panfrost/decode: Hit MRT blend shader enable bits
[mesa.git] / src / gallium / drivers / panfrost / include / panfrost-job.h
1 /*
2 * © Copyright 2017-2018 Alyssa Rosenzweig
3 * © Copyright 2017-2018 Connor Abbott
4 * © Copyright 2017-2018 Lyude Paul
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 */
26
27 #ifndef __PANFROST_JOB_H__
28 #define __PANFROST_JOB_H__
29
30 #include <stdint.h>
31 #include <panfrost-misc.h>
32
33 #define MALI_SHORT_PTR_BITS (sizeof(uintptr_t)*8)
34
35 #define MALI_FBD_HIERARCHY_WEIGHTS 8
36
37 #define MALI_PAYLOAD_SIZE 256
38
39 typedef u32 mali_jd_core_req;
40
41 enum mali_job_type {
42 JOB_NOT_STARTED = 0,
43 JOB_TYPE_NULL = 1,
44 JOB_TYPE_SET_VALUE = 2,
45 JOB_TYPE_CACHE_FLUSH = 3,
46 JOB_TYPE_COMPUTE = 4,
47 JOB_TYPE_VERTEX = 5,
48 JOB_TYPE_GEOMETRY = 6,
49 JOB_TYPE_TILER = 7,
50 JOB_TYPE_FUSED = 8,
51 JOB_TYPE_FRAGMENT = 9,
52 };
53
54 enum mali_draw_mode {
55 MALI_DRAW_NONE = 0x0,
56 MALI_POINTS = 0x1,
57 MALI_LINES = 0x2,
58 MALI_LINE_STRIP = 0x4,
59 MALI_LINE_LOOP = 0x6,
60 MALI_TRIANGLES = 0x8,
61 MALI_TRIANGLE_STRIP = 0xA,
62 MALI_TRIANGLE_FAN = 0xC,
63 MALI_POLYGON = 0xD,
64 MALI_QUADS = 0xE,
65 MALI_QUAD_STRIP = 0xF,
66
67 /* All other modes invalid */
68 };
69
70 /* Applies to tiler_gl_enables */
71
72
73 #define MALI_OCCLUSION_QUERY (1 << 3)
74 #define MALI_OCCLUSION_PRECISE (1 << 4)
75
76 #define MALI_FRONT_FACE(v) (v << 5)
77 #define MALI_CCW (0)
78 #define MALI_CW (1)
79
80 #define MALI_CULL_FACE_FRONT (1 << 6)
81 #define MALI_CULL_FACE_BACK (1 << 7)
82
83 /* TODO: Might this actually be a finer bitfield? */
84 #define MALI_DEPTH_STENCIL_ENABLE 0x6400
85
86 #define DS_ENABLE(field) \
87 (field == MALI_DEPTH_STENCIL_ENABLE) \
88 ? "MALI_DEPTH_STENCIL_ENABLE" \
89 : (field == 0) ? "0" \
90 : "0 /* XXX: Unknown, check hexdump */"
91
92 /* Used in stencil and depth tests */
93
94 enum mali_func {
95 MALI_FUNC_NEVER = 0,
96 MALI_FUNC_LESS = 1,
97 MALI_FUNC_EQUAL = 2,
98 MALI_FUNC_LEQUAL = 3,
99 MALI_FUNC_GREATER = 4,
100 MALI_FUNC_NOTEQUAL = 5,
101 MALI_FUNC_GEQUAL = 6,
102 MALI_FUNC_ALWAYS = 7
103 };
104
105 /* Same OpenGL, but mixed up. Why? Because forget me, that's why! */
106
107 enum mali_alt_func {
108 MALI_ALT_FUNC_NEVER = 0,
109 MALI_ALT_FUNC_GREATER = 1,
110 MALI_ALT_FUNC_EQUAL = 2,
111 MALI_ALT_FUNC_GEQUAL = 3,
112 MALI_ALT_FUNC_LESS = 4,
113 MALI_ALT_FUNC_NOTEQUAL = 5,
114 MALI_ALT_FUNC_LEQUAL = 6,
115 MALI_ALT_FUNC_ALWAYS = 7
116 };
117
118 /* Flags apply to unknown2_3? */
119
120 #define MALI_HAS_MSAA (1 << 0)
121 #define MALI_CAN_DISCARD (1 << 5)
122
123 /* Applies on SFBD systems, specifying that programmable blending is in use */
124 #define MALI_HAS_BLEND_SHADER (1 << 6)
125
126 /* func is mali_func */
127 #define MALI_DEPTH_FUNC(func) (func << 8)
128 #define MALI_GET_DEPTH_FUNC(flags) ((flags >> 8) & 0x7)
129 #define MALI_DEPTH_FUNC_MASK MALI_DEPTH_FUNC(0x7)
130
131 #define MALI_DEPTH_TEST (1 << 11)
132
133 /* Next flags to unknown2_4 */
134 #define MALI_STENCIL_TEST (1 << 0)
135
136 /* What?! */
137 #define MALI_SAMPLE_ALPHA_TO_COVERAGE_NO_BLEND_SHADER (1 << 1)
138
139 #define MALI_NO_DITHER (1 << 9)
140 #define MALI_DEPTH_RANGE_A (1 << 12)
141 #define MALI_DEPTH_RANGE_B (1 << 13)
142 #define MALI_NO_MSAA (1 << 14)
143
144 /* Stencil test state is all encoded in a single u32, just with a lot of
145 * enums... */
146
147 enum mali_stencil_op {
148 MALI_STENCIL_KEEP = 0,
149 MALI_STENCIL_REPLACE = 1,
150 MALI_STENCIL_ZERO = 2,
151 MALI_STENCIL_INVERT = 3,
152 MALI_STENCIL_INCR_WRAP = 4,
153 MALI_STENCIL_DECR_WRAP = 5,
154 MALI_STENCIL_INCR = 6,
155 MALI_STENCIL_DECR = 7
156 };
157
158 struct mali_stencil_test {
159 unsigned ref : 8;
160 unsigned mask : 8;
161 enum mali_func func : 3;
162 enum mali_stencil_op sfail : 3;
163 enum mali_stencil_op dpfail : 3;
164 enum mali_stencil_op dppass : 3;
165 unsigned zero : 4;
166 } __attribute__((packed));
167
168 /* Blending is a mess, since anything fancy triggers a blend shader, and
169 * -those- are not understood whatsover yet */
170
171 #define MALI_MASK_R (1 << 0)
172 #define MALI_MASK_G (1 << 1)
173 #define MALI_MASK_B (1 << 2)
174 #define MALI_MASK_A (1 << 3)
175
176 enum mali_nondominant_mode {
177 MALI_BLEND_NON_MIRROR = 0,
178 MALI_BLEND_NON_ZERO = 1
179 };
180
181 enum mali_dominant_blend {
182 MALI_BLEND_DOM_SOURCE = 0,
183 MALI_BLEND_DOM_DESTINATION = 1
184 };
185
186 enum mali_dominant_factor {
187 MALI_DOMINANT_UNK0 = 0,
188 MALI_DOMINANT_ZERO = 1,
189 MALI_DOMINANT_SRC_COLOR = 2,
190 MALI_DOMINANT_DST_COLOR = 3,
191 MALI_DOMINANT_UNK4 = 4,
192 MALI_DOMINANT_SRC_ALPHA = 5,
193 MALI_DOMINANT_DST_ALPHA = 6,
194 MALI_DOMINANT_CONSTANT = 7,
195 };
196
197 enum mali_blend_modifier {
198 MALI_BLEND_MOD_UNK0 = 0,
199 MALI_BLEND_MOD_NORMAL = 1,
200 MALI_BLEND_MOD_SOURCE_ONE = 2,
201 MALI_BLEND_MOD_DEST_ONE = 3,
202 };
203
204 struct mali_blend_mode {
205 enum mali_blend_modifier clip_modifier : 2;
206 unsigned unused_0 : 1;
207 unsigned negate_source : 1;
208
209 enum mali_dominant_blend dominant : 1;
210
211 enum mali_nondominant_mode nondominant_mode : 1;
212
213 unsigned unused_1 : 1;
214
215 unsigned negate_dest : 1;
216
217 enum mali_dominant_factor dominant_factor : 3;
218 unsigned complement_dominant : 1;
219 } __attribute__((packed));
220
221 struct mali_blend_equation {
222 /* Of type mali_blend_mode */
223 unsigned rgb_mode : 12;
224 unsigned alpha_mode : 12;
225
226 unsigned zero1 : 4;
227
228 /* Corresponds to MALI_MASK_* above and glColorMask arguments */
229
230 unsigned color_mask : 4;
231
232 /* Attached constant for CONSTANT_ALPHA, etc */
233
234 #ifndef BIFROST
235 float constant;
236 #endif
237 } __attribute__((packed));
238
239 /* Used with channel swizzling */
240 enum mali_channel {
241 MALI_CHANNEL_RED = 0,
242 MALI_CHANNEL_GREEN = 1,
243 MALI_CHANNEL_BLUE = 2,
244 MALI_CHANNEL_ALPHA = 3,
245 MALI_CHANNEL_ZERO = 4,
246 MALI_CHANNEL_ONE = 5,
247 MALI_CHANNEL_RESERVED_0 = 6,
248 MALI_CHANNEL_RESERVED_1 = 7,
249 };
250
251 struct mali_channel_swizzle {
252 enum mali_channel r : 3;
253 enum mali_channel g : 3;
254 enum mali_channel b : 3;
255 enum mali_channel a : 3;
256 } __attribute__((packed));
257
258 /* Compressed per-pixel formats. Each of these formats expands to one to four
259 * floating-point or integer numbers, as defined by the OpenGL specification.
260 * There are various places in OpenGL where the user can specify a compressed
261 * format in memory, which all use the same 8-bit enum in the various
262 * descriptors, although different hardware units support different formats.
263 */
264
265 /* The top 3 bits specify how the bits of each component are interpreted. */
266
267 /* e.g. R11F_G11F_B10F */
268 #define MALI_FORMAT_SPECIAL (2 << 5)
269
270 /* signed normalized, e.g. RGBA8_SNORM */
271 #define MALI_FORMAT_SNORM (3 << 5)
272
273 /* e.g. RGBA8UI */
274 #define MALI_FORMAT_UINT (4 << 5)
275
276 /* e.g. RGBA8 and RGBA32F */
277 #define MALI_FORMAT_UNORM (5 << 5)
