Merge branch 'mesa_7_6_branch'
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include "pipe/p_defines.h"
62 #include "util/u_memory.h"
63 #include "util/u_format.h"
64 #include "util/u_debug_dump.h"
65 #include "pipe/internal/p_winsys_screen.h"
66 #include "pipe/p_shader_tokens.h"
67 #include "draw/draw_context.h"
68 #include "tgsi/tgsi_dump.h"
69 #include "tgsi/tgsi_scan.h"
70 #include "tgsi/tgsi_parse.h"
71 #include "lp_bld_type.h"
72 #include "lp_bld_const.h"
73 #include "lp_bld_conv.h"
74 #include "lp_bld_intr.h"
75 #include "lp_bld_logic.h"
76 #include "lp_bld_depth.h"
77 #include "lp_bld_interp.h"
78 #include "lp_bld_tgsi.h"
79 #include "lp_bld_alpha.h"
80 #include "lp_bld_blend.h"
81 #include "lp_bld_swizzle.h"
82 #include "lp_bld_flow.h"
83 #include "lp_bld_debug.h"
84 #include "lp_screen.h"
85 #include "lp_context.h"
86 #include "lp_state.h"
87 #include "lp_quad.h"
88 #include "lp_tex_sample.h"
89
90
91 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
92 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
93
94
95 /*
96 * Derive from the quad's upper left scalar coordinates the coordinates for
97 * all other quad pixels
98 */
99 static void
100 generate_pos0(LLVMBuilderRef builder,
101 LLVMValueRef x,
102 LLVMValueRef y,
103 LLVMValueRef *x0,
104 LLVMValueRef *y0)
105 {
106 LLVMTypeRef int_elem_type = LLVMInt32Type();
107 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
108 LLVMTypeRef elem_type = LLVMFloatType();
109 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
110 LLVMValueRef x_offsets[QUAD_SIZE];
111 LLVMValueRef y_offsets[QUAD_SIZE];
112 unsigned i;
113
114 x = lp_build_broadcast(builder, int_vec_type, x);
115 y = lp_build_broadcast(builder, int_vec_type, y);
116
117 for(i = 0; i < QUAD_SIZE; ++i) {
118 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
119 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
120 }
121
122 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
123 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
124
125 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
126 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
127 }
128
129
130 /**
131 * Generate the depth test.
132 */
133 static void
134 generate_depth(LLVMBuilderRef builder,
135 const struct lp_fragment_shader_variant_key *key,
136 struct lp_type src_type,
137 struct lp_build_mask_context *mask,
138 LLVMValueRef src,
139 LLVMValueRef dst_ptr)
140 {
141 const struct util_format_description *format_desc;
142 struct lp_type dst_type;
143
144 if(!key->depth.enabled)
145 return;
146
147 format_desc = util_format_description(key->zsbuf_format);
148 assert(format_desc);
149
150 /* Pick the depth type. */
151 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
152
153 /* FIXME: Cope with a depth test type with a different bit width. */
154 assert(dst_type.width == src_type.width);
155 assert(dst_type.length == src_type.length);
156
157 #if 1
158 src = lp_build_clamped_float_to_unsigned_norm(builder,
159 src_type,
160 dst_type.width,
161 src);
162 #else
163 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
164 #endif
165
166 lp_build_depth_test(builder,
167 &key->depth,
168 dst_type,
169 format_desc,
170 mask,
171 src,
172 dst_ptr);
173 }
174
175
176 /**
177 * Generate the fragment shader, depth/stencil test, and alpha tests.
