panfrost/midgard: Remove unused mir_next_block
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .abs = src->abs,
258 .negate = src->negate,
259 .rep_low = 0,
260 .rep_high = 0,
261 .half = 0, /* TODO */
262 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
263 };
264
265 return alu_src;
266 }
267
268 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
269
270 static midgard_instruction
271 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
272 {
273 midgard_instruction ins = {
274 .type = TAG_ALU_4,
275 .ssa_args = {
276 .src0 = SSA_UNUSED_1,
277 .src1 = src,
278 .dest = dest,
279 },
280 .alu = {
281 .op = midgard_alu_op_fmov,
282 .reg_mode = midgard_reg_mode_full,
283 .dest_override = midgard_dest_override_none,
284 .mask = 0xFF,
285 .src1 = vector_alu_srco_unsigned(zero_alu_src),
286 .src2 = vector_alu_srco_unsigned(mod)
287 },
288 };
289
290 return ins;
291 }
292
293 /* load/store instructions have both 32-bit and 16-bit variants, depending on
294 * whether we are using vectors composed of highp or mediump. At the moment, we
295 * don't support half-floats -- this requires changes in other parts of the
296 * compiler -- therefore the 16-bit versions are commented out. */
297
298 //M_LOAD(load_attr_16);
299 M_LOAD(load_attr_32);
300 //M_LOAD(load_vary_16);
301 M_LOAD(load_vary_32);
302 //M_LOAD(load_uniform_16);
303 M_LOAD(load_uniform_32);
304 M_LOAD(load_color_buffer_8);
305 //M_STORE(store_vary_16);
306 M_STORE(store_vary_32);
307 M_STORE(store_cubemap_coords);
308
309 static midgard_instruction
310 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
311 {
312 midgard_branch_cond branch = {
313 .op = op,
314 .dest_tag = tag,
315 .offset = offset,
316 .cond = cond
317 };
318
319 uint16_t compact;
320 memcpy(&compact, &branch, sizeof(branch));
321
322 midgard_instruction ins = {
323 .type = TAG_ALU_4,
324 .unit = ALU_ENAB_BR_COMPACT,
325 .prepacked_branch = true,
326 .compact_branch = true,
327 .br_compact = compact
328 };
329
330 if (op == midgard_jmp_writeout_op_writeout)
331 ins.writeout = true;
332
333 return ins;
334 }
335
336 static midgard_instruction
337 v_branch(bool conditional, bool invert)
338 {
339 midgard_instruction ins = {
340 .type = TAG_ALU_4,
341 .unit = ALU_ENAB_BRANCH,
342 .compact_branch = true,
343 .branch = {
344 .conditional = conditional,
345 .invert_conditional = invert
346 }
347 };
348
349 return ins;
350 }
351
352 static midgard_branch_extended
353 midgard_create_branch_extended( midgard_condition cond,
354 midgard_jmp_writeout_op op,
355 unsigned dest_tag,
356 signed quadword_offset)
357 {
358 /* For unclear reasons, the condition code is repeated 8 times */
359 uint16_t duplicated_cond =
360 (cond << 14) |
361 (cond << 12) |
362 (cond << 10) |
363 (cond << 8) |
364 (cond << 6) |
365 (cond << 4) |
366 (cond << 2) |
367 (cond << 0);
368
369 midgard_branch_extended branch = {
370 .op = op,
371 .dest_tag = dest_tag,
372 .offset = quadword_offset,
373 .cond = duplicated_cond
374 };
375
376 return branch;
377 }
378
379 typedef struct midgard_bundle {
380 /* Tag for the overall bundle */
381 int tag;
382
383 /* Instructions contained by the bundle */
384 int instruction_count;
385 midgard_instruction instructions[5];
386
387 /* Bundle-wide ALU configuration */
388 int padding;
389 int control;
390 bool has_embedded_constants;
391 float constants[4];
392 bool has_blend_constant;
393
394 uint16_t register_words[8];
395 int register_words_count;
396
397 uint64_t body_words[8];
398 size_t body_size[8];
399 int body_words_count;
400 } midgard_bundle;
401
402 typedef struct compiler_context {
403 nir_shader *nir;
404 gl_shader_stage stage;
405
406 /* Is internally a blend shader? Depends on stage == FRAGMENT */
407 bool is_blend;
408
409 /* Tracking for blend constant patching */
410 int blend_constant_number;
411 int blend_constant_offset;
412
413 /* Current NIR function */
414 nir_function *func;
415
416 /* Unordered list of midgard_blocks */
417 int block_count;
418 struct list_head blocks;
419
420 midgard_block *initial_block;
421 midgard_block *previous_source_block;
422 midgard_block *final_block;
423
424 /* List of midgard_instructions emitted for the current block */
425 midgard_block *current_block;
426
427 /* The current "depth" of the loop, for disambiguating breaks/continues
428 * when using nested loops */
429 int current_loop_depth;
430
431 /* Constants which have been loaded, for later inlining */
432 struct hash_table_u64 *ssa_constants;
433
434 /* SSA indices to be outputted to corresponding varying offset */
435 struct hash_table_u64 *ssa_varyings;
436
437 /* SSA values / registers which have been aliased. Naively, these
438 * demand a fmov output; instead, we alias them in a later pass to
439 * avoid the wasted op.
440 *
441 * A note on encoding: to avoid dynamic memory management here, rather
442 * than ampping to a pointer, we map to the source index; the key
443 * itself is just the destination index. */
444
445 struct hash_table_u64 *ssa_to_alias;
446 struct set *leftover_ssa_to_alias;
447
448 /* Actual SSA-to-register for RA */
449 struct hash_table_u64 *ssa_to_register;
450
451 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
452 struct hash_table_u64 *hash_to_temp;
453 int temp_count;
454 int max_hash;
455
456 /* Just the count of the max register used. Higher count => higher
457 * register pressure */
458 int work_registers;
459
460 /* Used for cont/last hinting. Increase when a tex op is added.
461 * Decrease when a tex op is removed. */
462 int texture_op_count;
463
464 /* Mapping of texture register -> SSA index for unaliasing */
465 int texture_index[2];
466
467 /* If any path hits a discard instruction */
468 bool can_discard;
469
470 /* The number of uniforms allowable for the fast path */
471 int uniform_cutoff;
472
473 /* Count of instructions emitted from NIR overall, across all blocks */
474 int instruction_count;
475
476 /* Alpha ref value passed in */
477 float alpha_ref;
478
479 /* The index corresponding to the fragment output */
480 unsigned fragment_output;
481
482 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
483 unsigned sysvals[MAX_SYSVAL_COUNT];
484 unsigned sysval_count;
485 struct hash_table_u64 *sysval_to_id;
486 } compiler_context;
487
488 /* Append instruction to end of current block */
489
490 static midgard_instruction *
491 mir_upload_ins(struct midgard_instruction ins)
492 {
493 midgard_instruction *heap = malloc(sizeof(ins));
494 memcpy(heap, &ins, sizeof(ins));
495 return heap;
496 }
497
498 static void
499 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
500 {
501 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
502 }
503
504 static void
505 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
506 {
507 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
508 }
509
510 static void
511 mir_remove_instruction(struct midgard_instruction *ins)
512 {
513 list_del(&ins->link);
514 }
515
516 static midgard_instruction*
517 mir_prev_op(struct midgard_instruction *ins)
518 {
519 return list_last_entry(&(ins->link), midgard_instruction, link);
520 }
521
522 static midgard_instruction*
523 mir_next_op(struct midgard_instruction *ins)
524 {
525 return list_first_entry(&(ins->link), midgard_instruction, link);
526 }
527
528 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
529 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
530
531 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
532 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
533 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
534 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
535 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
536 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
537
538
539 static midgard_instruction *
540 mir_last_in_block(struct midgard_block *block)
541 {
542 return list_last_entry(&block->instructions, struct midgard_instruction, link);
543 }
544
545 static midgard_block *
546 mir_get_block(compiler_context *ctx, int idx)
547 {
548 struct list_head *lst = &ctx->blocks;
549
550 while ((idx--) + 1)
551 lst = lst->next;
552
553 return (struct midgard_block *) lst;
554 }
555
556 /* Pretty printer for internal Midgard IR */
557
558 static void
559 print_mir_source(int source)
560 {
561 if (source >= SSA_FIXED_MINIMUM) {
562 /* Specific register */
563 int reg = SSA_REG_FROM_FIXED(source);
564
565 /* TODO: Moving threshold */
566 if (reg > 16 && reg < 24)
567 printf("u%d", 23 - reg);
568 else
569 printf("r%d", reg);
570 } else {
571 printf("%d", source);
572 }
573 }
574
575 static void
576 print_mir_instruction(midgard_instruction *ins)
577 {
578 printf("\t");
579
580 switch (ins->type) {
581 case TAG_ALU_4: {
582 midgard_alu_op op = ins->alu.op;
583 const char *name = alu_opcode_names[op];
584
585 if (ins->unit)
586 printf("%d.", ins->unit);
587
588 printf("%s", name ? name : "??");
589 break;
590 }
591
592 case TAG_LOAD_STORE_4: {
593 midgard_load_store_op op = ins->load_store.op;
594 const char *name = load_store_opcode_names[op];
595
596 assert(name);
597 printf("%s", name);
598 break;
599 }
600
601 case TAG_TEXTURE_4: {
602 printf("texture");
603 break;
604 }
605
606 default:
607 assert(0);
608 }
609
610 ssa_args *args = &ins->ssa_args;
611
612 printf(" %d, ", args->dest);
613
614 print_mir_source(args->src0);
615 printf(", ");
616
617 if (args->inline_constant)
618 printf("#%d", ins->inline_constant);
619 else
620 print_mir_source(args->src1);
621
622 if (ins->has_constants)
623 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
624
625 printf("\n");
626 }
627
628 static void
629 print_mir_block(midgard_block *block)
630 {
631 printf("{\n");
632
633 mir_foreach_instr_in_block(block, ins) {
634 print_mir_instruction(ins);
635 }
636
637 printf("}\n");
638 }
639
640 static void
641 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
642 {
643 ins->has_constants = true;
644 memcpy(&ins->constants, constants, 16);
645
646 /* If this is the special blend constant, mark this instruction */
647
648 if (ctx->is_blend && ctx->blend_constant_number == name)
649 ins->has_blend_constant = true;
650 }
651
652 static int
653 glsl_type_size(const struct glsl_type *type, bool bindless)
654 {
655 return glsl_count_attribute_slots(type, false);
656 }
657
658 /* Lower fdot2 to a vector multiplication followed by channel addition */
659 static void
660 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
661 {
662 if (alu->op != nir_op_fdot2)
663 return;
664
665 b->cursor = nir_before_instr(&alu->instr);
666
667 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
668 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
669
670 nir_ssa_def *product = nir_fmul(b, src0, src1);
671
672 nir_ssa_def *sum = nir_fadd(b,
673 nir_channel(b, product, 0),
674 nir_channel(b, product, 1));
675
676 /* Replace the fdot2 with this sum */
677 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
678 }
679
680 static int
681 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
682 {
683 switch (instr->intrinsic) {
684 case nir_intrinsic_load_viewport_scale:
685 return PAN_SYSVAL_VIEWPORT_SCALE;
686 case nir_intrinsic_load_viewport_offset:
687 return PAN_SYSVAL_VIEWPORT_OFFSET;
688 default:
689 return -1;
690 }
691 }
692
693 static void
694 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
695 {
696 int sysval = -1;
697
698 if (instr->type == nir_instr_type_intrinsic) {
699 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
700 sysval = midgard_nir_sysval_for_intrinsic(intr);
701 }
702
703 if (sysval < 0)
704 return;
705
706 /* We have a sysval load; check if it's already been assigned */
707
708 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
709 return;
710
711 /* It hasn't -- so assign it now! */
712
713 unsigned id = ctx->sysval_count++;
714 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
715 ctx->sysvals[id] = sysval;
716 }
717
718 static void
719 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
720 {
721 ctx->sysval_count = 0;
722
723 nir_foreach_function(function, shader) {
724 if (!function->impl) continue;
725
726 nir_foreach_block(block, function->impl) {
727 nir_foreach_instr_safe(instr, block) {
728 midgard_nir_assign_sysval_body(ctx, instr);
729 }
730 }
731 }
732 }
733
734 static bool
735 midgard_nir_lower_fdot2(nir_shader *shader)
736 {
737 bool progress = false;
738
739 nir_foreach_function(function, shader) {
740 if (!function->impl) continue;
741
742 nir_builder _b;
743 nir_builder *b = &_b;
744 nir_builder_init(b, function->impl);
745
746 nir_foreach_block(block, function->impl) {
747 nir_foreach_instr_safe(instr, block) {
748 if (instr->type != nir_instr_type_alu) continue;
749
750 nir_alu_instr *alu = nir_instr_as_alu(instr);
751 midgard_nir_lower_fdot2_body(b, alu);
752
753 progress |= true;
754 }
755 }
756
757 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
758
759 }
760
761 return progress;
762 }
763
764 static void
765 optimise_nir(nir_shader *nir)
766 {
767 bool progress;
768
769 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
770 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
771
772 nir_lower_tex_options lower_tex_options = {
773 .lower_rect = true
774 };
775
776 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
777
778 do {
779 progress = false;
780
781 NIR_PASS(progress, nir, nir_lower_var_copies);
782 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
783
784 NIR_PASS(progress, nir, nir_copy_prop);
785 NIR_PASS(progress, nir, nir_opt_dce);
786 NIR_PASS(progress, nir, nir_opt_dead_cf);
787 NIR_PASS(progress, nir, nir_opt_cse);
788 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
789 NIR_PASS(progress, nir, nir_opt_algebraic);
790 NIR_PASS(progress, nir, nir_opt_constant_folding);
