Squashed commit of the following:
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assemble the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_depth.h"
81 #include "gallivm/lp_bld_interp.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_alpha.h"
84 #include "gallivm/lp_bld_blend.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "lp_context.h"
89 #include "lp_debug.h"
90 #include "lp_perf.h"
91 #include "lp_screen.h"
92 #include "lp_setup.h"
93 #include "lp_state.h"
94 #include "lp_tex_sample.h"
95
96
97 #include <llvm-c/Analysis.h>
98
99
100 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
101 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
102
103
104 /*
105 * Derive from the quad's upper left scalar coordinates the coordinates for
106 * all other quad pixels
107 */
108 static void
109 generate_pos0(LLVMBuilderRef builder,
110 LLVMValueRef x,
111 LLVMValueRef y,
112 LLVMValueRef *x0,
113 LLVMValueRef *y0)
114 {
115 LLVMTypeRef int_elem_type = LLVMInt32Type();
116 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
117 LLVMTypeRef elem_type = LLVMFloatType();
118 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
119 LLVMValueRef x_offsets[QUAD_SIZE];
120 LLVMValueRef y_offsets[QUAD_SIZE];
121 unsigned i;
122
123 x = lp_build_broadcast(builder, int_vec_type, x);
124 y = lp_build_broadcast(builder, int_vec_type, y);
125
126 for(i = 0; i < QUAD_SIZE; ++i) {
127 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
128 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
129 }
130
131 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
132 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
133
134 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
135 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
136 }
137
138
139 /**
140 * Generate the depth /stencil test code.
141 */
142 static void
143 generate_depth_stencil(LLVMBuilderRef builder,
144 const struct lp_fragment_shader_variant_key *key,
145 struct lp_type src_type,
146 struct lp_build_mask_context *mask,
147 LLVMValueRef stencil_refs[2],
148 LLVMValueRef src,
149 LLVMValueRef dst_ptr,
150 LLVMValueRef facing)
151 {
152 const struct util_format_description *format_desc;
153 struct lp_type dst_type;
154
155 if (!key->depth.enabled && !key->stencil[0].enabled && !key->stencil[1].enabled)
156 return;
157
158 format_desc = util_format_description(key->zsbuf_format);
159 assert(format_desc);
160
161 /*
162 * Depths are expected to be between 0 and 1, even if they are stored in
163 * floats. Setting these bits here will ensure that the lp_build_conv() call
164 * below won't try to unnecessarily clamp the incoming values.
165 */
166 if(src_type.floating) {
167 src_type.sign = FALSE;
168 src_type.norm = TRUE;
169 }
170 else {
171 assert(!src_type.sign);
172 assert(src_type.norm);
173 }
174
175 /* Pick the depth type. */
176 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
177
178 /* FIXME: Cope with a depth test type with a different bit width. */
179 assert(dst_type.width == src_type.width);
180 assert(dst_type.length == src_type.length);
181
182 /* Convert fragment Z from float to integer */
183 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
184
185 dst_ptr = LLVMBuildBitCast(builder,
186 dst_ptr,
187 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
188 lp_build_depth_stencil_test(builder,
189 &key->depth,
190 key->stencil,
191 dst_type,
192 format_desc,
193 mask,
194 stencil_refs,
195 src,
196 dst_ptr,
197 facing);
198 }
199
200
201 /**
202 * Generate the code to do inside/outside triangle testing for the
203 * four pixels in a 2x2 quad. This will set the four elements of the
204 * quad mask vector to 0 or ~0.
205 * \param i which quad of the quad group to test, in [0,3]
206 */
207 static void
208 generate_tri_edge_mask(LLVMBuilderRef builder,
209 unsigned i,
210 LLVMValueRef *mask, /* ivec4, out */
211 LLVMValueRef c0, /* int32 */
212 LLVMValueRef c1, /* int32 */
213 LLVMValueRef c2, /* int32 */
214 LLVMValueRef step0_ptr, /* ivec4 */
215 LLVMValueRef step1_ptr, /* ivec4 */
216 LLVMValueRef step2_ptr) /* ivec4 */
217 {
218 #define OPTIMIZE_IN_OUT_TEST 0
219 #if OPTIMIZE_IN_OUT_TEST
220 struct lp_build_if_state ifctx;
221 LLVMValueRef not_draw_all;
222 #endif
223 struct lp_build_flow_context *flow;
224 struct lp_type i32_type;
225 LLVMTypeRef i32vec4_type, mask_type;
226 LLVMValueRef c0_vec, c1_vec, c2_vec;
227 LLVMValueRef in_out_mask;
228
229 assert(i < 4);
230
231 /* int32 vector type */
232 memset(&i32_type, 0, sizeof i32_type);
233 i32_type.floating = FALSE; /* values are integers */
234 i32_type.sign = TRUE; /* values are signed */
235 i32_type.norm = FALSE; /* values are not normalized */
236 i32_type.width = 32; /* 32-bit int values */
237 i32_type.length = 4; /* 4 elements per vector */
238
239 i32vec4_type = lp_build_int32_vec4_type();
240
241 mask_type = LLVMIntType(32 * 4);
242
243 /*
244 * Use a conditional here to do detailed pixel in/out testing.