178 */
179 static void
180 generate_fs(struct llvmpipe_context *lp,
181 struct lp_fragment_shader *shader,
182 const struct lp_fragment_shader_variant_key *key,
183 LLVMBuilderRef builder,
184 struct lp_type type,
185 LLVMValueRef context_ptr,
186 unsigned i,
187 const struct lp_build_interp_soa_context *interp,
188 struct lp_build_sampler_soa *sampler,
189 LLVMValueRef *pmask,
190 LLVMValueRef *color,
191 LLVMValueRef depth_ptr)
192 {
193 const struct tgsi_token *tokens = shader->base.tokens;
194 LLVMTypeRef elem_type;
195 LLVMTypeRef vec_type;
196 LLVMTypeRef int_vec_type;
197 LLVMValueRef consts_ptr;
198 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
199 LLVMValueRef z = interp->pos[2];
200 struct lp_build_flow_context *flow;
201 struct lp_build_mask_context mask;
202 boolean early_depth_test;
203 unsigned attrib;
204 unsigned chan;
205
206 elem_type = lp_build_elem_type(type);
207 vec_type = lp_build_vec_type(type);
208 int_vec_type = lp_build_int_vec_type(type);
209
210 consts_ptr = lp_jit_context_constants(builder, context_ptr);
211
212 flow = lp_build_flow_create(builder);
213
214 memset(outputs, 0, sizeof outputs);
215
216 lp_build_flow_scope_begin(flow);
217
218 /* Declare the color and z variables */
219 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
220 color[chan] = LLVMGetUndef(vec_type);
221 lp_build_flow_scope_declare(flow, &color[chan]);
222 }
223 lp_build_flow_scope_declare(flow, &z);
224
225 lp_build_mask_begin(&mask, flow, type, *pmask);
226
227 early_depth_test =
228 key->depth.enabled &&
229 !key->alpha.enabled &&
230 !shader->info.uses_kill &&
231 !shader->info.writes_z;
232
233 if(early_depth_test)
234 generate_depth(builder, key,
235 type, &mask,
236 z, depth_ptr);
237
238 lp_build_tgsi_soa(builder, tokens, type, &mask,
239 consts_ptr, interp->pos, interp->inputs,
240 outputs, sampler);
241
242 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
243 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
244 if(outputs[attrib][chan]) {
245 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
246
247 switch (shader->info.output_semantic_name[attrib]) {
248 case TGSI_SEMANTIC_COLOR:
249 {
250 unsigned cbuf = shader->info.output_semantic_index[attrib];
251
252 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
253
254 /* Alpha test */
255 /* XXX: should the alpha reference value be passed separately? */
256 if(cbuf == 0 && chan == 3) {
257 LLVMValueRef alpha = outputs[attrib][chan];
258 LLVMValueRef alpha_ref_value;
259 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
260 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
261 lp_build_alpha_test(builder, &key->alpha, type,
262 &mask, alpha, alpha_ref_value);
263 }
264
265 if(cbuf == 0)
266 color[chan] = outputs[attrib][chan];
267
268 break;
269 }
270
271 case TGSI_SEMANTIC_POSITION:
272 if(chan == 2)
273 z = outputs[attrib][chan];
274 break;
275 }
276 }
277 }
278 }
279
280 if(!early_depth_test)
281 generate_depth(builder, key,
282 type, &mask,
283 z, depth_ptr);
284
285 lp_build_mask_end(&mask);
286
287 lp_build_flow_scope_end(flow);
288
289 lp_build_flow_destroy(flow);
290
291 *pmask = mask.value;
292
293 }
294
295
296 /**
297 * Generate color blending and color output.
298 */
299 static void
300 generate_blend(const struct pipe_blend_state *blend,
301 LLVMBuilderRef builder,
302 struct lp_type type,
303 LLVMValueRef context_ptr,
304 LLVMValueRef mask,
305 LLVMValueRef *src,
306 LLVMValueRef dst_ptr)
307 {
308 struct lp_build_context bld;
309 struct lp_build_flow_context *flow;
310 struct lp_build_mask_context mask_ctx;
311 LLVMTypeRef vec_type;
312 LLVMTypeRef int_vec_type;
313 LLVMValueRef const_ptr;
314 LLVMValueRef con[4];
315 LLVMValueRef dst[4];
316 LLVMValueRef res[4];
317 unsigned chan;
318
319 lp_build_context_init(&bld, builder, type);
320
321 flow = lp_build_flow_create(builder);
322 lp_build_mask_begin(&mask_ctx, flow, type, mask);
323
324 vec_type = lp_build_vec_type(type);
325 int_vec_type = lp_build_int_vec_type(type);
326
327 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
328 const_ptr = LLVMBuildBitCast(builder, const_ptr,
329 LLVMPointerType(vec_type, 0), "");
330
331 for(chan = 0; chan < 4; ++chan) {
332 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
333 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
334
335 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
336
337 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
338 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
339 }
340
341 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
342
343 for(chan = 0; chan < 4; ++chan) {
344 if(blend->colormask & (1 << chan)) {
345 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
346 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
347 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
348 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
349 }
350 }
351
352 lp_build_mask_end(&mask_ctx);
353 lp_build_flow_destroy(flow);
354 }
355
356
357 /**
358 * Generate the runtime callable function for the whole fragment pipeline.