791 NIR_PASS(progress, nir, nir_opt_undef);
792 NIR_PASS(progress, nir, nir_opt_loop_unroll,
793 nir_var_shader_in |
794 nir_var_shader_out |
795 nir_var_function_temp);
796
797 /* TODO: Enable vectorize when merged upstream */
798 // NIR_PASS(progress, nir, nir_opt_vectorize);
799 } while (progress);
800
801 /* Must be run at the end to prevent creation of fsin/fcos ops */
802 NIR_PASS(progress, nir, midgard_nir_scale_trig);
803
804 do {
805 progress = false;
806
807 NIR_PASS(progress, nir, nir_opt_dce);
808 NIR_PASS(progress, nir, nir_opt_algebraic);
809 NIR_PASS(progress, nir, nir_opt_constant_folding);
810 NIR_PASS(progress, nir, nir_copy_prop);
811 } while (progress);
812
813 NIR_PASS(progress, nir, nir_opt_algebraic_late);
814 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
815
816 /* Lower mods for float ops only. Integer ops don't support modifiers
817 * (saturate doesn't make sense on integers, neg/abs require dedicated
818 * instructions) */
819
820 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
821 NIR_PASS(progress, nir, nir_copy_prop);
822 NIR_PASS(progress, nir, nir_opt_dce);
823
824 /* We implement booleans as 32-bit 0/~0 */
825 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
826
827 /* Take us out of SSA */
828 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
829 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
830
831 /* We are a vector architecture; write combine where possible */
832 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
833 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
834
835 NIR_PASS(progress, nir, nir_opt_dce);
836 }
837
838 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
839 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
840 * r0. See the comments in compiler_context */
841
842 static void
843 alias_ssa(compiler_context *ctx, int dest, int src)
844 {
845 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
846 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
847 }
848
849 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
850
851 static void
852 unalias_ssa(compiler_context *ctx, int dest)
853 {
854 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
855 /* TODO: Remove from leftover or no? */
856 }
857
858 static void
859 midgard_pin_output(compiler_context *ctx, int index, int reg)
860 {
861 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
862 }
863
864 static bool
865 midgard_is_pinned(compiler_context *ctx, int index)
866 {
867 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
868 }
869
870 /* Do not actually emit a load; instead, cache the constant for inlining */
871
872 static void
873 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
874 {
875 nir_ssa_def def = instr->def;
876
877 float *v = ralloc_array(NULL, float, 4);
878 nir_const_load_to_arr(v, instr, f32);
879 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
880 }
881
882 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
883 * do the inverse) */
884
885 static unsigned
886 expand_writemask(unsigned mask)
887 {
888 unsigned o = 0;
889
890 for (int i = 0; i < 4; ++i)
891 if (mask & (1 << i))
892 o |= (3 << (2 * i));
893
894 return o;
895 }
896
897 static unsigned
898 squeeze_writemask(unsigned mask)
899 {
900 unsigned o = 0;
901
902 for (int i = 0; i < 4; ++i)
903 if (mask & (3 << (2 * i)))
904 o |= (1 << i);
905
906 return o;
907
908 }
909
910 /* Determines effective writemask, taking quirks and expansion into account */
911 static unsigned
912 effective_writemask(midgard_vector_alu *alu)
913 {
914 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
915 * sense) */
916
917 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
918
919 /* If there is a fixed channel count, construct the appropriate mask */
920
921 if (channel_count)
922 return (1 << channel_count) - 1;
923
924 /* Otherwise, just squeeze the existing mask */
925 return squeeze_writemask(alu->mask);
926 }
927
928 static unsigned
929 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
930 {
931 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
932 return hash;
933
934 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
935
936 if (temp)
937 return temp - 1;
938
939 /* If no temp is find, allocate one */
940 temp = ctx->temp_count++;
941 ctx->max_hash = MAX2(ctx->max_hash, hash);
942
943 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
944
945 return temp;
946 }
947
948 static unsigned
949 nir_src_index(compiler_context *ctx, nir_src *src)
950 {
951 if (src->is_ssa)
952 return src->ssa->index;
953 else {
954 assert(!src->reg.indirect);
955 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
956 }
957 }
958
959 static unsigned
960 nir_dest_index(compiler_context *ctx, nir_dest *dst)
961 {
962 if (dst->is_ssa)
963 return dst->ssa.index;
964 else {
965 assert(!dst->reg.indirect);
966 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
967 }
968 }
969
970 static unsigned
971 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
972 {
973 return nir_src_index(ctx, &src->src);
974 }
975
976 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
977 * a conditional test) into that register */
978
979 static void
980 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
981 {
982 int condition = nir_src_index(ctx, src);
983
984 /* Source to swizzle the desired component into w */
985
986 const midgard_vector_alu_src alu_src = {
987 .swizzle = SWIZZLE(component, component, component, component),
988 };
989
990 /* There is no boolean move instruction. Instead, we simulate a move by
991 * ANDing the condition with itself to get it into r31.w */
992
993 midgard_instruction ins = {
994 .type = TAG_ALU_4,
995 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
996 .ssa_args = {
997 .src0 = condition,
998 .src1 = condition,
999 .dest = SSA_FIXED_REGISTER(31),
1000 },
1001 .alu = {
1002 .op = midgard_alu_op_iand,
1003 .reg_mode = midgard_reg_mode_full,
1004 .dest_override = midgard_dest_override_none,
1005 .mask = (0x3 << 6), /* w */
1006 .src1 = vector_alu_srco_unsigned(alu_src),
1007 .src2 = vector_alu_srco_unsigned(alu_src)
1008 },
1009 };
1010
1011 emit_mir_instruction(ctx, ins);
1012 }
1013
1014 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1015 * pinning to eliminate this move in all known cases */
1016
1017 static void
1018 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1019 {
1020 int offset = nir_src_index(ctx, src);
1021
1022 midgard_instruction ins = {
1023 .type = TAG_ALU_4,
1024 .ssa_args = {
1025 .src0 = SSA_UNUSED_1,
1026 .src1 = offset,
1027 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1028 },
1029 .alu = {
1030 .op = midgard_alu_op_imov,
1031 .reg_mode = midgard_reg_mode_full,
1032 .dest_override = midgard_dest_override_none,
1033 .mask = (0x3 << 6), /* w */
1034 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1035 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1036 },
1037 };
1038
1039 emit_mir_instruction(ctx, ins);
1040 }
1041
1042 #define ALU_CASE(nir, _op) \
1043 case nir_op_##nir: \
1044 op = midgard_alu_op_##_op; \
1045 break;
1046
1047 static void
1048 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1049 {
1050 bool is_ssa = instr->dest.dest.is_ssa;
1051
1052 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1053 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1054 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1055
1056 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1057 * supported. A few do not and are commented for now. Also, there are a
1058 * number of NIR ops which Midgard does not support and need to be
1059 * lowered, also TODO. This switch block emits the opcode and calling
1060 * convention of the Midgard instruction; actual packing is done in
1061 * emit_alu below */
1062
1063 unsigned op;
1064
1065 switch (instr->op) {
1066 ALU_CASE(fadd, fadd);
1067 ALU_CASE(fmul, fmul);
1068 ALU_CASE(fmin, fmin);
1069 ALU_CASE(fmax, fmax);
1070 ALU_CASE(imin, imin);
1071 ALU_CASE(imax, imax);
1072 ALU_CASE(umin, umin);
1073 ALU_CASE(umax, umax);
1074 ALU_CASE(fmov, fmov);
1075 ALU_CASE(ffloor, ffloor);
1076 ALU_CASE(fround_even, froundeven);
1077 ALU_CASE(ftrunc, ftrunc);
1078 ALU_CASE(fceil, fceil);
1079 ALU_CASE(fdot3, fdot3);
1080 ALU_CASE(fdot4, fdot4);
1081 ALU_CASE(iadd, iadd);
1082 ALU_CASE(isub, isub);
1083 ALU_CASE(imul, imul);
1084 ALU_CASE(iabs, iabs);
1085
1086 /* XXX: Use fmov, not imov, since imov was causing major
1087 * issues with texture precision? XXX research */
1088 ALU_CASE(imov, imov);
1089
1090 ALU_CASE(feq32, feq);
1091 ALU_CASE(fne32, fne);
1092 ALU_CASE(flt32, flt);
1093 ALU_CASE(ieq32, ieq);
1094 ALU_CASE(ine32, ine);
1095 ALU_CASE(ilt32, ilt);
1096 ALU_CASE(ult32, ult);
1097
1098 /* We don't have a native b2f32 instruction. Instead, like many
1099 * GPUs, we exploit booleans as 0/~0 for false/true, and
1100 * correspondingly AND
1101 * by 1.0 to do the type conversion. For the moment, prime us
1102 * to emit:
1103 *
1104 * iand [whatever], #0
1105 *
1106 * At the end of emit_alu (as MIR), we'll fix-up the constant
1107 */
1108
1109 ALU_CASE(b2f32, iand);
1110 ALU_CASE(b2i32, iand);
1111
1112 /* Likewise, we don't have a dedicated f2b32 instruction, but
1113 * we can do a "not equal to 0.0" test. */
1114
1115 ALU_CASE(f2b32, fne);
1116 ALU_CASE(i2b32, ine);
1117
1118 ALU_CASE(frcp, frcp);
1119 ALU_CASE(frsq, frsqrt);
1120 ALU_CASE(fsqrt, fsqrt);
1121 ALU_CASE(fexp2, fexp2);
1122 ALU_CASE(flog2, flog2);
1123
1124 ALU_CASE(f2i32, f2i);
1125 ALU_CASE(f2u32, f2u);
1126 ALU_CASE(i2f32, i2f);
1127 ALU_CASE(u2f32, u2f);
1128
1129 ALU_CASE(fsin, fsin);
1130 ALU_CASE(fcos, fcos);
1131
1132 ALU_CASE(iand, iand);
1133 ALU_CASE(ior, ior);
1134 ALU_CASE(ixor, ixor);
1135 ALU_CASE(inot, inot);
1136 ALU_CASE(ishl, ishl);
1137 ALU_CASE(ishr, iasr);
1138 ALU_CASE(ushr, ilsr);
1139
1140 ALU_CASE(b32all_fequal2, fball_eq);
1141 ALU_CASE(b32all_fequal3, fball_eq);
1142 ALU_CASE(b32all_fequal4, fball_eq);
1143
1144 ALU_CASE(b32any_fnequal2, fbany_neq);
1145 ALU_CASE(b32any_fnequal3, fbany_neq);
1146 ALU_CASE(b32any_fnequal4, fbany_neq);
1147
1148 ALU_CASE(b32all_iequal2, iball_eq);
1149 ALU_CASE(b32all_iequal3, iball_eq);
1150 ALU_CASE(b32all_iequal4, iball_eq);
1151
1152 ALU_CASE(b32any_inequal2, ibany_neq);
1153 ALU_CASE(b32any_inequal3, ibany_neq);
1154 ALU_CASE(b32any_inequal4, ibany_neq);
1155
1156 /* For greater-or-equal, we lower to less-or-equal and flip the
1157 * arguments */
1158
1159 case nir_op_fge:
1160 case nir_op_fge32:
1161 case nir_op_ige32:
1162 case nir_op_uge32: {
1163 op =
1164 instr->op == nir_op_fge ? midgard_alu_op_fle :
1165 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1166 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1167 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1168 0;
1169
1170 /* Swap via temporary */
1171 nir_alu_src temp = instr->src[1];
1172 instr->src[1] = instr->src[0];
1173 instr->src[0] = temp;
1174
1175 break;
1176 }
1177
1178 case nir_op_b32csel: {
1179 op = midgard_alu_op_fcsel;
1180
1181 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1182 nr_inputs = 2;
1183
1184 /* Figure out which component the condition is in */
1185
1186 unsigned comp = instr->src[0].swizzle[0];
1187
1188 /* Make sure NIR isn't throwing a mixed condition at us */
1189
1190 for (unsigned c = 1; c < nr_components; ++c)
1191 assert(instr->src[0].swizzle[c] == comp);
1192
1193 /* Emit the condition into r31.w */
1194 emit_condition(ctx, &instr->src[0].src, false, comp);
1195
1196 /* The condition is the first argument; move the other
1197 * arguments up one to be a binary instruction for
1198 * Midgard */
1199
1200 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1201 break;
1202 }
1203
1204 default:
1205 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1206 assert(0);
1207 return;
1208 }
1209
1210 /* Fetch unit, quirks, etc information */
1211 unsigned opcode_props = alu_opcode_props[op];
1212 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1213
1214 /* Initialise fields common between scalar/vector instructions */
1215 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1216
1217 /* src0 will always exist afaik, but src1 will not for 1-argument
1218 * instructions. The latter can only be fetched if the instruction
1219 * needs it, or else we may segfault. */
1220
1221 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1222 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1223
1224 /* Rather than use the instruction generation helpers, we do it
1225 * ourselves here to avoid the mess */
1226
1227 midgard_instruction ins = {
1228 .type = TAG_ALU_4,
1229 .ssa_args = {
1230 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1231 .src1 = quirk_flipped_r24 ? src0 : src1,
1232 .dest = dest,
1233 }
1234 };
1235
1236 nir_alu_src *nirmods[2] = { NULL };
1237
1238 if (nr_inputs == 2) {
1239 nirmods[0] = &instr->src[0];
1240 nirmods[1] = &instr->src[1];
1241 } else if (nr_inputs == 1) {
1242 nirmods[quirk_flipped_r24] = &instr->src[0];
1243 } else {
1244 assert(0);
1245 }
1246
1247 midgard_vector_alu alu = {
1248 .op = op,
1249 .reg_mode = midgard_reg_mode_full,
1250 .dest_override = midgard_dest_override_none,
1251 .outmod = outmod,
1252
1253 /* Writemask only valid for non-SSA NIR */
1254 .mask = expand_writemask((1 << nr_components) - 1),
1255
1256 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1257 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1258 };
1259
1260 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1261
1262 if (!is_ssa)
1263 alu.mask &= expand_writemask(instr->dest.write_mask);
1264
1265 ins.alu = alu;
1266
1267 /* Late fixup for emulated instructions */
1268
1269 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1270 /* Presently, our second argument is an inline #0 constant.