245 * We only have to do this if c0 != INT_MIN.
246 */
247 flow = lp_build_flow_create(builder);
248 lp_build_flow_scope_begin(flow);
249
250 {
251 #if OPTIMIZE_IN_OUT_TEST
252 /* not_draw_all = (c0 != INT_MIN) */
253 not_draw_all = LLVMBuildICmp(builder,
254 LLVMIntNE,
255 c0,
256 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
257 "");
258
259 in_out_mask = lp_build_const_int_vec(i32_type, ~0);
260
261
262 lp_build_flow_scope_declare(flow, &in_out_mask);
263
264 /* if (not_draw_all) {... */
265 lp_build_if(&ifctx, flow, builder, not_draw_all);
266 #endif
267 {
268 LLVMValueRef step0_vec, step1_vec, step2_vec;
269 LLVMValueRef m0_vec, m1_vec, m2_vec;
270 LLVMValueRef index, m;
271
272 /* c0_vec = {c0, c0, c0, c0}
273 * Note that we emit this code four times but LLVM optimizes away
274 * three instances of it.
275 */
276 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
277 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
278 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
279 lp_build_name(c0_vec, "edgeconst0vec");
280 lp_build_name(c1_vec, "edgeconst1vec");
281 lp_build_name(c2_vec, "edgeconst2vec");
282
283 /* load step0vec, step1, step2 vec from memory */
284 index = LLVMConstInt(LLVMInt32Type(), i, 0);
285 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
286 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
287 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
288 lp_build_name(step0_vec, "step0vec");
289 lp_build_name(step1_vec, "step1vec");
290 lp_build_name(step2_vec, "step2vec");
291
292 /* m0_vec = step0_ptr[i] > c0_vec */
293 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
294 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
295 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
296
297 /* in_out_mask = m0_vec & m1_vec & m2_vec */
298 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
299 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
300 lp_build_name(in_out_mask, "inoutmaskvec");
301 }
302 #if OPTIMIZE_IN_OUT_TEST
303 lp_build_endif(&ifctx);
304 #endif
305
306 }
307 lp_build_flow_scope_end(flow);
308 lp_build_flow_destroy(flow);
309
310 /* This is the initial alive/dead pixel mask for a quad of four pixels.
311 * It's an int[4] vector with each word set to 0 or ~0.
312 * Words will get cleared when pixels faile the Z test, etc.
313 */
314 *mask = in_out_mask;
315 }
316
317
318 static LLVMValueRef
319 generate_scissor_test(LLVMBuilderRef builder,
320 LLVMValueRef context_ptr,
321 const struct lp_build_interp_soa_context *interp,
322 struct lp_type type)
323 {
324 LLVMTypeRef vec_type = lp_build_vec_type(type);
325 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
326 LLVMValueRef xmin, ymin, xmax, ymax;
327 LLVMValueRef m0, m1, m2, m3, m;
328
329 /* xpos, ypos contain the window coords for the four pixels in the quad */
330 assert(xpos);
331 assert(ypos);
332
333 /* get the current scissor bounds, convert to vectors */
334 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
335 xmin = lp_build_broadcast(builder, vec_type, xmin);
336
337 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
338 ymin = lp_build_broadcast(builder, vec_type, ymin);
339
340 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
341 xmax = lp_build_broadcast(builder, vec_type, xmax);
342
343 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
344 ymax = lp_build_broadcast(builder, vec_type, ymax);
345
346 /* compare the fragment's position coordinates against the scissor bounds */
347 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
348 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
349 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
350 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
351
352 /* AND all the masks together */
353 m = LLVMBuildAnd(builder, m0, m1, "");
354 m = LLVMBuildAnd(builder, m, m2, "");
355 m = LLVMBuildAnd(builder, m, m3, "");
356
357 lp_build_name(m, "scissormask");
358
359 return m;
360 }
361
362
363 static LLVMValueRef
364 build_int32_vec_const(int value)
365 {
366 struct lp_type i32_type;
367
368 memset(&i32_type, 0, sizeof i32_type);
369 i32_type.floating = FALSE; /* values are integers */
370 i32_type.sign = TRUE; /* values are signed */
371 i32_type.norm = FALSE; /* values are not normalized */
372 i32_type.width = 32; /* 32-bit int values */
373 i32_type.length = 4; /* 4 elements per vector */
374 return lp_build_const_int_vec(i32_type, value);
375 }
376
377
378
379 /**
380 * Generate the fragment shader, depth/stencil test, and alpha tests.
