llvmpipe: consolidate lp_scene_alloc_aligned() calls
[mesa.git] / src / gallium / drivers / llvmpipe / lp_setup_tri.c
1 /**************************************************************************
2 *
3 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /*
29 * Binning code for triangles
30 */
31
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37
38 #define NUM_CHANNELS 4
39
40
41 /**
42 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
43 */
44 static void constant_coef( struct lp_rast_triangle *tri,
45 unsigned slot,
46 const float value,
47 unsigned i )
48 {
49 tri->inputs.a0[slot][i] = value;
50 tri->inputs.dadx[slot][i] = 0.0f;
51 tri->inputs.dady[slot][i] = 0.0f;
52 }
53
54
55 /**
56 * Compute a0, dadx and dady for a linearly interpolated coefficient,
57 * for a triangle.
58 */
59 static void linear_coef( struct lp_rast_triangle *tri,
60 float oneoverarea,
61 unsigned slot,
62 const float (*v1)[4],
63 const float (*v2)[4],
64 const float (*v3)[4],
65 unsigned vert_attr,
66 unsigned i)
67 {
68 float a1 = v1[vert_attr][i];
69 float a2 = v2[vert_attr][i];
70 float a3 = v3[vert_attr][i];
71
72 float da12 = a1 - a2;
73 float da31 = a3 - a1;
74 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
75 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
76
77 tri->inputs.dadx[slot][i] = dadx;
78 tri->inputs.dady[slot][i] = dady;
79
80 /* calculate a0 as the value which would be sampled for the
81 * fragment at (0,0), taking into account that we want to sample at
82 * pixel centers, in other words (0.5, 0.5).
83 *
84 * this is neat but unfortunately not a good way to do things for
85 * triangles with very large values of dadx or dady as it will
86 * result in the subtraction and re-addition from a0 of a very
87 * large number, which means we'll end up loosing a lot of the
88 * fractional bits and precision from a0. the way to fix this is
89 * to define a0 as the sample at a pixel center somewhere near vmin
90 * instead - i'll switch to this later.
91 */
92 tri->inputs.a0[slot][i] = (a1 -
93 (dadx * (v1[0][0] - 0.5f) +
94 dady * (v1[0][1] - 0.5f)));
95 }
96
97
98 /**
99 * Compute a0, dadx and dady for a perspective-corrected interpolant,
100 * for a triangle.
101 * We basically multiply the vertex value by 1/w before computing
102 * the plane coefficients (a0, dadx, dady).
103 * Later, when we compute the value at a particular fragment position we'll
104 * divide the interpolated value by the interpolated W at that fragment.
105 */
106 static void perspective_coef( struct lp_rast_triangle *tri,
107 float oneoverarea,
108 unsigned slot,
109 const float (*v1)[4],
110 const float (*v2)[4],
111 const float (*v3)[4],
112 unsigned vert_attr,
113 unsigned i)
114 {
115 /* premultiply by 1/w (v[0][3] is always 1/w):
116 */
117 float a1 = v1[vert_attr][i] * v1[0][3];
118 float a2 = v2[vert_attr][i] * v2[0][3];
119 float a3 = v3[vert_attr][i] * v3[0][3];
120 float da12 = a1 - a2;
121 float da31 = a3 - a1;
122 float dadx = (da12 * tri->dy31 - tri->dy12 * da31) * oneoverarea;
123 float dady = (da31 * tri->dx12 - tri->dx31 * da12) * oneoverarea;
124
125 tri->inputs.dadx[slot][i] = dadx;
126 tri->inputs.dady[slot][i] = dady;
127 tri->inputs.a0[slot][i] = (a1 -
128 (dadx * (v1[0][0] - 0.5f) +
129 dady * (v1[0][1] - 0.5f)));
130 }
131
132
133 /**
134 * Special coefficient setup for gl_FragCoord.
135 * X and Y are trivial
136 * Z and W are copied from position_coef which should have already been computed.
