gallivm/llvmpipe: include os_llvm.h instead of llvm-c/Core.h
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - triangle edge in/out testing
35 * - scissor test
36 * - stipple (TBI)
37 * - early depth test
38 * - fragment shader
39 * - alpha test
40 * - depth/stencil test (stencil TBI)
41 * - blending
42 *
43 * This file has only the glue to assembly the fragment pipeline. The actual
44 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
45 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
46 * muster the LLVM JIT execution engine to create a function that follows an
47 * established binary interface and that can be called from C directly.
48 *
49 * A big source of complexity here is that we often want to run different
50 * stages with different precisions and data types and precisions. For example,
51 * the fragment shader needs typically to be done in floats, but the
52 * depth/stencil test and blending is better done in the type that most closely
53 * matches the depth/stencil and color buffer respectively.
54 *
55 * Since the width of a SIMD vector register stays the same regardless of the
56 * element type, different types imply different number of elements, so we must
57 * code generate more instances of the stages with larger types to be able to
58 * feed/consume the stages with smaller types.
59 *
60 * @author Jose Fonseca <jfonseca@vmware.com>
61 */
62
63 #include <limits.h>
64 #include "pipe/p_defines.h"
65 #include "util/u_inlines.h"
66 #include "util/u_memory.h"
67 #include "util/u_format.h"
68 #include "util/u_dump.h"
69 #include "os/os_time.h"
70 #include "pipe/p_shader_tokens.h"
71 #include "draw/draw_context.h"
72 #include "tgsi/tgsi_dump.h"
73 #include "tgsi/tgsi_scan.h"
74 #include "tgsi/tgsi_parse.h"
75 #include "gallivm/lp_bld_type.h"
76 #include "gallivm/lp_bld_const.h"
77 #include "gallivm/lp_bld_conv.h"
78 #include "gallivm/lp_bld_intr.h"
79 #include "gallivm/lp_bld_logic.h"
80 #include "gallivm/lp_bld_depth.h"
81 #include "gallivm/lp_bld_interp.h"
82 #include "gallivm/lp_bld_tgsi.h"
83 #include "gallivm/lp_bld_alpha.h"
84 #include "gallivm/lp_bld_blend.h"
85 #include "gallivm/lp_bld_swizzle.h"
86 #include "gallivm/lp_bld_flow.h"
87 #include "gallivm/lp_bld_debug.h"
88 #include "lp_buffer.h"
89 #include "lp_context.h"
90 #include "lp_debug.h"
91 #include "lp_perf.h"
92 #include "lp_screen.h"
93 #include "lp_setup.h"
94 #include "lp_state.h"
95 #include "lp_tex_sample.h"
96
97
98 #include <llvm-c/Analysis.h>
99
100
101 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
102 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
103
104
105 /*
106 * Derive from the quad's upper left scalar coordinates the coordinates for
107 * all other quad pixels
108 */
109 static void
110 generate_pos0(LLVMBuilderRef builder,
111 LLVMValueRef x,
112 LLVMValueRef y,
113 LLVMValueRef *x0,
114 LLVMValueRef *y0)
115 {
116 LLVMTypeRef int_elem_type = LLVMInt32Type();
117 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
118 LLVMTypeRef elem_type = LLVMFloatType();
119 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
120 LLVMValueRef x_offsets[QUAD_SIZE];
121 LLVMValueRef y_offsets[QUAD_SIZE];
122 unsigned i;
123
124 x = lp_build_broadcast(builder, int_vec_type, x);
125 y = lp_build_broadcast(builder, int_vec_type, y);
126
127 for(i = 0; i < QUAD_SIZE; ++i) {
128 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
129 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
130 }
131
132 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
133 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
134
135 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
136 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
137 }
138
139
140 /**
141 * Generate the depth test.
142 */
143 static void
144 generate_depth(LLVMBuilderRef builder,
145 const struct lp_fragment_shader_variant_key *key,
146 struct lp_type src_type,
147 struct lp_build_mask_context *mask,
148 LLVMValueRef src,
149 LLVMValueRef dst_ptr)
150 {
151 const struct util_format_description *format_desc;
152 struct lp_type dst_type;
153
154 if(!key->depth.enabled)
155 return;
156
157 format_desc = util_format_description(key->zsbuf_format);
158 assert(format_desc);
159
160 /*
161 * Depths are expected to be between 0 and 1, even if they are stored in
162 * floats. Setting these bits here will ensure that the lp_build_conv() call
163 * below won't try to unnecessarily clamp the incoming values.
