llvmpipe: refactor generate_fragment() code
[mesa.git] / src / gallium / drivers / llvmpipe / lp_state_fs.c
1 /**************************************************************************
2 *
3 * Copyright 2009 VMware, Inc.
4 * Copyright 2007 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * @file
31 * Code generate the whole fragment pipeline.
32 *
33 * The fragment pipeline consists of the following stages:
34 * - stipple (TBI)
35 * - early depth test
36 * - fragment shader
37 * - alpha test
38 * - depth/stencil test (stencil TBI)
39 * - blending
40 *
41 * This file has only the glue to assembly the fragment pipeline. The actual
42 * plumbing of converting Gallium state into LLVM IR is done elsewhere, in the
43 * lp_bld_*.[ch] files, and in a complete generic and reusable way. Here we
44 * muster the LLVM JIT execution engine to create a function that follows an
45 * established binary interface and that can be called from C directly.
46 *
47 * A big source of complexity here is that we often want to run different
48 * stages with different precisions and data types and precisions. For example,
49 * the fragment shader needs typically to be done in floats, but the
50 * depth/stencil test and blending is better done in the type that most closely
51 * matches the depth/stencil and color buffer respectively.
52 *
53 * Since the width of a SIMD vector register stays the same regardless of the
54 * element type, different types imply different number of elements, so we must
55 * code generate more instances of the stages with larger types to be able to
56 * feed/consume the stages with smaller types.
57 *
58 * @author Jose Fonseca <jfonseca@vmware.com>
59 */
60
61 #include <limits.h>
62 #include "pipe/p_defines.h"
63 #include "util/u_memory.h"
64 #include "util/u_format.h"
65 #include "util/u_debug_dump.h"
66 #include "pipe/internal/p_winsys_screen.h"
67 #include "pipe/p_shader_tokens.h"
68 #include "draw/draw_context.h"
69 #include "tgsi/tgsi_dump.h"
70 #include "tgsi/tgsi_scan.h"
71 #include "tgsi/tgsi_parse.h"
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_conv.h"
75 #include "lp_bld_intr.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_depth.h"
78 #include "lp_bld_interp.h"
79 #include "lp_bld_tgsi.h"
80 #include "lp_bld_alpha.h"
81 #include "lp_bld_blend.h"
82 #include "lp_bld_swizzle.h"
83 #include "lp_bld_flow.h"
84 #include "lp_bld_debug.h"
85 #include "lp_screen.h"
86 #include "lp_context.h"
87 #include "lp_buffer.h"
88 #include "lp_setup.h"
89 #include "lp_state.h"
90 #include "lp_tex_sample.h"
91 #include "lp_debug.h"
92
93
94 static const unsigned char quad_offset_x[4] = {0, 1, 0, 1};
95 static const unsigned char quad_offset_y[4] = {0, 0, 1, 1};
96
97
98 /*
99 * Derive from the quad's upper left scalar coordinates the coordinates for
100 * all other quad pixels
101 */
102 static void
103 generate_pos0(LLVMBuilderRef builder,
104 LLVMValueRef x,
105 LLVMValueRef y,
106 LLVMValueRef *x0,
107 LLVMValueRef *y0)
108 {
109 LLVMTypeRef int_elem_type = LLVMInt32Type();
110 LLVMTypeRef int_vec_type = LLVMVectorType(int_elem_type, QUAD_SIZE);
111 LLVMTypeRef elem_type = LLVMFloatType();
112 LLVMTypeRef vec_type = LLVMVectorType(elem_type, QUAD_SIZE);
113 LLVMValueRef x_offsets[QUAD_SIZE];
114 LLVMValueRef y_offsets[QUAD_SIZE];
115 unsigned i;
116
117 x = lp_build_broadcast(builder, int_vec_type, x);
118 y = lp_build_broadcast(builder, int_vec_type, y);
119
120 for(i = 0; i < QUAD_SIZE; ++i) {
121 x_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_x[i], 0);
122 y_offsets[i] = LLVMConstInt(int_elem_type, quad_offset_y[i], 0);
123 }
124
125 x = LLVMBuildAdd(builder, x, LLVMConstVector(x_offsets, QUAD_SIZE), "");
126 y = LLVMBuildAdd(builder, y, LLVMConstVector(y_offsets, QUAD_SIZE), "");
127
128 *x0 = LLVMBuildSIToFP(builder, x, vec_type, "");
129 *y0 = LLVMBuildSIToFP(builder, y, vec_type, "");
130 }
131
132
133 /**
134 * Generate the depth test.
135 */
136 static void
137 generate_depth(LLVMBuilderRef builder,
138 const struct lp_fragment_shader_variant_key *key,
139 struct lp_type src_type,
140 struct lp_build_mask_context *mask,
141 LLVMValueRef src,
142 LLVMValueRef dst_ptr)
143 {
144 const struct util_format_description *format_desc;
145 struct lp_type dst_type;
146
147 if(!key->depth.enabled)
148 return;
149
150 format_desc = util_format_description(key->zsbuf_format);
151 assert(format_desc);
152
153 /*
154 * Depths are expected to be between 0 and 1, even if they are stored in
155 * floats. Setting these bits here will ensure that the lp_build_conv() call
156 * below won't try to unnecessarily clamp the incoming values.