359 */
360 static struct lp_fragment_shader_variant *
361 generate_fragment(struct llvmpipe_context *lp,
362 struct lp_fragment_shader *shader,
363 const struct lp_fragment_shader_variant_key *key)
364 {
365 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
366 struct lp_fragment_shader_variant *variant;
367 struct lp_type fs_type;
368 struct lp_type blend_type;
369 LLVMTypeRef fs_elem_type;
370 LLVMTypeRef fs_vec_type;
371 LLVMTypeRef fs_int_vec_type;
372 LLVMTypeRef blend_vec_type;
373 LLVMTypeRef blend_int_vec_type;
374 LLVMTypeRef arg_types[9];
375 LLVMTypeRef func_type;
376 LLVMValueRef context_ptr;
377 LLVMValueRef x;
378 LLVMValueRef y;
379 LLVMValueRef a0_ptr;
380 LLVMValueRef dadx_ptr;
381 LLVMValueRef dady_ptr;
382 LLVMValueRef mask_ptr;
383 LLVMValueRef color_ptr;
384 LLVMValueRef depth_ptr;
385 LLVMBasicBlockRef block;
386 LLVMBuilderRef builder;
387 LLVMValueRef x0;
388 LLVMValueRef y0;
389 struct lp_build_sampler_soa *sampler;
390 struct lp_build_interp_soa_context interp;
391 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
392 LLVMValueRef fs_out_color[NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
393 LLVMValueRef blend_mask;
394 LLVMValueRef blend_in_color[NUM_CHANNELS];
395 unsigned num_fs;
396 unsigned i;
397 unsigned chan;
398
399 #ifdef DEBUG
400 tgsi_dump(shader->base.tokens, 0);
401 if(key->depth.enabled) {
402 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
403 debug_printf("depth.writemask = %u\n", key->depth.writemask);
404 debug_printf("depth.occlusion_count = %u\n", key->depth.occlusion_count);
405 }
406 if(key->alpha.enabled) {
407 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
408 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
409 }
410 if(key->blend.logicop_enable) {
411 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
412 }
413 else if(key->blend.blend_enable) {
414 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
415 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
416 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
417 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
418 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
419 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
420 }
421 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
422 #endif
423
424 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
425 if(!variant)
426 return NULL;
427
428 variant->shader = shader;
429 memcpy(&variant->key, key, sizeof *key);
430
431 /* TODO: actually pick these based on the fs and color buffer
432 * characteristics. */
433
434 memset(&fs_type, 0, sizeof fs_type);
435 fs_type.floating = TRUE; /* floating point values */
436 fs_type.sign = TRUE; /* values are signed */
437 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
438 fs_type.width = 32; /* 32-bit float */
439 fs_type.length = 4; /* 4 element per vector */
440 num_fs = 4;
441
442 memset(&blend_type, 0, sizeof blend_type);
443 blend_type.floating = FALSE; /* values are integers */
444 blend_type.sign = FALSE; /* values are unsigned */
445 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
446 blend_type.width = 8; /* 8-bit ubyte values */
447 blend_type.length = 16; /* 16 elements per vector */
448
449 /*
450 * Generate the function prototype. Any change here must be reflected in
451 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
452 */
453
454 fs_elem_type = lp_build_elem_type(fs_type);
455 fs_vec_type = lp_build_vec_type(fs_type);
456 fs_int_vec_type = lp_build_int_vec_type(fs_type);
457
458 blend_vec_type = lp_build_vec_type(blend_type);
459 blend_int_vec_type = lp_build_int_vec_type(blend_type);
460