164 */
165 if(src_type.floating) {
166 src_type.sign = FALSE;
167 src_type.norm = TRUE;
168 }
169 else {
170 assert(!src_type.sign);
171 assert(src_type.norm);
172 }
173
174 /* Pick the depth type. */
175 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
176
177 /* FIXME: Cope with a depth test type with a different bit width. */
178 assert(dst_type.width == src_type.width);
179 assert(dst_type.length == src_type.length);
180
181 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
182
183 dst_ptr = LLVMBuildBitCast(builder,
184 dst_ptr,
185 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
186
187 lp_build_depth_test(builder,
188 &key->depth,
189 dst_type,
190 format_desc,
191 mask,
192 src,
193 dst_ptr);
194 }
195
196
197 /**
198 * Generate the code to do inside/outside triangle testing for the
199 * four pixels in a 2x2 quad. This will set the four elements of the
200 * quad mask vector to 0 or ~0.
201 * \param i which quad of the quad group to test, in [0,3]
202 */
203 static void
204 generate_tri_edge_mask(LLVMBuilderRef builder,
205 unsigned i,
206 LLVMValueRef *mask, /* ivec4, out */
207 LLVMValueRef c0, /* int32 */
208 LLVMValueRef c1, /* int32 */
209 LLVMValueRef c2, /* int32 */
210 LLVMValueRef step0_ptr, /* ivec4 */
211 LLVMValueRef step1_ptr, /* ivec4 */
212 LLVMValueRef step2_ptr) /* ivec4 */
213 {
214 #define OPTIMIZE_IN_OUT_TEST 0
215 #if OPTIMIZE_IN_OUT_TEST
216 struct lp_build_if_state ifctx;
217 LLVMValueRef not_draw_all;
218 #endif
219 struct lp_build_flow_context *flow;
220 struct lp_type i32_type;
221 LLVMTypeRef i32vec4_type, mask_type;
222 LLVMValueRef c0_vec, c1_vec, c2_vec;
223 LLVMValueRef in_out_mask;
224
225 assert(i < 4);
226
227 /* int32 vector type */
228 memset(&i32_type, 0, sizeof i32_type);
229 i32_type.floating = FALSE; /* values are integers */
230 i32_type.sign = TRUE; /* values are signed */
231 i32_type.norm = FALSE; /* values are not normalized */
232 i32_type.width = 32; /* 32-bit int values */
233 i32_type.length = 4; /* 4 elements per vector */
234
235 i32vec4_type = lp_build_int32_vec4_type();
236
237 mask_type = LLVMIntType(32 * 4);
238
239 /*
240 * Use a conditional here to do detailed pixel in/out testing.
241 * We only have to do this if c0 != INT_MIN.
242 */
243 flow = lp_build_flow_create(builder);
244 lp_build_flow_scope_begin(flow);
245
246 {
247 #if OPTIMIZE_IN_OUT_TEST
248 /* not_draw_all = (c0 != INT_MIN) */
249 not_draw_all = LLVMBuildICmp(builder,
250 LLVMIntNE,
251 c0,
252 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
253 "");
254
255 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
256
257
258 lp_build_flow_scope_declare(flow, &in_out_mask);
259
260 /* if (not_draw_all) {... */
261 lp_build_if(&ifctx, flow, builder, not_draw_all);
262 #endif
263 {
264 LLVMValueRef step0_vec, step1_vec, step2_vec;
265 LLVMValueRef m0_vec, m1_vec, m2_vec;
266 LLVMValueRef index, m;
267
268 /* c0_vec = {c0, c0, c0, c0}
269 * Note that we emit this code four times but LLVM optimizes away
270 * three instances of it.
271 */
272 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
273 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
274 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
275 lp_build_name(c0_vec, "edgeconst0vec");
276 lp_build_name(c1_vec, "edgeconst1vec");
277 lp_build_name(c2_vec, "edgeconst2vec");
278
279 /* load step0vec, step1, step2 vec from memory */
280 index = LLVMConstInt(LLVMInt32Type(), i, 0);
281 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
282 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
283 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
284 lp_build_name(step0_vec, "step0vec");
285 lp_build_name(step1_vec, "step1vec");
286 lp_build_name(step2_vec, "step2vec");
287
288 /* m0_vec = step0_ptr[i] > c0_vec */
289 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
290 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
291 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
292
293 /* in_out_mask = m0_vec & m1_vec & m2_vec */
294 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
295 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
296 lp_build_name(in_out_mask, "inoutmaskvec");
297 }
298 #if OPTIMIZE_IN_OUT_TEST
299 lp_build_endif(&ifctx);
300 #endif
301
302 }
303 lp_build_flow_scope_end(flow);
304 lp_build_flow_destroy(flow);
305
306 /* This is the initial alive/dead pixel mask for a quad of four pixels.
