
366
367 top_left_flag = _mm_set1_epi32((setup->pixel_offset == 0) ? ~0 : 0);
368
369 c_inc_mask = _mm_or_si128(dcdx_neg_mask,
370 _mm_and_si128(dcdx_zero_mask,
371 _mm_xor_si128(dcdy_neg_mask,
372 top_left_flag)));
373
374 c_inc = _mm_srli_epi32(c_inc_mask, 31);
375
376 c = _mm_sub_epi32(mm_mullo_epi32(dcdx, vertx),
377 mm_mullo_epi32(dcdy, verty));
378
379 c = _mm_add_epi32(c, c_inc);
380
381 /* Scale up to match c:
382 */
383 dcdx = _mm_slli_epi32(dcdx, FIXED_ORDER);
384 dcdy = _mm_slli_epi32(dcdy, FIXED_ORDER);
385
386 /* Calculate trivial reject values:
387 */
388 eo = _mm_sub_epi32(_mm_andnot_si128(dcdy_neg_mask, dcdy),
389 _mm_and_si128(dcdx_neg_mask, dcdx));
390
391 /* ei = _mm_sub_epi32(_mm_sub_epi32(dcdy, dcdx), eo); */
392
393 /* Pointless transpose which gets undone immediately in
394 * rasterization:
395 */
396 transpose4_epi32(&c, &dcdx, &dcdy, &eo,
397 &p0, &p1, &p2, &unused);
398
399 _mm_store_si128((__m128i *)&plane[0], p0);
400 _mm_store_si128((__m128i *)&plane[1], p1);
401 _mm_store_si128((__m128i *)&plane[2], p2);
402 }
403 #else
404 {
405 int i;
406 plane[0].dcdy = x[0] - x[1];
407 plane[1].dcdy = x[1] - x[2];
408 plane[2].dcdy = x[2] - x[0];
409 plane[0].dcdx = y[0] - y[1];
410 plane[1].dcdx = y[1] - y[2];
411 plane[2].dcdx = y[2] - y[0];
412
413 for (i = 0; i < 3; i++) {
414 /* half-edge constants, will be interated over the whole render
415 * target.
416 */
417 plane[i].c = plane[i].dcdx * x[i] - plane[i].dcdy * y[i];
418
419 /* correct for top-left vs. bottom-left fill convention.
420 *
421 * note that we're overloading gl_rasterization_rules to mean
422 * both (0.5,0.5) pixel centers *and* bottom-left filling
423 * convention.
424 *
425 * GL actually has a top-left filling convention, but GL's
426 * notion of "top" differs from gallium's...
427 *
428 * Also, sometimes (in FBO cases) GL will render upside down
429 * to its usual method, in which case it will probably want
430 * to use the opposite, top-left convention.
431 */
432 if (plane[i].dcdx < 0) {
433 /* both fill conventions want this - adjust for left edges */
434 plane[i].c++;
435 }
436 else if (plane[i].dcdx == 0) {
437 if (setup->pixel_offset == 0) {
438 /* correct for top-left fill convention:
439 */
440 if (plane[i].dcdy > 0) plane[i].c++;
441 }
442 else {
443 /* correct for bottom-left fill convention:
444 */
445 if (plane[i].dcdy < 0) plane[i].c++;
446 }
447 }
448
449 plane[i].dcdx *= FIXED_ONE;
450 plane[i].dcdy *= FIXED_ONE;
451
452 /* find trivial reject offsets for each edge for a single-pixel
453 * sized block. These will be scaled up at each recursive level to
454 * match the active blocksize. Scaling in this way works best if
455 * the blocks are square.