1271 * Switch over to an embedded 1.0 constant (that can't fit
1272 * inline, since we're 32-bit, not 16-bit like the inline
1273 * constants) */
1274
1275 ins.ssa_args.inline_constant = false;
1276 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1277 ins.has_constants = true;
1278
1279 if (instr->op == nir_op_b2f32) {
1280 ins.constants[0] = 1.0f;
1281 } else {
1282 /* Type pun it into place */
1283 uint32_t one = 0x1;
1284 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1285 }
1286
1287 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1288 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1289 ins.ssa_args.inline_constant = false;
1290 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1291 ins.has_constants = true;
1292 ins.constants[0] = 0.0f;
1293 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1294 }
1295
1296 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1297 /* To avoid duplicating the lookup tables (probably), true LUT
1298 * instructions can only operate as if they were scalars. Lower
1299 * them here by changing the component. */
1300
1301 uint8_t original_swizzle[4];
1302 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1303
1304 for (int i = 0; i < nr_components; ++i) {
1305 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1306
1307 for (int j = 0; j < 4; ++j)
1308 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1309
1310 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1311 emit_mir_instruction(ctx, ins);
1312 }
1313 } else {
1314 emit_mir_instruction(ctx, ins);
1315 }
1316 }
1317
1318 #undef ALU_CASE
1319
1320 static void
1321 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1322 {
1323 /* TODO: half-floats */
1324
1325 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1326 /* Fast path: For the first 16 uniforms, direct accesses are
1327 * 0-cycle, since they're just a register fetch in the usual
1328 * case. So, we alias the registers while we're still in
1329 * SSA-space */
1330
1331 int reg_slot = 23 - offset;
1332 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1333 } else {
1334 /* Otherwise, read from the 'special' UBO to access
1335 * higher-indexed uniforms, at a performance cost. More
1336 * generally, we're emitting a UBO read instruction. */
1337
1338 midgard_instruction ins = m_load_uniform_32(dest, offset);
1339
1340 /* TODO: Don't split */
1341 ins.load_store.varying_parameters = (offset & 7) << 7;
1342 ins.load_store.address = offset >> 3;
1343
1344 if (indirect_offset) {
1345 emit_indirect_offset(ctx, indirect_offset);
1346 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1347 } else {
1348 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1349 }
1350
1351 emit_mir_instruction(ctx, ins);
1352 }
1353 }
1354
1355 static void
1356 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1357 {
1358 /* First, pull out the destination */
1359 unsigned dest = nir_dest_index(ctx, &instr->dest);
1360
1361 /* Now, figure out which uniform this is */
1362 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1363 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1364
1365 /* Sysvals are prefix uniforms */
1366 unsigned uniform = ((uintptr_t) val) - 1;
1367
1368 /* Emit the read itself -- this is never indirect */
1369 emit_uniform_read(ctx, dest, uniform, NULL);
1370 }
1371
1372 static void
1373 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1374 {
1375 unsigned offset, reg;
1376
1377 switch (instr->intrinsic) {
1378 case nir_intrinsic_discard_if:
1379 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1380
1381 /* fallthrough */
1382
1383 case nir_intrinsic_discard: {
1384 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1385 struct midgard_instruction discard = v_branch(conditional, false);
1386 discard.branch.target_type = TARGET_DISCARD;
1387 emit_mir_instruction(ctx, discard);
1388
1389 ctx->can_discard = true;
1390 break;
1391 }
1392
1393 case nir_intrinsic_load_uniform:
1394 case nir_intrinsic_load_input:
1395 offset = nir_intrinsic_base(instr);
1396
1397 bool direct = nir_src_is_const(instr->src[0]);
1398
1399 if (direct) {
1400 offset += nir_src_as_uint(instr->src[0]);
1401 }
1402
1403 reg = nir_dest_index(ctx, &instr->dest);
1404
1405 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1406 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1407 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1408 /* XXX: Half-floats? */
1409 /* TODO: swizzle, mask */
1410
1411 midgard_instruction ins = m_load_vary_32(reg, offset);
1412
1413 midgard_varying_parameter p = {
1414 .is_varying = 1,
1415 .interpolation = midgard_interp_default,
1416 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1417 };
1418
1419 unsigned u;
1420 memcpy(&u, &p, sizeof(p));
1421 ins.load_store.varying_parameters = u;
1422
1423 if (direct) {
1424 /* We have the offset totally ready */
1425 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1426 } else {
1427 /* We have it partially ready, but we need to
1428 * add in the dynamic index, moved to r27.w */
1429 emit_indirect_offset(ctx, &instr->src[0]);
1430 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1431 }
1432
1433 emit_mir_instruction(ctx, ins);
1434 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1435 /* Constant encoded as a pinned constant */
1436
1437 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1438 ins.has_constants = true;
1439 ins.has_blend_constant = true;
1440 emit_mir_instruction(ctx, ins);
1441 } else if (ctx->is_blend) {
1442 /* For blend shaders, a load might be
1443 * translated various ways depending on what
1444 * we're loading. Figure out how this is used */
1445
1446 nir_variable *out = NULL;
1447
1448 nir_foreach_variable(var, &ctx->nir->inputs) {
1449 int drvloc = var->data.driver_location;
1450
1451 if (nir_intrinsic_base(instr) == drvloc) {
1452 out = var;
1453 break;
1454 }
1455 }
1456
1457 assert(out);
1458
1459 if (out->data.location == VARYING_SLOT_COL0) {
1460 /* Source color preloaded to r0 */
1461
1462 midgard_pin_output(ctx, reg, 0);
1463 } else if (out->data.location == VARYING_SLOT_COL1) {
1464 /* Destination color must be read from framebuffer */
1465
1466 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1467 ins.load_store.swizzle = 0; /* xxxx */
1468
1469 /* Read each component sequentially */
1470
1471 for (int c = 0; c < 4; ++c) {
1472 ins.load_store.mask = (1 << c);
1473 ins.load_store.unknown = c;
1474 emit_mir_instruction(ctx, ins);
1475 }
1476
1477 /* vadd.u2f hr2, abs(hr2), #0 */
1478
1479 midgard_vector_alu_src alu_src = blank_alu_src;
1480 alu_src.abs = true;
1481 alu_src.half = true;
1482
1483 midgard_instruction u2f = {
1484 .type = TAG_ALU_4,
1485 .ssa_args = {
1486 .src0 = reg,
1487 .src1 = SSA_UNUSED_0,
1488 .dest = reg,
1489 .inline_constant = true
1490 },
1491 .alu = {
1492 .op = midgard_alu_op_u2f,
1493 .reg_mode = midgard_reg_mode_half,
1494 .dest_override = midgard_dest_override_none,
1495 .mask = 0xF,
1496 .src1 = vector_alu_srco_unsigned(alu_src),
1497 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1498 }
1499 };
1500
1501 emit_mir_instruction(ctx, u2f);
1502
1503 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1504
1505 alu_src.abs = false;
1506
1507 midgard_instruction fmul = {
1508 .type = TAG_ALU_4,
1509 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1510 .ssa_args = {
1511 .src0 = reg,
1512 .dest = reg,
1513 .src1 = SSA_UNUSED_0,
1514 .inline_constant = true
1515 },
1516 .alu = {
1517 .op = midgard_alu_op_fmul,
1518 .reg_mode = midgard_reg_mode_full,
1519 .dest_override = midgard_dest_override_none,
1520 .outmod = midgard_outmod_sat,
1521 .mask = 0xFF,
1522 .src1 = vector_alu_srco_unsigned(alu_src),
1523 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1524 }
1525 };
1526
1527 emit_mir_instruction(ctx, fmul);
1528 } else {
1529 DBG("Unknown input in blend shader\n");
1530 assert(0);
1531 }
1532 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1533 midgard_instruction ins = m_load_attr_32(reg, offset);
1534 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1535 ins.load_store.mask = (1 << instr->num_components) - 1;
1536 emit_mir_instruction(ctx, ins);
1537 } else {
1538 DBG("Unknown load\n");
1539 assert(0);
1540 }
1541
1542 break;
1543
1544 case nir_intrinsic_store_output:
1545 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1546
1547 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1548
1549 reg = nir_src_index(ctx, &instr->src[0]);
1550
1551 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1552 /* gl_FragColor is not emitted with load/store
1553 * instructions. Instead, it gets plonked into
1554 * r0 at the end of the shader and we do the
1555 * framebuffer writeout dance. TODO: Defer
1556 * writes */
1557
1558 midgard_pin_output(ctx, reg, 0);
1559
1560 /* Save the index we're writing to for later reference
1561 * in the epilogue */
1562
1563 ctx->fragment_output = reg;
1564 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1565 /* Varyings are written into one of two special
1566 * varying register, r26 or r27. The register itself is selected as the register
1567 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1568 *
1569 * Normally emitting fmov's is frowned upon,
1570 * but due to unique constraints of
1571 * REGISTER_VARYING, fmov emission + a
1572 * dedicated cleanup pass is the only way to
1573 * guarantee correctness when considering some
1574 * (common) edge cases XXX: FIXME */
1575
1576 /* If this varying corresponds to a constant (why?!),
1577 * emit that now since it won't get picked up by
1578 * hoisting (since there is no corresponding move
1579 * emitted otherwise) */
1580
1581 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1582
1583 if (constant_value) {
1584 /* Special case: emit the varying write
1585 * directly to r26 (looks funny in asm but it's
1586 * fine) and emit the store _now_. Possibly
1587 * slightly slower, but this is a really stupid
1588 * special case anyway (why on earth would you
1589 * have a constant varying? Your own fault for
1590 * slightly worse perf :P) */
1591
1592 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1593 attach_constants(ctx, &ins, constant_value, reg + 1);
1594 emit_mir_instruction(ctx, ins);
1595
1596 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1597 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1598 emit_mir_instruction(ctx, st);
1599 } else {
1600 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1601
1602 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1603 }
1604 } else {
1605 DBG("Unknown store\n");
1606 assert(0);
1607 }
1608
1609 break;
1610
1611 case nir_intrinsic_load_alpha_ref_float:
1612 assert(instr->dest.is_ssa);
1613
1614 float ref_value = ctx->alpha_ref;
1615
1616 float *v = ralloc_array(NULL, float, 4);
1617 memcpy(v, &ref_value, sizeof(float));
1618 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1619 break;
1620
1621 case nir_intrinsic_load_viewport_scale:
1622 case nir_intrinsic_load_viewport_offset:
1623 emit_sysval_read(ctx, instr);
1624 break;
1625
1626 default:
1627 printf ("Unhandled intrinsic\n");
1628 assert(0);
1629 break;
1630 }
1631 }
1632
1633 static unsigned
1634 midgard_tex_format(enum glsl_sampler_dim dim)
1635 {
1636 switch (dim) {
1637 case GLSL_SAMPLER_DIM_2D:
1638 case GLSL_SAMPLER_DIM_EXTERNAL:
1639 return TEXTURE_2D;
1640