307 * It's an int[4] vector with each word set to 0 or ~0.
308 * Words will get cleared when pixels faile the Z test, etc.
309 */
310 *mask = in_out_mask;
311 }
312
313
314 static LLVMValueRef
315 generate_scissor_test(LLVMBuilderRef builder,
316 LLVMValueRef context_ptr,
317 const struct lp_build_interp_soa_context *interp,
318 struct lp_type type)
319 {
320 LLVMTypeRef vec_type = lp_build_vec_type(type);
321 LLVMValueRef xpos = interp->pos[0], ypos = interp->pos[1];
322 LLVMValueRef xmin, ymin, xmax, ymax;
323 LLVMValueRef m0, m1, m2, m3, m;
324
325 /* xpos, ypos contain the window coords for the four pixels in the quad */
326 assert(xpos);
327 assert(ypos);
328
329 /* get the current scissor bounds, convert to vectors */
330 xmin = lp_jit_context_scissor_xmin_value(builder, context_ptr);
331 xmin = lp_build_broadcast(builder, vec_type, xmin);
332
333 ymin = lp_jit_context_scissor_ymin_value(builder, context_ptr);
334 ymin = lp_build_broadcast(builder, vec_type, ymin);
335
336 xmax = lp_jit_context_scissor_xmax_value(builder, context_ptr);
337 xmax = lp_build_broadcast(builder, vec_type, xmax);
338
339 ymax = lp_jit_context_scissor_ymax_value(builder, context_ptr);
340 ymax = lp_build_broadcast(builder, vec_type, ymax);
341
342 /* compare the fragment's position coordinates against the scissor bounds */
343 m0 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, xpos, xmin);
344 m1 = lp_build_compare(builder, type, PIPE_FUNC_GEQUAL, ypos, ymin);
345 m2 = lp_build_compare(builder, type, PIPE_FUNC_LESS, xpos, xmax);
346 m3 = lp_build_compare(builder, type, PIPE_FUNC_LESS, ypos, ymax);
347
348 /* AND all the masks together */
349 m = LLVMBuildAnd(builder, m0, m1, "");
350 m = LLVMBuildAnd(builder, m, m2, "");
351 m = LLVMBuildAnd(builder, m, m3, "");
352
353 lp_build_name(m, "scissormask");
354
355 return m;
356 }
357
358
359 static LLVMValueRef
360 build_int32_vec_const(int value)
361 {
362 struct lp_type i32_type;
363
364 memset(&i32_type, 0, sizeof i32_type);
365 i32_type.floating = FALSE; /* values are integers */
366 i32_type.sign = TRUE; /* values are signed */
367 i32_type.norm = FALSE; /* values are not normalized */
368 i32_type.width = 32; /* 32-bit int values */
369 i32_type.length = 4; /* 4 elements per vector */
370 return lp_build_int_const_scalar(i32_type, value);
371 }
372
373
374
375 /**
376 * Generate the fragment shader, depth/stencil test, and alpha tests.
377 * \param i which quad in the tile, in range [0,3]
378 * \param do_tri_test if 1, do triangle edge in/out testing
379 */
380 static void
381 generate_fs(struct llvmpipe_context *lp,
382 struct lp_fragment_shader *shader,
383 const struct lp_fragment_shader_variant_key *key,
384 LLVMBuilderRef builder,
385 struct lp_type type,
386 LLVMValueRef context_ptr,
387 unsigned i,
388 const struct lp_build_interp_soa_context *interp,
389 struct lp_build_sampler_soa *sampler,
390 LLVMValueRef *pmask,
391 LLVMValueRef (*color)[4],
392 LLVMValueRef depth_ptr,
393 unsigned do_tri_test,
394 LLVMValueRef c0,
395 LLVMValueRef c1,
396 LLVMValueRef c2,
397 LLVMValueRef step0_ptr,
398 LLVMValueRef step1_ptr,
399 LLVMValueRef step2_ptr)
400 {
401 const struct tgsi_token *tokens = shader->base.tokens;
402 LLVMTypeRef elem_type;
403 LLVMTypeRef vec_type;
404 LLVMTypeRef int_vec_type;
405 LLVMValueRef consts_ptr;
406 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
407 LLVMValueRef z = interp->pos[2];
408 struct lp_build_flow_context *flow;
409 struct lp_build_mask_context mask;
410 boolean early_depth_test;
411 unsigned attrib;
412 unsigned chan;
413 unsigned cbuf;
414
415 assert(i < 4);
416
417 elem_type = lp_build_elem_type(type);
418 vec_type = lp_build_vec_type(type);
419 int_vec_type = lp_build_int_vec_type(type);
420
421 consts_ptr = lp_jit_context_constants(builder, context_ptr);
422
423 flow = lp_build_flow_create(builder);
424
425 memset(outputs, 0, sizeof outputs);
426
427 lp_build_flow_scope_begin(flow);
428
429 /* Declare the color and z variables */
430 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
431 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
432 color[cbuf][chan] = LLVMGetUndef(vec_type);
433 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
434 }
435 }
436 lp_build_flow_scope_declare(flow, &z);