381 * \param i which quad in the tile, in range [0,3]
382 * \param do_tri_test if 1, do triangle edge in/out testing
383 */
384 static void
385 generate_fs(struct llvmpipe_context *lp,
386 struct lp_fragment_shader *shader,
387 const struct lp_fragment_shader_variant_key *key,
388 LLVMBuilderRef builder,
389 struct lp_type type,
390 LLVMValueRef context_ptr,
391 unsigned i,
392 const struct lp_build_interp_soa_context *interp,
393 struct lp_build_sampler_soa *sampler,
394 LLVMValueRef *pmask,
395 LLVMValueRef (*color)[4],
396 LLVMValueRef depth_ptr,
397 LLVMValueRef facing,
398 unsigned do_tri_test,
399 LLVMValueRef c0,
400 LLVMValueRef c1,
401 LLVMValueRef c2,
402 LLVMValueRef step0_ptr,
403 LLVMValueRef step1_ptr,
404 LLVMValueRef step2_ptr)
405 {
406 const struct tgsi_token *tokens = shader->base.tokens;
407 LLVMTypeRef elem_type;
408 LLVMTypeRef vec_type;
409 LLVMTypeRef int_vec_type;
410 LLVMValueRef consts_ptr;
411 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
412 LLVMValueRef z = interp->pos[2];
413 LLVMValueRef stencil_refs[2];
414 struct lp_build_flow_context *flow;
415 struct lp_build_mask_context mask;
416 boolean early_depth_stencil_test;
417 unsigned attrib;
418 unsigned chan;
419 unsigned cbuf;
420
421 assert(i < 4);
422
423 stencil_refs[0] = lp_jit_context_stencil_ref_front_value(builder, context_ptr);
424 stencil_refs[1] = lp_jit_context_stencil_ref_back_value(builder, context_ptr);
425
426 elem_type = lp_build_elem_type(type);
427 vec_type = lp_build_vec_type(type);
428 int_vec_type = lp_build_int_vec_type(type);
429
430 consts_ptr = lp_jit_context_constants(builder, context_ptr);
431
432 flow = lp_build_flow_create(builder);
433
434 memset(outputs, 0, sizeof outputs);
435
436 lp_build_flow_scope_begin(flow);
437
438 /* Declare the color and z variables */
439 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
440 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
441 color[cbuf][chan] = LLVMGetUndef(vec_type);
442 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
443 }
444 }
445 lp_build_flow_scope_declare(flow, &z);
446
447 /* do triangle edge testing */
448 if (do_tri_test) {
449 generate_tri_edge_mask(builder, i, pmask,
450 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
451 }
452 else {
453 *pmask = build_int32_vec_const(~0);
454 }
455
456 /* 'mask' will control execution based on quad's pixel alive/killed state */
457 lp_build_mask_begin(&mask, flow, type, *pmask);
458
459 if (key->scissor) {
460 LLVMValueRef smask =
461 generate_scissor_test(builder, context_ptr, interp, type);
462 lp_build_mask_update(&mask, smask);
463 }
464
465 early_depth_stencil_test =
466 (key->depth.enabled || key->stencil[0].enabled) &&
467 !key->alpha.enabled &&
468 !shader->info.uses_kill &&
469 !shader->info.writes_z;
470
471 if (early_depth_stencil_test)
472 generate_depth_stencil(builder, key,
473 type, &mask,
474 stencil_refs, z, depth_ptr, facing);
475
476 lp_build_tgsi_soa(builder, tokens, type, &mask,
477 consts_ptr, interp->pos, interp->inputs,
478 outputs, sampler);
479
480 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
481 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
482 if(outputs[attrib][chan]) {
483 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
484 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
485
486 switch (shader->info.output_semantic_name[attrib]) {
487 case TGSI_SEMANTIC_COLOR:
488 {