157 */
158 if(src_type.floating) {
159 src_type.sign = FALSE;
160 src_type.norm = TRUE;
161 }
162 else {
163 assert(!src_type.sign);
164 assert(src_type.norm);
165 }
166
167 /* Pick the depth type. */
168 dst_type = lp_depth_type(format_desc, src_type.width*src_type.length);
169
170 /* FIXME: Cope with a depth test type with a different bit width. */
171 assert(dst_type.width == src_type.width);
172 assert(dst_type.length == src_type.length);
173
174 lp_build_conv(builder, src_type, dst_type, &src, 1, &src, 1);
175
176 dst_ptr = LLVMBuildBitCast(builder,
177 dst_ptr,
178 LLVMPointerType(lp_build_vec_type(dst_type), 0), "");
179
180 lp_build_depth_test(builder,
181 &key->depth,
182 dst_type,
183 format_desc,
184 mask,
185 src,
186 dst_ptr);
187 }
188
189
190 /**
191 * Generate the code to do inside/outside triangle testing for the
192 * four pixels in a 2x2 quad. This will set the four elements of the
193 * quad mask vector to 0 or ~0.
194 * \param i which quad of the quad group to test, in [0,3]
195 */
196 static void
197 generate_tri_edge_mask(LLVMBuilderRef builder,
198 unsigned i,
199 LLVMValueRef *mask, /* ivec4, out */
200 LLVMValueRef c0, /* int32 */
201 LLVMValueRef c1, /* int32 */
202 LLVMValueRef c2, /* int32 */
203 LLVMValueRef step0_ptr, /* ivec4 */
204 LLVMValueRef step1_ptr, /* ivec4 */
205 LLVMValueRef step2_ptr) /* ivec4 */
206 {
207 /*
208 c0_vec = splat(c0)
209 c1_vec = splat(c1)
210 c2_vec = splat(c2)
211 m0_vec = step0_ptr[i] > c0_vec
212 m1_vec = step1_ptr[i] > c1_vec
213 m2_vec = step2_ptr[i] > c2_vec
214 mask = m0_vec & m1_vec & m2_vec
215 */
216 struct lp_build_flow_context *flow;
217 struct lp_build_if_state ifctx;
218 struct lp_type i32_type;
219 LLVMTypeRef i32vec4_type, mask_type;
220 LLVMValueRef c0_vec, c1_vec, c2_vec;
221 LLVMValueRef not_draw_all;
222 LLVMValueRef in_out_mask;
223
224 assert(i < 4);
225
226 /* int32 vector type */
227 memset(&i32_type, 0, sizeof i32_type);
228 i32_type.floating = FALSE; /* values are integers */
229 i32_type.sign = TRUE; /* values are signed */
230 i32_type.norm = FALSE; /* values are not normalized */
231 i32_type.width = 32; /* 32-bit int values */
232 i32_type.length = 4; /* 4 elements per vector */
233
234 i32vec4_type = lp_build_int32_vec4_type();
235
236 mask_type = LLVMIntType(32 * 4);
237
238 /*
239 * Use a conditional here to do detailed pixel in/out testing.
240 * We only have to do this if c0 != {INT_MIN, INT_MIN, INT_MIN, INT_MIN}
241 */
242 flow = lp_build_flow_create(builder);
243 lp_build_flow_scope_begin(flow);
244
245 {
246 #define OPTIMIZE_IN_OUT_TEST 1
247 #if OPTIMIZE_IN_OUT_TEST
248
249 not_draw_all = LLVMBuildICmp(builder,
250 LLVMIntNE,
251 c0,
252 LLVMConstInt(LLVMInt32Type(), INT_MIN, 0),
253 "");
254
255 in_out_mask = lp_build_int_const_scalar(i32_type, ~0);
256
257
258 lp_build_flow_scope_declare(flow, &in_out_mask);
259
260 lp_build_if(&ifctx, flow, builder, not_draw_all);
261 #endif
262 {
263 LLVMValueRef step0_vec, step1_vec, step2_vec;
264 LLVMValueRef m0_vec, m1_vec, m2_vec;
265 LLVMValueRef index, m;
266
267 /* c0_vec = {c0, c0, c0, c0}
268 * Note that we emit this code four times but LLVM optimizes away
269 * three instances of it.
