Merge commit 'fj/mesa-next'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_inlines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_buffer.h"
87 #include "lp_state.h"
88 #include "lp_tex_sample.h"
89 #include "lp_debug.h"
90
91
92 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
93 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
94
95
96 /*
97 * Derive from the quad's upper left scalar coordinates the coordinates for
98 * all other quad pixels
99 */
100 static void
101 generate_pos0(LLVMBuilderRef builder,
102 LLVMValueRef x,
103 LLVMValueRef y,
104 LLVMValueRef *x0,
105 LLVMValueRef *y0)
106 {
107 LLVMTypeRef int_elem_type = LLVMInt32Type();
108 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
109 LLVMTypeRef elem_type = LLVMFloatType();
110 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
111 LLVMValueRef x_offsets[QUAD_SIZE];
112 LLVMValueRef y_offsets[QUAD_SIZE];
113 unsigned i;
114
115 x = lp_build_broadcast(builder, int_vec_type, x);
116 y = lp_build_broadcast(builder, int_vec_type, y);
117
118 for(i = 0; i < QUAD_SIZE; ++i) {
119 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
120 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
121 }
122
123 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
124 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
125
126 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
127 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
128 }
129
130
131 /**
132 * Generate the depth test.
133 */
134 static void
135 generate_depth(LLVMBuilderRef builder,
136 const struct lp_fragment_shader_variant_key *key,
137 struct lp_type src_type,
138 struct lp_build_mask_context *mask,
139 LLVMValueRef src,
140 LLVMValueRef dst_ptr)
141 {
142 const struct util_format_description *format_desc;
143 struct lp_type dst_type;
144
145 if(!key->depth.enabled)
146 return;
147
148 format_desc = util_format_description(key->zsbuf_format);
149 assert(format_desc);
150
151 /*
152 * Depths are expected to be between 0 and 1, even if they are stored in
153 * floats. Setting these bits here will ensure that the lp_build_conv() call
154 * below won't try to unnecessarily clamp the incoming values.
155 */
156 if(src_type.floating) {
157 src_type.sign = FALSE;
158 src_type.norm = TRUE;
159 }
160 else {
161 assert(!src_type.sign);
162 assert(src_type.norm);
163 }
164
165 /* Pick the depth type. */
166 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
167
168 /* FIXME: Cope with a depth test type with a different bit width. */
169 assert(dst_type.width == src_type.width);
170 assert(dst_type.length == src_type.length);
171
172 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
173
174 dst_ptr = LLVMBuildBitCast(builder,
175 dst_ptr,
176 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
177
178 lp_build_depth_test(builder,
179 &key->depth,
180 dst_type,
181 format_desc,
182 mask,
183 src,
184 dst_ptr);
185 }
186
187
188 /**
189 * Generate the fragment shader, depth/stencil test, and alpha tests.
190 */
191 static void
192 generate_fs(struct llvmpipe_context *lp,
193 struct lp_fragment_shader *shader,
194 const struct lp_fragment_shader_variant_key *key,
195 LLVMBuilderRef builder,
196 struct lp_type type,
197 LLVMValueRef context_ptr,
198 unsigned i,
199 const struct lp_build_interp_soa_context *interp,
200 struct lp_build_sampler_soa *sampler,
201 LLVMValueRef *pmask,
202 LLVMValueRef *color,
203 LLVMValueRef depth_ptr)
204 {
205 const struct tgsi_token *tokens = shader->base.tokens;
206 LLVMTypeRef elem_type;
207 LLVMTypeRef vec_type;
208 LLVMTypeRef int_vec_type;
209 LLVMValueRef consts_ptr;
210 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
211 LLVMValueRef z = interp->pos[2];
212 struct lp_build_flow_context *flow;
213 struct lp_build_mask_context mask;
214 boolean early_depth_test;
215 unsigned attrib;
216 unsigned chan;
217
218 elem_type = lp_build_elem_type(type);
219 vec_type = lp_build_vec_type(type);
220 int_vec_type = lp_build_int_vec_type(type);
221
222 consts_ptr = lp_jit_context_constants(builder, context_ptr);