278
279 /* e.g. RGBA8I and RGBA16F */
280 #define MALI_FORMAT_SINT (6 << 5)
281
282 /* These formats seem to largely duplicate the others. They're used at least
283 * for Bifrost framebuffer output.
284 */
285 #define MALI_FORMAT_SPECIAL2 (7 << 5)
286
287 /* If the high 3 bits are 3 to 6 these two bits say how many components
288 * there are.
289 */
290 #define MALI_NR_CHANNELS(n) ((n - 1) << 3)
291
292 /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each
293 * component is, except the special MALI_CHANNEL_FLOAT which overrides what the
294 * bits mean.
295 */
296
297 #define MALI_CHANNEL_4 2
298
299 #define MALI_CHANNEL_8 3
300
301 #define MALI_CHANNEL_16 4
302
303 #define MALI_CHANNEL_32 5
304
305 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For
306 * MALI_FORMAT_UNORM, it means a 32-bit float.
307 */
308 #define MALI_CHANNEL_FLOAT 7
309
310 enum mali_format {
311 MALI_RGB565 = MALI_FORMAT_SPECIAL | 0x0,
312 MALI_RGB5_A1_UNORM = MALI_FORMAT_SPECIAL | 0x2,
313 MALI_RGB10_A2_UNORM = MALI_FORMAT_SPECIAL | 0x3,
314 MALI_RGB10_A2_SNORM = MALI_FORMAT_SPECIAL | 0x5,
315 MALI_RGB10_A2UI = MALI_FORMAT_SPECIAL | 0x7,
316 MALI_RGB10_A2I = MALI_FORMAT_SPECIAL | 0x9,
317
318 /* YUV formats */
319 MALI_NV12 = MALI_FORMAT_SPECIAL | 0xc,
320
321 MALI_Z32_UNORM = MALI_FORMAT_SPECIAL | 0xD,
322 MALI_R32_FIXED = MALI_FORMAT_SPECIAL | 0x11,
323 MALI_RG32_FIXED = MALI_FORMAT_SPECIAL | 0x12,
324 MALI_RGB32_FIXED = MALI_FORMAT_SPECIAL | 0x13,
325 MALI_RGBA32_FIXED = MALI_FORMAT_SPECIAL | 0x14,
326 MALI_R11F_G11F_B10F = MALI_FORMAT_SPECIAL | 0x19,
327 /* Only used for varyings, to indicate the transformed gl_Position */
328 MALI_VARYING_POS = MALI_FORMAT_SPECIAL | 0x1e,
329 /* Only used for varyings, to indicate that the write should be
330 * discarded.
331 */
332 MALI_VARYING_DISCARD = MALI_FORMAT_SPECIAL | 0x1f,
333
334 MALI_R8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
335 MALI_R16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
336 MALI_R32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
337 MALI_RG8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
338 MALI_RG16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
339 MALI_RG32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
340 MALI_RGB8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
341 MALI_RGB16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
342 MALI_RGB32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
343 MALI_RGBA8_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
344 MALI_RGBA16_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
345 MALI_RGBA32_SNORM = MALI_FORMAT_SNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
346
347 MALI_R8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
348 MALI_R16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
349 MALI_R32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
350 MALI_RG8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
351 MALI_RG16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
352 MALI_RG32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
353 MALI_RGB8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
354 MALI_RGB16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
355 MALI_RGB32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
356 MALI_RGBA8UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
357 MALI_RGBA16UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
358 MALI_RGBA32UI = MALI_FORMAT_UINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
359
360 MALI_R8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
361 MALI_R16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
362 MALI_R32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
363 MALI_R32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
364 MALI_RG8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
365 MALI_RG16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
366 MALI_RG32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
367 MALI_RG32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
368 MALI_RGB8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
369 MALI_RGB16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
370 MALI_RGB32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
371 MALI_RGB32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
372 MALI_RGBA4_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_4,
373 MALI_RGBA8_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
374 MALI_RGBA16_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
375 MALI_RGBA32_UNORM = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
376 MALI_RGBA32F = MALI_FORMAT_UNORM | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
377
378 MALI_R8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_8,
379 MALI_R16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_16,
380 MALI_R32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_32,
381 MALI_R16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(1) | MALI_CHANNEL_FLOAT,
382 MALI_RG8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_8,
383 MALI_RG16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_16,
384 MALI_RG32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_32,
385 MALI_RG16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(2) | MALI_CHANNEL_FLOAT,
386 MALI_RGB8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_8,
387 MALI_RGB16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_16,
388 MALI_RGB32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_32,
389 MALI_RGB16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(3) | MALI_CHANNEL_FLOAT,
390 MALI_RGBA8I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_8,
391 MALI_RGBA16I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_16,
392 MALI_RGBA32I = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_32,
393 MALI_RGBA16F = MALI_FORMAT_SINT | MALI_NR_CHANNELS(4) | MALI_CHANNEL_FLOAT,
394
395 MALI_RGBA4 = MALI_FORMAT_SPECIAL2 | 0x8,
396 MALI_RGBA8_2 = MALI_FORMAT_SPECIAL2 | 0xd,
397 MALI_RGB10_A2_2 = MALI_FORMAT_SPECIAL2 | 0xe,
398 };
399
400
401 /* Alpha coverage is encoded as 4-bits (from a clampf), with inversion
402 * literally performing a bitwise invert. This function produces slightly wrong
403 * results and I'm not sure why; some rounding issue I suppose... */
404
405 #define MALI_ALPHA_COVERAGE(clampf) ((uint16_t) (int) (clampf * 15.0f))
406 #define MALI_GET_ALPHA_COVERAGE(nibble) ((float) nibble / 15.0f)
407
408 /* Applies to unknown1 */
409 #define MALI_NO_ALPHA_TO_COVERAGE (1 << 10)
410
411 /* Flags denoting the fragment shader's use of tilebuffer readback. If the
412 * shader might read any part of the tilebuffer, set MALI_READS_TILEBUFFER. If
413 * it might read depth/stencil in particular, also set MALI_READS_ZS */
414
415 #define MALI_READS_ZS (1 << 12)
416 #define MALI_READS_TILEBUFFER (1 << 16)
417
418 struct mali_blend_meta {
419 #ifndef BIFROST
420 /* Base value of 0x200.