137 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
138 */
139 static void
140 setup_fragcoord_coef(struct lp_rast_triangle *tri,
141 float oneoverarea,
142 unsigned slot,
143 const float (*v1)[4],
144 const float (*v2)[4],
145 const float (*v3)[4])
146 {
147 /*X*/
148 tri->inputs.a0[slot][0] = 0.0;
149 tri->inputs.dadx[slot][0] = 1.0;
150 tri->inputs.dady[slot][0] = 0.0;
151 /*Y*/
152 tri->inputs.a0[slot][1] = 0.0;
153 tri->inputs.dadx[slot][1] = 0.0;
154 tri->inputs.dady[slot][1] = 1.0;
155 /*Z*/
156 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 2);
157 /*W*/
158 linear_coef(tri, oneoverarea, slot, v1, v2, v3, 0, 3);
159 }
160
161
162 static void setup_facing_coef( struct lp_rast_triangle *tri,
163 unsigned slot,
164 boolean frontface )
165 {
166 constant_coef( tri, slot, 1.0f - frontface, 0 );
167 constant_coef( tri, slot, 0.0f, 1 ); /* wasted */
168 constant_coef( tri, slot, 0.0f, 2 ); /* wasted */
169 constant_coef( tri, slot, 0.0f, 3 ); /* wasted */
170 }
171
172
173 /**
174 * Compute the tri->coef[] array dadx, dady, a0 values.
175 */
176 static void setup_tri_coefficients( struct setup_context *setup,
177 struct lp_rast_triangle *tri,
178 float oneoverarea,
179 const float (*v1)[4],
180 const float (*v2)[4],
181 const float (*v3)[4],
182 boolean frontface)
183 {
184 unsigned slot;
185
186 /* The internal position input is in slot zero:
187 */
188 setup_fragcoord_coef(tri, oneoverarea, 0, v1, v2, v3);
189
190 /* setup interpolation for all the remaining attributes:
191 */
192 for (slot = 0; slot < setup->fs.nr_inputs; slot++) {
193 unsigned vert_attr = setup->fs.input[slot].src_index;
194 unsigned i;
195
196 switch (setup->fs.input[slot].interp) {
197 case LP_INTERP_CONSTANT:
198 for (i = 0; i < NUM_CHANNELS; i++)
199 constant_coef(tri, slot+1, v3[vert_attr][i], i);
200 break;
201
202 case LP_INTERP_LINEAR:
203 for (i = 0; i < NUM_CHANNELS; i++)
204 linear_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
205 break;
206
207 case LP_INTERP_PERSPECTIVE:
208 for (i = 0; i < NUM_CHANNELS; i++)
209 perspective_coef(tri, oneoverarea, slot+1, v1, v2, v3, vert_attr, i);
210 break;
211
212 case LP_INTERP_POSITION:
213 /* XXX: fix me - duplicates the values in slot zero.
214 */
215 setup_fragcoord_coef(tri, oneoverarea, slot+1, v1, v2, v3);
216 break;
217
218 case LP_INTERP_FACING:
219 setup_facing_coef(tri, slot+1, frontface);
220 break;
221
222 default:
223 assert(0);
224 }
225 }
226 }
227
228
229
230 static inline int subpixel_snap( float a )
231 {
232 return util_iround(FIXED_ONE * a - (FIXED_ONE / 2));
233 }
234
235
236
237 /**
238 * Alloc space for a new triangle plus the input.a0/dadx/dady arrays
239 * immediately after it.
240 * The memory is allocated from the per-scene pool, not per-tile.
241 * \param tri_size returns number of bytes allocated
242 * \param nr_inputs number of fragment shader inputs
243 * \return pointer to triangle space
244 */
245 static INLINE struct lp_rast_triangle *
246 alloc_triangle(struct lp_scene *scene, unsigned nr_inputs, unsigned *tri_size)
247 {
248 unsigned input_array_sz = NUM_CHANNELS * (nr_inputs + 1) * sizeof(float);
249 struct lp_rast_triangle *tri;
250 unsigned bytes;
251 char *inputs;
252
253 assert(sizeof(*tri) % 16 == 0);
254
255 bytes = sizeof(*tri) + (3 * input_array_sz);
256
257 tri = lp_scene_alloc_aligned( scene, bytes, 16 );
258
259 inputs = (char *) (tri + 1);
260 tri->inputs.a0 = (float (*)[4]) inputs;
261 tri->inputs.dadx = (float (*)[4]) (inputs + input_array_sz);
262 tri->inputs.dady = (float (*)[4]) (inputs + 2 * input_array_sz);
263
264 *tri_size = bytes;
265
266 return tri;
267 }
268
269
270
271 /**
272 * Do basic setup for triangle rasterization and determine which
273 * framebuffer tiles are touched. Put the triangle in the scene's
274 * bins for the tiles which we overlap.