489 unsigned cbuf = shader->info.output_semantic_index[attrib];
490
491 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
492
493 /* Alpha test */
494 /* XXX: should the alpha reference value be passed separately? */
495 /* XXX: should only test the final assignment to alpha */
496 if(cbuf == 0 && chan == 3) {
497 LLVMValueRef alpha = out;
498 LLVMValueRef alpha_ref_value;
499 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
500 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
501 lp_build_alpha_test(builder, &key->alpha, type,
502 &mask, alpha, alpha_ref_value);
503 }
504
505 color[cbuf][chan] = out;
506 break;
507 }
508
509 case TGSI_SEMANTIC_POSITION:
510 if(chan == 2)
511 z = out;
512 break;
513 }
514 }
515 }
516 }
517
518 if (!early_depth_stencil_test)
519 generate_depth_stencil(builder, key,
520 type, &mask,
521 stencil_refs, z, depth_ptr, facing);
522
523 lp_build_mask_end(&mask);
524
525 lp_build_flow_scope_end(flow);
526
527 lp_build_flow_destroy(flow);
528
529 *pmask = mask.value;
530
531 }
532
533
534 /**
535 * Generate color blending and color output.
536 */
537 static void
538 generate_blend(const struct pipe_blend_state *blend,
539 LLVMBuilderRef builder,
540 struct lp_type type,
541 LLVMValueRef context_ptr,
542 LLVMValueRef mask,
543 LLVMValueRef *src,
544 LLVMValueRef dst_ptr)
545 {
546 struct lp_build_context bld;
547 struct lp_build_flow_context *flow;
548 struct lp_build_mask_context mask_ctx;
549 LLVMTypeRef vec_type;
550 LLVMTypeRef int_vec_type;
551 LLVMValueRef const_ptr;
552 LLVMValueRef con[4];
553 LLVMValueRef dst[4];
554 LLVMValueRef res[4];
555 unsigned chan;
556
557 lp_build_context_init(&bld, builder, type);
558
559 flow = lp_build_flow_create(builder);
560
561 /* we'll use this mask context to skip blending if all pixels are dead */
562 lp_build_mask_begin(&mask_ctx, flow, type, mask);
563
564 vec_type = lp_build_vec_type(type);
565 int_vec_type = lp_build_int_vec_type(type);
566
567 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
568 const_ptr = LLVMBuildBitCast(builder, const_ptr,
569 LLVMPointerType(vec_type, 0), "");
570
571 for(chan = 0; chan < 4; ++chan) {
572 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
573 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
574
575 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
576
577 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
578 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
579 }
580
581 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
582
583 for(chan = 0; chan < 4; ++chan) {
584 if(blend->rt[0].colormask & (1 << chan)) {
585 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
586 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
587 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
588 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
589 }
590 }
591
592 lp_build_mask_end(&mask_ctx);
593 lp_build_flow_destroy(flow);
594 }
595
596
597 /** casting function to avoid compiler warnings */
598 static lp_jit_frag_func
599 cast_voidptr_to_lp_jit_frag_func(void *p)
600 {
601 union {
602 void *v;
603 lp_jit_frag_func f;
604 } tmp;
605 assert(sizeof(tmp.v) == sizeof(tmp.f));
606 tmp.v = p;
607 return tmp.f;
608 }
609
610
611 /**
612 * Generate the runtime callable function for the whole fragment pipeline.
613 * Note that the function which we generate operates on a block of 16
614 * pixels at at time. The block contains 2x2 quads. Each quad contains
615 * 2x2 pixels.