421 * OR with 0x1 for blending (anything other than REPLACE).
422 * OR with 0x2 for programmable blending
423 */
424
425 u64 unk1;
426
427 union {
428 struct mali_blend_equation blend_equation_1;
429 mali_ptr blend_shader;
430 };
431
432 u64 zero2;
433 struct mali_blend_equation blend_equation_2;
434 #else
435 u32 unk1; // = 0x200
436 struct mali_blend_equation blend_equation;
437 /*
438 * - 0x19 normally
439 * - 0x3 when this slot is unused (everything else is 0 except the index)
440 * - 0x11 when this is the fourth slot (and it's used)
441 + * - 0 when there is a blend shader
442 */
443 u16 unk2;
444 /* increments from 0 to 3 */
445 u16 index;
446
447 union {
448 struct {
449 /* So far, I've only seen:
450 * - R001 for 1-component formats
451 * - RG01 for 2-component formats
452 * - RGB1 for 3-component formats
453 * - RGBA for 4-component formats
454 */
455 u32 swizzle : 12;
456 enum mali_format format : 8;
457
458 /* Type of the shader output variable. Note, this can
459 * be different from the format.
460 *
461 * 0: f16 (mediump float)
462 * 1: f32 (highp float)
463 * 2: i32 (highp int)
464 * 3: u32 (highp uint)
465 * 4: i16 (mediump int)
466 * 5: u16 (mediump uint)
467 */
468 u32 shader_type : 3;
469 u32 zero : 9;
470 };
471
472 /* Only the low 32 bits of the blend shader are stored, the
473 * high 32 bits are implicitly the same as the original shader.
474 * According to the kernel driver, the program counter for
475 * shaders is actually only 24 bits, so shaders cannot cross
476 * the 2^24-byte boundary, and neither can the blend shader.
477 * The blob handles this by allocating a 2^24 byte pool for
478 * shaders, and making sure that any blend shaders are stored
479 * in the same pool as the original shader. The kernel will
480 * make sure this allocation is aligned to 2^24 bytes.
481 */
482 u32 blend_shader;
483 };
484 #endif
485 } __attribute__((packed));
486
487 struct mali_shader_meta {
488 mali_ptr shader;
489 u16 texture_count;
490 u16 sampler_count;
491 u16 attribute_count;
492 u16 varying_count;
493
494 union {
495 struct {
496 u32 uniform_buffer_count : 4;
497 u32 unk1 : 28; // = 0x800000 for vertex, 0x958020 for tiler
498 } bifrost1;
499 struct {
500 /* 0x200 except MALI_NO_ALPHA_TO_COVERAGE. Mysterious 1
501 * other times. Who knows really? */
502 u16 unknown1;
503
504 /* Whole number of uniform registers used, times two;
505 * whole number of work registers used (no scale).
506 */
507 unsigned work_count : 5;
508 unsigned uniform_count : 5;
509 unsigned unknown2 : 6;
510 } midgard1;
511 };
512
513 /* On bifrost: Exactly the same as glPolygonOffset() for both.
514 * On midgard: Depth factor is exactly as passed to glPolygonOffset.
515 * Depth units is equal to the value passed to glDeptOhffset + 1.0f
516 * (use MALI_NEGATIVE)
517 */
518 float depth_units;
519 float depth_factor;
520
521 u32 unknown2_2;
522
523 u16 alpha_coverage;
524 u16 unknown2_3;
525
526 u8 stencil_mask_front;
527 u8 stencil_mask_back;
528 u16 unknown2_4;
529
530 struct mali_stencil_test stencil_front;
531 struct mali_stencil_test stencil_back;
532
533 union {
534 struct {
535 u32 unk3 : 7;
536 /* On Bifrost, some system values are preloaded in
537 * registers R55-R62 by the thread dispatcher prior to
538 * the start of shader execution. This is a bitfield
539 * with one entry for each register saying which
540 * registers need to be preloaded. Right now, the known
541 * values are:
542 *
543 * Vertex/compute:
544 * - R55 : gl_LocalInvocationID.xy
545 * - R56 : gl_LocalInvocationID.z + unknown in high 16 bits
546 * - R57 : gl_WorkGroupID.x
547 * - R58 : gl_WorkGroupID.y
548 * - R59 : gl_WorkGroupID.z
549 * - R60 : gl_GlobalInvocationID.x
550 * - R61 : gl_GlobalInvocationID.y/gl_VertexID (without base)
551 * - R62 : gl_GlobalInvocationID.z/gl_InstanceID (without base)
552 *
553 * Fragment:
554 * - R55 : unknown, never seen (but the bit for this is
555 * always set?)
556 * - R56 : unknown (bit always unset)
557 * - R57 : gl_PrimitiveID
558 * - R58 : gl_FrontFacing in low bit, potentially other stuff
559 * - R59 : u16 fragment coordinates (used to compute
560 * gl_FragCoord.xy, together with sample positions)
561 * - R60 : gl_SampleMask (used in epilog, so pretty
562 * much always used, but the bit is always 0 -- is
563 * this just always pushed?)
564 * - R61 : gl_SampleMaskIn and gl_SampleID, used by
565 * varying interpolation.
566 * - R62 : unknown (bit always unset).
567 */
568 u32 preload_regs : 8;
569 /* In units of 8 bytes or 64 bits, since the
570 * uniform/const port loads 64 bits at a time.
571 */
572 u32 uniform_count : 7;
573 u32 unk4 : 10; // = 2
574 } bifrost2;
575 struct {
576 u32 unknown2_7;
577 } midgard2;
578 };
579
580 /* zero on bifrost */
581 u32 unknown2_8;
582
583 /* Blending information for the older non-MRT Midgard HW. Check for
584 * MALI_HAS_BLEND_SHADER to decide how to interpret.