437
438 /* do triangle edge testing */
439 if (do_tri_test) {
440 generate_tri_edge_mask(builder, i, pmask,
441 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
442 }
443 else {
444 *pmask = build_int32_vec_const(~0);
445 }
446
447 /* 'mask' will control execution based on quad's pixel alive/killed state */
448 lp_build_mask_begin(&mask, flow, type, *pmask);
449
450 if (key->scissor) {
451 LLVMValueRef smask =
452 generate_scissor_test(builder, context_ptr, interp, type);
453 lp_build_mask_update(&mask, smask);
454 }
455
456 early_depth_test =
457 key->depth.enabled &&
458 !key->alpha.enabled &&
459 !shader->info.uses_kill &&
460 !shader->info.writes_z;
461
462 if(early_depth_test)
463 generate_depth(builder, key,
464 type, &mask,
465 z, depth_ptr);
466
467 lp_build_tgsi_soa(builder, tokens, type, &mask,
468 consts_ptr, interp->pos, interp->inputs,
469 outputs, sampler);
470
471 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
472 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
473 if(outputs[attrib][chan]) {
474 LLVMValueRef out = LLVMBuildLoad(builder, outputs[attrib][chan], "");
475 lp_build_name(out, "output%u.%u.%c", i, attrib, "xyzw"[chan]);
476
477 switch (shader->info.output_semantic_name[attrib]) {
478 case TGSI_SEMANTIC_COLOR:
479 {
480 unsigned cbuf = shader->info.output_semantic_index[attrib];
481
482 lp_build_name(out, "color%u.%u.%c", i, attrib, "rgba"[chan]);
483
484 /* Alpha test */
485 /* XXX: should the alpha reference value be passed separately? */
486 /* XXX: should only test the final assignment to alpha */
487 if(cbuf == 0 && chan == 3) {
488 LLVMValueRef alpha = out;
489 LLVMValueRef alpha_ref_value;
490 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
491 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
492 lp_build_alpha_test(builder, &key->alpha, type,
493 &mask, alpha, alpha_ref_value);
494 }
495
496 color[cbuf][chan] = out;
497 break;
498 }
499
500 case TGSI_SEMANTIC_POSITION:
501 if(chan == 2)
502 z = out;
503 break;
504 }
505 }
506 }
507 }
508
509 if(!early_depth_test)
510 generate_depth(builder, key,
511 type, &mask,
512 z, depth_ptr);
513
514 lp_build_mask_end(&mask);
515
516 lp_build_flow_scope_end(flow);
517
518 lp_build_flow_destroy(flow);
519
520 *pmask = mask.value;
521
522 }
523
524
525 /**
526 * Generate color blending and color output.
527 */
528 static void
529 generate_blend(const struct pipe_blend_state *blend,
530 LLVMBuilderRef builder,
531 struct lp_type type,
532 LLVMValueRef context_ptr,
533 LLVMValueRef mask,
534 LLVMValueRef *src,
535 LLVMValueRef dst_ptr)
536 {
537 struct lp_build_context bld;
538 struct lp_build_flow_context *flow;
539 struct lp_build_mask_context mask_ctx;
540 LLVMTypeRef vec_type;
541 LLVMTypeRef int_vec_type;
542 LLVMValueRef const_ptr;
543 LLVMValueRef con[4];
544 LLVMValueRef dst[4];
545 LLVMValueRef res[4];
546 unsigned chan;
547
548 lp_build_context_init(&bld, builder, type);
549
550 flow = lp_build_flow_create(builder);
551
552 /* we'll use this mask context to skip blending if all pixels are dead */
553 lp_build_mask_begin(&mask_ctx, flow, type, mask);
554
555 vec_type = lp_build_vec_type(type);
556 int_vec_type = lp_build_int_vec_type(type);
557
558 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
559 const_ptr = LLVMBuildBitCast(builder, const_ptr,
560 LLVMPointerType(vec_type, 0), "");
561
562 for(chan = 0; chan < 4; ++chan) {
563 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
564 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
565
566 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
567
568 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
569 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
570 }
571
572 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
573
574 for(chan = 0; chan < 4; ++chan) {
575 if(blend->rt[0].colormask & (1 << chan)) {
576 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
577 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
578 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
579 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
580 }
581 }
582
583 lp_build_mask_end(&mask_ctx);
584 lp_build_flow_destroy(flow);
585 }
586
587
588 /**
589 * Generate the runtime callable function for the whole fragment pipeline.