616 */
617 static void
618 generate_fragment(struct llvmpipe_context *lp,
619 struct lp_fragment_shader *shader,
620 struct lp_fragment_shader_variant *variant,
621 unsigned do_tri_test)
622 {
623 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
624 const struct lp_fragment_shader_variant_key *key = &variant->key;
625 struct lp_type fs_type;
626 struct lp_type blend_type;
627 LLVMTypeRef fs_elem_type;
628 LLVMTypeRef fs_vec_type;
629 LLVMTypeRef fs_int_vec_type;
630 LLVMTypeRef blend_vec_type;
631 LLVMTypeRef blend_int_vec_type;
632 LLVMTypeRef arg_types[15];
633 LLVMTypeRef func_type;
634 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
635 LLVMValueRef context_ptr;
636 LLVMValueRef x;
637 LLVMValueRef y;
638 LLVMValueRef a0_ptr;
639 LLVMValueRef dadx_ptr;
640 LLVMValueRef dady_ptr;
641 LLVMValueRef color_ptr_ptr;
642 LLVMValueRef depth_ptr;
643 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
644 LLVMBasicBlockRef block;
645 LLVMBuilderRef builder;
646 LLVMValueRef x0;
647 LLVMValueRef y0;
648 struct lp_build_sampler_soa *sampler;
649 struct lp_build_interp_soa_context interp;
650 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
651 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
652 LLVMValueRef blend_mask;
653 LLVMValueRef blend_in_color[NUM_CHANNELS];
654 LLVMValueRef function;
655 LLVMValueRef facing;
656 unsigned num_fs;
657 unsigned i;
658 unsigned chan;
659 unsigned cbuf;
660
661
662 /* TODO: actually pick these based on the fs and color buffer
663 * characteristics. */
664
665 memset(&fs_type, 0, sizeof fs_type);
666 fs_type.floating = TRUE; /* floating point values */
667 fs_type.sign = TRUE; /* values are signed */
668 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
669 fs_type.width = 32; /* 32-bit float */
670 fs_type.length = 4; /* 4 elements per vector */
671 num_fs = 4; /* number of quads per block */
672
673 memset(&blend_type, 0, sizeof blend_type);
674 blend_type.floating = FALSE; /* values are integers */
675 blend_type.sign = FALSE; /* values are unsigned */
676 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
677 blend_type.width = 8; /* 8-bit ubyte values */
678 blend_type.length = 16; /* 16 elements per vector */
679
680 /*
681 * Generate the function prototype. Any change here must be reflected in
682 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
683 */
684
685 fs_elem_type = lp_build_elem_type(fs_type);
686 fs_vec_type = lp_build_vec_type(fs_type);
687 fs_int_vec_type = lp_build_int_vec_type(fs_type);
688
689 blend_vec_type = lp_build_vec_type(blend_type);
690 blend_int_vec_type = lp_build_int_vec_type(blend_type);
691
692 arg_types[0] = screen->context_ptr_type; /* context */
693 arg_types[1] = LLVMInt32Type(); /* x */
694 arg_types[2] = LLVMInt32Type(); /* y */
695 arg_types[3] = LLVMFloatType(); /* facing */
696 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* a0 */
697 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dadx */
698 arg_types[6] = LLVMPointerType(fs_elem_type, 0); /* dady */
699 arg_types[7] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
700 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
701 arg_types[9] = LLVMInt32Type(); /* c0 */
702 arg_types[10] = LLVMInt32Type(); /* c1 */
703 arg_types[11] = LLVMInt32Type(); /* c2 */
704 /* Note: the step arrays are built as int32[16] but we interpret
705 * them here as int32_vec4[4].
706 */
707 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
708 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
709 arg_types[14] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
710
711 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
712
713 function = LLVMAddFunction(screen->module, "shader", func_type);
714 LLVMSetFunctionCallConv(function, LLVMCCallConv);
715
716 variant->function[do_tri_test] = function;
717
718
719 /* XXX: need to propagate noalias down into color param now we are
720 * passing a pointer-to-pointer?
