panfrost: Disable indirect outputs for now
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 /* Successors: always one forward (the block after us), maybe
173 * one backwards (for a backward branch). No need for a second
174 * forward, since graph traversal would get there eventually
175 * anyway */
176 struct midgard_block *successors[2];
177 unsigned nr_successors;
178
179 /* The successors pointer form a graph, and in the case of
180 * complex control flow, this graph has a cycles. To aid
181 * traversal during liveness analysis, we have a visited?
182 * boolean for passes to use as they see fit, provided they
183 * clean up later */
184 bool visited;
185 } midgard_block;
186
187 static void
188 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
189 {
190 block->successors[block->nr_successors++] = successor;
191 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
192 }
193
194 /* Helpers to generate midgard_instruction's using macro magic, since every
195 * driver seems to do it that way */
196
197 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
198 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
199
200 #define M_LOAD_STORE(name, rname, uname) \
201 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
202 midgard_instruction i = { \
203 .type = TAG_LOAD_STORE_4, \
204 .ssa_args = { \
205 .rname = ssa, \
206 .uname = -1, \
207 .src1 = -1 \
208 }, \
209 .load_store = { \
210 .op = midgard_op_##name, \
211 .mask = 0xF, \
212 .swizzle = SWIZZLE_XYZW, \
213 .address = address \
214 } \
215 }; \
216 \
217 return i; \
218 }
219
220 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
221 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
222
223 const midgard_vector_alu_src blank_alu_src = {
224 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
225 };
226
227 const midgard_vector_alu_src blank_alu_src_xxxx = {
228 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
229 };
230
231 const midgard_scalar_alu_src blank_scalar_alu_src = {
232 .full = true
233 };
234
235 /* Used for encoding the unused source of 1-op instructions */
236 const midgard_vector_alu_src zero_alu_src = { 0 };
237
238 /* Coerce structs to integer */
239
240 static unsigned
241 vector_alu_srco_unsigned(midgard_vector_alu_src src)
242 {
243 unsigned u;
244 memcpy(&u, &src, sizeof(src));
245 return u;
246 }
247
248 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
249 * the corresponding Midgard source */
250
251 static midgard_vector_alu_src
252 vector_alu_modifiers(nir_alu_src *src)
253 {
254 if (!src) return blank_alu_src;
255
256 midgard_vector_alu_src alu_src = {
257 .abs = src->abs,
258 .negate = src->negate,
259 .rep_low = 0,
260 .rep_high = 0,
261 .half = 0, /* TODO */
262 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
263 };
264
265 return alu_src;
266 }
267
268 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
269
270 static midgard_instruction
271 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
272 {
273 midgard_instruction ins = {
274 .type = TAG_ALU_4,
275 .ssa_args = {
276 .src0 = SSA_UNUSED_1,
277 .src1 = src,
278 .dest = dest,
279 },
280 .alu = {
281 .op = midgard_alu_op_fmov,
282 .reg_mode = midgard_reg_mode_full,
283 .dest_override = midgard_dest_override_none,
284 .mask = 0xFF,
285 .src1 = vector_alu_srco_unsigned(zero_alu_src),
286 .src2 = vector_alu_srco_unsigned(mod)
287 },
288 };
289
290 return ins;
291 }
292
293 /* load/store instructions have both 32-bit and 16-bit variants, depending on
294 * whether we are using vectors composed of highp or mediump. At the moment, we
295 * don't support half-floats -- this requires changes in other parts of the
296 * compiler -- therefore the 16-bit versions are commented out. */
297
298 //M_LOAD(load_attr_16);
299 M_LOAD(load_attr_32);
300 //M_LOAD(load_vary_16);
301 M_LOAD(load_vary_32);
302 //M_LOAD(load_uniform_16);
303 M_LOAD(load_uniform_32);
304 M_LOAD(load_color_buffer_8);
305 //M_STORE(store_vary_16);
306 M_STORE(store_vary_32);
307 M_STORE(store_cubemap_coords);
308
309 static midgard_instruction
310 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
311 {
312 midgard_branch_cond branch = {
313 .op = op,
314 .dest_tag = tag,
315 .offset = offset,
316 .cond = cond
317 };
318
319 uint16_t compact;
320 memcpy(&compact, &branch, sizeof(branch));
321
322 midgard_instruction ins = {
323 .type = TAG_ALU_4,
324 .unit = ALU_ENAB_BR_COMPACT,
325 .prepacked_branch = true,
326 .compact_branch = true,
327 .br_compact = compact
328 };
329
330 if (op == midgard_jmp_writeout_op_writeout)
331 ins.writeout = true;
332
333 return ins;
334 }
335
336 static midgard_instruction
337 v_branch(bool conditional, bool invert)
338 {
339 midgard_instruction ins = {
340 .type = TAG_ALU_4,
341 .unit = ALU_ENAB_BRANCH,
342 .compact_branch = true,
343 .branch = {
344 .conditional = conditional,
345 .invert_conditional = invert
346 }
347 };
348
349 return ins;
350 }
351
352 static midgard_branch_extended
353 midgard_create_branch_extended( midgard_condition cond,
354 midgard_jmp_writeout_op op,
355 unsigned dest_tag,
356 signed quadword_offset)
357 {
358 /* For unclear reasons, the condition code is repeated 8 times */
359 uint16_t duplicated_cond =
360 (cond << 14) |
361 (cond << 12) |
362 (cond << 10) |
363 (cond << 8) |
364 (cond << 6) |
365 (cond << 4) |
366 (cond << 2) |
367 (cond << 0);
368
369 midgard_branch_extended branch = {
370 .op = op,
371 .dest_tag = dest_tag,
372 .offset = quadword_offset,
373 .cond = duplicated_cond
374 };
375
376 return branch;
377 }
378
379 typedef struct midgard_bundle {
380 /* Tag for the overall bundle */
381 int tag;
382
383 /* Instructions contained by the bundle */
384 int instruction_count;
385 midgard_instruction instructions[5];
386
387 /* Bundle-wide ALU configuration */
388 int padding;
389 int control;
390 bool has_embedded_constants;
391 float constants[4];
392 bool has_blend_constant;
393
394 uint16_t register_words[8];
395 int register_words_count;
396
397 uint64_t body_words[8];
398 size_t body_size[8];
399 int body_words_count;
400 } midgard_bundle;
401
402 typedef struct compiler_context {
403 nir_shader *nir;
404 gl_shader_stage stage;
405
406 /* Is internally a blend shader? Depends on stage == FRAGMENT */
407 bool is_blend;
408
409 /* Tracking for blend constant patching */
410 int blend_constant_number;
411 int blend_constant_offset;
412
413 /* Current NIR function */
414 nir_function *func;
415
416 /* Unordered list of midgard_blocks */
417 int block_count;
418 struct list_head blocks;
419
420 midgard_block *initial_block;
421 midgard_block *previous_source_block;
422 midgard_block *final_block;
423
424 /* List of midgard_instructions emitted for the current block */
425 midgard_block *current_block;
426
427 /* The index corresponding to the current loop, e.g. for breaks/contineus */
428 int current_loop;
429
430 /* Constants which have been loaded, for later inlining */
431 struct hash_table_u64 *ssa_constants;
432
433 /* SSA indices to be outputted to corresponding varying offset */
434 struct hash_table_u64 *ssa_varyings;
435
436 /* SSA values / registers which have been aliased. Naively, these
437 * demand a fmov output; instead, we alias them in a later pass to
438 * avoid the wasted op.