585 */
586
587 union {
588 mali_ptr blend_shader;
589 struct mali_blend_equation blend_equation;
590 };
591
592 /* There can be up to 4 blend_meta's. None of them are required for
593 * vertex shaders or the non-MRT case for Midgard (so the blob doesn't
594 * allocate any space).
595 */
596 struct mali_blend_meta blend_meta[];
597
598 } __attribute__((packed));
599
600 /* This only concerns hardware jobs */
601
602 /* Possible values for job_descriptor_size */
603
604 #define MALI_JOB_32 0
605 #define MALI_JOB_64 1
606
607 struct mali_job_descriptor_header {
608 u32 exception_status;
609 u32 first_incomplete_task;
610 u64 fault_pointer;
611 u8 job_descriptor_size : 1;
612 enum mali_job_type job_type : 7;
613 u8 job_barrier : 1;
614 u8 unknown_flags : 7;
615 u16 job_index;
616 u16 job_dependency_index_1;
617 u16 job_dependency_index_2;
618
619 union {
620 u64 next_job_64;
621 u32 next_job_32;
622 };
623 } __attribute__((packed));
624
625 struct mali_payload_set_value {
626 u64 out;
627 u64 unknown;
628 } __attribute__((packed));
629
630 /* Special attributes have a fixed index */
631 #define MALI_SPECIAL_ATTRIBUTE_BASE 16
632 #define MALI_VERTEX_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 0)
633 #define MALI_INSTANCE_ID (MALI_SPECIAL_ATTRIBUTE_BASE + 1)
634
635 /*
636 * Mali Attributes
637 *
638 * This structure lets the attribute unit compute the address of an attribute
639 * given the vertex and instance ID. Unfortunately, the way this works is
640 * rather complicated when instancing is enabled.
641 *
642 * To explain this, first we need to explain how compute and vertex threads are
643 * dispatched. This is a guess (although a pretty firm guess!) since the
644 * details are mostly hidden from the driver, except for attribute instancing.
645 * When a quad is dispatched, it receives a single, linear index. However, we
646 * need to translate that index into a (vertex id, instance id) pair, or a
647 * (local id x, local id y, local id z) triple for compute shaders (although
648 * vertex shaders and compute shaders are handled almost identically).
649 * Focusing on vertex shaders, one option would be to do:
650 *
651 * vertex_id = linear_id % num_vertices
652 * instance_id = linear_id / num_vertices
653 *
654 * but this involves a costly division and modulus by an arbitrary number.
655 * Instead, we could pad num_vertices. We dispatch padded_num_vertices *
656 * num_instances threads instead of num_vertices * num_instances, which results
657 * in some "extra" threads with vertex_id >= num_vertices, which we have to
658 * discard. The more we pad num_vertices, the more "wasted" threads we
659 * dispatch, but the division is potentially easier.
660 *
661 * One straightforward choice is to pad num_vertices to the next power of two,
662 * which means that the division and modulus are just simple bit shifts and
663 * masking. But the actual algorithm is a bit more complicated. The thread
664 * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition
665 * to dividing by a power of two. This is possibly using the technique
666 * described in patent US20170010862A1. As a result, padded_num_vertices can be
667 * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads,
668 * since we need less padding.
669 *
670 * padded_num_vertices is picked by the hardware. The driver just specifies the
671 * actual number of vertices. At least for Mali G71, the first few cases are
672 * given by:
673 *
674 * num_vertices | padded_num_vertices
675 * 3 | 4
676 * 4-7 | 8
677 * 8-11 | 12 (3 * 4)
678 * 12-15 | 16
679 * 16-19 | 20 (5 * 4)
680 *
681 * Note that padded_num_vertices is a multiple of four (presumably because
682 * threads are dispatched in groups of 4). Also, padded_num_vertices is always
683 * at least one more than num_vertices, which seems like a quirk of the
684 * hardware. For larger num_vertices, the hardware uses the following
685 * algorithm: using the binary representation of num_vertices, we look at the
686 * most significant set bit as well as the following 3 bits. Let n be the
687 * number of bits after those 4 bits. Then we set padded_num_vertices according
688 * to the following table:
689 *
690 * high bits | padded_num_vertices
691 * 1000 | 9 * 2^n
692 * 1001 | 5 * 2^(n+1)
693 * 101x | 3 * 2^(n+2)
694 * 110x | 7 * 2^(n+1)
695 * 111x | 2^(n+4)
696 *
697 * For example, if num_vertices = 70 is passed to glDraw(), its binary
698 * representation is 1000110, so n = 3 and the high bits are 1000, and
699 * therefore padded_num_vertices = 9 * 2^3 = 72.
700 *
701 * The attribute unit works in terms of the original linear_id. if
702 * num_instances = 1, then they are the same, and everything is simple.
703 * However, with instancing things get more complicated. There are four
704 * possible modes, two of them we can group together:
705 *
706 * 1. Use the linear_id directly. Only used when there is no instancing.
707 *
708 * 2. Use the linear_id modulo a constant. This is used for per-vertex
709 * attributes with instancing enabled by making the constant equal
710 * padded_num_vertices. Because the modulus is always padded_num_vertices, this
711 * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9.
712 * The shift field specifies the power of two, while the extra_flags field
713 * specifies the odd number. If shift = n and extra_flags = m, then the modulus
714 * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed
715 * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and
716 * shift = 3. Note that we must exactly follow the hardware algorithm used to
717 * get padded_num_vertices in order to correctly implement per-vertex
718 * attributes.
719 *
720 * 3. Divide the linear_id by a constant. In order to correctly implement
721 * instance divisors, we have to divide linear_id by padded_num_vertices times
722 * to user-specified divisor. So first we compute padded_num_vertices, again
723 * following the exact same algorithm that the hardware uses, then multiply it
724 * by the GL-level divisor to get the hardware-level divisor. This case is
725 * further divided into two more cases. If the hardware-level divisor is a
726 * power of two, then we just need to shift. The shift amount is specified by
727 * the shift field, so that the hardware-level divisor is just 2^shift.
728 *
729 * If it isn't a power of two, then we have to divide by an arbitrary integer.
730 * For that, we use the well-known technique of multiplying by an approximation
731 * of the inverse. The driver must compute the magic multiplier and shift
732 * amount, and then the hardware does the multiplication and shift. The
733 * hardware and driver also use the "round-down" optimization as described in
734 * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf.
735 * The hardware further assumes the multiplier is between 2^31 and 2^32, so the
736 * high bit is implicitly set to 1 even though it is set to 0 by the driver --
737 * presumably this simplifies the hardware multiplier a little. The hardware
738 * first multiplies linear_id by the multiplier and takes the high 32 bits,
739 * then applies the round-down correction if extra_flags = 1, then finally
740 * shifts right by the shift field.
741 *
742 * There are some differences between ridiculousfish's algorithm and the Mali
743 * hardware algorithm, which means that the reference code from ridiculousfish
744 * doesn't always produce the right constants. Mali does not use the pre-shift
745 * optimization, since that would make a hardware implementation slower (it
746 * would have to always do the pre-shift, multiply, and post-shift operations).
747 * It also forces the multplier to be at least 2^31, which means that the
748 * exponent is entirely fixed, so there is no trial-and-error. Altogether,
749 * given the divisor d, the algorithm the driver must follow is:
750 *
751 * 1. Set shift = floor(log2(d)).
752 * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d.
753 * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set
754 * magic_divisor = m - 1 and extra_flags = 1.