590 * Note that the function which we generate operates on a block of 16
591 * pixels at at time. The block contains 2x2 quads. Each quad contains
592 * 2x2 pixels.
593 */
594 static void
595 generate_fragment(struct llvmpipe_context *lp,
596 struct lp_fragment_shader *shader,
597 struct lp_fragment_shader_variant *variant,
598 unsigned do_tri_test)
599 {
600 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
601 const struct lp_fragment_shader_variant_key *key = &variant->key;
602 struct lp_type fs_type;
603 struct lp_type blend_type;
604 LLVMTypeRef fs_elem_type;
605 LLVMTypeRef fs_vec_type;
606 LLVMTypeRef fs_int_vec_type;
607 LLVMTypeRef blend_vec_type;
608 LLVMTypeRef blend_int_vec_type;
609 LLVMTypeRef arg_types[14];
610 LLVMTypeRef func_type;
611 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
612 LLVMValueRef context_ptr;
613 LLVMValueRef x;
614 LLVMValueRef y;
615 LLVMValueRef a0_ptr;
616 LLVMValueRef dadx_ptr;
617 LLVMValueRef dady_ptr;
618 LLVMValueRef color_ptr_ptr;
619 LLVMValueRef depth_ptr;
620 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
621 LLVMBasicBlockRef block;
622 LLVMBuilderRef builder;
623 LLVMValueRef x0;
624 LLVMValueRef y0;
625 struct lp_build_sampler_soa *sampler;
626 struct lp_build_interp_soa_context interp;
627 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
628 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
629 LLVMValueRef blend_mask;
630 LLVMValueRef blend_in_color[NUM_CHANNELS];
631 LLVMValueRef function;
632 unsigned num_fs;
633 unsigned i;
634 unsigned chan;
635 unsigned cbuf;
636
637
638 /* TODO: actually pick these based on the fs and color buffer
639 * characteristics. */
640
641 memset(&fs_type, 0, sizeof fs_type);
642 fs_type.floating = TRUE; /* floating point values */
643 fs_type.sign = TRUE; /* values are signed */
644 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
645 fs_type.width = 32; /* 32-bit float */
646 fs_type.length = 4; /* 4 elements per vector */
647 num_fs = 4; /* number of quads per block */
648
649 memset(&blend_type, 0, sizeof blend_type);
650 blend_type.floating = FALSE; /* values are integers */
651 blend_type.sign = FALSE; /* values are unsigned */
652 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
653 blend_type.width = 8; /* 8-bit ubyte values */
654 blend_type.length = 16; /* 16 elements per vector */
655
656 /*
657 * Generate the function prototype. Any change here must be reflected in
658 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
659 */
660
661 fs_elem_type = lp_build_elem_type(fs_type);
662 fs_vec_type = lp_build_vec_type(fs_type);
663 fs_int_vec_type = lp_build_int_vec_type(fs_type);
664
665 blend_vec_type = lp_build_vec_type(blend_type);
666 blend_int_vec_type = lp_build_int_vec_type(blend_type);
667
668 arg_types[0] = screen->context_ptr_type; /* context */
669 arg_types[1] = LLVMInt32Type(); /* x */
670 arg_types[2] = LLVMInt32Type(); /* y */
671 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
672 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
673 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
674 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
675 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
676 arg_types[8] = LLVMInt32Type(); /* c0 */
677 arg_types[9] = LLVMInt32Type(); /* c1 */
678 arg_types[10] = LLVMInt32Type(); /* c2 */
679 /* Note: the step arrays are built as int32[16] but we interpret
680 * them here as int32_vec4[4].
681 */
682 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
683 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
684 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
685
686 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
687
688 function = LLVMAddFunction(screen->module, "shader", func_type);
689 LLVMSetFunctionCallConv(function, LLVMCCallConv);
690
691 variant->function[do_tri_test] = function;
692
693
694 /* XXX: need to propagate noalias down into color param now we are
695 * passing a pointer-to-pointer?