439 *
440 * A note on encoding: to avoid dynamic memory management here, rather
441 * than ampping to a pointer, we map to the source index; the key
442 * itself is just the destination index. */
443
444 struct hash_table_u64 *ssa_to_alias;
445 struct set *leftover_ssa_to_alias;
446
447 /* Actual SSA-to-register for RA */
448 struct hash_table_u64 *ssa_to_register;
449
450 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
451 struct hash_table_u64 *hash_to_temp;
452 int temp_count;
453 int max_hash;
454
455 /* Just the count of the max register used. Higher count => higher
456 * register pressure */
457 int work_registers;
458
459 /* Used for cont/last hinting. Increase when a tex op is added.
460 * Decrease when a tex op is removed. */
461 int texture_op_count;
462
463 /* Mapping of texture register -> SSA index for unaliasing */
464 int texture_index[2];
465
466 /* If any path hits a discard instruction */
467 bool can_discard;
468
469 /* The number of uniforms allowable for the fast path */
470 int uniform_cutoff;
471
472 /* Count of instructions emitted from NIR overall, across all blocks */
473 int instruction_count;
474
475 /* Alpha ref value passed in */
476 float alpha_ref;
477
478 /* The index corresponding to the fragment output */
479 unsigned fragment_output;
480
481 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
482 unsigned sysvals[MAX_SYSVAL_COUNT];
483 unsigned sysval_count;
484 struct hash_table_u64 *sysval_to_id;
485 } compiler_context;
486
487 /* Append instruction to end of current block */
488
489 static midgard_instruction *
490 mir_upload_ins(struct midgard_instruction ins)
491 {
492 midgard_instruction *heap = malloc(sizeof(ins));
493 memcpy(heap, &ins, sizeof(ins));
494 return heap;
495 }
496
497 static void
498 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
499 {
500 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
501 }
502
503 static void
504 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
505 {
506 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
507 }
508
509 static void
510 mir_remove_instruction(struct midgard_instruction *ins)
511 {
512 list_del(&ins->link);
513 }
514
515 static midgard_instruction*
516 mir_prev_op(struct midgard_instruction *ins)
517 {
518 return list_last_entry(&(ins->link), midgard_instruction, link);
519 }
520
521 static midgard_instruction*
522 mir_next_op(struct midgard_instruction *ins)
523 {
524 return list_first_entry(&(ins->link), midgard_instruction, link);
525 }
526
527 static midgard_block *
528 mir_next_block(struct midgard_block *blk)
529 {
530 return list_first_entry(&(blk->link), midgard_block, link);
531 }
532
533
534 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
535 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
536
537 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
538 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
539 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
540 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
541 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
542 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
543
544
545 static midgard_instruction *
546 mir_last_in_block(struct midgard_block *block)
547 {
548 return list_last_entry(&block->instructions, struct midgard_instruction, link);
549 }
550
551 static midgard_block *
552 mir_get_block(compiler_context *ctx, int idx)
553 {
554 struct list_head *lst = &ctx->blocks;
555
556 while ((idx--) + 1)
557 lst = lst->next;
558
559 return (struct midgard_block *) lst;
560 }
561
562 /* Pretty printer for internal Midgard IR */
563
564 static void
565 print_mir_source(int source)
566 {
567 if (source >= SSA_FIXED_MINIMUM) {
568 /* Specific register */
569 int reg = SSA_REG_FROM_FIXED(source);
570
571 /* TODO: Moving threshold */
572 if (reg > 16 && reg < 24)
573 printf("u%d", 23 - reg);
574 else
575 printf("r%d", reg);
576 } else {
577 printf("%d", source);
578 }
579 }
580
581 static void
582 print_mir_instruction(midgard_instruction *ins)
583 {
584 printf("\t");
585
586 switch (ins->type) {
587 case TAG_ALU_4: {
588 midgard_alu_op op = ins->alu.op;
589 const char *name = alu_opcode_names[op];
590
591 if (ins->unit)
592 printf("%d.", ins->unit);
593
594 printf("%s", name ? name : "??");
595 break;
596 }
597
598 case TAG_LOAD_STORE_4: {
599 midgard_load_store_op op = ins->load_store.op;
600 const char *name = load_store_opcode_names[op];
601
602 assert(name);
603 printf("%s", name);
604 break;
605 }
606
607 case TAG_TEXTURE_4: {
608 printf("texture");
609 break;
610 }
611
612 default:
613 assert(0);
614 }
615
616 ssa_args *args = &ins->ssa_args;
617
618 printf(" %d, ", args->dest);
619
620 print_mir_source(args->src0);
621 printf(", ");
622
623 if (args->inline_constant)
624 printf("#%d", ins->inline_constant);
625 else
626 print_mir_source(args->src1);
627
628 if (ins->has_constants)
629 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
630
631 printf("\n");
632 }
633
634 static void
635 print_mir_block(midgard_block *block)
636 {
637 printf("{\n");
638
639 mir_foreach_instr_in_block(block, ins) {
640 print_mir_instruction(ins);
641 }
642
643 printf("}\n");
644 }
645
646
647
648 static void
649 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
650 {
651 ins->has_constants = true;
652 memcpy(&ins->constants, constants, 16);
653
654 /* If this is the special blend constant, mark this instruction */
655
656 if (ctx->is_blend && ctx->blend_constant_number == name)
657 ins->has_blend_constant = true;
658 }
659
660 static int
661 glsl_type_size(const struct glsl_type *type, bool bindless)
662 {
663 return glsl_count_attribute_slots(type, false);
664 }
665
666 /* Lower fdot2 to a vector multiplication followed by channel addition */
667 static void
668 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
669 {
670 if (alu->op != nir_op_fdot2)
671 return;
672
673 b->cursor = nir_before_instr(&alu->instr);
674
675 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
676 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
677
678 nir_ssa_def *product = nir_fmul(b, src0, src1);
679
680 nir_ssa_def *sum = nir_fadd(b,
681 nir_channel(b, product, 0),
682 nir_channel(b, product, 1));
683
684 /* Replace the fdot2 with this sum */
685 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
686 }
687
688 static int
689 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
690 {
691 switch (instr->intrinsic) {
692 case nir_intrinsic_load_viewport_scale:
693 return PAN_SYSVAL_VIEWPORT_SCALE;
694 case nir_intrinsic_load_viewport_offset:
695 return PAN_SYSVAL_VIEWPORT_OFFSET;
696 default:
697 return -1;
698 }
699 }
700
701 static void
702 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
703 {
704 int sysval = -1;
705
706 if (instr->type == nir_instr_type_intrinsic) {
707 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
708 sysval = midgard_nir_sysval_for_intrinsic(intr);