275 */
276 static void
277 do_triangle_ccw(struct setup_context *setup,
278 const float (*v1)[4],
279 const float (*v2)[4],
280 const float (*v3)[4],
281 boolean frontfacing )
282 {
283 /* x/y positions in fixed point */
284 const int x1 = subpixel_snap(v1[0][0]);
285 const int x2 = subpixel_snap(v2[0][0]);
286 const int x3 = subpixel_snap(v3[0][0]);
287 const int y1 = subpixel_snap(v1[0][1]);
288 const int y2 = subpixel_snap(v2[0][1]);
289 const int y3 = subpixel_snap(v3[0][1]);
290
291 struct lp_scene *scene = lp_setup_get_current_scene(setup);
292 struct lp_rast_triangle *tri;
293 int area;
294 float oneoverarea;
295 int minx, maxx, miny, maxy;
296 unsigned tri_bytes;
297
298 tri = alloc_triangle(scene, setup->fs.nr_inputs, &tri_bytes);
299
300 tri->dx12 = x1 - x2;
301 tri->dx23 = x2 - x3;
302 tri->dx31 = x3 - x1;
303
304 tri->dy12 = y1 - y2;
305 tri->dy23 = y2 - y3;
306 tri->dy31 = y3 - y1;
307
308 area = (tri->dx12 * tri->dy31 - tri->dx31 * tri->dy12);
309
310 LP_COUNT(nr_tris);
311
312 /* Cull non-ccw and zero-sized triangles.
313 *
314 * XXX: subject to overflow??
315 */
316 if (area <= 0) {
317 lp_scene_putback_data( scene, tri_bytes );
318 LP_COUNT(nr_culled_tris);
319 return;
320 }
321
322 /* Bounding rectangle (in pixels) */
323 minx = (MIN3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
324 maxx = (MAX3(x1, x2, x3) + (FIXED_ONE-1)) >> FIXED_ORDER;
325 miny = (MIN3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
326 maxy = (MAX3(y1, y2, y3) + (FIXED_ONE-1)) >> FIXED_ORDER;
327
328 if (setup->scissor_test) {
329 minx = MAX2(minx, setup->scissor.current.minx);
330 maxx = MIN2(maxx, setup->scissor.current.maxx);
331 miny = MAX2(miny, setup->scissor.current.miny);
332 maxy = MIN2(maxy, setup->scissor.current.maxy);
333 }
334
335 if (miny == maxy ||
336 minx == maxx) {
337 lp_scene_putback_data( scene, tri_bytes );
338 LP_COUNT(nr_culled_tris);
339 return;
340 }
341
342 /*
343 */
344 oneoverarea = ((float)FIXED_ONE) / (float)area;
345
346 /* Setup parameter interpolants:
347 */
348 setup_tri_coefficients( setup, tri, oneoverarea, v1, v2, v3, frontfacing );
349
350 /* half-edge constants, will be interated over the whole render target.
351 */
352 tri->c1 = tri->dy12 * x1 - tri->dx12 * y1;
353 tri->c2 = tri->dy23 * x2 - tri->dx23 * y2;
354 tri->c3 = tri->dy31 * x3 - tri->dx31 * y3;
355
356 /* correct for top-left fill convention:
357 */
358 if (tri->dy12 < 0 || (tri->dy12 == 0 && tri->dx12 > 0)) tri->c1++;
359 if (tri->dy23 < 0 || (tri->dy23 == 0 && tri->dx23 > 0)) tri->c2++;
360 if (tri->dy31 < 0 || (tri->dy31 == 0 && tri->dx31 > 0)) tri->c3++;
361
362 tri->dy12 *= FIXED_ONE;
363 tri->dy23 *= FIXED_ONE;
364 tri->dy31 *= FIXED_ONE;
365
366 tri->dx12 *= FIXED_ONE;
367 tri->dx23 *= FIXED_ONE;
368 tri->dx31 *= FIXED_ONE;
369
370 /* find trivial reject offsets for each edge for a single-pixel
371 * sized block. These will be scaled up at each recursive level to
372 * match the active blocksize. Scaling in this way works best if
373 * the blocks are square.