755 * 4. Otherwise, set magic_divisor = m and extra_flags = 0.
756 */
757
758 enum mali_attr_mode {
759 MALI_ATTR_UNUSED = 0,
760 MALI_ATTR_LINEAR = 1,
761 MALI_ATTR_POT_DIVIDE = 2,
762 MALI_ATTR_MODULO = 3,
763 MALI_ATTR_NPOT_DIVIDE = 4,
764 };
765
766 /* This magic "pseudo-address" is used as `elements` to implement
767 * gl_PointCoord. When read from a fragment shader, it generates a point
768 * coordinate per the OpenGL ES 2.0 specification. Flipped coordinate spaces
769 * require an affine transformation in the shader. */
770
771 #define MALI_VARYING_POINT_COORD (0x60)
772
773 union mali_attr {
774 /* This is used for actual attributes. */
775 struct {
776 /* The bottom 3 bits are the mode */
777 mali_ptr elements : 64 - 8;
778 u32 shift : 5;
779 u32 extra_flags : 3;
780 u32 stride;
781 u32 size;
782 };
783 /* The entry after an NPOT_DIVIDE entry has this format. It stores
784 * extra information that wouldn't fit in a normal entry.
785 */
786 struct {
787 u32 unk; /* = 0x20 */
788 u32 magic_divisor;
789 u32 zero;
790 /* This is the original, GL-level divisor. */
791 u32 divisor;
792 };
793 } __attribute__((packed));
794
795 struct mali_attr_meta {
796 /* Vertex buffer index */
797 u8 index;
798
799 unsigned unknown1 : 2;
800 unsigned swizzle : 12;
801 enum mali_format format : 8;
802
803 /* Always observed to be zero at the moment */
804 unsigned unknown3 : 2;
805
806 /* When packing multiple attributes in a buffer, offset addresses by this value */
807 uint32_t src_offset;
808 } __attribute__((packed));
809
810 enum mali_fbd_type {
811 MALI_SFBD = 0,
812 MALI_MFBD = 1,
813 };
814
815 #define FBD_TYPE (1)
816 #define FBD_MASK (~0x3f)
817
818 struct mali_uniform_buffer_meta {
819 /* This is actually the size minus 1 (MALI_POSITIVE), in units of 16
820 * bytes. This gives a maximum of 2^14 bytes, which just so happens to
821 * be the GL minimum-maximum for GL_MAX_UNIFORM_BLOCK_SIZE.
822 */
823 u64 size : 10;
824
825 /* This is missing the bottom 2 bits and top 8 bits. The top 8 bits
826 * should be 0 for userspace pointers, according to
827 * https://lwn.net/Articles/718895/. By reusing these bits, we can make
828 * each entry in the table only 64 bits.
829 */
830 mali_ptr ptr : 64 - 10;
831 };
832
833 /* On Bifrost, these fields are the same between the vertex and tiler payloads.
834 * They also seem to be the same between Bifrost and Midgard. They're shared in
835 * fused payloads.
836 */
837
838 /* Applies to unknown_draw */
839
840 #define MALI_DRAW_INDEXED_UINT8 (0x10)
841 #define MALI_DRAW_INDEXED_UINT16 (0x20)
842 #define MALI_DRAW_INDEXED_UINT32 (0x30)
843 #define MALI_DRAW_VARYING_SIZE (0x100)
844 #define MALI_DRAW_PRIMITIVE_RESTART_FIXED_INDEX (0x10000)
845
846 struct mali_vertex_tiler_prefix {
847 /* This is a dynamic bitfield containing the following things in this order:
848 *
849 * - gl_WorkGroupSize.x
850 * - gl_WorkGroupSize.y
851 * - gl_WorkGroupSize.z
852 * - gl_NumWorkGroups.x
853 * - gl_NumWorkGroups.y
854 * - gl_NumWorkGroups.z
855 *
856 * The number of bits allocated for each number is based on the *_shift
857 * fields below. For example, workgroups_y_shift gives the bit that
858 * gl_NumWorkGroups.y starts at, and workgroups_z_shift gives the bit
859 * that gl_NumWorkGroups.z starts at (and therefore one after the bit
860 * that gl_NumWorkGroups.y ends at). The actual value for each gl_*
861 * value is one more than the stored value, since if any of the values
862 * are zero, then there would be no invocations (and hence no job). If
863 * there were 0 bits allocated to a given field, then it must be zero,
864 * and hence the real value is one.
865 *
866 * Vertex jobs reuse the same job dispatch mechanism as compute jobs,
867 * effectively doing glDispatchCompute(1, vertex_count, instance_count)
868 * where vertex count is the number of vertices.
869 */
870 u32 invocation_count;
871
872 u32 size_y_shift : 5;
873 u32 size_z_shift : 5;
874 u32 workgroups_x_shift : 6;
875 u32 workgroups_y_shift : 6;
876 u32 workgroups_z_shift : 6;
877 /* This is max(workgroups_x_shift, 2) in all the cases I've seen. */
878 u32 workgroups_x_shift_2 : 4;
879
880 u32 draw_mode : 4;
881 u32 unknown_draw : 22;
882
883 /* This is the the same as workgroups_x_shift_2 in compute shaders, but
884 * always 5 for vertex jobs and 6 for tiler jobs. I suspect this has
885 * something to do with how many quads get put in the same execution
886 * engine, which is a balance (you don't want to starve the engine, but
887 * you also want to distribute work evenly).
888 */
889 u32 workgroups_x_shift_3 : 6;
890
891
892 /* Negative of draw_start for TILER jobs from what I've seen */
893 int32_t negative_start;
894 u32 zero1;
895
896 /* Like many other strictly nonzero quantities, index_count is
897 * subtracted by one. For an indexed cube, this is equal to 35 = 6
898 * faces * 2 triangles/per face * 3 vertices/per triangle - 1. That is,
899 * for an indexed draw, index_count is the number of actual vertices
900 * rendered whereas invocation_count is the number of unique vertices
901 * rendered (the number of times the vertex shader must be invoked).
902 * For non-indexed draws, this is just equal to invocation_count. */
903
904 u32 index_count;
905
906 /* No hidden structure; literally just a pointer to an array of uint
907 * indices (width depends on flags). Thanks, guys, for not making my
908 * life insane for once! NULL for non-indexed draws. */
909
910 uintptr_t indices;
911 } __attribute__((packed));
912
913 /* Point size / line width can either be specified as a 32-bit float (for
914 * constant size) or as a [machine word size]-bit GPU pointer (for varying size). If a pointer
915 * is selected, by setting the appropriate MALI_DRAW_VARYING_SIZE bit in the tiler
916 * payload, the contents of varying_pointer will be intepreted as an array of
917 * fp16 sizes, one for each vertex. gl_PointSize is therefore implemented by
918 * creating a special MALI_R16F varying writing to varying_pointer. */
919
920 union midgard_primitive_size {
921 float constant;
922 uintptr_t pointer;
923 };
924
925 struct bifrost_vertex_only {
926 u32 unk2; /* =0x2 */
927
928 u32 zero0;
929
930 u64 zero1;
931 } __attribute__((packed));
932
933 struct bifrost_tiler_heap_meta {
934 u32 zero;
935 u32 heap_size;
936 /* note: these are just guesses! */
937 mali_ptr tiler_heap_start;
938 mali_ptr tiler_heap_free;
939 mali_ptr tiler_heap_end;
940
941 /* hierarchy weights? but they're still 0 after the job has run... */
942 u32 zeros[12];
943 } __attribute__((packed));
944
945 struct bifrost_tiler_meta {
946 u64 zero0;
947 u32 unk; // = 0xf0
948 u16 width;
949 u16 height;
950 u64 zero1;
951 mali_ptr tiler_heap_meta;
952 /* TODO what is this used for? */
953 u64 zeros[20];
954 } __attribute__((packed));
955
956 struct bifrost_tiler_only {
957 /* 0x20 */
958 union midgard_primitive_size primitive_size;
959
960 mali_ptr tiler_meta;
961
962 u64 zero1, zero2, zero3, zero4, zero5, zero6;
963
964 u32 gl_enables;
965 u32 zero7;
966 u64 zero8;
967 } __attribute__((packed));
968
969 struct bifrost_scratchpad {
970 u32 zero;
971 u32 flags; // = 0x1f
972 /* This is a pointer to a CPU-inaccessible buffer, 16 pages, allocated
973 * during startup. It seems to serve the same purpose as the
974 * gpu_scratchpad in the SFBD for Midgard, although it's slightly
975 * larger.