223
224 flow = lp_build_flow_create(builder);
225
226 memset(outputs, 0, sizeof outputs);
227
228 lp_build_flow_scope_begin(flow);
229
230 /* Declare the color and z variables */
231 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
232 color[chan] = LLVMGetUndef(vec_type);
233 lp_build_flow_scope_declare(flow, &color[chan]);
234 }
235 lp_build_flow_scope_declare(flow, &z);
236
237 lp_build_mask_begin(&mask, flow, type, *pmask);
238
239 early_depth_test =
240 key->depth.enabled &&
241 !key->alpha.enabled &&
242 !shader->info.uses_kill &&
243 !shader->info.writes_z;
244
245 if(early_depth_test)
246 generate_depth(builder, key,
247 type, &mask,
248 z, depth_ptr);
249
250 lp_build_tgsi_soa(builder, tokens, type, &mask,
251 consts_ptr, interp->pos, interp->inputs,
252 outputs, sampler);
253
254 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
255 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
256 if(outputs[attrib][chan]) {
257 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
258
259 switch (shader->info.output_semantic_name[attrib]) {
260 case TGSI_SEMANTIC_COLOR:
261 {
262 unsigned cbuf = shader->info.output_semantic_index[attrib];
263
264 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
265
266 /* Alpha test */
267 /* XXX: should the alpha reference value be passed separately? */
268 if(cbuf == 0 && chan == 3) {
269 LLVMValueRef alpha = outputs[attrib][chan];
270 LLVMValueRef alpha_ref_value;
271 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
272 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
273 lp_build_alpha_test(builder, &key->alpha, type,
274 &mask, alpha, alpha_ref_value);
275 }
276
277 if(cbuf == 0)
278 color[chan] = outputs[attrib][chan];
279
280 break;
281 }
282
283 case TGSI_SEMANTIC_POSITION:
284 if(chan == 2)
285 z = outputs[attrib][chan];
286 break;
287 }
288 }
289 }
290 }
291
292 if(!early_depth_test)
293 generate_depth(builder, key,
294 type, &mask,
295 z, depth_ptr);
296
297 lp_build_mask_end(&mask);
298
299 lp_build_flow_scope_end(flow);
300
301 lp_build_flow_destroy(flow);
302
303 *pmask = mask.value;
304
305 }
306
307
308 /**
309 * Generate color blending and color output.
310 */
311 static void
312 generate_blend(const struct pipe_blend_state *blend,
313 LLVMBuilderRef builder,
314 struct lp_type type,
315 LLVMValueRef context_ptr,
316 LLVMValueRef mask,
317 LLVMValueRef *src,
318 LLVMValueRef dst_ptr)
319 {
320 struct lp_build_context bld;
321 struct lp_build_flow_context *flow;
322 struct lp_build_mask_context mask_ctx;
323 LLVMTypeRef vec_type;
324 LLVMTypeRef int_vec_type;
325 LLVMValueRef const_ptr;
326 LLVMValueRef con[4];
327 LLVMValueRef dst[4];
328 LLVMValueRef res[4];
329 unsigned chan;
330
331 lp_build_context_init(&bld, builder, type);
332
333 flow = lp_build_flow_create(builder);
334 lp_build_mask_begin(&mask_ctx, flow, type, mask);
335
336 vec_type = lp_build_vec_type(type);
337 int_vec_type = lp_build_int_vec_type(type);
338
339 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
340 const_ptr = LLVMBuildBitCast(builder, const_ptr,
341 LLVMPointerType(vec_type, 0), "");
342
343 for(chan = 0; chan < 4; ++chan) {
344 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
345 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
346
347 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
348
349 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
350 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
351 }
352
353 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
354
355 for(chan = 0; chan < 4; ++chan) {
356 if(blend->rt[0].colormask & (1 << chan)) {
357 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
358 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
359 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
360 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
361 }
362 }
363
364 lp_build_mask_end(&mask_ctx);
365 lp_build_flow_destroy(flow);
366 }
367
368
369 /**
370 * Generate the runtime callable function for the whole fragment pipeline.