374 */
375 tri->eo1 = 0;
376 if (tri->dy12 < 0) tri->eo1 -= tri->dy12;
377 if (tri->dx12 > 0) tri->eo1 += tri->dx12;
378
379 tri->eo2 = 0;
380 if (tri->dy23 < 0) tri->eo2 -= tri->dy23;
381 if (tri->dx23 > 0) tri->eo2 += tri->dx23;
382
383 tri->eo3 = 0;
384 if (tri->dy31 < 0) tri->eo3 -= tri->dy31;
385 if (tri->dx31 > 0) tri->eo3 += tri->dx31;
386
387 /* Calculate trivial accept offsets from the above.
388 */
389 tri->ei1 = tri->dx12 - tri->dy12 - tri->eo1;
390 tri->ei2 = tri->dx23 - tri->dy23 - tri->eo2;
391 tri->ei3 = tri->dx31 - tri->dy31 - tri->eo3;
392
393 /* Fill in the inputs.step[][] arrays.
394 * We've manually unrolled some loops here.
395 */
396 {
397 const int xstep1 = -tri->dy12;
398 const int xstep2 = -tri->dy23;
399 const int xstep3 = -tri->dy31;
400 const int ystep1 = tri->dx12;
401 const int ystep2 = tri->dx23;
402 const int ystep3 = tri->dx31;
403
404 #define SETUP_STEP(i, x, y) \
405 do { \
406 tri->inputs.step[0][i] = x * xstep1 + y * ystep1; \
407 tri->inputs.step[1][i] = x * xstep2 + y * ystep2; \
408 tri->inputs.step[2][i] = x * xstep3 + y * ystep3; \
409 } while (0)
410
411 SETUP_STEP(0, 0, 0);
412 SETUP_STEP(1, 1, 0);
413 SETUP_STEP(2, 0, 1);
414 SETUP_STEP(3, 1, 1);
415
416 SETUP_STEP(4, 2, 0);
417 SETUP_STEP(5, 3, 0);
418 SETUP_STEP(6, 2, 1);
419 SETUP_STEP(7, 3, 1);
420
421 SETUP_STEP(8, 0, 2);
422 SETUP_STEP(9, 1, 2);
423 SETUP_STEP(10, 0, 3);
424 SETUP_STEP(11, 1, 3);
425
426 SETUP_STEP(12, 2, 2);
427 SETUP_STEP(13, 3, 2);
428 SETUP_STEP(14, 2, 3);
429 SETUP_STEP(15, 3, 3);
430 #undef STEP
431 }
432
433 /*
434 * All fields of 'tri' are now set. The remaining code here is
435 * concerned with binning.
436 */
437
438 /* Convert to tile coordinates:
439 */
440 minx = minx / TILE_SIZE;
441 miny = miny / TILE_SIZE;
442 maxx = maxx / TILE_SIZE;
443 maxy = maxy / TILE_SIZE;
444
445 /* Clamp maxx, maxy to framebuffer size
446 */
447 maxx = MIN2(maxx, scene->tiles_x - 1);
448 maxy = MIN2(maxy, scene->tiles_y - 1);
449
450 /* Determine which tile(s) intersect the triangle's bounding box
451 */
452 if (miny == maxy && minx == maxx)
453 {
454 /* Triangle is contained in a single tile:
455 */
456 lp_scene_bin_command( scene, minx, miny, lp_rast_triangle,
457 lp_rast_arg_triangle(tri) );
458 }
459 else
460 {
461 int c1 = (tri->c1 +
462 tri->dx12 * miny * TILE_SIZE -
463 tri->dy12 * minx * TILE_SIZE);
464 int c2 = (tri->c2 +
465 tri->dx23 * miny * TILE_SIZE -
466 tri->dy23 * minx * TILE_SIZE);
467 int c3 = (tri->c3 +
468 tri->dx31 * miny * TILE_SIZE -
469 tri->dy31 * minx * TILE_SIZE);
470
471 int ei1 = tri->ei1 << TILE_ORDER;
472 int ei2 = tri->ei2 << TILE_ORDER;
473 int ei3 = tri->ei3 << TILE_ORDER;
474
475 int eo1 = tri->eo1 << TILE_ORDER;
476 int eo2 = tri->eo2 << TILE_ORDER;
477 int eo3 = tri->eo3 << TILE_ORDER;
478
479 int xstep1 = -(tri->dy12 << TILE_ORDER);
480 int xstep2 = -(tri->dy23 << TILE_ORDER);
481 int xstep3 = -(tri->dy31 << TILE_ORDER);
482
483 int ystep1 = tri->dx12 << TILE_ORDER;
484 int ystep2 = tri->dx23 << TILE_ORDER;
485 int ystep3 = tri->dx31 << TILE_ORDER;
486 int x, y;
487
488
489 /* Test tile-sized blocks against the triangle.