1641 case GLSL_SAMPLER_DIM_3D:
1642 return TEXTURE_3D;
1643
1644 case GLSL_SAMPLER_DIM_CUBE:
1645 return TEXTURE_CUBE;
1646
1647 default:
1648 DBG("Unknown sampler dim type\n");
1649 assert(0);
1650 return 0;
1651 }
1652 }
1653
1654 static void
1655 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1656 {
1657 /* TODO */
1658 //assert (!instr->sampler);
1659 //assert (!instr->texture_array_size);
1660 assert (instr->op == nir_texop_tex);
1661
1662 /* Allocate registers via a round robin scheme to alternate between the two registers */
1663 int reg = ctx->texture_op_count & 1;
1664 int in_reg = reg, out_reg = reg;
1665
1666 /* Make room for the reg */
1667
1668 if (ctx->texture_index[reg] > -1)
1669 unalias_ssa(ctx, ctx->texture_index[reg]);
1670
1671 int texture_index = instr->texture_index;
1672 int sampler_index = texture_index;
1673
1674 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1675 switch (instr->src[i].src_type) {
1676 case nir_tex_src_coord: {
1677 int index = nir_src_index(ctx, &instr->src[i].src);
1678
1679 midgard_vector_alu_src alu_src = blank_alu_src;
1680
1681 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1682
1683 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1684 /* For cubemaps, we need to load coords into
1685 * special r27, and then use a special ld/st op
1686 * to copy into the texture register */
1687
1688 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1689
1690 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1691 emit_mir_instruction(ctx, move);
1692
1693 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1694 st.load_store.unknown = 0x24; /* XXX: What is this? */
1695 st.load_store.mask = 0x3; /* xy? */
1696 st.load_store.swizzle = alu_src.swizzle;
1697 emit_mir_instruction(ctx, st);
1698
1699 } else {
1700 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1701
1702 midgard_instruction ins = v_fmov(index, alu_src, reg);
1703 emit_mir_instruction(ctx, ins);
1704 }
1705
1706 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1707
1708 break;
1709 }
1710
1711 default: {
1712 DBG("Unknown source type\n");
1713 //assert(0);
1714 break;
1715 }
1716 }
1717 }
1718
1719 /* No helper to build texture words -- we do it all here */
1720 midgard_instruction ins = {
1721 .type = TAG_TEXTURE_4,
1722 .texture = {
1723 .op = TEXTURE_OP_NORMAL,
1724 .format = midgard_tex_format(instr->sampler_dim),
1725 .texture_handle = texture_index,
1726 .sampler_handle = sampler_index,
1727
1728 /* TODO: Don't force xyzw */
1729 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1730 .mask = 0xF,
1731
1732 /* TODO: half */
1733 //.in_reg_full = 1,
1734 .out_full = 1,
1735
1736 .filter = 1,
1737
1738 /* Always 1 */
1739 .unknown7 = 1,
1740
1741 /* Assume we can continue; hint it out later */
1742 .cont = 1,
1743 }
1744 };
1745
1746 /* Set registers to read and write from the same place */
1747 ins.texture.in_reg_select = in_reg;
1748 ins.texture.out_reg_select = out_reg;
1749
1750 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1751 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1752 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1753 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1754 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1755 } else {
1756 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1757 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1758 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1759 }
1760
1761 emit_mir_instruction(ctx, ins);
1762
1763 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1764
1765 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1766 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1767 ctx->texture_index[reg] = o_index;
1768
1769 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1770 emit_mir_instruction(ctx, ins2);
1771
1772 /* Used for .cont and .last hinting */
1773 ctx->texture_op_count++;
1774 }
1775
1776 static void
1777 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1778 {
1779 switch (instr->type) {
1780 case nir_jump_break: {
1781 /* Emit a branch out of the loop */
1782 struct midgard_instruction br = v_branch(false, false);
1783 br.branch.target_type = TARGET_BREAK;
1784 br.branch.target_break = ctx->current_loop_depth;
1785 emit_mir_instruction(ctx, br);
1786
1787 DBG("break..\n");
1788 break;
1789 }
1790
1791 default:
1792 DBG("Unknown jump type %d\n", instr->type);
1793 break;
1794 }
1795 }
1796
1797 static void
1798 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1799 {
1800 switch (instr->type) {
1801 case nir_instr_type_load_const:
1802 emit_load_const(ctx, nir_instr_as_load_const(instr));
1803 break;
1804
1805 case nir_instr_type_intrinsic:
1806 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1807 break;
1808
1809 case nir_instr_type_alu:
1810 emit_alu(ctx, nir_instr_as_alu(instr));
1811 break;
1812
1813 case nir_instr_type_tex:
1814 emit_tex(ctx, nir_instr_as_tex(instr));
1815 break;
1816
1817 case nir_instr_type_jump:
1818 emit_jump(ctx, nir_instr_as_jump(instr));
1819 break;
1820
1821 case nir_instr_type_ssa_undef:
1822 /* Spurious */
1823 break;
1824
1825 default:
1826 DBG("Unhandled instruction type\n");
1827 break;
1828 }
1829 }
1830
1831 /* Determine the actual hardware from the index based on the RA results or special values */
1832
1833 static int
1834 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1835 {
1836 if (reg >= SSA_FIXED_MINIMUM)
1837 return SSA_REG_FROM_FIXED(reg);
1838
1839 if (reg >= 0) {
1840 assert(reg < maxreg);
1841 int r = ra_get_node_reg(g, reg);
1842 ctx->work_registers = MAX2(ctx->work_registers, r);
1843 return r;
1844 }
1845
1846 switch (reg) {
1847 /* fmov style unused */
1848 case SSA_UNUSED_0:
1849 return REGISTER_UNUSED;
1850
1851 /* lut style unused */
1852 case SSA_UNUSED_1:
1853 return REGISTER_UNUSED;
1854
1855 default:
1856 DBG("Unknown SSA register alias %d\n", reg);
1857 assert(0);
1858 return 31;
1859 }
1860 }
1861
1862 static unsigned int
1863 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1864 {
1865 /* Choose the first available register to minimise reported register pressure */
1866
1867 for (int i = 0; i < 16; ++i) {
1868 if (BITSET_TEST(regs, i)) {
1869 return i;
1870 }
1871 }
1872
1873 assert(0);
1874 return 0;
1875 }
1876
1877 static bool
1878 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1879 {
1880 if (ins->ssa_args.src0 == src) return true;
1881 if (ins->ssa_args.src1 == src) return true;
1882
1883 return false;
1884 }
1885
1886 /* Determine if a variable is live in the successors of a block */
1887 static bool
1888 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1889 {
1890 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1891 midgard_block *succ = bl->successors[i];
1892
1893 /* If we already visited, the value we're seeking
1894 * isn't down this path (or we would have short
1895 * circuited */
1896
1897 if (succ->visited) continue;
1898
1899 /* Otherwise (it's visited *now*), check the block */
1900
1901 succ->visited = true;
1902
1903 mir_foreach_instr_in_block(succ, ins) {
1904 if (midgard_is_live_in_instr(ins, src))
1905 return true;
1906 }
1907
1908 /* ...and also, check *its* successors */
1909 if (is_live_after_successors(ctx, succ, src))
1910 return true;
1911
1912 }
1913
1914 /* Welp. We're really not live. */
1915
1916 return false;
1917 }
1918
1919 static bool
1920 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1921 {
1922 /* Check the rest of the block for liveness */
1923
1924 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1925 if (midgard_is_live_in_instr(ins, src))
1926 return true;
1927 }
1928
1929 /* Check the rest of the blocks for liveness recursively */
1930
1931 bool succ = is_live_after_successors(ctx, block, src);
1932
1933 mir_foreach_block(ctx, block) {
1934 block->visited = false;
1935 }
1936
1937 return succ;
1938 }
1939
1940 static void
1941 allocate_registers(compiler_context *ctx)
1942 {
1943 /* First, initialize the RA */
1944 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1945
1946 /* Create a primary (general purpose) class, as well as special purpose
1947 * pipeline register classes */
1948
1949 int primary_class = ra_alloc_reg_class(regs);
1950 int varying_class = ra_alloc_reg_class(regs);
1951
1952 /* Add the full set of work registers */
1953 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1954 for (int i = 0; i < work_count; ++i)
1955 ra_class_add_reg(regs, primary_class, i);
1956
1957 /* Add special registers */
1958 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1959 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1960
1961 /* We're done setting up */
1962 ra_set_finalize(regs, NULL);
1963
1964 /* Transform the MIR into squeezed index form */
1965 mir_foreach_block(ctx, block) {
1966 mir_foreach_instr_in_block(block, ins) {
1967 if (ins->compact_branch) continue;
1968
1969 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1970 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1971 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1972 }
1973 if (midgard_debug & MIDGARD_DBG_SHADERS)
1974 print_mir_block(block);
1975 }
1976
1977 /* Let's actually do register allocation */
1978 int nodes = ctx->temp_count;
1979 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1980
1981 /* Set everything to the work register class, unless it has somewhere
1982 * special to go */
1983
1984 mir_foreach_block(ctx, block) {
1985 mir_foreach_instr_in_block(block, ins) {
1986 if (ins->compact_branch) continue;
1987
1988 if (ins->ssa_args.dest < 0) continue;
1989
1990 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1991
1992 int class = primary_class;
1993
1994 ra_set_node_class(g, ins->ssa_args.dest, class);
1995 }
1996 }
1997
1998 for (int index = 0; index <= ctx->max_hash; ++index) {
1999 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2000
2001 if (temp) {
2002 unsigned reg = temp - 1;
2003 int t = find_or_allocate_temp(ctx, index);
2004 ra_set_node_reg(g, t, reg);
2005 }
2006 }
2007
2008 /* Determine liveness */
2009
2010 int *live_start = malloc(nodes * sizeof(int));
2011 int *live_end = malloc(nodes * sizeof(int));
2012
2013 /* Initialize as non-existent */
2014
2015 for (int i = 0; i < nodes; ++i) {
2016 live_start[i] = live_end[i] = -1;
2017 }
2018
2019 int d = 0;
2020
2021 mir_foreach_block(ctx, block) {
2022 mir_foreach_instr_in_block(block, ins) {
2023 if (ins->compact_branch) continue;
2024
2025 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2026 /* If this destination is not yet live, it is now since we just wrote it */
2027
2028 int dest = ins->ssa_args.dest;
2029
2030 if (live_start[dest] == -1)
2031 live_start[dest] = d;
2032 }
2033
2034 /* Since we just used a source, the source might be
2035 * dead now. Scan the rest of the block for
2036 * invocations, and if there are none, the source dies
2037 * */
2038
2039 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2040
2041 for (int src = 0; src < 2; ++src) {
2042 int s = sources[src];
2043
2044 if (s < 0) continue;
2045
2046 if (s >= SSA_FIXED_MINIMUM) continue;
2047
2048 if (!is_live_after(ctx, block, ins, s)) {
2049 live_end[s] = d;
2050 }
2051 }
2052
2053 ++d;
2054 }
2055 }
2056
2057 /* If a node still hasn't been killed, kill it now */
2058
2059 for (int i = 0; i < nodes; ++i) {
2060 /* live_start == -1 most likely indicates a pinned output */