461 arg_types[0] = screen->context_ptr_type; /* context */
462 arg_types[1] = LLVMInt32Type(); /* x */
463 arg_types[2] = LLVMInt32Type(); /* y */
464 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
465 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
466 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
467 arg_types[6] = LLVMPointerType(fs_int_vec_type, 0); /* mask */
468 arg_types[7] = LLVMPointerType(blend_vec_type, 0); /* color */
469 arg_types[8] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
470
471 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
472
473 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
474 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
475 for(i = 0; i < Elements(arg_types); ++i)
476 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
477 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
478
479 context_ptr = LLVMGetParam(variant->function, 0);
480 x = LLVMGetParam(variant->function, 1);
481 y = LLVMGetParam(variant->function, 2);
482 a0_ptr = LLVMGetParam(variant->function, 3);
483 dadx_ptr = LLVMGetParam(variant->function, 4);
484 dady_ptr = LLVMGetParam(variant->function, 5);
485 mask_ptr = LLVMGetParam(variant->function, 6);
486 color_ptr = LLVMGetParam(variant->function, 7);
487 depth_ptr = LLVMGetParam(variant->function, 8);
488
489 lp_build_name(context_ptr, "context");
490 lp_build_name(x, "x");
491 lp_build_name(y, "y");
492 lp_build_name(a0_ptr, "a0");
493 lp_build_name(dadx_ptr, "dadx");
494 lp_build_name(dady_ptr, "dady");
495 lp_build_name(mask_ptr, "mask");
496 lp_build_name(color_ptr, "color");
497 lp_build_name(depth_ptr, "depth");
498
499 /*
500 * Function body
501 */
502
503 block = LLVMAppendBasicBlock(variant->function, "entry");
504 builder = LLVMCreateBuilder();
505 LLVMPositionBuilderAtEnd(builder, block);
506
507 generate_pos0(builder, x, y, &x0, &y0);
508
509 lp_build_interp_soa_init(&interp, shader->base.tokens, builder, fs_type,
510 a0_ptr, dadx_ptr, dady_ptr,
511 x0, y0, 2, 0);
512
513 #if 0
514 /* C texture sampling */
515 sampler = lp_c_sampler_soa_create(context_ptr);
516 #else
517 /* code generated texture sampling */
518 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
519 #endif
520
521 for(i = 0; i < num_fs; ++i) {
522 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
523 LLVMValueRef out_color[NUM_CHANNELS];
524 LLVMValueRef depth_ptr_i;
525
526 if(i != 0)
527 lp_build_interp_soa_update(&interp);
528
529 fs_mask[i] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, mask_ptr, &index, 1, ""), "");
530 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
531
532 generate_fs(lp, shader, key,
533 builder,
534 fs_type,
535 context_ptr,
536 i,
537 &interp,
538 sampler,
539 &fs_mask[i],
540 out_color,
541 depth_ptr_i);
542
543 for(chan = 0; chan < NUM_CHANNELS; ++chan)
544 fs_out_color[chan][i] = out_color[chan];
545 }
546
547 sampler->destroy(sampler);
548
549 /*
550 * Convert the fs's output color and mask to fit to the blending type.
551 */
552
553 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
554 lp_build_conv(builder, fs_type, blend_type,
555 fs_out_color[chan], num_fs,
556 &blend_in_color[chan], 1);
557 lp_build_name(blend_in_color[chan], "color.%c", "rgba"[chan]);
558
559 }
560
561 lp_build_conv_mask(builder, fs_type, blend_type,
562 fs_mask, num_fs,
563 &blend_mask, 1);
564
565 /*
566 * Blending.
567 */
568
569 generate_blend(&key->blend,
570 builder,
571 blend_type,
572 context_ptr,
573 blend_mask,
574 blend_in_color,
575 color_ptr);
576
577 LLVMBuildRetVoid(builder);
578
579 LLVMDisposeBuilder(builder);
580
581 /*
582 * Translate the LLVM IR into machine code.