721 */
722 for(i = 0; i < Elements(arg_types); ++i)
723 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
724 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
725
726 context_ptr = LLVMGetParam(function, 0);
727 x = LLVMGetParam(function, 1);
728 y = LLVMGetParam(function, 2);
729 facing = LLVMGetParam(function, 3);
730 a0_ptr = LLVMGetParam(function, 4);
731 dadx_ptr = LLVMGetParam(function, 5);
732 dady_ptr = LLVMGetParam(function, 6);
733 color_ptr_ptr = LLVMGetParam(function, 7);
734 depth_ptr = LLVMGetParam(function, 8);
735 c0 = LLVMGetParam(function, 9);
736 c1 = LLVMGetParam(function, 10);
737 c2 = LLVMGetParam(function, 11);
738 step0_ptr = LLVMGetParam(function, 12);
739 step1_ptr = LLVMGetParam(function, 13);
740 step2_ptr = LLVMGetParam(function, 14);
741
742 lp_build_name(context_ptr, "context");
743 lp_build_name(x, "x");
744 lp_build_name(y, "y");
745 lp_build_name(a0_ptr, "a0");
746 lp_build_name(dadx_ptr, "dadx");
747 lp_build_name(dady_ptr, "dady");
748 lp_build_name(color_ptr_ptr, "color_ptr");
749 lp_build_name(depth_ptr, "depth");
750 lp_build_name(c0, "c0");
751 lp_build_name(c1, "c1");
752 lp_build_name(c2, "c2");
753 lp_build_name(step0_ptr, "step0");
754 lp_build_name(step1_ptr, "step1");
755 lp_build_name(step2_ptr, "step2");
756
757 /*
758 * Function body
759 */
760
761 block = LLVMAppendBasicBlock(function, "entry");
762 builder = LLVMCreateBuilder();
763 LLVMPositionBuilderAtEnd(builder, block);
764
765 generate_pos0(builder, x, y, &x0, &y0);
766
767 lp_build_interp_soa_init(&interp,
768 shader->base.tokens,
769 key->flatshade,
770 builder, fs_type,
771 a0_ptr, dadx_ptr, dady_ptr,
772 x0, y0);
773
774 /* code generated texture sampling */
775 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
776
777 /* loop over quads in the block */
778 for(i = 0; i < num_fs; ++i) {
779 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
780 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
781 LLVMValueRef depth_ptr_i;
782 int cbuf;
783
784 if(i != 0)
785 lp_build_interp_soa_update(&interp, i);
786
787 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
788
789 generate_fs(lp, shader, key,
790 builder,
791 fs_type,
792 context_ptr,
793 i,
794 &interp,
795 sampler,
796 &fs_mask[i], /* output */
797 out_color,
798 depth_ptr_i,
799 facing,
800 do_tri_test,
801 c0, c1, c2,
802 step0_ptr, step1_ptr, step2_ptr);
803
804 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
805 for(chan = 0; chan < NUM_CHANNELS; ++chan)
806 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
807 }
808
809 sampler->destroy(sampler);
810
811 /* Loop over color outputs / color buffers to do blending.
812 */
813 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
814 LLVMValueRef color_ptr;
815 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
816
817 /*
818 * Convert the fs's output color and mask to fit to the blending type.
819 */
820 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
821 lp_build_conv(builder, fs_type, blend_type,
822 fs_out_color[cbuf][chan], num_fs,
823 &blend_in_color[chan], 1);
824 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
825 }
826
827 lp_build_conv_mask(builder, fs_type, blend_type,
828 fs_mask, num_fs,
829 &blend_mask, 1);
830
831 color_ptr = LLVMBuildLoad(builder,
832 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
833 "");
834 lp_build_name(color_ptr, "color_ptr%d", cbuf);
835
836 /*
837 * Blending.
838 */
839 generate_blend(&key->blend,
840 builder,
841 blend_type,
842 context_ptr,
843 blend_mask,
844 blend_in_color,
845 color_ptr);
846 }
847
848 LLVMBuildRetVoid(builder);
849
850 LLVMDisposeBuilder(builder);
851
852
853 /* Verify the LLVM IR. If invalid, dump and abort */
854 #ifdef DEBUG
855 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
856 if (1)
857 LLVMDumpValue(function);
858 abort();
859 }
860 #endif
861
862 /* Apply optimizations to LLVM IR */
863 if (1)
864 LLVMRunFunctionPassManager(screen->pass, function);
865
866 if (LP_DEBUG & DEBUG_JIT) {
867 /* Print the LLVM IR to stderr */
868 LLVMDumpValue(function);
869 debug_printf("\n");
870 }
871
872 /*
873 * Translate the LLVM IR into machine code.