696 */
697 for(i = 0; i < Elements(arg_types); ++i)
698 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
699 LLVMAddAttribute(LLVMGetParam(function, i), LLVMNoAliasAttribute);
700
701 context_ptr = LLVMGetParam(function, 0);
702 x = LLVMGetParam(function, 1);
703 y = LLVMGetParam(function, 2);
704 a0_ptr = LLVMGetParam(function, 3);
705 dadx_ptr = LLVMGetParam(function, 4);
706 dady_ptr = LLVMGetParam(function, 5);
707 color_ptr_ptr = LLVMGetParam(function, 6);
708 depth_ptr = LLVMGetParam(function, 7);
709 c0 = LLVMGetParam(function, 8);
710 c1 = LLVMGetParam(function, 9);
711 c2 = LLVMGetParam(function, 10);
712 step0_ptr = LLVMGetParam(function, 11);
713 step1_ptr = LLVMGetParam(function, 12);
714 step2_ptr = LLVMGetParam(function, 13);
715
716 lp_build_name(context_ptr, "context");
717 lp_build_name(x, "x");
718 lp_build_name(y, "y");
719 lp_build_name(a0_ptr, "a0");
720 lp_build_name(dadx_ptr, "dadx");
721 lp_build_name(dady_ptr, "dady");
722 lp_build_name(color_ptr_ptr, "color_ptr");
723 lp_build_name(depth_ptr, "depth");
724 lp_build_name(c0, "c0");
725 lp_build_name(c1, "c1");
726 lp_build_name(c2, "c2");
727 lp_build_name(step0_ptr, "step0");
728 lp_build_name(step1_ptr, "step1");
729 lp_build_name(step2_ptr, "step2");
730
731 /*
732 * Function body
733 */
734
735 block = LLVMAppendBasicBlock(function, "entry");
736 builder = LLVMCreateBuilder();
737 LLVMPositionBuilderAtEnd(builder, block);
738
739 generate_pos0(builder, x, y, &x0, &y0);
740
741 lp_build_interp_soa_init(&interp,
742 shader->base.tokens,
743 key->flatshade,
744 builder, fs_type,
745 a0_ptr, dadx_ptr, dady_ptr,
746 x0, y0);
747
748 /* code generated texture sampling */
749 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
750
751 /* loop over quads in the block */
752 for(i = 0; i < num_fs; ++i) {
753 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
754 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
755 LLVMValueRef depth_ptr_i;
756 int cbuf;
757
758 if(i != 0)
759 lp_build_interp_soa_update(&interp, i);
760
761 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
762
763 generate_fs(lp, shader, key,
764 builder,
765 fs_type,
766 context_ptr,
767 i,
768 &interp,
769 sampler,
770 &fs_mask[i], /* output */
771 out_color,
772 depth_ptr_i,
773 do_tri_test,
774 c0, c1, c2,
775 step0_ptr, step1_ptr, step2_ptr);
776
777 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
778 for(chan = 0; chan < NUM_CHANNELS; ++chan)
779 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
780 }
781
782 sampler->destroy(sampler);
783
784 /* Loop over color outputs / color buffers to do blending.
785 */
786 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
787 LLVMValueRef color_ptr;
788 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
789
790 /*
791 * Convert the fs's output color and mask to fit to the blending type.
792 */
793 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
794 lp_build_conv(builder, fs_type, blend_type,
795 fs_out_color[cbuf][chan], num_fs,
796 &blend_in_color[chan], 1);
797 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
798 }
799
800 lp_build_conv_mask(builder, fs_type, blend_type,
801 fs_mask, num_fs,
802 &blend_mask, 1);
803
804 color_ptr = LLVMBuildLoad(builder,
805 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
806 "");
807 lp_build_name(color_ptr, "color_ptr%d", cbuf);
808
809 /*
810 * Blending.
811 */
812 generate_blend(&key->blend,
813 builder,
814 blend_type,
815 context_ptr,
816 blend_mask,
817 blend_in_color,
818 color_ptr);
819 }
820
821 LLVMBuildRetVoid(builder);
822
823 LLVMDisposeBuilder(builder);
824
825
826 /* Verify the LLVM IR. If invalid, dump and abort */
827 #ifdef DEBUG
828 if(LLVMVerifyFunction(function, LLVMPrintMessageAction)) {
829 if (1)
830 LLVMDumpValue(function);
831 abort();
832 }
833 #endif
834
835 /* Apply optimizations to LLVM IR */
836 if (1)
837 LLVMRunFunctionPassManager(screen->pass, function);
838
839 if (LP_DEBUG & DEBUG_JIT) {
840 /* Print the LLVM IR to stderr */
841 LLVMDumpValue(function);
842 debug_printf("\n");
843 }
844
845 /*
846 * Translate the LLVM IR into machine code.