976 */
977 mali_ptr gpu_scratchpad;
978 } __attribute__((packed));
979
980 struct mali_vertex_tiler_postfix {
981 /* Zero for vertex jobs. Pointer to the position (gl_Position) varying
982 * output from the vertex shader for tiler jobs.
983 */
984
985 uintptr_t position_varying;
986
987 /* An array of mali_uniform_buffer_meta's. The size is given by the
988 * shader_meta.
989 */
990 uintptr_t uniform_buffers;
991
992 /* This is a pointer to an array of pointers to the texture
993 * descriptors, number of pointers bounded by number of textures. The
994 * indirection is needed to accomodate varying numbers and sizes of
995 * texture descriptors */
996 uintptr_t texture_trampoline;
997
998 /* For OpenGL, from what I've seen, this is intimately connected to
999 * texture_meta. cwabbott says this is not the case under Vulkan, hence
1000 * why this field is seperate (Midgard is Vulkan capable). Pointer to
1001 * array of sampler descriptors (which are uniform in size) */
1002 uintptr_t sampler_descriptor;
1003
1004 uintptr_t uniforms;
1005 u8 flags : 4;
1006 uintptr_t _shader_upper : MALI_SHORT_PTR_BITS - 4; /* struct shader_meta */
1007 uintptr_t attributes; /* struct attribute_buffer[] */
1008 uintptr_t attribute_meta; /* attribute_meta[] */
1009 uintptr_t varyings; /* struct attr */
1010 uintptr_t varying_meta; /* pointer */
1011 uintptr_t viewport;
1012 uintptr_t occlusion_counter; /* A single bit as far as I can tell */
1013
1014 /* Note: on Bifrost, this isn't actually the FBD. It points to
1015 * bifrost_scratchpad instead. However, it does point to the same thing
1016 * in vertex and tiler jobs.
1017 */
1018 mali_ptr framebuffer;
1019
1020 #ifdef __LP64__
1021 #ifdef BIFROST
1022 /* most likely padding to make this a multiple of 64 bytes */
1023 u64 zero7;
1024 #endif
1025 #endif
1026 } __attribute__((packed));
1027
1028 struct midgard_payload_vertex_tiler {
1029 #ifndef __LP64__
1030 union midgard_primitive_size primitive_size;
1031 #endif
1032
1033 struct mali_vertex_tiler_prefix prefix;
1034
1035 #ifndef __LP64__
1036 u32 zero3;
1037 #endif
1038
1039 u32 gl_enables; // 0x5
1040
1041 /* Offset for first vertex in buffer */
1042 u32 draw_start;
1043
1044 uintptr_t zero5;
1045
1046 struct mali_vertex_tiler_postfix postfix;
1047
1048 #ifdef __LP64__
1049 union midgard_primitive_size primitive_size;
1050 #endif
1051 } __attribute__((packed));
1052
1053 struct bifrost_payload_vertex {
1054 struct mali_vertex_tiler_prefix prefix;
1055 struct bifrost_vertex_only vertex;
1056 struct mali_vertex_tiler_postfix postfix;
1057 } __attribute__((packed));
1058
1059 struct bifrost_payload_tiler {
1060 struct mali_vertex_tiler_prefix prefix;
1061 struct bifrost_tiler_only tiler;
1062 struct mali_vertex_tiler_postfix postfix;
1063 } __attribute__((packed));
1064
1065 struct bifrost_payload_fused {
1066 struct mali_vertex_tiler_prefix prefix;
1067 struct bifrost_tiler_only tiler;
1068 struct mali_vertex_tiler_postfix tiler_postfix;
1069 struct bifrost_vertex_only vertex;
1070 struct mali_vertex_tiler_postfix vertex_postfix;
1071 } __attribute__((packed));
1072
1073 /* Pointed to from texture_trampoline, mostly unknown still, haven't
1074 * managed to replay successfully */
1075
1076 /* Purposeful off-by-one in width, height fields. For example, a (64, 64)
1077 * texture is stored as (63, 63) in these fields. This adjusts for that.
1078 * There's an identical pattern in the framebuffer descriptor. Even vertex
1079 * count fields work this way, hence the generic name -- integral fields that
1080 * are strictly positive generally need this adjustment. */
1081
1082 #define MALI_POSITIVE(dim) (dim - 1)
1083
1084 /* Opposite of MALI_POSITIVE, found in the depth_units field */
1085
1086 #define MALI_NEGATIVE(dim) (dim + 1)
1087
1088 /* Used with wrapping. Incomplete (this is a 4-bit field...) */
1089
1090 enum mali_wrap_mode {
1091 MALI_WRAP_REPEAT = 0x8,
1092 MALI_WRAP_CLAMP_TO_EDGE = 0x9,
1093 MALI_WRAP_CLAMP_TO_BORDER = 0xB,
1094 MALI_WRAP_MIRRORED_REPEAT = 0xC
1095 };
1096
1097 /* 8192x8192 */
1098 #define MAX_MIP_LEVELS (13)
1099
1100 /* Cubemap bloats everything up */
1101 #define MAX_FACES (6)
1102
1103 /* Corresponds to the type passed to glTexImage2D and so forth */
1104
1105 struct mali_texture_format {
1106 unsigned swizzle : 12;
1107 enum mali_format format : 8;
1108
1109 unsigned usage1 : 3;
1110 unsigned is_not_cubemap : 1;
1111 unsigned usage2 : 8;
1112 } __attribute__((packed));
1113
1114 struct mali_texture_descriptor {
1115 uint16_t width;
1116 uint16_t height;
1117 uint16_t depth;
1118
1119 uint16_t unknown1;
1120
1121 struct mali_texture_format format;
1122
1123 uint16_t unknown3;
1124
1125 /* One for non-mipmapped, zero for mipmapped */
1126 uint8_t unknown3A;
1127
1128 /* Zero for non-mipmapped, (number of levels - 1) for mipmapped */
1129 uint8_t nr_mipmap_levels;
1130
1131 /* Swizzling is a single 32-bit word, broken up here for convenience.