874 */
875 {
876 void *f = LLVMGetPointerToGlobal(screen->engine, function);
877
878 variant->jit_function[do_tri_test] = cast_voidptr_to_lp_jit_frag_func(f);
879
880 if (LP_DEBUG & DEBUG_ASM)
881 lp_disassemble(f);
882 }
883 }
884
885
886 static struct lp_fragment_shader_variant *
887 generate_variant(struct llvmpipe_context *lp,
888 struct lp_fragment_shader *shader,
889 const struct lp_fragment_shader_variant_key *key)
890 {
891 struct lp_fragment_shader_variant *variant;
892
893 if (LP_DEBUG & DEBUG_JIT) {
894 unsigned i;
895
896 tgsi_dump(shader->base.tokens, 0);
897 if(key->depth.enabled) {
898 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
899 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
900 debug_printf("depth.writemask = %u\n", key->depth.writemask);
901 }
902 if(key->alpha.enabled) {
903 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
904 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
905 }
906 if(key->blend.logicop_enable) {
907 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
908 }
909 else if(key->blend.rt[0].blend_enable) {
910 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
911 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
912 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
913 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
914 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
915 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
916 }
917 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
918 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
919 if(key->sampler[i].format) {
920 debug_printf("sampler[%u] = \n", i);
921 debug_printf(" .format = %s\n",
922 util_format_name(key->sampler[i].format));
923 debug_printf(" .target = %s\n",
924 util_dump_tex_target(key->sampler[i].target, TRUE));
925 debug_printf(" .pot = %u %u %u\n",
926 key->sampler[i].pot_width,
927 key->sampler[i].pot_height,
928 key->sampler[i].pot_depth);
929 debug_printf(" .wrap = %s %s %s\n",
930 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
931 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
932 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
933 debug_printf(" .min_img_filter = %s\n",
934 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
935 debug_printf(" .min_mip_filter = %s\n",
936 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
937 debug_printf(" .mag_img_filter = %s\n",
938 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
939 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
940 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
941 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
942 }
943 }
944 }
945
946 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
947 if(!variant)
948 return NULL;
949
950 variant->shader = shader;
951 memcpy(&variant->key, key, sizeof *key);
952
953 generate_fragment(lp, shader, variant, 0);
954 generate_fragment(lp, shader, variant, 1);
955
956 /* insert new variant into linked list */
957 variant->next = shader->variants;
958 shader->variants = variant;
959
960 return variant;
961 }
962
963
964 void *
965 llvmpipe_create_fs_state(struct pipe_context *pipe,
966 const struct pipe_shader_state *templ)
967 {
968 struct lp_fragment_shader *shader;
969
970 shader = CALLOC_STRUCT(lp_fragment_shader);
971 if (!shader)
972 return NULL;
973
974 /* get/save the summary info for this shader */
975 tgsi_scan_shader(templ->tokens, &shader->info);
976
977 /* we need to keep a local copy of the tokens */
978 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
979
980 return shader;
981 }
982
983
984 void
985 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
986 {
987 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
988
989 if (llvmpipe->fs == fs)
990 return;
991
992 draw_flush(llvmpipe->draw);
993
994 llvmpipe->fs = fs;
995
996 llvmpipe->dirty |= LP_NEW_FS;
997 }
998
999
1000 void
1001 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
1002 {
1003 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1004 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
1005 struct lp_fragment_shader *shader = fs;
1006 struct lp_fragment_shader_variant *variant;
1007
1008 assert(fs != llvmpipe->fs);
1009 (void) llvmpipe;
1010
1011 /*
1012 * XXX: we need to flush the context until we have some sort of reference
1013 * counting in fragment shaders as they may still be binned
1014 */
1015 draw_flush(llvmpipe->draw);
1016 lp_setup_flush(llvmpipe->setup, 0);
1017
1018 variant = shader->variants;
1019 while(variant) {
1020 struct lp_fragment_shader_variant *next = variant->next;
1021 unsigned i;
1022
1023 for (i = 0; i < Elements(variant->function); i++) {
1024 if (variant->function[i]) {
1025 if (variant->jit_function[i])
1026 LLVMFreeMachineCodeForFunction(screen->engine,
1027 variant->function[i]);
1028 LLVMDeleteFunction(variant->function[i]);
1029 }
1030 }
1031
1032 FREE(variant);
1033
1034 variant = next;
1035 }
1036
1037 FREE((void *) shader->base.tokens);
1038 FREE(shader);
1039 }
1040
1041
1042
1043 void
1044 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1045 uint shader, uint index,
1046 struct pipe_resource *constants)
1047 {
1048 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1049 unsigned size = constants ? constants->width0 : 0;
1050 const void *data = constants ? llvmpipe_resource(constants)->data : NULL;
1051
1052 assert(shader < PIPE_SHADER_TYPES);
1053 assert(index == 0);
1054
1055 if(llvmpipe->constants[shader] == constants)
1056 return;
1057
1058 draw_flush(llvmpipe->draw);
1059
1060 /* note: reference counting */
1061 pipe_resource_reference(&llvmpipe->constants[shader], constants);
1062
1063 if(shader == PIPE_SHADER_VERTEX) {
1064 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1065 data, size);
1066 }
1067
1068 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1069 }
1070
1071
1072 /**
1073 * We need to generate several variants of the fragment pipeline to match
1074 * all the combinations of the contributing state atoms.