2061
2062 if (live_end[i] == -1)
2063 live_end[i] = d;
2064 }
2065
2066 /* Setup interference between nodes that are live at the same time */
2067
2068 for (int i = 0; i < nodes; ++i) {
2069 for (int j = i + 1; j < nodes; ++j) {
2070 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2071 ra_add_node_interference(g, i, j);
2072 }
2073 }
2074
2075 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2076
2077 if (!ra_allocate(g)) {
2078 DBG("Error allocating registers\n");
2079 assert(0);
2080 }
2081
2082 /* Cleanup */
2083 free(live_start);
2084 free(live_end);
2085
2086 mir_foreach_block(ctx, block) {
2087 mir_foreach_instr_in_block(block, ins) {
2088 if (ins->compact_branch) continue;
2089
2090 ssa_args args = ins->ssa_args;
2091
2092 switch (ins->type) {
2093 case TAG_ALU_4:
2094 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2095
2096 ins->registers.src2_imm = args.inline_constant;
2097
2098 if (args.inline_constant) {
2099 /* Encode inline 16-bit constant as a vector by default */
2100
2101 ins->registers.src2_reg = ins->inline_constant >> 11;
2102
2103 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2104
2105 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2106 ins->alu.src2 = imm << 2;
2107 } else {
2108 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2109 }
2110
2111 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2112
2113 break;
2114
2115 case TAG_LOAD_STORE_4: {
2116 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2117 /* TODO: use ssa_args for store_vary */
2118 ins->load_store.reg = 0;
2119 } else {
2120 bool has_dest = args.dest >= 0;
2121 int ssa_arg = has_dest ? args.dest : args.src0;
2122
2123 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2124 }
2125
2126 break;
2127 }
2128
2129 default:
2130 break;
2131 }
2132 }
2133 }
2134 }
2135
2136 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2137 * use scalar ALU instructions, for functional or performance reasons. To do
2138 * this, we just demote vector ALU payloads to scalar. */
2139
2140 static int
2141 component_from_mask(unsigned mask)
2142 {
2143 for (int c = 0; c < 4; ++c) {
2144 if (mask & (3 << (2 * c)))
2145 return c;
2146 }
2147
2148 assert(0);
2149 return 0;
2150 }
2151
2152 static bool
2153 is_single_component_mask(unsigned mask)
2154 {
2155 int components = 0;
2156
2157 for (int c = 0; c < 4; ++c)
2158 if (mask & (3 << (2 * c)))
2159 components++;
2160
2161 return components == 1;
2162 }
2163
2164 /* Create a mask of accessed components from a swizzle to figure out vector
2165 * dependencies */
2166
2167 static unsigned
2168 swizzle_to_access_mask(unsigned swizzle)
2169 {
2170 unsigned component_mask = 0;
2171
2172 for (int i = 0; i < 4; ++i) {
2173 unsigned c = (swizzle >> (2 * i)) & 3;
2174 component_mask |= (1 << c);
2175 }
2176
2177 return component_mask;
2178 }
2179
2180 static unsigned
2181 vector_to_scalar_source(unsigned u)
2182 {
2183 midgard_vector_alu_src v;
2184 memcpy(&v, &u, sizeof(v));
2185
2186 midgard_scalar_alu_src s = {
2187 .abs = v.abs,
2188 .negate = v.negate,
2189 .full = !v.half,
2190 .component = (v.swizzle & 3) << 1
2191 };
2192
2193 unsigned o;
2194 memcpy(&o, &s, sizeof(s));
2195
2196 return o & ((1 << 6) - 1);
2197 }
2198
2199 static midgard_scalar_alu
2200 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2201 {
2202 /* The output component is from the mask */
2203 midgard_scalar_alu s = {
2204 .op = v.op,
2205 .src1 = vector_to_scalar_source(v.src1),
2206 .src2 = vector_to_scalar_source(v.src2),
2207 .unknown = 0,
2208 .outmod = v.outmod,
2209 .output_full = 1, /* TODO: Half */
2210 .output_component = component_from_mask(v.mask) << 1,
2211 };
2212
2213 /* Inline constant is passed along rather than trying to extract it
2214 * from v */
2215
2216 if (ins->ssa_args.inline_constant) {
2217 uint16_t imm = 0;
2218 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2219 imm |= (lower_11 >> 9) & 3;
2220 imm |= (lower_11 >> 6) & 4;
2221 imm |= (lower_11 >> 2) & 0x38;
2222 imm |= (lower_11 & 63) << 6;
2223
2224 s.src2 = imm;
2225 }
2226
2227 return s;
2228 }
2229
2230 /* Midgard prefetches instruction types, so during emission we need to
2231 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2232 * if this is the second to last and the last is an ALU, then it's also 1... */
2233
2234 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2235 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2236
2237 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2238 bytes_emitted += sizeof(type)
2239
2240 static void
2241 emit_binary_vector_instruction(midgard_instruction *ains,
2242 uint16_t *register_words, int *register_words_count,
2243 uint64_t *body_words, size_t *body_size, int *body_words_count,
2244 size_t *bytes_emitted)
2245 {
2246 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2247 *bytes_emitted += sizeof(midgard_reg_info);
2248
2249 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2250 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2251 *bytes_emitted += sizeof(midgard_vector_alu);
2252 }
2253
2254 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2255 * mind that we are a vector architecture and we can write to different
2256 * components simultaneously */
2257
2258 static bool
2259 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2260 {
2261 /* Each instruction reads some registers and writes to a register. See
2262 * where the first writes */
2263
2264 /* Figure out where exactly we wrote to */
2265 int source = first->ssa_args.dest;
2266 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2267
2268 /* As long as the second doesn't read from the first, we're okay */
2269 if (second->ssa_args.src0 == source) {
2270 if (first->type == TAG_ALU_4) {
2271 /* Figure out which components we just read from */
2272
2273 int q = second->alu.src1;
2274 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2275
2276 /* Check if there are components in common, and fail if so */
2277 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2278 return false;
2279 } else
2280 return false;
2281
2282 }
2283
2284 if (second->ssa_args.src1 == source)
2285 return false;
2286
2287 /* Otherwise, it's safe in that regard. Another data hazard is both
2288 * writing to the same place, of course */
2289
2290 if (second->ssa_args.dest == source) {
2291 /* ...but only if the components overlap */
2292 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2293
2294 if (dest_mask & source_mask)
2295 return false;
2296 }
2297
2298 /* ...That's it */
2299 return true;
2300 }
2301
2302 static bool
2303 midgard_has_hazard(
2304 midgard_instruction **segment, unsigned segment_size,
2305 midgard_instruction *ains)
2306 {
2307 for (int s = 0; s < segment_size; ++s)
2308 if (!can_run_concurrent_ssa(segment[s], ains))
2309 return true;
2310
2311 return false;
2312
2313
2314 }
2315
2316 /* Schedules, but does not emit, a single basic block. After scheduling, the
2317 * final tag and size of the block are known, which are necessary for branching
2318 * */
2319
2320 static midgard_bundle
2321 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2322 {
2323 int instructions_emitted = 0, instructions_consumed = -1;
2324 midgard_bundle bundle = { 0 };
2325
2326 uint8_t tag = ins->type;
2327
2328 /* Default to the instruction's tag */
2329 bundle.tag = tag;
2330
2331 switch (ins->type) {
2332 case TAG_ALU_4: {
2333 uint32_t control = 0;
2334 size_t bytes_emitted = sizeof(control);
2335
2336 /* TODO: Constant combining */
2337 int index = 0, last_unit = 0;
2338
2339 /* Previous instructions, for the purpose of parallelism */
2340 midgard_instruction *segment[4] = {0};
2341 int segment_size = 0;
2342
2343 instructions_emitted = -1;
2344 midgard_instruction *pins = ins;
2345
2346 for (;;) {
2347 midgard_instruction *ains = pins;
2348
2349 /* Advance instruction pointer */
2350 if (index) {
2351 ains = mir_next_op(pins);
2352 pins = ains;
2353 }
2354
2355 /* Out-of-work condition */
2356 if ((struct list_head *) ains == &block->instructions)
2357 break;
2358
2359 /* Ensure that the chain can continue */
2360 if (ains->type != TAG_ALU_4) break;
2361
2362 /* According to the presentation "The ARM
2363 * Mali-T880 Mobile GPU" from HotChips 27,
2364 * there are two pipeline stages. Branching
2365 * position determined experimentally. Lines
2366 * are executed in parallel:
2367 *
2368 * [ VMUL ] [ SADD ]
2369 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2370 *
2371 * Verify that there are no ordering dependencies here.
2372 *
2373 * TODO: Allow for parallelism!!!
2374 */
2375
2376 /* Pick a unit for it if it doesn't force a particular unit */
2377
2378 int unit = ains->unit;
2379
2380 if (!unit) {
2381 int op = ains->alu.op;
2382 int units = alu_opcode_props[op];
2383
2384 /* TODO: Promotion of scalars to vectors */
2385 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2386
2387 if (!vector)
2388 assert(units & UNITS_SCALAR);
2389
2390 if (vector) {
2391 if (last_unit >= UNIT_VADD) {
2392 if (units & UNIT_VLUT)
2393 unit = UNIT_VLUT;
2394 else
2395 break;
2396 } else {
2397 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2398 unit = UNIT_VMUL;
2399 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2400 unit = UNIT_VADD;
2401 else if (units & UNIT_VLUT)
2402 unit = UNIT_VLUT;
2403 else
2404 break;
2405 }
2406 } else {
2407 if (last_unit >= UNIT_VADD) {
2408 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2409 unit = UNIT_SMUL;
2410 else if (units & UNIT_VLUT)
2411 unit = UNIT_VLUT;
2412 else
2413 break;
2414 } else {
2415 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2416 unit = UNIT_SADD;
2417 else if (units & UNIT_SMUL)
2418 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2419 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2420 unit = UNIT_VADD;
2421 else
2422 break;
2423 }
2424 }
2425
2426 assert(unit & units);
2427 }
2428
2429 /* Late unit check, this time for encoding (not parallelism) */
2430 if (unit <= last_unit) break;
2431
2432 /* Clear the segment */
2433 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2434 segment_size = 0;
2435
2436 if (midgard_has_hazard(segment, segment_size, ains))
2437 break;
2438
2439 /* We're good to go -- emit the instruction */
2440 ains->unit = unit;
2441
2442 segment[segment_size++] = ains;
2443
2444 /* Only one set of embedded constants per
2445 * bundle possible; if we have more, we must
2446 * break the chain early, unfortunately */
2447
2448 if (ains->has_constants) {
2449 if (bundle.has_embedded_constants) {
2450 /* ...but if there are already
2451 * constants but these are the
2452 * *same* constants, we let it
2453 * through */
2454
2455 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2456 break;
2457 } else {
2458 bundle.has_embedded_constants = true;
2459 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2460
2461 /* If this is a blend shader special constant, track it for patching */
2462 if (ains->has_blend_constant)
2463 bundle.has_blend_constant = true;
2464 }
2465 }
2466
2467 if (ains->unit & UNITS_ANY_VECTOR) {
2468 emit_binary_vector_instruction(ains, bundle.register_words,
2469 &bundle.register_words_count, bundle.body_words,
2470 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2471 } else if (ains->compact_branch) {
2472 /* All of r0 has to be written out
2473 * along with the branch writeout.