709 }
710
711 if (sysval < 0)
712 return;
713
714 /* We have a sysval load; check if it's already been assigned */
715
716 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
717 return;
718
719 /* It hasn't -- so assign it now! */
720
721 unsigned id = ctx->sysval_count++;
722 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
723 ctx->sysvals[id] = sysval;
724 }
725
726 static void
727 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
728 {
729 ctx->sysval_count = 0;
730
731 nir_foreach_function(function, shader) {
732 if (!function->impl) continue;
733
734 nir_foreach_block(block, function->impl) {
735 nir_foreach_instr_safe(instr, block) {
736 midgard_nir_assign_sysval_body(ctx, instr);
737 }
738 }
739 }
740 }
741
742 static bool
743 midgard_nir_lower_fdot2(nir_shader *shader)
744 {
745 bool progress = false;
746
747 nir_foreach_function(function, shader) {
748 if (!function->impl) continue;
749
750 nir_builder _b;
751 nir_builder *b = &_b;
752 nir_builder_init(b, function->impl);
753
754 nir_foreach_block(block, function->impl) {
755 nir_foreach_instr_safe(instr, block) {
756 if (instr->type != nir_instr_type_alu) continue;
757
758 nir_alu_instr *alu = nir_instr_as_alu(instr);
759 midgard_nir_lower_fdot2_body(b, alu);
760
761 progress |= true;
762 }
763 }
764
765 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
766
767 }
768
769 return progress;
770 }
771
772 static void
773 optimise_nir(nir_shader *nir)
774 {
775 bool progress;
776
777 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
778 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
779
780 nir_lower_tex_options lower_tex_options = {
781 .lower_rect = true
782 };
783
784 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
785
786 do {
787 progress = false;
788
789 NIR_PASS(progress, nir, nir_lower_var_copies);
790 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
791
792 NIR_PASS(progress, nir, nir_copy_prop);
793 NIR_PASS(progress, nir, nir_opt_dce);
794 NIR_PASS(progress, nir, nir_opt_dead_cf);
795 NIR_PASS(progress, nir, nir_opt_cse);
796 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
797 NIR_PASS(progress, nir, nir_opt_algebraic);
798 NIR_PASS(progress, nir, nir_opt_constant_folding);
799 NIR_PASS(progress, nir, nir_opt_undef);
800 NIR_PASS(progress, nir, nir_opt_loop_unroll,
801 nir_var_shader_in |
802 nir_var_shader_out |
803 nir_var_function_temp);
804
805 /* TODO: Enable vectorize when merged upstream */
806 // NIR_PASS(progress, nir, nir_opt_vectorize);
807 } while (progress);
808
809 /* Must be run at the end to prevent creation of fsin/fcos ops */
810 NIR_PASS(progress, nir, midgard_nir_scale_trig);
811
812 do {
813 progress = false;
814
815 NIR_PASS(progress, nir, nir_opt_dce);
816 NIR_PASS(progress, nir, nir_opt_algebraic);
817 NIR_PASS(progress, nir, nir_opt_constant_folding);
818 NIR_PASS(progress, nir, nir_copy_prop);
819 } while (progress);
820
821 NIR_PASS(progress, nir, nir_opt_algebraic_late);
822 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
823
824 /* Lower mods for float ops only. Integer ops don't support modifiers
825 * (saturate doesn't make sense on integers, neg/abs require dedicated
826 * instructions) */
827
828 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
829 NIR_PASS(progress, nir, nir_copy_prop);
830 NIR_PASS(progress, nir, nir_opt_dce);
831
832 /* We implement booleans as 32-bit 0/~0 */
833 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
834
835 /* Take us out of SSA */
836 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
837 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
838
839 /* We are a vector architecture; write combine where possible */
840 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
841 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
842
843 NIR_PASS(progress, nir, nir_opt_dce);
844 }
845
846 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
847 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
848 * r0. See the comments in compiler_context */
849
850 static void
851 alias_ssa(compiler_context *ctx, int dest, int src)
852 {
853 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
854 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
855 }
856
857 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
858
859 static void
860 unalias_ssa(compiler_context *ctx, int dest)
861 {
862 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
863 /* TODO: Remove from leftover or no? */
864 }
865
866 static void
867 midgard_pin_output(compiler_context *ctx, int index, int reg)
868 {
869 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
870 }
871
872 static bool
873 midgard_is_pinned(compiler_context *ctx, int index)
874 {
875 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
876 }
877
878 /* Do not actually emit a load; instead, cache the constant for inlining */
879
880 static void
881 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
882 {
883 nir_ssa_def def = instr->def;
884
885 float *v = ralloc_array(NULL, float, 4);
886 nir_const_load_to_arr(v, instr, f32);
887 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
888 }
889
890 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
891 * do the inverse) */
892
893 static unsigned
894 expand_writemask(unsigned mask)
895 {
896 unsigned o = 0;
897
898 for (int i = 0; i < 4; ++i)
899 if (mask & (1 << i))
900 o |= (3 << (2 * i));
901
902 return o;
903 }
904
905 static unsigned
906 squeeze_writemask(unsigned mask)
907 {
908 unsigned o = 0;
909
910 for (int i = 0; i < 4; ++i)
911 if (mask & (3 << (2 * i)))
912 o |= (1 << i);
913
914 return o;
915
916 }
917
918 /* Determines effective writemask, taking quirks and expansion into account */
919 static unsigned
920 effective_writemask(midgard_vector_alu *alu)
921 {
922 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
923 * sense) */
924
925 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
926
927 /* If there is a fixed channel count, construct the appropriate mask */
928
929 if (channel_count)
930 return (1 << channel_count) - 1;
931
932 /* Otherwise, just squeeze the existing mask */
933 return squeeze_writemask(alu->mask);
934 }
935
936 static unsigned
937 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
938 {
939 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
940 return hash;
941
942 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
943
944 if (temp)
945 return temp - 1;
946
947 /* If no temp is find, allocate one */
948 temp = ctx->temp_count++;
949 ctx->max_hash = MAX2(ctx->max_hash, hash);
950
951 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
952
953 return temp;
954 }
955
956 static unsigned
957 nir_src_index(compiler_context *ctx, nir_src *src)
958 {
959 if (src->is_ssa)
960 return src->ssa->index;
961 else {
962 assert(!src->reg.indirect);
963 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
964 }
965 }
966
967 static unsigned