1132 * Here, swizzling refers to the ES 3.0 texture parameters for channel
1133 * level swizzling, not the internal pixel-level swizzling which is
1134 * below OpenGL's reach */
1135
1136 unsigned swizzle : 12;
1137 unsigned swizzle_zero : 20;
1138
1139 uint32_t unknown5;
1140 uint32_t unknown6;
1141 uint32_t unknown7;
1142
1143 mali_ptr swizzled_bitmaps[MAX_MIP_LEVELS * MAX_FACES];
1144 } __attribute__((packed));
1145
1146 /* Used as part of filter_mode */
1147
1148 #define MALI_LINEAR 0
1149 #define MALI_NEAREST 1
1150 #define MALI_MIP_LINEAR (0x18)
1151
1152 /* Used to construct low bits of filter_mode */
1153
1154 #define MALI_TEX_MAG(mode) (((mode) & 1) << 0)
1155 #define MALI_TEX_MIN(mode) (((mode) & 1) << 1)
1156
1157 #define MALI_TEX_MAG_MASK (1)
1158 #define MALI_TEX_MIN_MASK (2)
1159
1160 #define MALI_FILTER_NAME(filter) (filter ? "MALI_NEAREST" : "MALI_LINEAR")
1161
1162 /* Used for lod encoding. Thanks @urjaman for pointing out these routines can
1163 * be cleaned up a lot. */
1164
1165 #define DECODE_FIXED_16(x) ((float) (x / 256.0))
1166
1167 static inline uint16_t
1168 FIXED_16(float x)
1169 {
1170 /* Clamp inputs, accounting for float error */
1171 float max_lod = (32.0 - (1.0 / 512.0));
1172
1173 x = ((x > max_lod) ? max_lod : ((x < 0.0) ? 0.0 : x));
1174
1175 return (int) (x * 256.0);
1176 }
1177
1178 struct mali_sampler_descriptor {
1179 uint32_t filter_mode;
1180
1181 /* Fixed point. Upper 8-bits is before the decimal point, although it
1182 * caps [0-31]. Lower 8-bits is after the decimal point: int(round(x *
1183 * 256)) */
1184
1185 uint16_t min_lod;
1186 uint16_t max_lod;
1187
1188 /* All one word in reality, but packed a bit */
1189
1190 enum mali_wrap_mode wrap_s : 4;
1191 enum mali_wrap_mode wrap_t : 4;
1192 enum mali_wrap_mode wrap_r : 4;
1193 enum mali_alt_func compare_func : 3;
1194
1195 /* A single set bit of unknown, ha! */
1196 unsigned unknown2 : 1;
1197
1198 unsigned zero : 16;
1199
1200 uint32_t zero2;
1201 float border_color[4];
1202 } __attribute__((packed));
1203
1204 /* TODO: What are the floats? Apparently always { -inf, -inf, inf, inf },
1205 * unless the scissor test is enabled.
1206 *
1207 * viewport0/viewport1 form the arguments to glViewport. viewport1 is modified
1208 * by MALI_POSITIVE; viewport0 is as-is.
1209 */
1210
1211 struct mali_viewport {
1212 /* XY clipping planes */
1213 float clip_minx;
1214 float clip_miny;
1215 float clip_maxx;
1216 float clip_maxy;
1217
1218 /* Depth clipping planes */
1219 float clip_minz;
1220 float clip_maxz;
1221
1222 u16 viewport0[2];
1223 u16 viewport1[2];
1224 } __attribute__((packed));
1225
1226 /* From presentations, 16x16 tiles externally. Use shift for fast computation
1227 * of tile numbers. */
1228
1229 #define MALI_TILE_SHIFT 4
1230 #define MALI_TILE_LENGTH (1 << MALI_TILE_SHIFT)
1231
1232 /* Tile coordinates are stored as a compact u32, as only 12 bits are needed to
1233 * each component. Notice that this provides a theoretical upper bound of (1 <<
1234 * 12) = 4096 tiles in each direction, addressing a maximum framebuffer of size
1235 * 65536x65536. Multiplying that together, times another four given that Mali
1236 * framebuffers are 32-bit ARGB8888, means that this upper bound would take 16
1237 * gigabytes of RAM just to store the uncompressed framebuffer itself, let
1238 * alone rendering in real-time to such a buffer.
1239 *
1240 * Nice job, guys.*/
1241
1242 /* From mali_kbase_10969_workaround.c */
1243 #define MALI_X_COORD_MASK 0x00000FFF
1244 #define MALI_Y_COORD_MASK 0x0FFF0000
1245
1246 /* Extract parts of a tile coordinate */
1247
1248 #define MALI_TILE_COORD_X(coord) ((coord) & MALI_X_COORD_MASK)
1249 #define MALI_TILE_COORD_Y(coord) (((coord) & MALI_Y_COORD_MASK) >> 16)
1250 #define MALI_TILE_COORD_FLAGS(coord) ((coord) & ~(MALI_X_COORD_MASK | MALI_Y_COORD_MASK))
1251
1252 /* No known flags yet, but just in case...? */
1253
1254 #define MALI_TILE_NO_FLAG (0)
1255
1256 /* Helpers to generate tile coordinates based on the boundary coordinates in
1257 * screen space. So, with the bounds (0, 0) to (128, 128) for the screen, these
1258 * functions would convert it to the bounding tiles (0, 0) to (7, 7).
1259 * Intentional "off-by-one"; finding the tile number is a form of fencepost
1260 * problem. */
1261
1262 #define MALI_MAKE_TILE_COORDS(X, Y) ((X) | ((Y) << 16))
1263 #define MALI_BOUND_TO_TILE(B, bias) ((B - bias) >> MALI_TILE_SHIFT)
1264 #define MALI_COORDINATE_TO_TILE(W, H, bias) MALI_MAKE_TILE_COORDS(MALI_BOUND_TO_TILE(W, bias), MALI_BOUND_TO_TILE(H, bias))
1265 #define MALI_COORDINATE_TO_TILE_MIN(W, H) MALI_COORDINATE_TO_TILE(W, H, 0)
1266 #define MALI_COORDINATE_TO_TILE_MAX(W, H) MALI_COORDINATE_TO_TILE(W, H, 1)
1267
1268 struct mali_payload_fragment {
1269 u32 min_tile_coord;
1270 u32 max_tile_coord;
1271 mali_ptr framebuffer;
1272 } __attribute__((packed));
1273
1274 /* (Single?) Framebuffer Descriptor */
1275
1276 /* Flags apply to format. With just MSAA_A and MSAA_B, the framebuffer is
1277 * configured for 4x. With MSAA_8, it is configured for 8x. */
1278
1279 #define MALI_FRAMEBUFFER_MSAA_8 (1 << 3)
1280 #define MALI_FRAMEBUFFER_MSAA_A (1 << 4)
1281 #define MALI_FRAMEBUFFER_MSAA_B (1 << 23)
1282
1283 /* Fast/slow based on whether all three buffers are cleared at once */
1284
1285 #define MALI_CLEAR_FAST (1 << 18)
1286 #define MALI_CLEAR_SLOW (1 << 28)
1287 #define MALI_CLEAR_SLOW_STENCIL (1 << 31)
1288
1289 struct mali_single_framebuffer {
1290 u32 unknown1;
1291 u32 unknown2;
1292 u64 unknown_address_0;
1293 u64 zero1;
1294 u64 zero0;
1295
1296 /* Exact format is ironically not known, since EGL is finnicky with the
1297 * blob. MSAA, colourspace, etc are configured here. */
1298
1299 u32 format;
1300
1301 u32 clear_flags;
1302 u32 zero2;
1303
1304 /* Purposeful off-by-one in these fields should be accounted for by the
1305 * MALI_DIMENSION macro */
1306
1307 u16 width;
1308 u16 height;
1309
1310 u32 zero3[8];
1311
1312 /* By default, the framebuffer is upside down from OpenGL's
1313 * perspective. Set framebuffer to the end and negate the stride to
1314 * flip in the Y direction */
1315
1316 mali_ptr framebuffer;
1317 int32_t stride;
1318
1319 u32 zero4;
1320
1321 /* Depth and stencil buffers are interleaved, it appears, as they are
1322 * set to the same address in captures. Both fields set to zero if the
1323 * buffer is not being cleared. Depending on GL_ENABLE magic, you might
1324 * get a zero enable despite the buffer being present; that still is
1325 * disabled. */
1326
1327 mali_ptr depth_buffer; // not SAME_VA
1328 u64 depth_buffer_enable;
1329
1330 mali_ptr stencil_buffer; // not SAME_VA
1331 u64 stencil_buffer_enable;
1332
1333 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1334 u32 clear_color_2; // always equal, but unclear function?