2474 * (slow!) */
2475
2476 if (ains->writeout) {
2477 if (index == 0) {
2478 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2479 ins.unit = UNIT_VMUL;
2480
2481 control |= ins.unit;
2482
2483 emit_binary_vector_instruction(&ins, bundle.register_words,
2484 &bundle.register_words_count, bundle.body_words,
2485 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2486 } else {
2487 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2488 bool written_late = false;
2489 bool components[4] = { 0 };
2490 uint16_t register_dep_mask = 0;
2491 uint16_t written_mask = 0;
2492
2493 midgard_instruction *qins = ins;
2494 for (int t = 0; t < index; ++t) {
2495 if (qins->registers.out_reg != 0) {
2496 /* Mark down writes */
2497
2498 written_mask |= (1 << qins->registers.out_reg);
2499 } else {
2500 /* Mark down the register dependencies for errata check */
2501
2502 if (qins->registers.src1_reg < 16)
2503 register_dep_mask |= (1 << qins->registers.src1_reg);
2504
2505 if (qins->registers.src2_reg < 16)
2506 register_dep_mask |= (1 << qins->registers.src2_reg);
2507
2508 int mask = qins->alu.mask;
2509
2510 for (int c = 0; c < 4; ++c)
2511 if (mask & (0x3 << (2 * c)))
2512 components[c] = true;
2513
2514 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2515
2516 if (qins->unit == UNIT_VLUT)
2517 written_late = true;
2518 }
2519
2520 /* Advance instruction pointer */
2521 qins = mir_next_op(qins);
2522 }
2523
2524
2525 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2526 if (register_dep_mask & written_mask) {
2527 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2528 break;
2529 }
2530
2531 if (written_late)
2532 break;
2533
2534 /* If even a single component is not written, break it up (conservative check). */
2535 bool breakup = false;
2536
2537 for (int c = 0; c < 4; ++c)
2538 if (!components[c])
2539 breakup = true;
2540
2541 if (breakup)
2542 break;
2543
2544 /* Otherwise, we're free to proceed */
2545 }
2546 }
2547
2548 if (ains->unit == ALU_ENAB_BRANCH) {
2549 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2550 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2551 bytes_emitted += sizeof(midgard_branch_extended);
2552 } else {
2553 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2554 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2555 bytes_emitted += sizeof(ains->br_compact);
2556 }
2557 } else {
2558 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2559 bytes_emitted += sizeof(midgard_reg_info);
2560
2561 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2562 bundle.body_words_count++;
2563 bytes_emitted += sizeof(midgard_scalar_alu);
2564 }
2565
2566 /* Defer marking until after writing to allow for break */
2567 control |= ains->unit;
2568 last_unit = ains->unit;
2569 ++instructions_emitted;
2570 ++index;
2571 }
2572
2573 /* Bubble up the number of instructions for skipping */
2574 instructions_consumed = index - 1;
2575
2576 int padding = 0;
2577
2578 /* Pad ALU op to nearest word */
2579
2580 if (bytes_emitted & 15) {
2581 padding = 16 - (bytes_emitted & 15);
2582 bytes_emitted += padding;
2583 }
2584
2585 /* Constants must always be quadwords */
2586 if (bundle.has_embedded_constants)
2587 bytes_emitted += 16;
2588
2589 /* Size ALU instruction for tag */
2590 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2591 bundle.padding = padding;
2592 bundle.control = bundle.tag | control;
2593
2594 break;
2595 }
2596
2597 case TAG_LOAD_STORE_4: {
2598 /* Load store instructions have two words at once. If
2599 * we only have one queued up, we need to NOP pad.
2600 * Otherwise, we store both in succession to save space
2601 * and cycles -- letting them go in parallel -- skip
2602 * the next. The usefulness of this optimisation is
2603 * greatly dependent on the quality of the instruction
2604 * scheduler.
2605 */
2606
2607 midgard_instruction *next_op = mir_next_op(ins);
2608
2609 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2610 /* As the two operate concurrently, make sure
2611 * they are not dependent */
2612
2613 if (can_run_concurrent_ssa(ins, next_op) || true) {
2614 /* Skip ahead, since it's redundant with the pair */
2615 instructions_consumed = 1 + (instructions_emitted++);
2616 }
2617 }
2618
2619 break;
2620 }
2621
2622 default:
2623 /* Texture ops default to single-op-per-bundle scheduling */
2624 break;
2625 }
2626
2627 /* Copy the instructions into the bundle */
2628 bundle.instruction_count = instructions_emitted + 1;
2629
2630 int used_idx = 0;
2631
2632 midgard_instruction *uins = ins;
2633 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2634 bundle.instructions[used_idx++] = *uins;
2635 uins = mir_next_op(uins);
2636 }
2637
2638 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2639
2640 return bundle;
2641 }
2642
2643 static int
2644 quadword_size(int tag)
2645 {
2646 switch (tag) {
2647 case TAG_ALU_4:
2648 return 1;
2649
2650 case TAG_ALU_8:
2651 return 2;
2652
2653 case TAG_ALU_12:
2654 return 3;
2655
2656 case TAG_ALU_16:
2657 return 4;
2658
2659 case TAG_LOAD_STORE_4:
2660 return 1;
2661
2662 case TAG_TEXTURE_4:
2663 return 1;
2664
2665 default:
2666 assert(0);
2667 return 0;
2668 }
2669 }
2670
2671 /* Schedule a single block by iterating its instruction to create bundles.
2672 * While we go, tally about the bundle sizes to compute the block size. */
2673
2674 static void
2675 schedule_block(compiler_context *ctx, midgard_block *block)
2676 {
2677 util_dynarray_init(&block->bundles, NULL);
2678
2679 block->quadword_count = 0;
2680
2681 mir_foreach_instr_in_block(block, ins) {
2682 int skip;
2683 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2684 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2685
2686 if (bundle.has_blend_constant) {
2687 /* TODO: Multiblock? */
2688 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2689 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2690 }
2691
2692 while(skip--)
2693 ins = mir_next_op(ins);
2694
2695 block->quadword_count += quadword_size(bundle.tag);
2696 }
2697
2698 block->is_scheduled = true;
2699 }
2700
2701 static void
2702 schedule_program(compiler_context *ctx)
2703 {
2704 allocate_registers(ctx);
2705
2706 mir_foreach_block(ctx, block) {
2707 schedule_block(ctx, block);
2708 }
2709 }
2710
2711 /* After everything is scheduled, emit whole bundles at a time */
2712
2713 static void
2714 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2715 {
2716 int lookahead = next_tag << 4;
2717
2718 switch (bundle->tag) {
2719 case TAG_ALU_4:
2720 case TAG_ALU_8:
2721 case TAG_ALU_12:
2722 case TAG_ALU_16: {
2723 /* Actually emit each component */
2724 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2725
2726 for (int i = 0; i < bundle->register_words_count; ++i)
2727 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2728
2729 /* Emit body words based on the instructions bundled */
2730 for (int i = 0; i < bundle->instruction_count; ++i) {
2731 midgard_instruction *ins = &bundle->instructions[i];
2732
2733 if (ins->unit & UNITS_ANY_VECTOR) {
2734 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2735 } else if (ins->compact_branch) {
2736 /* Dummy move, XXX DRY */
2737 if ((i == 0) && ins->writeout) {
2738 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2739 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2740 }
2741
2742 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2743 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2744 } else {
2745 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2746 }
2747 } else {
2748 /* Scalar */
2749 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2750 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2751 }
2752 }
2753
2754 /* Emit padding (all zero) */
2755 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2756
2757 /* Tack on constants */
2758
2759 if (bundle->has_embedded_constants) {
2760 util_dynarray_append(emission, float, bundle->constants[0]);
2761 util_dynarray_append(emission, float, bundle->constants[1]);
2762 util_dynarray_append(emission, float, bundle->constants[2]);
2763 util_dynarray_append(emission, float, bundle->constants[3]);
2764 }
2765
2766 break;
2767 }
2768
2769 case TAG_LOAD_STORE_4: {
2770 /* One or two composing instructions */
2771
2772 uint64_t current64, next64 = LDST_NOP;
2773
2774 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2775
2776 if (bundle->instruction_count == 2)
2777 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2778
2779 midgard_load_store instruction = {
2780 .type = bundle->tag,
2781 .next_type = next_tag,
2782 .word1 = current64,
2783 .word2 = next64
2784 };
2785
2786 util_dynarray_append(emission, midgard_load_store, instruction);
2787
2788 break;
2789 }
2790
2791 case TAG_TEXTURE_4: {
2792 /* Texture instructions are easy, since there is no
2793 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2794
2795 midgard_instruction *ins = &bundle->instructions[0];
2796
2797 ins->texture.type = TAG_TEXTURE_4;
2798 ins->texture.next_type = next_tag;
2799
2800 ctx->texture_op_count--;
2801
2802 if (!ctx->texture_op_count) {
2803 ins->texture.cont = 0;
2804 ins->texture.last = 1;
2805 }
2806
2807 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2808 break;
2809 }
2810
2811 default:
2812 DBG("Unknown midgard instruction type\n");
2813 assert(0);
2814 break;
2815 }
2816 }
2817
2818
2819 /* ALU instructions can inline or embed constants, which decreases register
2820 * pressure and saves space. */
2821
2822 #define CONDITIONAL_ATTACH(src) { \
2823 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2824 \
2825 if (entry) { \
2826 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2827 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2828 } \
2829 }
2830
2831 static void
2832 inline_alu_constants(compiler_context *ctx)
2833 {
2834 mir_foreach_instr(ctx, alu) {
2835 /* Other instructions cannot inline constants */
2836 if (alu->type != TAG_ALU_4) continue;
2837
2838 /* If there is already a constant here, we can do nothing */
2839 if (alu->has_constants) continue;
2840
2841 /* It makes no sense to inline constants on a branch */
2842 if (alu->compact_branch || alu->prepacked_branch) continue;
2843
2844 CONDITIONAL_ATTACH(src0);
2845
2846 if (!alu->has_constants) {
2847 CONDITIONAL_ATTACH(src1)
2848 } else if (!alu->inline_constant) {
2849 /* Corner case: _two_ vec4 constants, for instance with a
2850 * csel. For this case, we can only use a constant
2851 * register for one, we'll have to emit a move for the
2852 * other. Note, if both arguments are constants, then
2853 * necessarily neither argument depends on the value of
2854 * any particular register. As the destination register
2855 * will be wiped, that means we can spill the constant
2856 * to the destination register.