968 nir_dest_index(compiler_context *ctx, nir_dest *dst)
969 {
970 if (dst->is_ssa)
971 return dst->ssa.index;
972 else {
973 assert(!dst->reg.indirect);
974 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
975 }
976 }
977
978 static unsigned
979 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
980 {
981 return nir_src_index(ctx, &src->src);
982 }
983
984 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
985 * a conditional test) into that register */
986
987 static void
988 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
989 {
990 int condition = nir_src_index(ctx, src);
991
992 /* Source to swizzle the desired component into w */
993
994 const midgard_vector_alu_src alu_src = {
995 .swizzle = SWIZZLE(component, component, component, component),
996 };
997
998 /* There is no boolean move instruction. Instead, we simulate a move by
999 * ANDing the condition with itself to get it into r31.w */
1000
1001 midgard_instruction ins = {
1002 .type = TAG_ALU_4,
1003 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1004 .ssa_args = {
1005 .src0 = condition,
1006 .src1 = condition,
1007 .dest = SSA_FIXED_REGISTER(31),
1008 },
1009 .alu = {
1010 .op = midgard_alu_op_iand,
1011 .reg_mode = midgard_reg_mode_full,
1012 .dest_override = midgard_dest_override_none,
1013 .mask = (0x3 << 6), /* w */
1014 .src1 = vector_alu_srco_unsigned(alu_src),
1015 .src2 = vector_alu_srco_unsigned(alu_src)
1016 },
1017 };
1018
1019 emit_mir_instruction(ctx, ins);
1020 }
1021
1022 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1023 * pinning to eliminate this move in all known cases */
1024
1025 static void
1026 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1027 {
1028 int offset = nir_src_index(ctx, src);
1029
1030 midgard_instruction ins = {
1031 .type = TAG_ALU_4,
1032 .ssa_args = {
1033 .src0 = SSA_UNUSED_1,
1034 .src1 = offset,
1035 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1036 },
1037 .alu = {
1038 .op = midgard_alu_op_imov,
1039 .reg_mode = midgard_reg_mode_full,
1040 .dest_override = midgard_dest_override_none,
1041 .mask = (0x3 << 6), /* w */
1042 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1043 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1044 },
1045 };
1046
1047 emit_mir_instruction(ctx, ins);
1048 }
1049
1050 #define ALU_CASE(nir, _op) \
1051 case nir_op_##nir: \
1052 op = midgard_alu_op_##_op; \
1053 break;
1054
1055 static void
1056 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1057 {
1058 bool is_ssa = instr->dest.dest.is_ssa;
1059
1060 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1061 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1062 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1063
1064 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1065 * supported. A few do not and are commented for now. Also, there are a
1066 * number of NIR ops which Midgard does not support and need to be
1067 * lowered, also TODO. This switch block emits the opcode and calling
1068 * convention of the Midgard instruction; actual packing is done in
1069 * emit_alu below */
1070
1071 unsigned op;
1072
1073 switch (instr->op) {
1074 ALU_CASE(fadd, fadd);
1075 ALU_CASE(fmul, fmul);
1076 ALU_CASE(fmin, fmin);
1077 ALU_CASE(fmax, fmax);
1078 ALU_CASE(imin, imin);
1079 ALU_CASE(imax, imax);
1080 ALU_CASE(umin, umin);
1081 ALU_CASE(umax, umax);
1082 ALU_CASE(fmov, fmov);
1083 ALU_CASE(ffloor, ffloor);
1084 ALU_CASE(fround_even, froundeven);
1085 ALU_CASE(ftrunc, ftrunc);
1086 ALU_CASE(fceil, fceil);
1087 ALU_CASE(fdot3, fdot3);
1088 ALU_CASE(fdot4, fdot4);
1089 ALU_CASE(iadd, iadd);
1090 ALU_CASE(isub, isub);
1091 ALU_CASE(imul, imul);
1092 ALU_CASE(iabs, iabs);
1093
1094 /* XXX: Use fmov, not imov, since imov was causing major
1095 * issues with texture precision? XXX research */
1096 ALU_CASE(imov, fmov);
1097
1098 ALU_CASE(feq32, feq);
1099 ALU_CASE(fne32, fne);
1100 ALU_CASE(flt32, flt);
1101 ALU_CASE(ieq32, ieq);
1102 ALU_CASE(ine32, ine);
1103 ALU_CASE(ilt32, ilt);
1104 ALU_CASE(ult32, ult);
1105
1106 /* We don't have a native b2f32 instruction. Instead, like many
1107 * GPUs, we exploit booleans as 0/~0 for false/true, and
1108 * correspondingly AND
1109 * by 1.0 to do the type conversion. For the moment, prime us
1110 * to emit:
1111 *
1112 * iand [whatever], #0
1113 *
1114 * At the end of emit_alu (as MIR), we'll fix-up the constant
1115 */
1116
1117 ALU_CASE(b2f32, iand);
1118 ALU_CASE(b2i32, iand);
1119
1120 /* Likewise, we don't have a dedicated f2b32 instruction, but
1121 * we can do a "not equal to 0.0" test. */
1122
1123 ALU_CASE(f2b32, fne);
1124 ALU_CASE(i2b32, ine);
1125
1126 ALU_CASE(frcp, frcp);
1127 ALU_CASE(frsq, frsqrt);
1128 ALU_CASE(fsqrt, fsqrt);
1129 ALU_CASE(fexp2, fexp2);
1130 ALU_CASE(flog2, flog2);
1131
1132 ALU_CASE(f2i32, f2i);
1133 ALU_CASE(f2u32, f2u);
1134 ALU_CASE(i2f32, i2f);
1135 ALU_CASE(u2f32, u2f);
1136
1137 ALU_CASE(fsin, fsin);
1138 ALU_CASE(fcos, fcos);
1139
1140 ALU_CASE(iand, iand);
1141 ALU_CASE(ior, ior);
1142 ALU_CASE(ixor, ixor);
1143 ALU_CASE(inot, inot);
1144 ALU_CASE(ishl, ishl);
1145 ALU_CASE(ishr, iasr);
1146 ALU_CASE(ushr, ilsr);
1147
1148 ALU_CASE(b32all_fequal2, fball_eq);
1149 ALU_CASE(b32all_fequal3, fball_eq);
1150 ALU_CASE(b32all_fequal4, fball_eq);
1151
1152 ALU_CASE(b32any_fnequal2, fbany_neq);
1153 ALU_CASE(b32any_fnequal3, fbany_neq);
1154 ALU_CASE(b32any_fnequal4, fbany_neq);
1155
1156 ALU_CASE(b32all_iequal2, iball_eq);
1157 ALU_CASE(b32all_iequal3, iball_eq);
1158 ALU_CASE(b32all_iequal4, iball_eq);
1159
1160 ALU_CASE(b32any_inequal2, ibany_neq);
1161 ALU_CASE(b32any_inequal3, ibany_neq);
1162 ALU_CASE(b32any_inequal4, ibany_neq);
1163
1164 /* For greater-or-equal, we lower to less-or-equal and flip the
1165 * arguments */
1166
1167 case nir_op_fge:
1168 case nir_op_fge32:
1169 case nir_op_ige32:
1170 case nir_op_uge32: {
1171 op =
1172 instr->op == nir_op_fge ? midgard_alu_op_fle :
1173 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1174 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1175 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1176 0;
1177
1178 /* Swap via temporary */
1179 nir_alu_src temp = instr->src[1];
1180 instr->src[1] = instr->src[0];
1181 instr->src[0] = temp;
1182
1183 break;
1184 }
1185
1186 case nir_op_b32csel: {
1187 op = midgard_alu_op_fcsel;
1188
1189 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1190 nr_inputs = 2;
1191
1192 /* Figure out which component the condition is in */
1193
1194 unsigned comp = instr->src[0].swizzle[0];
1195
1196 /* Make sure NIR isn't throwing a mixed condition at us */
1197
1198 for (unsigned c = 1; c < nr_components; ++c)
1199 assert(instr->src[0].swizzle[c] == comp);
1200
1201 /* Emit the condition into r31.w */
1202 emit_condition(ctx, &instr->src[0].src, false, comp);
1203
1204 /* The condition is the first argument; move the other
1205 * arguments up one to be a binary instruction for