371 */
372 static struct lp_fragment_shader_variant *
373 generate_fragment(struct llvmpipe_context *lp,
374 struct lp_fragment_shader *shader,
375 const struct lp_fragment_shader_variant_key *key)
376 {
377 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
378 struct lp_fragment_shader_variant *variant;
379 struct lp_type fs_type;
380 struct lp_type blend_type;
381 LLVMTypeRef fs_elem_type;
382 LLVMTypeRef fs_vec_type;
383 LLVMTypeRef fs_int_vec_type;
384 LLVMTypeRef blend_vec_type;
385 LLVMTypeRef blend_int_vec_type;
386 LLVMTypeRef arg_types[9];
387 LLVMTypeRef func_type;
388 LLVMValueRef context_ptr;
389 LLVMValueRef x;
390 LLVMValueRef y;
391 LLVMValueRef a0_ptr;
392 LLVMValueRef dadx_ptr;
393 LLVMValueRef dady_ptr;
394 LLVMValueRef mask_ptr;
395 LLVMValueRef color_ptr;
396 LLVMValueRef depth_ptr;
397 LLVMBasicBlockRef block;
398 LLVMBuilderRef builder;
399 LLVMValueRef x0;
400 LLVMValueRef y0;
401 struct lp_build_sampler_soa *sampler;
402 struct lp_build_interp_soa_context interp;
403 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
404 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
405 LLVMValueRef blend_mask;
406 LLVMValueRef blend_in_color[NUM_CHANNELS];
407 unsigned num_fs;
408 unsigned i;
409 unsigned chan;
410
411 if (LP_DEBUG & DEBUG_JIT) {
412 tgsi_dump(shader->base.tokens, 0);
413 if(key->depth.enabled) {
414 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
415 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
416 debug_printf("depth.writemask = %u\n", key->depth.writemask);
417 }
418 if(key->alpha.enabled) {
419 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
420 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
421 }
422 if(key->blend.logicop_enable) {
423 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
424 }
425 else if(key->blend.rt[0].blend_enable) {
426 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rt[0].rgb_func, TRUE));
427 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].rgb_src_factor, TRUE));
428 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].rgb_dst_factor, TRUE));
429 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.rt[0].alpha_func, TRUE));
430 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].alpha_src_factor, TRUE));
431 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rt[0].alpha_dst_factor, TRUE));
432 }
433 debug_printf("blend.colormask = 0x%x\n", key->blend.rt[0].colormask);
434 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
435 if(key->sampler[i].format) {
436 debug_printf("sampler[%u] = \n", i);
437 debug_printf(" .format = %s\n",
438 pf_name(key->sampler[i].format));
439 debug_printf(" .target = %s\n",
440 debug_dump_tex_target(key->sampler[i].target, TRUE));
441 debug_printf(" .pot = %u %u %u\n",
442 key->sampler[i].pot_width,
443 key->sampler[i].pot_height,
444 key->sampler[i].pot_depth);
445 debug_printf(" .wrap = %s %s %s\n",
446 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
447 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
448 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
449 debug_printf(" .min_img_filter = %s\n",
450 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
451 debug_printf(" .min_mip_filter = %s\n",
452 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
453 debug_printf(" .mag_img_filter = %s\n",
454 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
455 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
456 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
457 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
458 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
459 }
460 }
461 }
462
463 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
464 if(!variant)
465 return NULL;
466
467 variant->shader = shader;
468 memcpy(&variant->key, key, sizeof *key);
469
470 /* TODO: actually pick these based on the fs and color buffer
471 * characteristics. */
472
473 memset(&fs_type, 0, sizeof fs_type);
474 fs_type.floating = TRUE; /* floating point values */
475 fs_type.sign = TRUE; /* values are signed */
476 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
477 fs_type.width = 32; /* 32-bit float */
478 fs_type.length = 4; /* 4 element per vector */