490 * Discard blocks fully outside the tri. If the block is fully
491 * contained inside the tri, bin an lp_rast_shade_tile command.
492 * Else, bin a lp_rast_triangle command.
493 */
494 for (y = miny; y <= maxy; y++)
495 {
496 int cx1 = c1;
497 int cx2 = c2;
498 int cx3 = c3;
499 boolean in = FALSE; /* are we inside the triangle? */
500
501 for (x = minx; x <= maxx; x++)
502 {
503 if (cx1 + eo1 < 0 ||
504 cx2 + eo2 < 0 ||
505 cx3 + eo3 < 0)
506 {
507 /* do nothing */
508 LP_COUNT(nr_empty_64);
509 if (in)
510 break; /* exiting triangle, all done with this row */
511 }
512 else if (cx1 + ei1 > 0 &&
513 cx2 + ei2 > 0 &&
514 cx3 + ei3 > 0)
515 {
516 /* triangle covers the whole tile- shade whole tile */
517 LP_COUNT(nr_fully_covered_64);
518 in = TRUE;
519 if(setup->fs.current.opaque) {
520 lp_scene_bin_reset( scene, x, y );
521 lp_scene_bin_command( scene, x, y,
522 lp_rast_set_state,
523 lp_rast_arg_state(setup->fs.stored) );
524 }
525 lp_scene_bin_command( scene, x, y,
526 lp_rast_shade_tile,
527 lp_rast_arg_inputs(&tri->inputs) );
528 }
529 else
530 {
531 /* rasterizer/shade partial tile */
532 LP_COUNT(nr_partially_covered_64);
533 in = TRUE;
534 lp_scene_bin_command( scene, x, y,
535 lp_rast_triangle,
536 lp_rast_arg_triangle(tri) );
537 }
538
539 /* Iterate cx values across the region:
540 */
541 cx1 += xstep1;
542 cx2 += xstep2;
543 cx3 += xstep3;
544 }
545
546 /* Iterate c values down the region:
547 */
548 c1 += ystep1;
549 c2 += ystep2;
550 c3 += ystep3;
551 }
552 }
553 }
554
555
556 static void triangle_cw( struct setup_context *setup,
557 const float (*v0)[4],
558 const float (*v1)[4],
559 const float (*v2)[4] )
560 {
561 do_triangle_ccw( setup, v1, v0, v2, !setup->ccw_is_frontface );
562 }
563
564
565 static void triangle_ccw( struct setup_context *setup,
566 const float (*v0)[4],
567 const float (*v1)[4],
568 const float (*v2)[4] )
569 {
570 do_triangle_ccw( setup, v0, v1, v2, setup->ccw_is_frontface );
571 }
572
573
574 static void triangle_both( struct setup_context *setup,
575 const float (*v0)[4],
576 const float (*v1)[4],
577 const float (*v2)[4] )
578 {
579 /* edge vectors e = v0 - v2, f = v1 - v2 */
580 const float ex = v0[0][0] - v2[0][0];
581 const float ey = v0[0][1] - v2[0][1];
582 const float fx = v1[0][0] - v2[0][0];
583 const float fy = v1[0][1] - v2[0][1];
584
585 /* det = cross(e,f).z */
586 if (ex * fy - ey * fx < 0.0f)
587 triangle_ccw( setup, v0, v1, v2 );
588 else
589 triangle_cw( setup, v0, v1, v2 );
590 }
591
592
593 static void triangle_nop( struct setup_context *setup,
594 const float (*v0)[4],
595 const float (*v1)[4],
596 const float (*v2)[4] )
597 {
598 }
599
600
601 void
602 lp_setup_choose_triangle( struct setup_context *setup )
603 {
604 switch (setup->cullmode) {
605 case PIPE_WINDING_NONE:
606 setup->triangle = triangle_both;
607 break;
608 case PIPE_WINDING_CCW:
609 setup->triangle = triangle_cw;
610 break;
611 case PIPE_WINDING_CW:
612 setup->triangle = triangle_ccw;
613 break;
614 default:
615 setup->triangle = triangle_nop;
616 break;
617 }
618 }