1206 * Midgard */
1207
1208 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1209 break;
1210 }
1211
1212 default:
1213 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1214 assert(0);
1215 return;
1216 }
1217
1218 /* Fetch unit, quirks, etc information */
1219 unsigned opcode_props = alu_opcode_props[op];
1220 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1221
1222 /* Initialise fields common between scalar/vector instructions */
1223 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1224
1225 /* src0 will always exist afaik, but src1 will not for 1-argument
1226 * instructions. The latter can only be fetched if the instruction
1227 * needs it, or else we may segfault. */
1228
1229 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1230 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1231
1232 /* Rather than use the instruction generation helpers, we do it
1233 * ourselves here to avoid the mess */
1234
1235 midgard_instruction ins = {
1236 .type = TAG_ALU_4,
1237 .ssa_args = {
1238 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1239 .src1 = quirk_flipped_r24 ? src0 : src1,
1240 .dest = dest,
1241 }
1242 };
1243
1244 nir_alu_src *nirmods[2] = { NULL };
1245
1246 if (nr_inputs == 2) {
1247 nirmods[0] = &instr->src[0];
1248 nirmods[1] = &instr->src[1];
1249 } else if (nr_inputs == 1) {
1250 nirmods[quirk_flipped_r24] = &instr->src[0];
1251 } else {
1252 assert(0);
1253 }
1254
1255 midgard_vector_alu alu = {
1256 .op = op,
1257 .reg_mode = midgard_reg_mode_full,
1258 .dest_override = midgard_dest_override_none,
1259 .outmod = outmod,
1260
1261 /* Writemask only valid for non-SSA NIR */
1262 .mask = expand_writemask((1 << nr_components) - 1),
1263
1264 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1265 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1266 };
1267
1268 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1269
1270 if (!is_ssa)
1271 alu.mask &= expand_writemask(instr->dest.write_mask);
1272
1273 ins.alu = alu;
1274
1275 /* Late fixup for emulated instructions */
1276
1277 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1278 /* Presently, our second argument is an inline #0 constant.
1279 * Switch over to an embedded 1.0 constant (that can't fit
1280 * inline, since we're 32-bit, not 16-bit like the inline
1281 * constants) */
1282
1283 ins.ssa_args.inline_constant = false;
1284 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1285 ins.has_constants = true;
1286
1287 if (instr->op == nir_op_b2f32) {
1288 ins.constants[0] = 1.0f;
1289 } else {
1290 /* Type pun it into place */
1291 uint32_t one = 0x1;
1292 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1293 }
1294
1295 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1296 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1297 ins.ssa_args.inline_constant = false;
1298 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1299 ins.has_constants = true;
1300 ins.constants[0] = 0.0f;
1301 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1302 }
1303
1304 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1305 /* To avoid duplicating the lookup tables (probably), true LUT
1306 * instructions can only operate as if they were scalars. Lower
1307 * them here by changing the component. */
1308
1309 uint8_t original_swizzle[4];
1310 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1311
1312 for (int i = 0; i < nr_components; ++i) {
1313 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1314
1315 for (int j = 0; j < 4; ++j)
1316 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1317
1318 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1319 emit_mir_instruction(ctx, ins);
1320 }
1321 } else {
1322 emit_mir_instruction(ctx, ins);
1323 }
1324 }
1325
1326 #undef ALU_CASE
1327
1328 static void
1329 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1330 {
1331 /* TODO: half-floats */
1332
1333 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1334 /* Fast path: For the first 16 uniforms, direct accesses are
1335 * 0-cycle, since they're just a register fetch in the usual
1336 * case. So, we alias the registers while we're still in
1337 * SSA-space */
1338
1339 int reg_slot = 23 - offset;
1340 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1341 } else {
1342 /* Otherwise, read from the 'special' UBO to access
1343 * higher-indexed uniforms, at a performance cost. More
1344 * generally, we're emitting a UBO read instruction. */
1345
1346 midgard_instruction ins = m_load_uniform_32(dest, offset);
1347
1348 /* TODO: Don't split */
1349 ins.load_store.varying_parameters = (offset & 7) << 7;
1350 ins.load_store.address = offset >> 3;
1351
1352 if (indirect_offset) {
1353 emit_indirect_offset(ctx, indirect_offset);
1354 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1355 } else {
1356 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1357 }
1358
1359 emit_mir_instruction(ctx, ins);
1360 }
1361 }
1362
1363 static void
1364 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1365 {
1366 /* First, pull out the destination */
1367 unsigned dest = nir_dest_index(ctx, &instr->dest);
1368
1369 /* Now, figure out which uniform this is */
1370 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1371 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1372
1373 /* Sysvals are prefix uniforms */
1374 unsigned uniform = ((uintptr_t) val) - 1;
1375
1376 /* Emit the read itself -- this is never indirect */
1377 emit_uniform_read(ctx, dest, uniform, NULL);
1378 }
1379
1380 static void
1381 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1382 {
1383 unsigned offset, reg;
1384
1385 switch (instr->intrinsic) {
1386 case nir_intrinsic_discard_if:
1387 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1388
1389 /* fallthrough */
1390
1391 case nir_intrinsic_discard: {
1392 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1393 struct midgard_instruction discard = v_branch(conditional, false);
1394 discard.branch.target_type = TARGET_DISCARD;
1395 emit_mir_instruction(ctx, discard);
1396
1397 ctx->can_discard = true;
1398 break;
1399 }
1400
1401 case nir_intrinsic_load_uniform:
1402 case nir_intrinsic_load_input:
1403 offset = nir_intrinsic_base(instr);
1404
1405 bool direct = nir_src_is_const(instr->src[0]);
1406
1407 if (direct) {
1408 offset += nir_src_as_uint(instr->src[0]);
1409 }
1410
1411 reg = nir_dest_index(ctx, &instr->dest);
1412
1413 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1414 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1415 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1416 /* XXX: Half-floats? */
1417 /* TODO: swizzle, mask */
1418
1419 midgard_instruction ins = m_load_vary_32(reg, offset);
1420
1421 midgard_varying_parameter p = {
1422 .is_varying = 1,
1423 .interpolation = midgard_interp_default,
1424 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1425 };
1426