847 */
848 variant->jit_function[do_tri_test] = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, function);
849
850 if (LP_DEBUG & DEBUG_ASM)
851 lp_disassemble(variant->jit_function[do_tri_test]);
852 }
853
854
855 static struct lp_fragment_shader_variant *
856 generate_variant(struct llvmpipe_context *lp,
857 struct lp_fragment_shader *shader,
858 const struct lp_fragment_shader_variant_key *key)
859 {
860 struct lp_fragment_shader_variant *variant;
861
862 if (LP_DEBUG & DEBUG_JIT) {
863 unsigned i;
864
865 tgsi_dump(shader->base.tokens, 0);
866 if(key->depth.enabled) {
867 debug_printf("depth.format = %s\n", util_format_name(key->zsbuf_format));
868 debug_printf("depth.func = %s\n", util_dump_func(key->depth.func, TRUE));
869 debug_printf("depth.writemask = %u\n", key->depth.writemask);
870 }
871 if(key->alpha.enabled) {
872 debug_printf("alpha.func = %s\n", util_dump_func(key->alpha.func, TRUE));
873 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
874 }
875 if(key->blend.logicop_enable) {
876 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
877 }
878 else if(key->blend.rt[0].blend_enable) {
879 debug_printf("blend.rgb_func = %s\n", util_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
880 debug_printf("rgb_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
881 debug_printf("rgb_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
882 debug_printf("alpha_func = %s\n", util_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
883 debug_printf("alpha_src_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
884 debug_printf("alpha_dst_factor = %s\n", util_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
885 }
886 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
887 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
888 if(key->sampler[i].format) {
889 debug_printf("sampler[%u] = \n", i);
890 debug_printf(" .format = %s\n",
891 util_format_name(key->sampler[i].format));
892 debug_printf(" .target = %s\n",
893 util_dump_tex_target(key->sampler[i].target, TRUE));
894 debug_printf(" .pot = %u %u %u\n",
895 key->sampler[i].pot_width,
896 key->sampler[i].pot_height,
897 key->sampler[i].pot_depth);
898 debug_printf(" .wrap = %s %s %s\n",
899 util_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
900 util_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
901 util_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
902 debug_printf(" .min_img_filter = %s\n",
903 util_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
904 debug_printf(" .min_mip_filter = %s\n",
905 util_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
906 debug_printf(" .mag_img_filter = %s\n",
907 util_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
908 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
909 debug_printf(" .compare_func = %s\n", util_dump_func(key->sampler[i].compare_func, TRUE));
910 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
911 }
912 }
913 }
914
915 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
916 if(!variant)
917 return NULL;
918
919 variant->shader = shader;
920 memcpy(&variant->key, key, sizeof *key);
921
922 generate_fragment(lp, shader, variant, 0);
923 generate_fragment(lp, shader, variant, 1);
924
925 /* insert new variant into linked list */
926 variant->next = shader->variants;
927 shader->variants = variant;
928
929 return variant;
930 }
931
932
933 void *
934 llvmpipe_create_fs_state(struct pipe_context *pipe,
935 const struct pipe_shader_state *templ)
936 {
937 struct lp_fragment_shader *shader;
938
939 shader = CALLOC_STRUCT(lp_fragment_shader);
940 if (!shader)
941 return NULL;
942
943 /* get/save the summary info for this shader */
944 tgsi_scan_shader(templ->tokens, &shader->info);
945
946 /* we need to keep a local copy of the tokens */
947 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
948
949 return shader;
950 }
951
952
953 void
954 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
955 {
956 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
957
958 if (llvmpipe->fs == fs)
959 return;
960
961 draw_flush(llvmpipe->draw);
962
963 llvmpipe->fs = fs;
964
965 llvmpipe->dirty |= LP_NEW_FS;
966 }
967
968
969 void
970 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
971 {
972 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
973 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
974 struct lp_fragment_shader *shader = fs;
975 struct lp_fragment_shader_variant *variant;
976
977 assert(fs != llvmpipe->fs);
978 (void) llvmpipe;
979
980 /*
981 * XXX: we need to flush the context until we have some sort of reference
982 * counting in fragment shaders as they may still be binned
983 */
984 draw_flush(llvmpipe->draw);
985 lp_setup_flush(llvmpipe->setup, 0);
986
987 variant = shader->variants;
988 while(variant) {
989 struct lp_fragment_shader_variant *next = variant->next;
990 unsigned i;
991
992 for (i = 0; i < Elements(variant->function); i++) {
993 if (variant->function[i]) {
994 if (variant->jit_function[i])
995 LLVMFreeMachineCodeForFunction(screen->engine,
996 variant->function[i]);
997 LLVMDeleteFunction(variant->function[i]);
998 }
999 }
1000
1001 FREE(variant);
1002
1003 variant = next;
1004 }
1005
1006 FREE((void *) shader->base.tokens);
1007 FREE(shader);
1008 }
1009
1010
1011
1012 void
1013 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
1014 uint shader, uint index,
1015 struct pipe_buffer *constants)
1016 {
1017 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
1018 unsigned size = constants ? constants->size : 0;
1019 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
1020
1021 assert(shader < PIPE_SHADER_TYPES);
1022 assert(index == 0);
1023
1024 if(llvmpipe->constants[shader] == constants)
1025 return;
1026
1027 draw_flush(llvmpipe->draw);
1028
1029 /* note: reference counting */
1030 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
1031
1032 if(shader == PIPE_SHADER_VERTEX) {
1033 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
1034 data, size);
1035 }
1036
1037 llvmpipe->dirty |= LP_NEW_CONSTANTS;
1038 }
1039
1040
1041 /**
1042 * We need to generate several variants of the fragment pipeline to match
1043 * all the combinations of the contributing state atoms.