2857 */
2858
2859 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2860 unsigned scratch = alu->ssa_args.dest;
2861
2862 if (entry) {
2863 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2864 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2865
2866 /* Force a break XXX Defer r31 writes */
2867 ins.unit = UNIT_VLUT;
2868
2869 /* Set the source */
2870 alu->ssa_args.src1 = scratch;
2871
2872 /* Inject us -before- the last instruction which set r31 */
2873 mir_insert_instruction_before(mir_prev_op(alu), ins);
2874 }
2875 }
2876 }
2877 }
2878
2879 /* Midgard supports two types of constants, embedded constants (128-bit) and
2880 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2881 * constants can be demoted to inline constants, for space savings and
2882 * sometimes a performance boost */
2883
2884 static void
2885 embedded_to_inline_constant(compiler_context *ctx)
2886 {
2887 mir_foreach_instr(ctx, ins) {
2888 if (!ins->has_constants) continue;
2889
2890 if (ins->ssa_args.inline_constant) continue;
2891
2892 /* Blend constants must not be inlined by definition */
2893 if (ins->has_blend_constant) continue;
2894
2895 /* src1 cannot be an inline constant due to encoding
2896 * restrictions. So, if possible we try to flip the arguments
2897 * in that case */
2898
2899 int op = ins->alu.op;
2900
2901 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2902 /* Flip based on op. Fallthrough intentional */
2903
2904 switch (op) {
2905 /* These ops require an operational change to flip their arguments TODO */
2906 case midgard_alu_op_flt:
2907 case midgard_alu_op_fle:
2908 case midgard_alu_op_ilt:
2909 case midgard_alu_op_ile:
2910 case midgard_alu_op_fcsel:
2911 case midgard_alu_op_icsel:
2912 case midgard_alu_op_isub:
2913 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2914 break;
2915
2916 /* These ops are commutative and Just Flip */
2917 case midgard_alu_op_fne:
2918 case midgard_alu_op_fadd:
2919 case midgard_alu_op_fmul:
2920 case midgard_alu_op_fmin:
2921 case midgard_alu_op_fmax:
2922 case midgard_alu_op_iadd:
2923 case midgard_alu_op_imul:
2924 case midgard_alu_op_feq:
2925 case midgard_alu_op_ieq:
2926 case midgard_alu_op_ine:
2927 case midgard_alu_op_iand:
2928 case midgard_alu_op_ior:
2929 case midgard_alu_op_ixor:
2930 /* Flip the SSA numbers */
2931 ins->ssa_args.src0 = ins->ssa_args.src1;
2932 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2933
2934 /* And flip the modifiers */
2935
2936 unsigned src_temp;
2937
2938 src_temp = ins->alu.src2;
2939 ins->alu.src2 = ins->alu.src1;
2940 ins->alu.src1 = src_temp;
2941
2942 default:
2943 break;
2944 }
2945 }
2946
2947 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2948 /* Extract the source information */
2949
2950 midgard_vector_alu_src *src;
2951 int q = ins->alu.src2;
2952 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2953 src = m;
2954
2955 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2956 int component = src->swizzle & 3;
2957
2958 /* Scale constant appropriately, if we can legally */
2959 uint16_t scaled_constant = 0;
2960
2961 /* XXX: Check legality */
2962 if (midgard_is_integer_op(op)) {
2963 /* TODO: Inline integer */
2964 continue;
2965
2966 unsigned int *iconstants = (unsigned int *) ins->constants;
2967 scaled_constant = (uint16_t) iconstants[component];
2968
2969 /* Constant overflow after resize */
2970 if (scaled_constant != iconstants[component])
2971 continue;
2972 } else {
2973 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2974 }
2975
2976 /* We don't know how to handle these with a constant */
2977
2978 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2979 DBG("Bailing inline constant...\n");
2980 continue;
2981 }
2982
2983 /* Make sure that the constant is not itself a
2984 * vector by checking if all accessed values
2985 * (by the swizzle) are the same. */
2986
2987 uint32_t *cons = (uint32_t *) ins->constants;
2988 uint32_t value = cons[component];
2989
2990 bool is_vector = false;
2991 unsigned mask = effective_writemask(&ins->alu);
2992
2993 for (int c = 1; c < 4; ++c) {
2994 /* We only care if this component is actually used */
2995 if (!(mask & (1 << c)))
2996 continue;
2997
2998 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2999
3000 if (test != value) {
3001 is_vector = true;
3002 break;
3003 }
3004 }
3005
3006 if (is_vector)
3007 continue;
3008
3009 /* Get rid of the embedded constant */
3010 ins->has_constants = false;
3011 ins->ssa_args.src1 = SSA_UNUSED_0;
3012 ins->ssa_args.inline_constant = true;
3013 ins->inline_constant = scaled_constant;
3014 }
3015 }
3016 }
3017
3018 /* Map normal SSA sources to other SSA sources / fixed registers (like
3019 * uniforms) */
3020
3021 static void
3022 map_ssa_to_alias(compiler_context *ctx, int *ref)
3023 {
3024 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3025
3026 if (alias) {
3027 /* Remove entry in leftovers to avoid a redunant fmov */
3028
3029 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3030
3031 if (leftover)
3032 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3033
3034 /* Assign the alias map */
3035 *ref = alias - 1;
3036 return;
3037 }
3038 }
3039
3040 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3041 * texture pipeline */
3042
3043 static void
3044 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3045 {
3046 mir_foreach_instr_in_block_safe(block, ins) {
3047 if (ins->type != TAG_ALU_4) continue;
3048 if (ins->compact_branch) continue;
3049
3050 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3051 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3052 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3053
3054 mir_remove_instruction(ins);
3055 }
3056 }
3057
3058 /* The following passes reorder MIR instructions to enable better scheduling */
3059
3060 static void
3061 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3062 {
3063 mir_foreach_instr_in_block_safe(block, ins) {
3064 if (ins->type != TAG_LOAD_STORE_4) continue;
3065
3066 /* We've found a load/store op. Check if next is also load/store. */
3067 midgard_instruction *next_op = mir_next_op(ins);
3068 if (&next_op->link != &block->instructions) {
3069 if (next_op->type == TAG_LOAD_STORE_4) {
3070 /* If so, we're done since we're a pair */
3071 ins = mir_next_op(ins);
3072 continue;
3073 }
3074
3075 /* Maximum search distance to pair, to avoid register pressure disasters */
3076 int search_distance = 8;
3077
3078 /* Otherwise, we have an orphaned load/store -- search for another load */
3079 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3080 /* Terminate search if necessary */
3081 if (!(search_distance--)) break;
3082
3083 if (c->type != TAG_LOAD_STORE_4) continue;
3084
3085 /* Stores cannot be reordered, since they have
3086 * dependencies. For the same reason, indirect
3087 * loads cannot be reordered as their index is
3088 * loaded in r27.w */
3089
3090 if (OP_IS_STORE(c->load_store.op)) continue;
3091
3092 /* It appears the 0x800 bit is set whenever a
3093 * load is direct, unset when it is indirect.
3094 * Skip indirect loads. */
3095
3096 if (!(c->load_store.unknown & 0x800)) continue;
3097
3098 /* We found one! Move it up to pair and remove it from the old location */
3099
3100 mir_insert_instruction_before(ins, *c);
3101 mir_remove_instruction(c);
3102
3103 break;
3104 }
3105 }
3106 }
3107 }
3108
3109 /* Emit varying stores late */
3110
3111 static void
3112 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3113 /* Iterate in reverse to get the final write, rather than the first */
3114
3115 mir_foreach_instr_in_block_safe_rev(block, ins) {
3116 /* Check if what we just wrote needs a store */
3117 int idx = ins->ssa_args.dest;
3118 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3119
3120 if (!varying) continue;
3121
3122 varying -= 1;
3123
3124 /* We need to store to the appropriate varying, so emit the
3125 * move/store */
3126
3127 /* TODO: Integrate with special purpose RA (and scheduler?) */
3128 bool high_varying_register = false;
3129
3130 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3131
3132 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3133 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3134
3135 mir_insert_instruction_before(mir_next_op(ins), st);
3136 mir_insert_instruction_before(mir_next_op(ins), mov);
3137
3138 /* We no longer need to store this varying */
3139 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3140 }
3141 }
3142
3143 /* If there are leftovers after the below pass, emit actual fmov
3144 * instructions for the slow-but-correct path */
3145
3146 static void
3147 emit_leftover_move(compiler_context *ctx)
3148 {
3149 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3150 int base = ((uintptr_t) leftover->key) - 1;
3151 int mapped = base;
3152
3153 map_ssa_to_alias(ctx, &mapped);
3154 EMIT(fmov, mapped, blank_alu_src, base);
3155 }
3156 }
3157
3158 static void
3159 actualise_ssa_to_alias(compiler_context *ctx)
3160 {
3161 mir_foreach_instr(ctx, ins) {
3162 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3163 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3164 }
3165
3166 emit_leftover_move(ctx);
3167 }
3168
3169 static void
3170 emit_fragment_epilogue(compiler_context *ctx)
3171 {
3172 /* Special case: writing out constants requires us to include the move
3173 * explicitly now, so shove it into r0 */
3174
3175 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3176
3177 if (constant_value) {
3178 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3179 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3180 emit_mir_instruction(ctx, ins);
3181 }
3182
3183 /* Perform the actual fragment writeout. We have two writeout/branch
3184 * instructions, forming a loop until writeout is successful as per the
3185 * docs. TODO: gl_FragDepth */
3186
3187 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3188 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3189 }
3190
3191 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3192 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3193 * with the int8 analogue to the fragment epilogue */
3194
3195 static void
3196 emit_blend_epilogue(compiler_context *ctx)
3197 {
3198 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3199
3200 midgard_instruction scale = {
3201 .type = TAG_ALU_4,
3202 .unit = UNIT_VMUL,
3203 .inline_constant = _mesa_float_to_half(255.0),
3204 .ssa_args = {
3205 .src0 = SSA_FIXED_REGISTER(0),
3206 .src1 = SSA_UNUSED_0,
3207 .dest = SSA_FIXED_REGISTER(24),
3208 .inline_constant = true
3209 },
3210 .alu = {
3211 .op = midgard_alu_op_fmul,
3212 .reg_mode = midgard_reg_mode_full,
3213 .dest_override = midgard_dest_override_lower,
3214 .mask = 0xFF,
3215 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3216 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3217 }
3218 };
3219
3220 emit_mir_instruction(ctx, scale);
3221
3222 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3223
3224 midgard_vector_alu_src alu_src = blank_alu_src;
3225 alu_src.half = true;
3226
3227 midgard_instruction f2u8 = {
3228 .type = TAG_ALU_4,
3229 .ssa_args = {
3230 .src0 = SSA_FIXED_REGISTER(24),
3231 .src1 = SSA_UNUSED_0,
3232 .dest = SSA_FIXED_REGISTER(0),
3233 .inline_constant = true
3234 },
3235 .alu = {
3236 .op = midgard_alu_op_f2u8,
3237 .reg_mode = midgard_reg_mode_half,
3238 .dest_override = midgard_dest_override_lower,
3239 .outmod = midgard_outmod_pos,
3240 .mask = 0xF,
3241 .src1 = vector_alu_srco_unsigned(alu_src),
3242 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3243 }
3244 };
3245
3246 emit_mir_instruction(ctx, f2u8);
3247
3248 /* vmul.imov.quarter r0, r0, r0 */
3249
3250 midgard_instruction imov_8 = {
3251 .type = TAG_ALU_4,
3252 .ssa_args = {
3253 .src0 = SSA_UNUSED_1,
3254 .src1 = SSA_FIXED_REGISTER(0),
3255 .dest = SSA_FIXED_REGISTER(0),
3256 },
3257 .alu = {
3258 .op = midgard_alu_op_imov,
3259 .reg_mode = midgard_reg_mode_quarter,
3260 .dest_override = midgard_dest_override_none,
3261 .mask = 0xFF,
3262 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3263 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3264 }
3265 };
3266
3267 /* Emit branch epilogue with the 8-bit move as the source */
3268
3269 emit_mir_instruction(ctx, imov_8);
3270 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3271
3272 emit_mir_instruction(ctx, imov_8);
3273 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3274 }
3275
3276 static midgard_block *
3277 emit_block(compiler_context *ctx, nir_block *block)
3278 {
3279 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3280 list_addtail(&this_block->link, &ctx->blocks);
3281
3282 this_block->is_scheduled = false;
3283 ++ctx->block_count;
3284
3285 ctx->texture_index[0] = -1;
3286 ctx->texture_index[1] = -1;
3287
3288 /* Add us as a successor to the block we are following */
3289 if (ctx->current_block)
3290 midgard_block_add_successor(ctx->current_block, this_block);
3291
3292 /* Set up current block */
3293 list_inithead(&this_block->instructions);
3294 ctx->current_block = this_block;
3295
3296 nir_foreach_instr(instr, block) {
3297 emit_instr(ctx, instr);
3298 ++ctx->instruction_count;
3299 }
3300
3301 inline_alu_constants(ctx);
3302 embedded_to_inline_constant(ctx);
3303
3304 /* Perform heavylifting for aliasing */
3305 actualise_ssa_to_alias(ctx);
3306
3307 midgard_emit_store(ctx, this_block);
3308 midgard_pair_load_store(ctx, this_block);
3309
3310 /* Append fragment shader epilogue (value writeout) */
3311 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3312 if (block == nir_impl_last_block(ctx->func->impl)) {
3313 if (ctx->is_blend)
3314 emit_blend_epilogue(ctx);
3315 else
3316 emit_fragment_epilogue(ctx);
3317 }
3318 }
3319
3320 if (block == nir_start_block(ctx->func->impl))
3321 ctx->initial_block = this_block;
3322
3323 if (block == nir_impl_last_block(ctx->func->impl))
3324 ctx->final_block = this_block;
3325
3326 /* Allow the next control flow to access us retroactively, for
3327 * branching etc */
3328 ctx->current_block = this_block;
3329
3330 /* Document the fallthrough chain */
3331 ctx->previous_source_block = this_block;
3332
3333 return this_block;
3334 }
3335
3336 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3337
3338 static void
3339 emit_if(struct compiler_context *ctx, nir_if *nif)
3340 {
3341 /* Conditional branches expect the condition in r31.w; emit a move for
3342 * that in the _previous_ block (which is the current block). */
3343 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3344
3345 /* Speculatively emit the branch, but we can't fill it in until later */
3346 EMIT(branch, true, true);
3347 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3348
3349 /* Emit the two subblocks */
3350 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3351
3352 /* Emit a jump from the end of the then block to the end of the else */
3353 EMIT(branch, false, false);
3354 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3355
3356 /* Emit second block, and check if it's empty */
3357
3358 int else_idx = ctx->block_count;
3359 int count_in = ctx->instruction_count;
3360 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3361 int after_else_idx = ctx->block_count;
3362
3363 /* Now that we have the subblocks emitted, fix up the branches */
3364
3365 assert(then_block);
3366 assert(else_block);
3367
3368 if (ctx->instruction_count == count_in) {
3369 /* The else block is empty, so don't emit an exit jump */
3370 mir_remove_instruction(then_exit);
3371 then_branch->branch.target_block = after_else_idx;
3372 } else {
3373 then_branch->branch.target_block = else_idx;
3374 then_exit->branch.target_block = after_else_idx;
3375 }
3376 }
3377
3378 static void
3379 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3380 {
3381 /* Remember where we are */
3382 midgard_block *start_block = ctx->current_block;
3383
3384 /* Allocate a loop number, growing the current inner loop depth */
3385 int loop_idx = ++ctx->current_loop_depth;
3386
3387 /* Get index from before the body so we can loop back later */
3388 int start_idx = ctx->block_count;
3389
3390 /* Emit the body itself */
3391 emit_cf_list(ctx, &nloop->body);
3392
3393 /* Branch back to loop back */
3394 struct midgard_instruction br_back = v_branch(false, false);
3395 br_back.branch.target_block = start_idx;
3396 emit_mir_instruction(ctx, br_back);
3397
3398 /* Mark down that branch in the graph. Note that we're really branching
3399 * to the block *after* we started in. TODO: Why doesn't the branch
3400 * itself have an off-by-one then...? */
3401 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3402
3403 /* Find the index of the block about to follow us (note: we don't add
3404 * one; blocks are 0-indexed so we get a fencepost problem) */
3405 int break_block_idx = ctx->block_count;
3406
3407 /* Fix up the break statements we emitted to point to the right place,
3408 * now that we can allocate a block number for them */
3409
3410 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3411 mir_foreach_instr_in_block(block, ins) {
3412 if (ins->type != TAG_ALU_4) continue;
3413 if (!ins->compact_branch) continue;
3414 if (ins->prepacked_branch) continue;
3415
3416 /* We found a branch -- check the type to see if we need to do anything */
3417 if (ins->branch.target_type != TARGET_BREAK) continue;
3418
3419 /* It's a break! Check if it's our break */
3420 if (ins->branch.target_break != loop_idx) continue;
3421
3422 /* Okay, cool, we're breaking out of this loop.