1335 u32 clear_color_3; // always equal, but unclear function?
1336 u32 clear_color_4; // always equal, but unclear function?
1337
1338 /* Set to zero if not cleared */
1339
1340 float clear_depth_1; // float32, ditto
1341 float clear_depth_2; // float32, ditto
1342 float clear_depth_3; // float32, ditto
1343 float clear_depth_4; // float32, ditto
1344
1345 u32 clear_stencil; // Exactly as it appears in OpenGL
1346
1347 u32 zero6[7];
1348
1349 /* Very weird format, see generation code in trans_builder.c */
1350 u32 resolution_check;
1351
1352 u32 tiler_flags;
1353
1354 u64 unknown_address_1; /* Pointing towards... a zero buffer? */
1355 u64 unknown_address_2;
1356
1357 /* See mali_kbase_replay.c */
1358 u64 tiler_heap_free;
1359 u64 tiler_heap_end;
1360
1361 /* More below this, maybe */
1362 } __attribute__((packed));
1363
1364 /* Format bits for the render target flags */
1365
1366 #define MALI_MFBD_FORMAT_AFBC (1 << 5)
1367 #define MALI_MFBD_FORMAT_MSAA (1 << 7)
1368
1369 struct mali_rt_format {
1370 unsigned unk1 : 32;
1371 unsigned unk2 : 3;
1372
1373 unsigned nr_channels : 2; /* MALI_POSITIVE */
1374
1375 unsigned flags : 11;
1376
1377 unsigned swizzle : 12;
1378
1379 unsigned unk4 : 4;
1380 } __attribute__((packed));
1381
1382 struct bifrost_render_target {
1383 struct mali_rt_format format;
1384
1385 u64 zero1;
1386
1387 union {
1388 struct {
1389 /* Stuff related to ARM Framebuffer Compression. When AFBC is enabled,
1390 * there is an extra metadata buffer that contains 16 bytes per tile.
1391 * The framebuffer needs to be the same size as before, since we don't
1392 * know ahead of time how much space it will take up. The
1393 * framebuffer_stride is set to 0, since the data isn't stored linearly
1394 * anymore.
1395 */
1396
1397 mali_ptr metadata;
1398 u32 stride; // stride in units of tiles
1399 u32 unk; // = 0x20000
1400 } afbc;
1401
1402 struct {
1403 /* Heck if I know */
1404 u64 unk;
1405 mali_ptr pointer;
1406 } chunknown;
1407 };
1408
1409 mali_ptr framebuffer;
1410
1411 u32 zero2 : 4;
1412 u32 framebuffer_stride : 28; // in units of bytes
1413 u32 zero3;
1414
1415 u32 clear_color_1; // RGBA8888 from glClear, actually used by hardware
1416 u32 clear_color_2; // always equal, but unclear function?
1417 u32 clear_color_3; // always equal, but unclear function?
1418 u32 clear_color_4; // always equal, but unclear function?
1419 } __attribute__((packed));
1420
1421 /* An optional part of bifrost_framebuffer. It comes between the main structure
1422 * and the array of render targets. It must be included if any of these are
1423 * enabled:
1424 *
1425 * - Transaction Elimination
1426 * - Depth/stencil
1427 * - TODO: Anything else?
1428 */
1429
1430 /* Flags field: note, these are guesses */
1431
1432 #define MALI_EXTRA_PRESENT (0x400)
1433 #define MALI_EXTRA_AFBC (0x20)
1434 #define MALI_EXTRA_AFBC_ZS (0x10)
1435 #define MALI_EXTRA_ZS (0x4)
1436
1437 struct bifrost_fb_extra {
1438 mali_ptr checksum;
1439 /* Each tile has an 8 byte checksum, so the stride is "width in tiles * 8" */
1440 u32 checksum_stride;
1441
1442 u32 flags;
1443
1444 union {
1445 /* Note: AFBC is only allowed for 24/8 combined depth/stencil. */
1446 struct {
1447 mali_ptr depth_stencil_afbc_metadata;
1448 u32 depth_stencil_afbc_stride; // in units of tiles
1449 u32 zero1;
1450
1451 mali_ptr depth_stencil;
1452
1453 u64 padding;
1454 } ds_afbc;
1455
1456 struct {
1457 /* Depth becomes depth/stencil in case of combined D/S */
1458 mali_ptr depth;
1459 u32 depth_stride_zero : 4;
1460 u32 depth_stride : 28;
1461 u32 zero1;
1462
1463 mali_ptr stencil;
1464 u32 stencil_stride_zero : 4;
1465 u32 stencil_stride : 28;
1466 u32 zero2;
1467 } ds_linear;
1468 };
1469
1470
1471 u64 zero3, zero4;
1472 } __attribute__((packed));
1473
1474 /* flags for unk3 */
1475
1476 /* Enables writing depth results back to main memory (rather than keeping them
1477 * on-chip in the tile buffer and then discarding) */
1478
1479 #define MALI_MFBD_DEPTH_WRITE (1 << 10)
1480
1481 /* The MFBD contains the extra bifrost_fb_extra section */
1482
1483 #define MALI_MFBD_EXTRA (1 << 13)
1484
1485 struct bifrost_framebuffer {
1486 u32 unk0; // = 0x10
1487
1488 u32 unknown2; // = 0x1f, same as SFBD
1489 mali_ptr scratchpad;
1490
1491 /* 0x10 */
1492 mali_ptr sample_locations;
1493 mali_ptr unknown1;
1494 /* 0x20 */
1495 u16 width1, height1;
1496 u32 zero3;
1497 u16 width2, height2;
1498 u32 unk1 : 19; // = 0x01000
1499 u32 rt_count_1 : 2; // off-by-one (use MALI_POSITIVE)
1500 u32 unk2 : 3; // = 0
1501 u32 rt_count_2 : 3; // no off-by-one
1502 u32 zero4 : 5;
1503 /* 0x30 */
1504 u32 clear_stencil : 8;
1505 u32 unk3 : 24; // = 0x100
1506 float clear_depth;
1507 mali_ptr tiler_meta;
1508 /* 0x40 */
1509
1510 /* Note: these are guesses! */
1511 mali_ptr tiler_scratch_start;
1512 mali_ptr tiler_scratch_middle;
1513
1514 /* These are not, since we see symmetry with replay jobs which name these explicitly */
1515 mali_ptr tiler_heap_start;
1516 mali_ptr tiler_heap_end;
1517
1518 u64 zero9, zero10, zero11, zero12;
1519
1520 /* optional: struct bifrost_fb_extra extra */
1521 /* struct bifrost_render_target rts[] */
1522 } __attribute__((packed));
1523
1524 #endif /* __PANFROST_JOB_H__ */