1427 unsigned u;
1428 memcpy(&u, &p, sizeof(p));
1429 ins.load_store.varying_parameters = u;
1430
1431 if (direct) {
1432 /* We have the offset totally ready */
1433 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1434 } else {
1435 /* We have it partially ready, but we need to
1436 * add in the dynamic index, moved to r27.w */
1437 emit_indirect_offset(ctx, &instr->src[0]);
1438 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1439 }
1440
1441 emit_mir_instruction(ctx, ins);
1442 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1443 /* Constant encoded as a pinned constant */
1444
1445 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1446 ins.has_constants = true;
1447 ins.has_blend_constant = true;
1448 emit_mir_instruction(ctx, ins);
1449 } else if (ctx->is_blend) {
1450 /* For blend shaders, a load might be
1451 * translated various ways depending on what
1452 * we're loading. Figure out how this is used */
1453
1454 nir_variable *out = NULL;
1455
1456 nir_foreach_variable(var, &ctx->nir->inputs) {
1457 int drvloc = var->data.driver_location;
1458
1459 if (nir_intrinsic_base(instr) == drvloc) {
1460 out = var;
1461 break;
1462 }
1463 }
1464
1465 assert(out);
1466
1467 if (out->data.location == VARYING_SLOT_COL0) {
1468 /* Source color preloaded to r0 */
1469
1470 midgard_pin_output(ctx, reg, 0);
1471 } else if (out->data.location == VARYING_SLOT_COL1) {
1472 /* Destination color must be read from framebuffer */
1473
1474 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1475 ins.load_store.swizzle = 0; /* xxxx */
1476
1477 /* Read each component sequentially */
1478
1479 for (int c = 0; c < 4; ++c) {
1480 ins.load_store.mask = (1 << c);
1481 ins.load_store.unknown = c;
1482 emit_mir_instruction(ctx, ins);
1483 }
1484
1485 /* vadd.u2f hr2, abs(hr2), #0 */
1486
1487 midgard_vector_alu_src alu_src = blank_alu_src;
1488 alu_src.abs = true;
1489 alu_src.half = true;
1490
1491 midgard_instruction u2f = {
1492 .type = TAG_ALU_4,
1493 .ssa_args = {
1494 .src0 = reg,
1495 .src1 = SSA_UNUSED_0,
1496 .dest = reg,
1497 .inline_constant = true
1498 },
1499 .alu = {
1500 .op = midgard_alu_op_u2f,
1501 .reg_mode = midgard_reg_mode_half,
1502 .dest_override = midgard_dest_override_none,
1503 .mask = 0xF,
1504 .src1 = vector_alu_srco_unsigned(alu_src),
1505 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1506 }
1507 };
1508
1509 emit_mir_instruction(ctx, u2f);
1510
1511 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1512
1513 alu_src.abs = false;
1514
1515 midgard_instruction fmul = {
1516 .type = TAG_ALU_4,
1517 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1518 .ssa_args = {
1519 .src0 = reg,
1520 .dest = reg,
1521 .src1 = SSA_UNUSED_0,
1522 .inline_constant = true
1523 },
1524 .alu = {
1525 .op = midgard_alu_op_fmul,
1526 .reg_mode = midgard_reg_mode_full,
1527 .dest_override = midgard_dest_override_none,
1528 .outmod = midgard_outmod_sat,
1529 .mask = 0xFF,
1530 .src1 = vector_alu_srco_unsigned(alu_src),
1531 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1532 }
1533 };
1534
1535 emit_mir_instruction(ctx, fmul);
1536 } else {
1537 DBG("Unknown input in blend shader\n");
1538 assert(0);
1539 }
1540 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1541 midgard_instruction ins = m_load_attr_32(reg, offset);
1542 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1543 ins.load_store.mask = (1 << instr->num_components) - 1;
1544 emit_mir_instruction(ctx, ins);
1545 } else {
1546 DBG("Unknown load\n");
1547 assert(0);
1548 }
1549
1550 break;
1551
1552 case nir_intrinsic_store_output:
1553 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1554
1555 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1556
1557 reg = nir_src_index(ctx, &instr->src[0]);
1558
1559 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1560 /* gl_FragColor is not emitted with load/store
1561 * instructions. Instead, it gets plonked into
1562 * r0 at the end of the shader and we do the
1563 * framebuffer writeout dance. TODO: Defer
1564 * writes */
1565
1566 midgard_pin_output(ctx, reg, 0);
1567
1568 /* Save the index we're writing to for later reference
1569 * in the epilogue */
1570
1571 ctx->fragment_output = reg;
1572 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1573 /* Varyings are written into one of two special
1574 * varying register, r26 or r27. The register itself is selected as the register
1575 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1576 *
1577 * Normally emitting fmov's is frowned upon,
1578 * but due to unique constraints of
1579 * REGISTER_VARYING, fmov emission + a
1580 * dedicated cleanup pass is the only way to
1581 * guarantee correctness when considering some
1582 * (common) edge cases XXX: FIXME */
1583
1584 /* If this varying corresponds to a constant (why?!),
1585 * emit that now since it won't get picked up by
1586 * hoisting (since there is no corresponding move
1587 * emitted otherwise) */
1588
1589 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1590
1591 if (constant_value) {
1592 /* Special case: emit the varying write
1593 * directly to r26 (looks funny in asm but it's
1594 * fine) and emit the store _now_. Possibly
1595 * slightly slower, but this is a really stupid
1596 * special case anyway (why on earth would you
1597 * have a constant varying? Your own fault for
1598 * slightly worse perf :P) */
1599
1600 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1601 attach_constants(ctx, &ins, constant_value, reg + 1);
1602 emit_mir_instruction(ctx, ins);
1603
1604 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1605 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1606 emit_mir_instruction(ctx, st);
1607 } else {
1608 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1609
1610 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1611 }
1612 } else {
1613 DBG("Unknown store\n");
1614 assert(0);
1615 }
1616
1617 break;
1618
1619 case nir_intrinsic_load_alpha_ref_float:
1620 assert(instr->dest.is_ssa);
1621
1622 float ref_value = ctx->alpha_ref;
1623
1624 float *v = ralloc_array(NULL, float, 4);
1625 memcpy(v, &ref_value, sizeof(float));
1626 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1627 break;
1628
1629 case nir_intrinsic_load_viewport_scale:
1630 case nir_intrinsic_load_viewport_offset:
1631 emit_sysval_read(ctx, instr);
1632 break;
1633
1634 default:
1635 printf ("Unhandled intrinsic\n");
1636 assert(0);
1637 break;
1638 }
1639 }
1640
1641 static unsigned
1642 midgard_tex_format(enum glsl_sampler_dim dim)
1643 {
1644 switch (dim) {
1645 case GLSL_SAMPLER_DIM_2D:
1646 case GLSL_SAMPLER_DIM_EXTERNAL:
1647 return TEXTURE_2D;
1648
1649 case GLSL_SAMPLER_DIM_3D:
1650 return TEXTURE_3D;
1651
1652 case GLSL_SAMPLER_DIM_CUBE:
1653 return TEXTURE_CUBE;
1654
1655 default:
1656 DBG("Unknown sampler dim type\n");
1657 assert(0);
1658 return 0;
1659 }
1660 }
1661
1662 static void