479 num_fs = 4;
480
481 memset(&blend_type, 0, sizeof blend_type);
482 blend_type.floating = FALSE; /* values are integers */
483 blend_type.sign = FALSE; /* values are unsigned */
484 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
485 blend_type.width = 8; /* 8-bit ubyte values */
486 blend_type.length = 16; /* 16 elements per vector */
487
488 /*
489 * Generate the function prototype. Any change here must be reflected in
490 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
491 */
492
493 fs_elem_type = lp_build_elem_type(fs_type);
494 fs_vec_type = lp_build_vec_type(fs_type);
495 fs_int_vec_type = lp_build_int_vec_type(fs_type);
496
497 blend_vec_type = lp_build_vec_type(blend_type);
498 blend_int_vec_type = lp_build_int_vec_type(blend_type);
499
500 arg_types[0] = screen->context_ptr_type; /* context */
501 arg_types[1] = LLVMInt32Type(); /* x */
502 arg_types[2] = LLVMInt32Type(); /* y */
503 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
504 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
505 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
506 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
507 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
508 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
509
510 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
511
512 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
513 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
514 for(i = 0; i < Elements(arg_types); ++i)
515 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
516 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
517
518 context_ptr = LLVMGetParam(variant->function, 0);
519 x = LLVMGetParam(variant->function, 1);
520 y = LLVMGetParam(variant->function, 2);
521 a0_ptr = LLVMGetParam(variant->function, 3);
522 dadx_ptr = LLVMGetParam(variant->function, 4);
523 dady_ptr = LLVMGetParam(variant->function, 5);
524 mask_ptr = LLVMGetParam(variant->function, 6);
525 color_ptr = LLVMGetParam(variant->function, 7);
526 depth_ptr = LLVMGetParam(variant->function, 8);
527
528 lp_build_name(context_ptr, "context");
529 lp_build_name(x, "x");
530 lp_build_name(y, "y");
531 lp_build_name(a0_ptr, "a0");
532 lp_build_name(dadx_ptr, "dadx");
533 lp_build_name(dady_ptr, "dady");
534 lp_build_name(mask_ptr, "mask");
535 lp_build_name(color_ptr, "color");
536 lp_build_name(depth_ptr, "depth");
537
538 /*
539 * Function body
540 */
541
542 block = LLVMAppendBasicBlock(variant->function, "entry");
543 builder = LLVMCreateBuilder();
544 LLVMPositionBuilderAtEnd(builder, block);
545
546 generate_pos0(builder, x, y, &x0, &y0);
547
548 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
549 a0_ptr, dadx_ptr, dady_ptr,
550 x0, y0, 2, 0);
551
552 /* code generated texture sampling */
553 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
554
555 for(i = 0; i < num_fs; ++i) {
556 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
557 LLVMValueRef out_color[NUM_CHANNELS];
558 LLVMValueRef depth_ptr_i;
559
560 if(i != 0)
561 lp_build_interp_soa_update(&interp);
562
563 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
564 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
565
566 generate_fs(lp, shader, key,
567 builder,
568 fs_type,
569 context_ptr,
570 i,
571 &interp,
572 sampler,
573 &fs_mask[i],
574 out_color,
575 depth_ptr_i);
576
577 for(chan = 0; chan < NUM_CHANNELS; ++chan)
578 fs_out_color[chan][i] = out_color[chan];
579 }
580
581 sampler->destroy(sampler);
582
583 /*
584 * Convert the fs's output color and mask to fit to the blending type.
585 */
586
587 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
588 lp_build_conv(builder, fs_type, blend_type,
589 fs_out_color[chan], num_fs,
590 &blend_in_color[chan], 1);
591 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
592
593 }
594
595 lp_build_conv_mask(builder, fs_type, blend_type,
596 fs_mask, num_fs,
597 &blend_mask, 1);
598
599 /*
600 * Blending.
601 */
602
603 generate_blend(&key->blend,
604 builder,
605 blend_type,
606 context_ptr,
607 blend_mask,
608 blend_in_color,
609 color_ptr);
610
611 LLVMBuildRetVoid(builder);
612
613 LLVMDisposeBuilder(builder);
614
615 /*
616 * Translate the LLVM IR into machine code.