270 */
271 c0_vec = lp_build_broadcast(builder, i32vec4_type, c0);
272 c1_vec = lp_build_broadcast(builder, i32vec4_type, c1);
273 c2_vec = lp_build_broadcast(builder, i32vec4_type, c2);
274 lp_build_name(c0_vec, "edgeconst0vec");
275 lp_build_name(c1_vec, "edgeconst1vec");
276 lp_build_name(c2_vec, "edgeconst2vec");
277
278
279 index = LLVMConstInt(LLVMInt32Type(), i, 0);
280 step0_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step0_ptr, &index, 1, ""), "");
281 step1_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step1_ptr, &index, 1, ""), "");
282 step2_vec = LLVMBuildLoad(builder, LLVMBuildGEP(builder, step2_ptr, &index, 1, ""), "");
283
284 lp_build_name(step0_vec, "step0vec");
285 lp_build_name(step1_vec, "step1vec");
286 lp_build_name(step2_vec, "step2vec");
287
288 m0_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step0_vec, c0_vec);
289 m1_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step1_vec, c1_vec);
290 m2_vec = lp_build_compare(builder, i32_type, PIPE_FUNC_GREATER, step2_vec, c2_vec);
291
292 m = LLVMBuildAnd(builder, m0_vec, m1_vec, "");
293 in_out_mask = LLVMBuildAnd(builder, m, m2_vec, "");
294 lp_build_name(in_out_mask, "inoutmaskvec");
295
296 /* This is the initial alive/dead pixel mask. Additional bits will get cleared
297 * when the Z test fails, etc.
298 */
299 }
300 #if OPTIMIZE_IN_OUT_TEST
301 lp_build_endif(&ifctx);
302 #endif
303
304 }
305 lp_build_flow_scope_end(flow);
306 lp_build_flow_destroy(flow);
307
308 *mask = in_out_mask;
309 }
310
311
312 /**
313 * Generate the fragment shader, depth/stencil test, and alpha tests.
314 * \param i which quad in the tile, in range [0,3]
315 */
316 static void
317 generate_fs(struct llvmpipe_context *lp,
318 struct lp_fragment_shader *shader,
319 const struct lp_fragment_shader_variant_key *key,
320 LLVMBuilderRef builder,
321 struct lp_type type,
322 LLVMValueRef context_ptr,
323 unsigned i,
324 const struct lp_build_interp_soa_context *interp,
325 struct lp_build_sampler_soa *sampler,
326 LLVMValueRef *pmask,
327 LLVMValueRef (*color)[4],
328 LLVMValueRef depth_ptr,
329 LLVMValueRef c0,
330 LLVMValueRef c1,
331 LLVMValueRef c2,
332 LLVMValueRef step0_ptr,
333 LLVMValueRef step1_ptr,
334 LLVMValueRef step2_ptr)
335 {
336 const struct tgsi_token *tokens = shader->base.tokens;
337 LLVMTypeRef elem_type;
338 LLVMTypeRef vec_type;
339 LLVMTypeRef int_vec_type;
340 LLVMValueRef consts_ptr;
341 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][NUM_CHANNELS];
342 LLVMValueRef z = interp->pos[2];
343 struct lp_build_flow_context *flow;
344 struct lp_build_mask_context mask;
345 boolean early_depth_test;
346 unsigned attrib;
347 unsigned chan;
348 unsigned cbuf;
349
350 assert(i < 4);
351
352 elem_type = lp_build_elem_type(type);
353 vec_type = lp_build_vec_type(type);
354 int_vec_type = lp_build_int_vec_type(type);
355
356 consts_ptr = lp_jit_context_constants(builder, context_ptr);
357
358 flow = lp_build_flow_create(builder);
359
360 memset(outputs, 0, sizeof outputs);
361
362 lp_build_flow_scope_begin(flow);
363
364 /* Declare the color and z variables */
365 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
366 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
367 color[cbuf][chan] = LLVMGetUndef(vec_type);
368 lp_build_flow_scope_declare(flow, &color[cbuf][chan]);
369 }
370 }
371 lp_build_flow_scope_declare(flow, &z);
372
373 /* do triangle edge testing */
374 generate_tri_edge_mask(builder, i, pmask,
375 c0, c1, c2, step0_ptr, step1_ptr, step2_ptr);
376
377 /* 'mask' will control execution based on quad's pixel alive/killed state */
378 lp_build_mask_begin(&mask, flow, type, *pmask);
379
380
381 early_depth_test =
382 key->depth.enabled &&
383 !key->alpha.enabled &&
384 !shader->info.uses_kill &&
385 !shader->info.writes_z;
386
387 if(early_depth_test)
388 generate_depth(builder, key,
389 type, &mask,
390 z, depth_ptr);
391
392 lp_build_tgsi_soa(builder, tokens, type, &mask,
393 consts_ptr, interp->pos, interp->inputs,
394 outputs, sampler);
395
396 for (attrib = 0; attrib < shader->info.num_outputs; ++attrib) {
397 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
398 if(outputs[attrib][chan]) {
399 lp_build_name(outputs[attrib][chan], "output%u.%u.%c", i, attrib, "xyzw"[chan]);
400
401 switch (shader->info.output_semantic_name[attrib]) {
402 case TGSI_SEMANTIC_COLOR:
403 {
404 unsigned cbuf = shader->info.output_semantic_index[attrib];
405
406 lp_build_name(outputs[attrib][chan], "color%u.%u.%c", i, attrib, "rgba"[chan]);
407
408 /* Alpha test */
409 /* XXX: should the alpha reference value be passed separately? */
410 /* XXX: should only test the final assignment to alpha */
411 if(cbuf == 0 && chan == 3) {
412 LLVMValueRef alpha = outputs[attrib][chan];
413 LLVMValueRef alpha_ref_value;
414 alpha_ref_value = lp_jit_context_alpha_ref_value(builder, context_ptr);
415 alpha_ref_value = lp_build_broadcast(builder, vec_type, alpha_ref_value);
416 lp_build_alpha_test(builder, &key->alpha, type,
417 &mask, alpha, alpha_ref_value);
418 }
419
420 color[cbuf][chan] = outputs[attrib][chan];
421 break;
422 }
423
424 case TGSI_SEMANTIC_POSITION:
425 if(chan == 2)
426 z = outputs[attrib][chan];
427 break;
428 }
429 }
430 }
431 }
432
433 if(!early_depth_test)
434 generate_depth(builder, key,
435 type, &mask,
436 z, depth_ptr);
437
438 lp_build_mask_end(&mask);
439
440 lp_build_flow_scope_end(flow);
441
442 lp_build_flow_destroy(flow);
443
444 *pmask = mask.value;
445
446 }
447
448
449 /**
450 * Generate color blending and color output.