1663 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1664 {
1665 /* TODO */
1666 //assert (!instr->sampler);
1667 //assert (!instr->texture_array_size);
1668 assert (instr->op == nir_texop_tex);
1669
1670 /* Allocate registers via a round robin scheme to alternate between the two registers */
1671 int reg = ctx->texture_op_count & 1;
1672 int in_reg = reg, out_reg = reg;
1673
1674 /* Make room for the reg */
1675
1676 if (ctx->texture_index[reg] > -1)
1677 unalias_ssa(ctx, ctx->texture_index[reg]);
1678
1679 int texture_index = instr->texture_index;
1680 int sampler_index = texture_index;
1681
1682 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1683 switch (instr->src[i].src_type) {
1684 case nir_tex_src_coord: {
1685 int index = nir_src_index(ctx, &instr->src[i].src);
1686
1687 midgard_vector_alu_src alu_src = blank_alu_src;
1688
1689 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1690
1691 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1692 /* For cubemaps, we need to load coords into
1693 * special r27, and then use a special ld/st op
1694 * to copy into the texture register */
1695
1696 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1697
1698 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1699 emit_mir_instruction(ctx, move);
1700
1701 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1702 st.load_store.unknown = 0x24; /* XXX: What is this? */
1703 st.load_store.mask = 0x3; /* xy? */
1704 st.load_store.swizzle = alu_src.swizzle;
1705 emit_mir_instruction(ctx, st);
1706
1707 } else {
1708 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1709
1710 midgard_instruction ins = v_fmov(index, alu_src, reg);
1711 emit_mir_instruction(ctx, ins);
1712 }
1713
1714 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1715
1716 break;
1717 }
1718
1719 default: {
1720 DBG("Unknown source type\n");
1721 //assert(0);
1722 break;
1723 }
1724 }
1725 }
1726
1727 /* No helper to build texture words -- we do it all here */
1728 midgard_instruction ins = {
1729 .type = TAG_TEXTURE_4,
1730 .texture = {
1731 .op = TEXTURE_OP_NORMAL,
1732 .format = midgard_tex_format(instr->sampler_dim),
1733 .texture_handle = texture_index,
1734 .sampler_handle = sampler_index,
1735
1736 /* TODO: Don't force xyzw */
1737 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1738 .mask = 0xF,
1739
1740 /* TODO: half */
1741 //.in_reg_full = 1,
1742 .out_full = 1,
1743
1744 .filter = 1,
1745
1746 /* Always 1 */
1747 .unknown7 = 1,
1748
1749 /* Assume we can continue; hint it out later */
1750 .cont = 1,
1751 }
1752 };
1753
1754 /* Set registers to read and write from the same place */
1755 ins.texture.in_reg_select = in_reg;
1756 ins.texture.out_reg_select = out_reg;
1757
1758 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1759 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1760 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1761 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1762 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1763 } else {
1764 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1765 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1766 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1767 }
1768
1769 emit_mir_instruction(ctx, ins);
1770
1771 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1772
1773 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1774 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1775 ctx->texture_index[reg] = o_index;
1776
1777 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1778 emit_mir_instruction(ctx, ins2);
1779
1780 /* Used for .cont and .last hinting */
1781 ctx->texture_op_count++;
1782 }
1783
1784 static void
1785 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1786 {
1787 switch (instr->type) {
1788 case nir_jump_break: {
1789 /* Emit a branch out of the loop */
1790 struct midgard_instruction br = v_branch(false, false);
1791 br.branch.target_type = TARGET_BREAK;
1792 br.branch.target_break = ctx->current_loop;
1793 emit_mir_instruction(ctx, br);
1794
1795 DBG("break..\n");
1796 break;
1797 }
1798
1799 default:
1800 DBG("Unknown jump type %d\n", instr->type);
1801 break;
1802 }
1803 }
1804
1805 static void
1806 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1807 {
1808 switch (instr->type) {
1809 case nir_instr_type_load_const:
1810 emit_load_const(ctx, nir_instr_as_load_const(instr));
1811 break;
1812
1813 case nir_instr_type_intrinsic:
1814 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1815 break;
1816
1817 case nir_instr_type_alu:
1818 emit_alu(ctx, nir_instr_as_alu(instr));
1819 break;
1820
1821 case nir_instr_type_tex:
1822 emit_tex(ctx, nir_instr_as_tex(instr));
1823 break;
1824
1825 case nir_instr_type_jump:
1826 emit_jump(ctx, nir_instr_as_jump(instr));
1827 break;
1828
1829 case nir_instr_type_ssa_undef:
1830 /* Spurious */
1831 break;
1832
1833 default:
1834 DBG("Unhandled instruction type\n");
1835 break;
1836 }
1837 }
1838
1839 /* Determine the actual hardware from the index based on the RA results or special values */
1840
1841 static int
1842 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1843 {
1844 if (reg >= SSA_FIXED_MINIMUM)
1845 return SSA_REG_FROM_FIXED(reg);
1846
1847 if (reg >= 0) {
1848 assert(reg < maxreg);
1849 int r = ra_get_node_reg(g, reg);
1850 ctx->work_registers = MAX2(ctx->work_registers, r);
1851 return r;
1852 }
1853
1854 switch (reg) {
1855 /* fmov style unused */
1856 case SSA_UNUSED_0:
1857 return REGISTER_UNUSED;
1858
1859 /* lut style unused */
1860 case SSA_UNUSED_1:
1861 return REGISTER_UNUSED;
1862
1863 default:
1864 DBG("Unknown SSA register alias %d\n", reg);
1865 assert(0);
1866 return 31;
1867 }
1868 }
1869
1870 static unsigned int
1871 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1872 {
1873 /* Choose the first available register to minimise reported register pressure */
1874
1875 for (int i = 0; i < 16; ++i) {
1876 if (BITSET_TEST(regs, i)) {
1877 return i;
1878 }
1879 }
1880
1881 assert(0);
1882 return 0;
1883 }
1884
1885 static bool
1886 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1887 {
1888 if (ins->ssa_args.src0 == src) return true;
1889 if (ins->ssa_args.src1 == src) return true;
1890
1891 return false;
1892 }
1893
1894 /* Determine if a variable is live in the successors of a block */
1895 static bool
1896 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1897 {
1898 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1899 midgard_block *succ = bl->successors[i];
1900
1901 /* If we already visited, the value we're seeking
1902 * isn't down this path (or we would have short
1903 * circuited */
1904
1905 if (succ->visited) continue;
1906
1907 /* Otherwise (it's visited *now*), check the block */
1908
1909 succ->visited = true;
1910
1911 mir_foreach_instr_in_block(succ, ins) {
1912 if (midgard_is_live_in_instr(ins, src))
1913 return true;
1914 }
1915
1916 /* ...and also, check *its* successors */