456 */
457 plane[i].eo = 0;
458 if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
459 if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
460 }
461 }
462 #endif
463
464 if (0) {
465 debug_printf("p0: %08x/%08x/%08x/%08x\n",
466 plane[0].c,
467 plane[0].dcdx,
468 plane[0].dcdy,
469 plane[0].eo);
470
471 debug_printf("p1: %08x/%08x/%08x/%08x\n",
472 plane[1].c,
473 plane[1].dcdx,
474 plane[1].dcdy,
475 plane[1].eo);
476
477 debug_printf("p0: %08x/%08x/%08x/%08x\n",
478 plane[2].c,
479 plane[2].dcdx,
480 plane[2].dcdy,
481 plane[2].eo);
482 }
483
484
485 /*
486 * When rasterizing scissored tris, use the intersection of the
487 * triangle bounding box and the scissor rect to generate the
488 * scissor planes.
489 *
490 * This permits us to cut off the triangle "tails" that are present
491 * in the intermediate recursive levels caused when two of the
492 * triangles edges don't diverge quickly enough to trivially reject
493 * exterior blocks from the triangle.
494 *
495 * It's not really clear if it's worth worrying about these tails,
496 * but since we generate the planes for each scissored tri, it's
497 * free to trim them in this case.
498 *
499 * Note that otherwise, the scissor planes only vary in 'C' value,
500 * and even then only on state-changes. Could alternatively store
501 * these planes elsewhere.
502 */
503 if (nr_planes == 7) {
504 plane[3].dcdx = -1;
505 plane[3].dcdy = 0;
506 plane[3].c = 1-bbox.x0;
507 plane[3].eo = 1;
508
509 plane[4].dcdx = 1;
510 plane[4].dcdy = 0;
511 plane[4].c = bbox.x1+1;
512 plane[4].eo = 0;
513
514 plane[5].dcdx = 0;
515 plane[5].dcdy = 1;
516 plane[5].c = 1-bbox.y0;
517 plane[5].eo = 1;
518
519 plane[6].dcdx = 0;
520 plane[6].dcdy = -1;
521 plane[6].c = bbox.y1+1;
522 plane[6].eo = 0;
523 }
524
525 return lp_setup_bin_triangle( setup, tri, &bbox, nr_planes );
526 }
527
528 /*
529 * Round to nearest less or equal power of two of the input.
530 *
531 * Undefined if no bit set exists, so code should check against 0 first.
532 */
533 static INLINE uint32_t
534 floor_pot(uint32_t n)
535 {
536 #if defined(PIPE_CC_GCC) && defined(PIPE_ARCH_X86)
537 if (n == 0)
538 return 0;
539
540 __asm__("bsr %1,%0"
541 : "=r" (n)
542 : "rm" (n));
543 return 1 << n;
544 #else
545 n |= (n >> 1);
546 n |= (n >> 2);
547 n |= (n >> 4);
548 n |= (n >> 8);
549 n |= (n >> 16);
550 return n - (n >> 1);
551 #endif
552 }
553
554
555 boolean
556 lp_setup_bin_triangle( struct lp_setup_context *setup,
557 struct lp_rast_triangle *tri,
558 const struct u_rect *bbox,
559 int nr_planes )
560 {
561 struct lp_scene *scene = setup->scene;
562 int i;
563
564 /* What is the largest power-of-two boundary this triangle crosses:
565 */
566 int dx = floor_pot((bbox->x0 ^ bbox->x1) |
567 (bbox->y0 ^ bbox->y1));
568
569 /* The largest dimension of the rasterized area of the triangle
570 * (aligned to a 4x4 grid), rounded down to the nearest power of two:
571 */
572 int sz = floor_pot((bbox->x1 - (bbox->x0 & ~3)) |
573 (bbox->y1 - (bbox->y0 & ~3)));
574
575 /* Determine which tile(s) intersect the triangle's bounding box
576 */
577 if (dx < TILE_SIZE)
578 {
579 int ix0 = bbox->x0 / TILE_SIZE;
580 int iy0 = bbox->y0 / TILE_SIZE;
581 int px = bbox->x0 & 63 & ~3;
582 int py = bbox->y0 & 63 & ~3;
583 int mask = px | (py << 8);
584
585 assert(iy0 == bbox->y1 / TILE_SIZE &&
586 ix0 == bbox->x1 / TILE_SIZE);
587
588 if (nr_planes == 3) {
589 if (sz < 4)
590 {
591 /* Triangle is contained in a single 4x4 stamp:
592 */
593 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
594 setup->fs.stored,
595 LP_RAST_OP_TRIANGLE_3_4,
596 lp_rast_arg_triangle(tri, mask) );
597 }
598
599 if (sz < 16)
600 {
601 /* Triangle is contained in a single 16x16 block:
602 */
603 return lp_scene_bin_cmd_with_state( scene, ix0, iy0,
604 setup->fs.stored,
605 LP_RAST_OP_TRIANGLE_3_16,
606 lp_rast_arg_triangle(tri, mask) );
607 }
608 }
609 else if (nr_planes == 4 && sz < 16)
610 {
611 return lp_scene_bin_cmd_with_state(scene, ix0, iy0,
612 setup->fs.stored,
613 LP_RAST_OP_TRIANGLE_4_16,
614 lp_rast_arg_triangle(tri, mask) );
615 }
616
617
618 /* Triangle is contained in a single tile:
619 */
620 return lp_scene_bin_cmd_with_state( scene, ix0, iy0, setup->fs.stored,
621 lp_rast_tri_tab[nr_planes],
622 lp_rast_arg_triangle(tri, (1<<nr_planes)-1) );
623 }
624 else
625 {
626 struct lp_rast_plane *plane = GET_PLANES(tri);
627 int c[MAX_PLANES];
628 int ei[MAX_PLANES];
629 int eo[MAX_PLANES];
630 int xstep[MAX_PLANES];
631 int ystep[MAX_PLANES];
632 int x, y;
633
634 int ix0 = bbox->x0 / TILE_SIZE;
635 int iy0 = bbox->y0 / TILE_SIZE;
636 int ix1 = bbox->x1 / TILE_SIZE;
637 int iy1 = bbox->y1 / TILE_SIZE;
638
639 for (i = 0; i < nr_planes; i++) {
640 c[i] = (plane[i].c +
641 plane[i].dcdy * iy0 * TILE_SIZE -
642 plane[i].dcdx * ix0 * TILE_SIZE);
643
644 ei[i] = (plane[i].dcdy -
645 plane[i].dcdx -
646 plane[i].eo) << TILE_ORDER;
647
648 eo[i] = plane[i].eo << TILE_ORDER;
649 xstep[i] = -(plane[i].dcdx << TILE_ORDER);
650 ystep[i] = plane[i].dcdy << TILE_ORDER;
651 }
652
653
654
655 /* Test tile-sized blocks against the triangle.
656 * Discard blocks fully outside the tri. If the block is fully
657 * contained inside the tri, bin an lp_rast_shade_tile command.
658 * Else, bin a lp_rast_triangle command.
659 */
660 for (y = iy0; y <= iy1; y++)
661 {
662 boolean in = FALSE; /* are we inside the triangle? */
663 int cx[MAX_PLANES];
664
665 for (i = 0; i < nr_planes; i++)
666 cx[i] = c[i];
667
668 for (x = ix0; x <= ix1; x++)
669 {
670 int out = 0;
671 int partial = 0;
672
673 for (i = 0; i < nr_planes; i++) {
674 int planeout = cx[i] + eo[i];
675 int planepartial = cx[i] + ei[i] - 1;
676 out |= (planeout >> 31);
677 partial |= (planepartial >> 31) & (1<<i);
678 }
679
680 if (out) {
681 /* do nothing */
682 if (in)
683 break; /* exiting triangle, all done with this row */
684 LP_COUNT(nr_empty_64);
685 }
686 else if (partial) {
687 /* Not trivially accepted by at least one plane -
688 * rasterize/shade partial tile
689 */
690 int count = util_bitcount(partial);
691 in = TRUE;
692
693 if (!lp_scene_bin_cmd_with_state( scene, x, y,
694 setup->fs.stored,
695 lp_rast_tri_tab[count],
696 lp_rast_arg_triangle(tri, partial) ))
697 goto fail;
698
699 LP_COUNT(nr_partially_covered_64);
700 }
701 else {
702 /* triangle covers the whole tile- shade whole tile */
703 LP_COUNT(nr_fully_covered_64);
704 in = TRUE;
705 if (!lp_setup_whole_tile(setup, &tri->inputs, x, y))
706 goto fail;
707 }
708
709 /* Iterate cx values across the region:
710 */
711 for (i = 0; i < nr_planes; i++)
712 cx[i] += xstep[i];
713 }
714
715 /* Iterate c values down the region:
716 */
717 for (i = 0; i < nr_planes; i++)
718 c[i] += ystep[i];
719 }
720 }
721
722 return TRUE;
723
724 fail:
725 /* Need to disable any partially binned triangle. This is easier
726 * than trying to locate all the triangle, shade-tile, etc,
727 * commands which may have been binned.