451 */
452 static void
453 generate_blend(const struct pipe_blend_state *blend,
454 LLVMBuilderRef builder,
455 struct lp_type type,
456 LLVMValueRef context_ptr,
457 LLVMValueRef mask,
458 LLVMValueRef *src,
459 LLVMValueRef dst_ptr)
460 {
461 struct lp_build_context bld;
462 struct lp_build_flow_context *flow;
463 struct lp_build_mask_context mask_ctx;
464 LLVMTypeRef vec_type;
465 LLVMTypeRef int_vec_type;
466 LLVMValueRef const_ptr;
467 LLVMValueRef con[4];
468 LLVMValueRef dst[4];
469 LLVMValueRef res[4];
470 unsigned chan;
471
472 lp_build_context_init(&bld, builder, type);
473
474 flow = lp_build_flow_create(builder);
475
476 /* we'll use this mask context to skip blending if all pixels are dead */
477 lp_build_mask_begin(&mask_ctx, flow, type, mask);
478
479 vec_type = lp_build_vec_type(type);
480 int_vec_type = lp_build_int_vec_type(type);
481
482 const_ptr = lp_jit_context_blend_color(builder, context_ptr);
483 const_ptr = LLVMBuildBitCast(builder, const_ptr,
484 LLVMPointerType(vec_type, 0), "");
485
486 for(chan = 0; chan < 4; ++chan) {
487 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
488 con[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, const_ptr, &index, 1, ""), "");
489
490 dst[chan] = LLVMBuildLoad(builder, LLVMBuildGEP(builder, dst_ptr, &index, 1, ""), "");
491
492 lp_build_name(con[chan], "con.%c", "rgba"[chan]);
493 lp_build_name(dst[chan], "dst.%c", "rgba"[chan]);
494 }
495
496 lp_build_blend_soa(builder, blend, type, src, dst, con, res);
497
498 for(chan = 0; chan < 4; ++chan) {
499 if(blend->colormask & (1 << chan)) {
500 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), chan, 0);
501 lp_build_name(res[chan], "res.%c", "rgba"[chan]);
502 res[chan] = lp_build_select(&bld, mask, res[chan], dst[chan]);
503 LLVMBuildStore(builder, res[chan], LLVMBuildGEP(builder, dst_ptr, &index, 1, ""));
504 }
505 }
506
507 lp_build_mask_end(&mask_ctx);
508 lp_build_flow_destroy(flow);
509 }
510
511
512 /**
513 * Generate the runtime callable function for the whole fragment pipeline.
514 * Note that the function which we generate operates on a block of 16
515 * pixels at at time. The block contains 2x2 quads. Each quad contains
516 * 2x2 pixels.