1075 *
1076 * TODO: there is actually no reason to tie this to context state -- the
1077 * generated code could be cached globally in the screen.
1078 */
1079 static void
1080 make_variant_key(struct llvmpipe_context *lp,
1081 struct lp_fragment_shader *shader,
1082 struct lp_fragment_shader_variant_key *key)
1083 {
1084 unsigned i;
1085
1086 memset(key, 0, sizeof *key);
1087
1088 if (lp->framebuffer.zsbuf) {
1089 if (lp->depth_stencil->depth.enabled) {
1090 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1091 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1092 }
1093 if (lp->depth_stencil->stencil[0].enabled) {
1094 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1095 memcpy(&key->stencil, &lp->depth_stencil->stencil, sizeof key->stencil);
1096 }
1097 }
1098
1099 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1100 if(key->alpha.enabled)
1101 key->alpha.func = lp->depth_stencil->alpha.func;
1102 /* alpha.ref_value is passed in jit_context */
1103
1104 key->flatshade = lp->rasterizer->flatshade;
1105 key->scissor = lp->rasterizer->scissor;
1106
1107 if (lp->framebuffer.nr_cbufs) {
1108 memcpy(&key->blend, lp->blend, sizeof key->blend);
1109 }
1110
1111 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1112 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1113 const struct util_format_description *format_desc;
1114 unsigned chan;
1115
1116 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1117 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1118 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1119
1120 /* mask out color channels not present in the color buffer.
1121 * Should be simple to incorporate per-cbuf writemasks:
1122 */
1123 for(chan = 0; chan < 4; ++chan) {
1124 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1125
1126 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1127 key->blend.rt[0].colormask |= (1 << chan);
1128 }
1129 }
1130
1131 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1132 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1133 lp_sampler_static_state(&key->sampler[i], lp->fragment_sampler_views[i]->texture, lp->sampler[i]);
1134 }
1135
1136
1137 /**
1138 * Update fragment state. This is called just prior to drawing
1139 * something when some fragment-related state has changed.
1140 */
1141 void
1142 llvmpipe_update_fs(struct llvmpipe_context *lp)
1143 {
1144 struct lp_fragment_shader *shader = lp->fs;
1145 struct lp_fragment_shader_variant_key key;
1146 struct lp_fragment_shader_variant *variant;
1147 boolean opaque;
1148
1149 make_variant_key(lp, shader, &key);
1150
1151 variant = shader->variants;
1152 while(variant) {
1153 if(memcmp(&variant->key, &key, sizeof key) == 0)
1154 break;
1155
1156 variant = variant->next;
1157 }
1158
1159 if (!variant) {
1160 int64_t t0, t1;
1161 int64_t dt;
1162 t0 = os_time_get();
1163
1164 variant = generate_variant(lp, shader, &key);
1165
1166 t1 = os_time_get();
1167 dt = t1 - t0;
1168 LP_COUNT_ADD(llvm_compile_time, dt);
1169 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1170 }
1171
1172 shader->current = variant;
1173
1174 /* TODO: put this in the variant */
1175 /* TODO: most of these can be relaxed, in particular the colormask */
1176 opaque = !key.blend.logicop_enable &&
1177 !key.blend.rt[0].blend_enable &&
1178 key.blend.rt[0].colormask == 0xf &&
1179 !key.stencil[0].enabled &&
1180 !key.alpha.enabled &&
1181 !key.depth.enabled &&
1182 !key.scissor &&
1183 !shader->info.uses_kill
1184 ? TRUE : FALSE;
1185
1186 lp_setup_set_fs_functions(lp->setup,
1187 shader->current->jit_function[RAST_WHOLE],
1188 shader->current->jit_function[RAST_EDGE_TEST],
1189 opaque);
1190 }