617 */
618
619 #ifdef DEBUG
620 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
621 LLVMDumpValue(variant->function);
622 assert(0);
623 }
624 #endif
625
626 LLVMRunFunctionPassManager(screen->pass, variant->function);
627
628 if (LP_DEBUG & DEBUG_JIT) {
629 LLVMDumpValue(variant->function);
630 debug_printf("\n");
631 }
632
633 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
634
635 if (LP_DEBUG & DEBUG_ASM)
636 lp_disassemble(variant->jit_function);
637
638 variant->next = shader->variants;
639 shader->variants = variant;
640
641 return variant;
642 }
643
644
645 void *
646 llvmpipe_create_fs_state(struct pipe_context *pipe,
647 const struct pipe_shader_state *templ)
648 {
649 struct lp_fragment_shader *shader;
650
651 shader = CALLOC_STRUCT(lp_fragment_shader);
652 if (!shader)
653 return NULL;
654
655 /* get/save the summary info for this shader */
656 tgsi_scan_shader(templ->tokens, &shader->info);
657
658 /* we need to keep a local copy of the tokens */
659 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
660
661 return shader;
662 }
663
664
665 void
666 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
667 {
668 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
669
670 if (llvmpipe->fs == fs)
671 return;
672
673 draw_flush(llvmpipe->draw);
674
675 llvmpipe->fs = fs;
676
677 llvmpipe->dirty |= LP_NEW_FS;
678 }
679
680
681 void
682 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
683 {
684 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
685 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
686 struct lp_fragment_shader *shader = fs;
687 struct lp_fragment_shader_variant *variant;
688
689 assert(fs != llvmpipe->fs);
690 (void) llvmpipe;
691
692 variant = shader->variants;
693 while(variant) {
694 struct lp_fragment_shader_variant *next = variant->next;
695
696 if(variant->function) {
697 if(variant->jit_function)
698 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
699 LLVMDeleteFunction(variant->function);
700 }
701
702 FREE(variant);
703
704 variant = next;
705 }
706
707 FREE((void *) shader->base.tokens);
708 FREE(shader);
709 }
710
711
712
713 void
714 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
715 uint shader, uint index,
716 struct pipe_buffer *constants)
717 {
718 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
719 unsigned size = constants ? constants->size : 0;
720 const void *data = constants ? llvmpipe_buffer(constants)->data : NULL;
721
722 assert(shader < PIPE_SHADER_TYPES);
723 assert(index == 0);
724
725 draw_flush(llvmpipe->draw);
726
727 /* note: reference counting */
728 pipe_buffer_reference(&llvmpipe->constants[shader], constants);
729
730 if(shader == PIPE_SHADER_FRAGMENT) {
731 llvmpipe->jit_context.constants = data;
732 }
733
734 if(shader == PIPE_SHADER_VERTEX) {
735 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX, 0,
736 data, size);
737 }
738
739 llvmpipe->dirty |= LP_NEW_CONSTANTS;
740 }
741
742
743 /**
744 * We need to generate several variants of the fragment pipeline to match
745 * all the combinations of the contributing state atoms.
746 *
747 * TODO: there is actually no reason to tie this to context state -- the
748 * generated code could be cached globally in the screen.
749 */
750 static void
751 make_variant_key(struct llvmpipe_context *lp,
752 struct lp_fragment_shader *shader,
753 struct lp_fragment_shader_variant_key *key)
754 {
755 unsigned i;
756
757 memset(key, 0, sizeof *key);
758
759 if(lp->framebuffer.zsbuf &&
760 lp->depth_stencil->depth.enabled) {
761 key->zsbuf_format = lp->framebuffer.zsbuf->format;
762 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
763 }
764
765 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
766 if(key->alpha.enabled)
767 key->alpha.func = lp->depth_stencil->alpha.func;
768 /* alpha.ref_value is passed in jit_context */
769
770 if(lp->framebuffer.cbufs[0]) {
771 const struct util_format_description *format_desc;
772 unsigned chan;
773
774 memcpy(&key->blend, lp->blend, sizeof key->blend);
775
776 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
777 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
778 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
779
780 /* mask out color channels not present in the color buffer */
781 for(chan = 0; chan < 4; ++chan) {
782 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
783 if(swizzle > 4)
784 key->blend.rt[0].colormask &= ~(1 << chan);
785 }
786 }
787
788 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
789 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
790 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
791 }
792
793
794 void
795 llvmpipe_update_fs(struct llvmpipe_context *lp)
796 {
797 struct lp_fragment_shader *shader = lp->fs;
798 struct lp_fragment_shader_variant_key key;
799 struct lp_fragment_shader_variant *variant;
800
801 make_variant_key(lp, shader, &key);
802
803 variant = shader->variants;
804 while(variant) {
805 if(memcmp(&variant->key, &key, sizeof key) == 0)
806 break;
807
808 variant = variant->next;
809 }
810
811 if(!variant)
812 variant = generate_fragment(lp, shader, &key);
813
814 shader->current = variant;
815 }