517 */
518 static void
519 generate_fragment(struct llvmpipe_context *lp,
520 struct lp_fragment_shader *shader,
521 struct lp_fragment_shader_variant *variant)
522 {
523 struct llvmpipe_screen *screen = llvmpipe_screen(lp->pipe.screen);
524 const struct lp_fragment_shader_variant_key *key = &variant->key;
525 struct lp_type fs_type;
526 struct lp_type blend_type;
527 LLVMTypeRef fs_elem_type;
528 LLVMTypeRef fs_vec_type;
529 LLVMTypeRef fs_int_vec_type;
530 LLVMTypeRef blend_vec_type;
531 LLVMTypeRef blend_int_vec_type;
532 LLVMTypeRef arg_types[14];
533 LLVMTypeRef func_type;
534 LLVMTypeRef int32_vec4_type = lp_build_int32_vec4_type();
535 LLVMValueRef context_ptr;
536 LLVMValueRef x;
537 LLVMValueRef y;
538 LLVMValueRef a0_ptr;
539 LLVMValueRef dadx_ptr;
540 LLVMValueRef dady_ptr;
541 LLVMValueRef color_ptr_ptr;
542 LLVMValueRef depth_ptr;
543 LLVMValueRef c0, c1, c2, step0_ptr, step1_ptr, step2_ptr;
544 LLVMBasicBlockRef block;
545 LLVMBuilderRef builder;
546 LLVMValueRef x0;
547 LLVMValueRef y0;
548 struct lp_build_sampler_soa *sampler;
549 struct lp_build_interp_soa_context interp;
550 LLVMValueRef fs_mask[LP_MAX_VECTOR_LENGTH];
551 LLVMValueRef fs_out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS][LP_MAX_VECTOR_LENGTH];
552 LLVMValueRef blend_mask;
553 LLVMValueRef blend_in_color[NUM_CHANNELS];
554 unsigned num_fs;
555 unsigned i;
556 unsigned chan;
557 unsigned cbuf;
558
559
560 /* TODO: actually pick these based on the fs and color buffer
561 * characteristics. */
562
563 memset(&fs_type, 0, sizeof fs_type);
564 fs_type.floating = TRUE; /* floating point values */
565 fs_type.sign = TRUE; /* values are signed */
566 fs_type.norm = FALSE; /* values are not limited to [0,1] or [-1,1] */
567 fs_type.width = 32; /* 32-bit float */
568 fs_type.length = 4; /* 4 elements per vector */
569 num_fs = 4; /* number of quads per block */
570
571 memset(&blend_type, 0, sizeof blend_type);
572 blend_type.floating = FALSE; /* values are integers */
573 blend_type.sign = FALSE; /* values are unsigned */
574 blend_type.norm = TRUE; /* values are in [0,1] or [-1,1] */
575 blend_type.width = 8; /* 8-bit ubyte values */
576 blend_type.length = 16; /* 16 elements per vector */
577
578 /*
579 * Generate the function prototype. Any change here must be reflected in
580 * lp_jit.h's lp_jit_frag_func function pointer type, and vice-versa.
581 */
582
583 fs_elem_type = lp_build_elem_type(fs_type);
584 fs_vec_type = lp_build_vec_type(fs_type);
585 fs_int_vec_type = lp_build_int_vec_type(fs_type);
586
587 blend_vec_type = lp_build_vec_type(blend_type);
588 blend_int_vec_type = lp_build_int_vec_type(blend_type);
589
590 arg_types[0] = screen->context_ptr_type; /* context */
591 arg_types[1] = LLVMInt32Type(); /* x */
592 arg_types[2] = LLVMInt32Type(); /* y */
593 arg_types[3] = LLVMPointerType(fs_elem_type, 0); /* a0 */
594 arg_types[4] = LLVMPointerType(fs_elem_type, 0); /* dadx */
595 arg_types[5] = LLVMPointerType(fs_elem_type, 0); /* dady */
596 arg_types[6] = LLVMPointerType(LLVMPointerType(blend_vec_type, 0), 0); /* color */
597 arg_types[7] = LLVMPointerType(fs_int_vec_type, 0); /* depth */
598 arg_types[8] = LLVMInt32Type(); /* c0 */
599 arg_types[9] = LLVMInt32Type(); /* c1 */
600 arg_types[10] = LLVMInt32Type(); /* c2 */
601 /* Note: the step arrays are built as int32[16] but we interpret
602 * them here as int32_vec4[4].
603 */
604 arg_types[11] = LLVMPointerType(int32_vec4_type, 0);/* step0 */
605 arg_types[12] = LLVMPointerType(int32_vec4_type, 0);/* step1 */
606 arg_types[13] = LLVMPointerType(int32_vec4_type, 0);/* step2 */
607
608 func_type = LLVMFunctionType(LLVMVoidType(), arg_types, Elements(arg_types), 0);
609
610 variant->function = LLVMAddFunction(screen->module, "shader", func_type);
611 LLVMSetFunctionCallConv(variant->function, LLVMCCallConv);
612
613 /* XXX: need to propagate noalias down into color param now we are
614 * passing a pointer-to-pointer?