728 */
729 tri->inputs.disable = TRUE;
730 return FALSE;
731 }
732
733
734 /**
735 * Try to draw the triangle, restart the scene on failure.
736 */
737 static void retry_triangle_ccw( struct lp_setup_context *setup,
738 const float (*v0)[4],
739 const float (*v1)[4],
740 const float (*v2)[4],
741 boolean front)
742 {
743 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
744 {
745 if (!lp_setup_flush_and_restart(setup))
746 return;
747
748 if (!do_triangle_ccw( setup, v0, v1, v2, front ))
749 return;
750 }
751 }
752
753 static INLINE float
754 calc_area(const float (*v0)[4],
755 const float (*v1)[4],
756 const float (*v2)[4])
757 {
758 float dx01 = v0[0][0] - v1[0][0];
759 float dy01 = v0[0][1] - v1[0][1];
760 float dx20 = v2[0][0] - v0[0][0];
761 float dy20 = v2[0][1] - v0[0][1];
762 return dx01 * dy20 - dx20 * dy01;
763 }
764
765
766 /**
767 * Draw triangle if it's CW, cull otherwise.
768 */
769 static void triangle_cw( struct lp_setup_context *setup,
770 const float (*v0)[4],
771 const float (*v1)[4],
772 const float (*v2)[4] )
773 {
774 float area = calc_area(v0, v1, v2);
775
776 if (area < 0.0f)
777 retry_triangle_ccw(setup, v0, v2, v1, !setup->ccw_is_frontface);
778 }
779
780
781 static void triangle_ccw( struct lp_setup_context *setup,
782 const float (*v0)[4],
783 const float (*v1)[4],
784 const float (*v2)[4])
785 {
786 float area = calc_area(v0, v1, v2);
787
788 if (area > 0.0f)
789 retry_triangle_ccw(setup, v0, v1, v2, setup->ccw_is_frontface);
790 }
791
792 /**
793 * Draw triangle whether it's CW or CCW.
794 */
795 static void triangle_both( struct lp_setup_context *setup,
796 const float (*v0)[4],
797 const float (*v1)[4],
798 const float (*v2)[4] )
799 {
800 float area = calc_area(v0, v1, v2);
801
802 if (area > 0.0f)
803 retry_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
804 else if (area < 0.0f)
805 retry_triangle_ccw( setup, v0, v2, v1, !setup->ccw_is_frontface );
806 }
807
808
809 static void triangle_nop( struct lp_setup_context *setup,
810 const float (*v0)[4],
811 const float (*v1)[4],
812 const float (*v2)[4] )
813 {
814 }
815
816
817 void
818 lp_setup_choose_triangle( struct lp_setup_context *setup )
819 {
820 switch (setup->cullmode) {
821 case PIPE_FACE_NONE:
822 setup->triangle = triangle_both;
823 break;
824 case PIPE_FACE_BACK:
825 setup->triangle = setup->ccw_is_frontface ? triangle_ccw : triangle_cw;
826 break;
827 case PIPE_FACE_FRONT:
828 setup->triangle = setup->ccw_is_frontface ? triangle_cw : triangle_ccw;
829 break;
830 default:
831 setup->triangle = triangle_nop;
832 break;
833 }
834 }