583 */
584
585 LLVMRunFunctionPassManager(screen->pass, variant->function);
586
587 #ifdef DEBUG
588 LLVMDumpValue(variant->function);
589 debug_printf("\n");
590 #endif
591
592 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
593 LLVMDumpValue(variant->function);
594 abort();
595 }
596
597 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
598
599 #ifdef DEBUG
600 lp_disassemble(variant->jit_function);
601 #endif
602
603 variant->next = shader->variants;
604 shader->variants = variant;
605
606 return variant;
607 }
608
609
610 void *
611 llvmpipe_create_fs_state(struct pipe_context *pipe,
612 const struct pipe_shader_state *templ)
613 {
614 struct lp_fragment_shader *shader;
615
616 shader = CALLOC_STRUCT(lp_fragment_shader);
617 if (!shader)
618 return NULL;
619
620 /* get/save the summary info for this shader */
621 tgsi_scan_shader(templ->tokens, &shader->info);
622
623 /* we need to keep a local copy of the tokens */
624 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
625
626 return shader;
627 }
628
629
630 void
631 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
632 {
633 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
634
635 llvmpipe->fs = (struct lp_fragment_shader *) fs;
636
637 llvmpipe->dirty |= LP_NEW_FS;
638 }
639
640
641 void
642 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
643 {
644 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
645 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
646 struct lp_fragment_shader *shader = fs;
647 struct lp_fragment_shader_variant *variant;
648
649 assert(fs != llvmpipe->fs);
650
651 variant = shader->variants;
652 while(variant) {
653 struct lp_fragment_shader_variant *next = variant->next;
654
655 if(variant->function) {
656 if(variant->jit_function)
657 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
658 LLVMDeleteFunction(variant->function);
659 }
660
661 FREE(variant);
662
663 variant = next;
664 }
665
666 FREE((void *) shader->base.tokens);
667 FREE(shader);
668 }
669
670
671
672 void
673 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
674 uint shader, uint index,
675 const struct pipe_constant_buffer *buf)
676 {
677 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
678
679 assert(shader < PIPE_SHADER_TYPES);
680 assert(index == 0);
681
682 /* note: reference counting */
683 pipe_buffer_reference(&llvmpipe->constants[shader].buffer,
684 buf ? buf->buffer : NULL);
685
686 llvmpipe->dirty |= LP_NEW_CONSTANTS;
687 }
688
689
690 /**
691 * We need to generate several variants of the fragment pipeline to match
692 * all the combinations of the contributing state atoms.
693 *
694 * TODO: there is actually no reason to tie this to context state -- the
695 * generated code could be cached globally in the screen.
696 */
697 static void
698 make_variant_key(struct llvmpipe_context *lp,
699 struct lp_fragment_shader *shader,
700 struct lp_fragment_shader_variant_key *key)
701 {
702 unsigned i;
703
704 memset(key, 0, sizeof *key);
705
706 if(lp->framebuffer.zsbuf &&
707 lp->depth_stencil->depth.enabled) {
708 key->zsbuf_format = lp->framebuffer.zsbuf->format;
709 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
710 }
711
712 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
713 if(key->alpha.enabled)
714 key->alpha.func = lp->depth_stencil->alpha.func;
715 /* alpha.ref_value is passed in jit_context */
716
717 if(lp->framebuffer.cbufs[0]) {
718 const struct util_format_description *format_desc;
719 unsigned chan;
720
721 memcpy(&key->blend, lp->blend, sizeof key->blend);
722
723 format_desc = util_format_description(lp->framebuffer.cbufs[0]->format);
724 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
725 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
726
727 /* mask out color channels not present in the color buffer */
728 for(chan = 0; chan < 4; ++chan) {
729 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
730 if(swizzle > 4)
731 key->blend.colormask &= ~(1 << chan);
732 }
733 }
734
735 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
736 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
737 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
738 }
739
740
741 void
742 llvmpipe_update_fs(struct llvmpipe_context *lp)
743 {
744 struct lp_fragment_shader *shader = lp->fs;
745 struct lp_fragment_shader_variant_key key;
746 struct lp_fragment_shader_variant *variant;
747
748 make_variant_key(lp, shader, &key);
749
750 variant = shader->variants;
751 while(variant) {
752 if(memcmp(&variant->key, &key, sizeof key) == 0)
753 break;
754
755 variant = variant->next;
756 }
757
758 if(!variant)
759 variant = generate_fragment(lp, shader, &key);
760
761 shader->current = variant;
762 }