615 */
616 for(i = 0; i < Elements(arg_types); ++i)
617 if(LLVMGetTypeKind(arg_types[i]) == LLVMPointerTypeKind)
618 LLVMAddAttribute(LLVMGetParam(variant->function, i), LLVMNoAliasAttribute);
619
620 context_ptr = LLVMGetParam(variant->function, 0);
621 x = LLVMGetParam(variant->function, 1);
622 y = LLVMGetParam(variant->function, 2);
623 a0_ptr = LLVMGetParam(variant->function, 3);
624 dadx_ptr = LLVMGetParam(variant->function, 4);
625 dady_ptr = LLVMGetParam(variant->function, 5);
626 color_ptr_ptr = LLVMGetParam(variant->function, 6);
627 depth_ptr = LLVMGetParam(variant->function, 7);
628 c0 = LLVMGetParam(variant->function, 8);
629 c1 = LLVMGetParam(variant->function, 9);
630 c2 = LLVMGetParam(variant->function, 10);
631 step0_ptr = LLVMGetParam(variant->function, 11);
632 step1_ptr = LLVMGetParam(variant->function, 12);
633 step2_ptr = LLVMGetParam(variant->function, 13);
634
635 lp_build_name(context_ptr, "context");
636 lp_build_name(x, "x");
637 lp_build_name(y, "y");
638 lp_build_name(a0_ptr, "a0");
639 lp_build_name(dadx_ptr, "dadx");
640 lp_build_name(dady_ptr, "dady");
641 lp_build_name(color_ptr_ptr, "color_ptr");
642 lp_build_name(depth_ptr, "depth");
643 lp_build_name(c0, "c0");
644 lp_build_name(c1, "c1");
645 lp_build_name(c2, "c2");
646 lp_build_name(step0_ptr, "step0");
647 lp_build_name(step1_ptr, "step1");
648 lp_build_name(step2_ptr, "step2");
649
650 /*
651 * Function body
652 */
653
654 block = LLVMAppendBasicBlock(variant->function, "entry");
655 builder = LLVMCreateBuilder();
656 LLVMPositionBuilderAtEnd(builder, block);
657
658 generate_pos0(builder, x, y, &x0, &y0);
659
660 lp_build_interp_soa_init(&interp,
661 shader->base.tokens,
662 key->flatshade,
663 builder, fs_type,
664 a0_ptr, dadx_ptr, dady_ptr,
665 x0, y0);
666
667 /* code generated texture sampling */
668 sampler = lp_llvm_sampler_soa_create(key->sampler, context_ptr);
669
670 /* loop over quads in the block */
671 for(i = 0; i < num_fs; ++i) {
672 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), i, 0);
673 LLVMValueRef out_color[PIPE_MAX_COLOR_BUFS][NUM_CHANNELS];
674 LLVMValueRef depth_ptr_i;
675 int cbuf;
676
677 if(i != 0)
678 lp_build_interp_soa_update(&interp, i);
679
680 depth_ptr_i = LLVMBuildGEP(builder, depth_ptr, &index, 1, "");
681
682 generate_fs(lp, shader, key,
683 builder,
684 fs_type,
685 context_ptr,
686 i,
687 &interp,
688 sampler,
689 &fs_mask[i], /* output */
690 out_color,
691 depth_ptr_i,
692 c0, c1, c2,
693 step0_ptr, step1_ptr, step2_ptr);
694
695 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++)
696 for(chan = 0; chan < NUM_CHANNELS; ++chan)
697 fs_out_color[cbuf][chan][i] = out_color[cbuf][chan];
698 }
699
700 sampler->destroy(sampler);
701
702 /* Loop over color outputs / color buffers to do blending.
703 */
704 for(cbuf = 0; cbuf < key->nr_cbufs; cbuf++) {
705 LLVMValueRef color_ptr;
706 LLVMValueRef index = LLVMConstInt(LLVMInt32Type(), cbuf, 0);
707
708 /*
709 * Convert the fs's output color and mask to fit to the blending type.
710 */
711 for(chan = 0; chan < NUM_CHANNELS; ++chan) {
712 lp_build_conv(builder, fs_type, blend_type,
713 fs_out_color[cbuf][chan], num_fs,
714 &blend_in_color[chan], 1);
715 lp_build_name(blend_in_color[chan], "color%d.%c", cbuf, "rgba"[chan]);
716 }
717
718 lp_build_conv_mask(builder, fs_type, blend_type,
719 fs_mask, num_fs,
720 &blend_mask, 1);
721
722 color_ptr = LLVMBuildLoad(builder,
723 LLVMBuildGEP(builder, color_ptr_ptr, &index, 1, ""),
724 "");
725 lp_build_name(color_ptr, "color_ptr%d", cbuf);
726
727 /*
728 * Blending.
729 */
730 generate_blend(&key->blend,
731 builder,
732 blend_type,
733 context_ptr,
734 blend_mask,
735 blend_in_color,
736 color_ptr);
737 }
738
739 LLVMBuildRetVoid(builder);
740
741 LLVMDisposeBuilder(builder);
742
743
744 /* Verify the LLVM IR. If invalid, dump and abort */
745 #ifdef DEBUG
746 if(LLVMVerifyFunction(variant->function, LLVMPrintMessageAction)) {
747 if (1)
748 LLVMDumpValue(variant->function);
749 abort();
750 }
751 #endif
752
753 /* Apply optimizations to LLVM IR */
754 if (1)
755 LLVMRunFunctionPassManager(screen->pass, variant->function);
756
757 if (LP_DEBUG & DEBUG_JIT) {
758 /* Print the LLVM IR to stderr */
759 LLVMDumpValue(variant->function);
760 debug_printf("\n");
761 }
762
763 /*
764 * Translate the LLVM IR into machine code.