1044 *
1045 * TODO: there is actually no reason to tie this to context state -- the
1046 * generated code could be cached globally in the screen.
1047 */
1048 static void
1049 make_variant_key(struct llvmpipe_context *lp,
1050 struct lp_fragment_shader *shader,
1051 struct lp_fragment_shader_variant_key *key)
1052 {
1053 unsigned i;
1054
1055 memset(key, 0, sizeof *key);
1056
1057 if(lp->framebuffer.zsbuf &&
1058 lp->depth_stencil->depth.enabled) {
1059 key->zsbuf_format = lp->framebuffer.zsbuf->format;
1060 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
1061 }
1062
1063 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
1064 if(key->alpha.enabled)
1065 key->alpha.func = lp->depth_stencil->alpha.func;
1066 /* alpha.ref_value is passed in jit_context */
1067
1068 key->flatshade = lp->rasterizer->flatshade;
1069 key->scissor = lp->rasterizer->scissor;
1070
1071 if (lp->framebuffer.nr_cbufs) {
1072 memcpy(&key->blend, lp->blend, sizeof key->blend);
1073 }
1074
1075 key->nr_cbufs = lp->framebuffer.nr_cbufs;
1076 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
1077 const struct util_format_description *format_desc;
1078 unsigned chan;
1079
1080 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
1081 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
1082 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
1083
1084 /* mask out color channels not present in the color buffer.
1085 * Should be simple to incorporate per-cbuf writemasks:
1086 */
1087 for(chan = 0; chan < 4; ++chan) {
1088 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
1089
1090 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
1091 key->blend.rt[0].colormask |= (1 << chan);
1092 }
1093 }
1094
1095 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1096 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1097 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
1098 }
1099
1100
1101 /**
1102 * Update fragment state. This is called just prior to drawing
1103 * something when some fragment-related state has changed.
1104 */
1105 void
1106 llvmpipe_update_fs(struct llvmpipe_context *lp)
1107 {
1108 struct lp_fragment_shader *shader = lp->fs;
1109 struct lp_fragment_shader_variant_key key;
1110 struct lp_fragment_shader_variant *variant;
1111 boolean opaque;
1112
1113 make_variant_key(lp, shader, &key);
1114
1115 variant = shader->variants;
1116 while(variant) {
1117 if(memcmp(&variant->key, &key, sizeof key) == 0)
1118 break;
1119
1120 variant = variant->next;
1121 }
1122
1123 if (!variant) {
1124 int64_t t0, t1;
1125 int64_t dt;
1126 t0 = os_time_get();
1127
1128 variant = generate_variant(lp, shader, &key);
1129
1130 t1 = os_time_get();
1131 dt = t1 - t0;
1132 LP_COUNT_ADD(llvm_compile_time, dt);
1133 LP_COUNT_ADD(nr_llvm_compiles, 2); /* emit vs. omit in/out test */
1134 }
1135
1136 shader->current = variant;
1137
1138 /* TODO: put this in the variant */
1139 /* TODO: most of these can be relaxed, in particular the colormask */
1140 opaque = !key.blend.logicop_enable &&
1141 !key.blend.rt[0].blend_enable &&
1142 key.blend.rt[0].colormask == 0xf &&
1143 !key.alpha.enabled &&
1144 !key.depth.enabled &&
1145 !key.scissor &&
1146 !shader->info.uses_kill
1147 ? TRUE : FALSE;
1148
1149 lp_setup_set_fs_functions(lp->setup,
1150 shader->current->jit_function[0],
1151 shader->current->jit_function[1],
1152 opaque);
1153 }