3423 * Rewrite from a break to a goto */
3424
3425 ins->branch.target_type = TARGET_GOTO;
3426 ins->branch.target_block = break_block_idx;
3427 }
3428 }
3429
3430 /* Now that we've finished emitting the loop, free up the depth again
3431 * so we play nice with recursion amid nested loops */
3432 --ctx->current_loop_depth;
3433 }
3434
3435 static midgard_block *
3436 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3437 {
3438 midgard_block *start_block = NULL;
3439
3440 foreach_list_typed(nir_cf_node, node, node, list) {
3441 switch (node->type) {
3442 case nir_cf_node_block: {
3443 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3444
3445 if (!start_block)
3446 start_block = block;
3447
3448 break;
3449 }
3450
3451 case nir_cf_node_if:
3452 emit_if(ctx, nir_cf_node_as_if(node));
3453 break;
3454
3455 case nir_cf_node_loop:
3456 emit_loop(ctx, nir_cf_node_as_loop(node));
3457 break;
3458
3459 case nir_cf_node_function:
3460 assert(0);
3461 break;
3462 }
3463 }
3464
3465 return start_block;
3466 }
3467
3468 /* Due to lookahead, we need to report the first tag executed in the command
3469 * stream and in branch targets. An initial block might be empty, so iterate
3470 * until we find one that 'works' */
3471
3472 static unsigned
3473 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3474 {
3475 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3476
3477 unsigned first_tag = 0;
3478
3479 do {
3480 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3481
3482 if (initial_bundle) {
3483 first_tag = initial_bundle->tag;
3484 break;
3485 }
3486
3487 /* Initial block is empty, try the next block */
3488 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3489 } while(initial_block != NULL);
3490
3491 assert(first_tag);
3492 return first_tag;
3493 }
3494
3495 int
3496 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3497 {
3498 struct util_dynarray *compiled = &program->compiled;
3499
3500 midgard_debug = debug_get_option_midgard_debug();
3501
3502 compiler_context ictx = {
3503 .nir = nir,
3504 .stage = nir->info.stage,
3505
3506 .is_blend = is_blend,
3507 .blend_constant_offset = -1,
3508
3509 .alpha_ref = program->alpha_ref
3510 };
3511
3512 compiler_context *ctx = &ictx;
3513
3514 /* TODO: Decide this at runtime */
3515 ctx->uniform_cutoff = 8;
3516
3517 /* Assign var locations early, so the epilogue can use them if necessary */
3518
3519 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3520 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3521 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3522
3523 /* Initialize at a global (not block) level hash tables */
3524
3525 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3526 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3527 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3528 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3529 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3530 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3531 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3532
3533 /* Record the varying mapping for the command stream's bookkeeping */
3534
3535 struct exec_list *varyings =
3536 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3537
3538 nir_foreach_variable(var, varyings) {
3539 unsigned loc = var->data.driver_location;
3540 unsigned sz = glsl_type_size(var->type, FALSE);
3541
3542 for (int c = 0; c < sz; ++c) {
3543 program->varyings[loc + c] = var->data.location;
3544 }
3545 }
3546
3547 /* Lower gl_Position pre-optimisation */
3548
3549 if (ctx->stage == MESA_SHADER_VERTEX)
3550 NIR_PASS_V(nir, nir_lower_viewport_transform);
3551
3552 NIR_PASS_V(nir, nir_lower_var_copies);
3553 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3554 NIR_PASS_V(nir, nir_split_var_copies);
3555 NIR_PASS_V(nir, nir_lower_var_copies);
3556 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3557 NIR_PASS_V(nir, nir_lower_var_copies);
3558 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3559
3560 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3561
3562 /* Optimisation passes */
3563
3564 optimise_nir(nir);
3565
3566 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3567 nir_print_shader(nir, stdout);
3568 }
3569
3570 /* Assign sysvals and counts, now that we're sure
3571 * (post-optimisation) */
3572
3573 midgard_nir_assign_sysvals(ctx, nir);
3574
3575 program->uniform_count = nir->num_uniforms;
3576 program->sysval_count = ctx->sysval_count;
3577 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3578
3579 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3580 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3581
3582 nir_foreach_function(func, nir) {
3583 if (!func->impl)
3584 continue;
3585
3586 list_inithead(&ctx->blocks);
3587 ctx->block_count = 0;
3588 ctx->func = func;
3589
3590 emit_cf_list(ctx, &func->impl->body);
3591 emit_block(ctx, func->impl->end_block);
3592
3593 break; /* TODO: Multi-function shaders */
3594 }
3595
3596 util_dynarray_init(compiled, NULL);
3597
3598 /* Peephole optimizations */
3599
3600 mir_foreach_block(ctx, block) {
3601 midgard_opt_dead_code_eliminate(ctx, block);
3602 }
3603
3604 /* Schedule! */
3605 schedule_program(ctx);
3606
3607 /* Now that all the bundles are scheduled and we can calculate block
3608 * sizes, emit actual branch instructions rather than placeholders */
3609
3610 int br_block_idx = 0;
3611
3612 mir_foreach_block(ctx, block) {
3613 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3614 for (int c = 0; c < bundle->instruction_count; ++c) {
3615 midgard_instruction *ins = &bundle->instructions[c];
3616
3617 if (!midgard_is_branch_unit(ins->unit)) continue;
3618
3619 if (ins->prepacked_branch) continue;
3620
3621 /* Parse some basic branch info */
3622 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3623 bool is_conditional = ins->branch.conditional;
3624 bool is_inverted = ins->branch.invert_conditional;
3625 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3626
3627 /* Determine the block we're jumping to */
3628 int target_number = ins->branch.target_block;
3629
3630 /* Report the destination tag. Discards don't need this */
3631 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3632
3633 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3634 int quadword_offset = 0;
3635
3636 if (is_discard) {
3637 /* Jump to the end of the shader. We
3638 * need to include not only the
3639 * following blocks, but also the
3640 * contents of our current block (since
3641 * discard can come in the middle of
3642 * the block) */
3643
3644 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3645
3646 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3647 quadword_offset += quadword_size(bun->tag);
3648 }
3649
3650 mir_foreach_block_from(ctx, blk, b) {
3651 quadword_offset += b->quadword_count;
3652 }
3653
3654 } else if (target_number > br_block_idx) {
3655 /* Jump forward */
3656
3657 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3658 midgard_block *blk = mir_get_block(ctx, idx);
3659 assert(blk);
3660
3661 quadword_offset += blk->quadword_count;
3662 }
3663 } else {
3664 /* Jump backwards */
3665
3666 for (int idx = br_block_idx; idx >= target_number; --idx) {
3667 midgard_block *blk = mir_get_block(ctx, idx);
3668 assert(blk);
3669
3670 quadword_offset -= blk->quadword_count;
3671 }
3672 }
3673
3674 /* Unconditional extended branches (far jumps)
3675 * have issues, so we always use a conditional
3676 * branch, setting the condition to always for
3677 * unconditional. For compact unconditional
3678 * branches, cond isn't used so it doesn't
3679 * matter what we pick. */
3680
3681 midgard_condition cond =
3682 !is_conditional ? midgard_condition_always :
3683 is_inverted ? midgard_condition_false :
3684 midgard_condition_true;
3685
3686 midgard_jmp_writeout_op op =
3687 is_discard ? midgard_jmp_writeout_op_discard :
3688 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3689 midgard_jmp_writeout_op_branch_cond;
3690
3691 if (!is_compact) {
3692 midgard_branch_extended branch =
3693 midgard_create_branch_extended(
3694 cond, op,
3695 dest_tag,
3696 quadword_offset);
3697
3698 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3699 } else if (is_conditional || is_discard) {
3700 midgard_branch_cond branch = {
3701 .op = op,
3702 .dest_tag = dest_tag,
3703 .offset = quadword_offset,
3704 .cond = cond
3705 };
3706
3707 assert(branch.offset == quadword_offset);
3708
3709 memcpy(&ins->br_compact, &branch, sizeof(branch));
3710 } else {
3711 assert(op == midgard_jmp_writeout_op_branch_uncond);
3712
3713 midgard_branch_uncond branch = {
3714 .op = op,
3715 .dest_tag = dest_tag,
3716 .offset = quadword_offset,
3717 .unknown = 1
3718 };
3719
3720 assert(branch.offset == quadword_offset);
3721
3722 memcpy(&ins->br_compact, &branch, sizeof(branch));
3723 }
3724 }
3725 }
3726
3727 ++br_block_idx;
3728 }
3729
3730 /* Emit flat binary from the instruction arrays. Iterate each block in
3731 * sequence. Save instruction boundaries such that lookahead tags can
3732 * be assigned easily */
3733
3734 /* Cache _all_ bundles in source order for lookahead across failed branches */
3735
3736 int bundle_count = 0;
3737 mir_foreach_block(ctx, block) {
3738 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3739 }
3740 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3741 int bundle_idx = 0;
3742 mir_foreach_block(ctx, block) {
3743 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3744 source_order_bundles[bundle_idx++] = bundle;
3745 }
3746 }
3747
3748 int current_bundle = 0;
3749
3750 mir_foreach_block(ctx, block) {
3751 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3752 int lookahead = 1;
3753
3754 if (current_bundle + 1 < bundle_count) {
3755 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3756
3757 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3758 lookahead = 1;
3759 } else {
3760 lookahead = next;
3761 }
3762 }
3763
3764 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3765 ++current_bundle;
3766 }
3767
3768 /* TODO: Free deeper */
3769 //util_dynarray_fini(&block->instructions);
3770 }
3771
3772 free(source_order_bundles);
3773
3774 /* Report the very first tag executed */
3775 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3776
3777 /* Deal with off-by-one related to the fencepost problem */
3778 program->work_register_count = ctx->work_registers + 1;
3779
3780 program->can_discard = ctx->can_discard;
3781 program->uniform_cutoff = ctx->uniform_cutoff;
3782
3783 program->blend_patch_offset = ctx->blend_constant_offset;
3784
3785 if (midgard_debug & MIDGARD_DBG_SHADERS)
3786 disassemble_midgard(program->compiled.data, program->compiled.size);
3787
3788 return 0;
3789 }