765 */
766 variant->jit_function = (lp_jit_frag_func)LLVMGetPointerToGlobal(screen->engine, variant->function);
767
768 if (LP_DEBUG & DEBUG_ASM)
769 lp_disassemble(variant->jit_function);
770
771 variant->next = shader->variants;
772 shader->variants = variant;
773 }
774
775
776 static struct lp_fragment_shader_variant *
777 generate_variant(struct llvmpipe_context *lp,
778 struct lp_fragment_shader *shader,
779 const struct lp_fragment_shader_variant_key *key)
780 {
781 struct lp_fragment_shader_variant *variant;
782
783 if (LP_DEBUG & DEBUG_JIT) {
784 unsigned i;
785
786 tgsi_dump(shader->base.tokens, 0);
787 if(key->depth.enabled) {
788 debug_printf("depth.format = %s\n", pf_name(key->zsbuf_format));
789 debug_printf("depth.func = %s\n", debug_dump_func(key->depth.func, TRUE));
790 debug_printf("depth.writemask = %u\n", key->depth.writemask);
791 }
792 if(key->alpha.enabled) {
793 debug_printf("alpha.func = %s\n", debug_dump_func(key->alpha.func, TRUE));
794 debug_printf("alpha.ref_value = %f\n", key->alpha.ref_value);
795 }
796 if(key->blend.logicop_enable) {
797 debug_printf("blend.logicop_func = %u\n", key->blend.logicop_func);
798 }
799 else if(key->blend.blend_enable) {
800 debug_printf("blend.rgb_func = %s\n", debug_dump_blend_func (key->blend.rgb_func, TRUE));
801 debug_printf("rgb_src_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_src_factor, TRUE));
802 debug_printf("rgb_dst_factor = %s\n", debug_dump_blend_factor(key->blend.rgb_dst_factor, TRUE));
803 debug_printf("alpha_func = %s\n", debug_dump_blend_func (key->blend.alpha_func, TRUE));
804 debug_printf("alpha_src_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_src_factor, TRUE));
805 debug_printf("alpha_dst_factor = %s\n", debug_dump_blend_factor(key->blend.alpha_dst_factor, TRUE));
806 }
807 debug_printf("blend.colormask = 0x%x\n", key->blend.colormask);
808 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i) {
809 if(key->sampler[i].format) {
810 debug_printf("sampler[%u] = \n", i);
811 debug_printf(" .format = %s\n",
812 pf_name(key->sampler[i].format));
813 debug_printf(" .target = %s\n",
814 debug_dump_tex_target(key->sampler[i].target, TRUE));
815 debug_printf(" .pot = %u %u %u\n",
816 key->sampler[i].pot_width,
817 key->sampler[i].pot_height,
818 key->sampler[i].pot_depth);
819 debug_printf(" .wrap = %s %s %s\n",
820 debug_dump_tex_wrap(key->sampler[i].wrap_s, TRUE),
821 debug_dump_tex_wrap(key->sampler[i].wrap_t, TRUE),
822 debug_dump_tex_wrap(key->sampler[i].wrap_r, TRUE));
823 debug_printf(" .min_img_filter = %s\n",
824 debug_dump_tex_filter(key->sampler[i].min_img_filter, TRUE));
825 debug_printf(" .min_mip_filter = %s\n",
826 debug_dump_tex_mipfilter(key->sampler[i].min_mip_filter, TRUE));
827 debug_printf(" .mag_img_filter = %s\n",
828 debug_dump_tex_filter(key->sampler[i].mag_img_filter, TRUE));
829 if(key->sampler[i].compare_mode != PIPE_TEX_COMPARE_NONE)
830 debug_printf(" .compare_func = %s\n", debug_dump_func(key->sampler[i].compare_func, TRUE));
831 debug_printf(" .normalized_coords = %u\n", key->sampler[i].normalized_coords);
832 debug_printf(" .prefilter = %u\n", key->sampler[i].prefilter);
833 }
834 }
835 }
836
837 variant = CALLOC_STRUCT(lp_fragment_shader_variant);
838 if(!variant)
839 return NULL;
840
841 variant->shader = shader;
842 memcpy(&variant->key, key, sizeof *key);
843
844 generate_fragment(lp, shader, variant);
845
846 return variant;
847 }
848
849
850 void *
851 llvmpipe_create_fs_state(struct pipe_context *pipe,
852 const struct pipe_shader_state *templ)
853 {
854 struct lp_fragment_shader *shader;
855
856 shader = CALLOC_STRUCT(lp_fragment_shader);
857 if (!shader)
858 return NULL;
859
860 /* get/save the summary info for this shader */
861 tgsi_scan_shader(templ->tokens, &shader->info);
862
863 /* we need to keep a local copy of the tokens */
864 shader->base.tokens = tgsi_dup_tokens(templ->tokens);
865
866 return shader;
867 }
868
869
870 void
871 llvmpipe_bind_fs_state(struct pipe_context *pipe, void *fs)
872 {
873 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
874
875 if (llvmpipe->fs == fs)
876 return;
877
878 draw_flush(llvmpipe->draw);
879
880 llvmpipe->fs = fs;
881
882 llvmpipe->dirty |= LP_NEW_FS;
883 }
884
885
886 void
887 llvmpipe_delete_fs_state(struct pipe_context *pipe, void *fs)
888 {
889 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
890 struct llvmpipe_screen *screen = llvmpipe_screen(pipe->screen);
891 struct lp_fragment_shader *shader = fs;
892 struct lp_fragment_shader_variant *variant;
893
894 assert(fs != llvmpipe->fs);
895 (void) llvmpipe;
896
897 variant = shader->variants;
898 while(variant) {
899 struct lp_fragment_shader_variant *next = variant->next;
900
901 if(variant->function) {
902 if(variant->jit_function)
903 LLVMFreeMachineCodeForFunction(screen->engine, variant->function);
904 LLVMDeleteFunction(variant->function);
905 }
906
907 FREE(variant);
908
909 variant = next;
910 }
911
912 FREE((void *) shader->base.tokens);
913 FREE(shader);
914 }
915
916
917
918 void
919 llvmpipe_set_constant_buffer(struct pipe_context *pipe,
920 uint shader, uint index,
921 const struct pipe_constant_buffer *constants)
922 {
923 struct llvmpipe_context *llvmpipe = llvmpipe_context(pipe);
924 struct pipe_buffer *buffer = constants ? constants->buffer : NULL;
925 unsigned size = buffer ? buffer->size : 0;
926 const void *data = buffer ? llvmpipe_buffer(buffer)->data : NULL;
927
928 assert(shader < PIPE_SHADER_TYPES);
929 assert(index == 0);
930
931 if(llvmpipe->constants[shader].buffer == buffer)
932 return;
933
934 draw_flush(llvmpipe->draw);
935
936 /* note: reference counting */
937 pipe_buffer_reference(&llvmpipe->constants[shader].buffer, buffer);
938
939 if(shader == PIPE_SHADER_VERTEX) {
940 draw_set_mapped_constant_buffer(llvmpipe->draw, PIPE_SHADER_VERTEX,
941 data, size);
942 }
943
944 llvmpipe->dirty |= LP_NEW_CONSTANTS;
945 }
946
947
948 /**
949 * We need to generate several variants of the fragment pipeline to match
950 * all the combinations of the contributing state atoms.
951 *
952 * TODO: there is actually no reason to tie this to context state -- the
953 * generated code could be cached globally in the screen.
954 */
955 static void
956 make_variant_key(struct llvmpipe_context *lp,
957 struct lp_fragment_shader *shader,
958 struct lp_fragment_shader_variant_key *key)
959 {
960 unsigned i;
961
962 memset(key, 0, sizeof *key);
963
964 if(lp->framebuffer.zsbuf &&
965 lp->depth_stencil->depth.enabled) {
966 key->zsbuf_format = lp->framebuffer.zsbuf->format;
967 memcpy(&key->depth, &lp->depth_stencil->depth, sizeof key->depth);
968 }
969
970 key->alpha.enabled = lp->depth_stencil->alpha.enabled;
971 if(key->alpha.enabled)
972 key->alpha.func = lp->depth_stencil->alpha.func;
973 /* alpha.ref_value is passed in jit_context */
974
975 key->flatshade = lp->rasterizer->flatshade;
976
977 if (lp->framebuffer.nr_cbufs) {
978 memcpy(&key->blend, lp->blend, sizeof key->blend);
979 }
980
981 key->nr_cbufs = lp->framebuffer.nr_cbufs;
982 for (i = 0; i < lp->framebuffer.nr_cbufs; i++) {
983 const struct util_format_description *format_desc;
984 unsigned chan;
985
986 format_desc = util_format_description(lp->framebuffer.cbufs[i]->format);
987 assert(format_desc->layout == UTIL_FORMAT_COLORSPACE_RGB ||
988 format_desc->layout == UTIL_FORMAT_COLORSPACE_SRGB);
989
990 /* mask out color channels not present in the color buffer.
991 * Should be simple to incorporate per-cbuf writemasks:
992 */
993 for(chan = 0; chan < 4; ++chan) {
994 enum util_format_swizzle swizzle = format_desc->swizzle[chan];
995
996 if(swizzle <= UTIL_FORMAT_SWIZZLE_W)
997 key->cbuf_blend[i].colormask |= (1 << chan);
998 }
999 }
1000
1001 for(i = 0; i < PIPE_MAX_SAMPLERS; ++i)
1002 if(shader->info.file_mask[TGSI_FILE_SAMPLER] & (1 << i))
1003 lp_sampler_static_state(&key->sampler[i], lp->texture[i], lp->sampler[i]);
1004 }
1005
1006
1007 void
1008 llvmpipe_update_fs(struct llvmpipe_context *lp)
1009 {
1010 struct lp_fragment_shader *shader = lp->fs;
1011 struct lp_fragment_shader_variant_key key;
1012 struct lp_fragment_shader_variant *variant;
1013
1014 make_variant_key(lp, shader, &key);
1015
1016 variant = shader->variants;
1017 while(variant) {
1018 if(memcmp(&variant->key, &key, sizeof key) == 0)
1019 break;
1020
1021 variant = variant->next;
1022 }
1023
1024 if(!variant)
1025 variant = generate_variant(lp, shader, &key);
1026
1027 shader->current = variant;
1028
1029 lp_setup_set_fs_function(lp->setup,
1030 shader->current->jit_function);
1031 }