1917 if (is_live_after_successors(ctx, succ, src))
1918 return true;
1919
1920 }
1921
1922 /* Welp. We're really not live. */
1923
1924 return false;
1925 }
1926
1927 static bool
1928 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1929 {
1930 /* Check the rest of the block for liveness */
1931
1932 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1933 if (midgard_is_live_in_instr(ins, src))
1934 return true;
1935 }
1936
1937 /* Check the rest of the blocks for liveness recursively */
1938
1939 bool succ = is_live_after_successors(ctx, block, src);
1940
1941 mir_foreach_block(ctx, block) {
1942 block->visited = false;
1943 }
1944
1945 return succ;
1946 }
1947
1948 static void
1949 allocate_registers(compiler_context *ctx)
1950 {
1951 /* First, initialize the RA */
1952 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1953
1954 /* Create a primary (general purpose) class, as well as special purpose
1955 * pipeline register classes */
1956
1957 int primary_class = ra_alloc_reg_class(regs);
1958 int varying_class = ra_alloc_reg_class(regs);
1959
1960 /* Add the full set of work registers */
1961 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1962 for (int i = 0; i < work_count; ++i)
1963 ra_class_add_reg(regs, primary_class, i);
1964
1965 /* Add special registers */
1966 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1967 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1968
1969 /* We're done setting up */
1970 ra_set_finalize(regs, NULL);
1971
1972 /* Transform the MIR into squeezed index form */
1973 mir_foreach_block(ctx, block) {
1974 mir_foreach_instr_in_block(block, ins) {
1975 if (ins->compact_branch) continue;
1976
1977 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1978 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1979 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1980 }
1981 if (midgard_debug & MIDGARD_DBG_SHADERS)
1982 print_mir_block(block);
1983 }
1984
1985 /* Let's actually do register allocation */
1986 int nodes = ctx->temp_count;
1987 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1988
1989 /* Set everything to the work register class, unless it has somewhere
1990 * special to go */
1991
1992 mir_foreach_block(ctx, block) {
1993 mir_foreach_instr_in_block(block, ins) {
1994 if (ins->compact_branch) continue;
1995
1996 if (ins->ssa_args.dest < 0) continue;
1997
1998 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1999
2000 int class = primary_class;
2001
2002 ra_set_node_class(g, ins->ssa_args.dest, class);
2003 }
2004 }
2005
2006 for (int index = 0; index <= ctx->max_hash; ++index) {
2007 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2008
2009 if (temp) {
2010 unsigned reg = temp - 1;
2011 int t = find_or_allocate_temp(ctx, index);
2012 ra_set_node_reg(g, t, reg);
2013 }
2014 }
2015
2016 /* Determine liveness */
2017
2018 int *live_start = malloc(nodes * sizeof(int));
2019 int *live_end = malloc(nodes * sizeof(int));
2020
2021 /* Initialize as non-existent */
2022
2023 for (int i = 0; i < nodes; ++i) {
2024 live_start[i] = live_end[i] = -1;
2025 }
2026
2027 int d = 0;
2028
2029 mir_foreach_block(ctx, block) {
2030 mir_foreach_instr_in_block(block, ins) {
2031 if (ins->compact_branch) continue;
2032
2033 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2034 /* If this destination is not yet live, it is now since we just wrote it */
2035
2036 int dest = ins->ssa_args.dest;
2037
2038 if (live_start[dest] == -1)
2039 live_start[dest] = d;
2040 }
2041
2042 /* Since we just used a source, the source might be
2043 * dead now. Scan the rest of the block for
2044 * invocations, and if there are none, the source dies
2045 * */
2046
2047 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2048
2049 for (int src = 0; src < 2; ++src) {
2050 int s = sources[src];
2051
2052 if (s < 0) continue;
2053
2054 if (s >= SSA_FIXED_MINIMUM) continue;
2055
2056 if (!is_live_after(ctx, block, ins, s)) {
2057 live_end[s] = d;
2058 }
2059 }
2060
2061 ++d;
2062 }
2063 }
2064
2065 /* If a node still hasn't been killed, kill it now */
2066
2067 for (int i = 0; i < nodes; ++i) {
2068 /* live_start == -1 most likely indicates a pinned output */
2069
2070 if (live_end[i] == -1)
2071 live_end[i] = d;
2072 }
2073
2074 /* Setup interference between nodes that are live at the same time */
2075
2076 for (int i = 0; i < nodes; ++i) {
2077 for (int j = i + 1; j < nodes; ++j) {
2078 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2079 ra_add_node_interference(g, i, j);
2080 }
2081 }
2082
2083 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2084
2085 if (!ra_allocate(g)) {
2086 DBG("Error allocating registers\n");
2087 assert(0);
2088 }
2089
2090 /* Cleanup */
2091 free(live_start);
2092 free(live_end);
2093
2094 mir_foreach_block(ctx, block) {
2095 mir_foreach_instr_in_block(block, ins) {
2096 if (ins->compact_branch) continue;
2097
2098 ssa_args args = ins->ssa_args;
2099
2100 switch (ins->type) {
2101 case TAG_ALU_4:
2102 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2103
2104 ins->registers.src2_imm = args.inline_constant;
2105
2106 if (args.inline_constant) {
2107 /* Encode inline 16-bit constant as a vector by default */
2108
2109 ins->registers.src2_reg = ins->inline_constant >> 11;
2110
2111 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2112
2113 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2114 ins->alu.src2 = imm << 2;
2115 } else {
2116 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2117 }
2118
2119 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2120
2121 break;
2122
2123 case TAG_LOAD_STORE_4: {
2124 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2125 /* TODO: use ssa_args for store_vary */
2126 ins->load_store.reg = 0;
2127 } else {
2128 bool has_dest = args.dest >= 0;
2129 int ssa_arg = has_dest ? args.dest : args.src0;
2130
2131 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2132 }
2133
2134 break;
2135 }
2136
2137 default:
2138 break;
2139 }
2140 }
2141 }
2142 }
2143
2144 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2145 * use scalar ALU instructions, for functional or performance reasons. To do
2146 * this, we just demote vector ALU payloads to scalar. */
2147
2148 static int
2149 component_from_mask(unsigned mask)
2150 {
2151 for (int c = 0; c < 4; ++c) {
2152 if (mask & (3 << (2 * c)))
2153 return c;
2154 }
2155
2156 assert(0);
2157 return 0;
2158 }
2159
2160 static bool
2161 is_single_component_mask(unsigned mask)
2162 {
2163 int components = 0;
2164
2165 for (int c = 0; c < 4; ++c)
2166 if (mask & (3 << (2 * c)))
2167 components++;
2168
2169 return components == 1;
2170 }
2171
2172 /* Create a mask of accessed components from a swizzle to figure out vector
2173 * dependencies */
2174
2175 static unsigned
2176 swizzle_to_access_mask(unsigned swizzle)
2177 {
2178 unsigned component_mask = 0;
2179
2180 for (int i = 0; i < 4; ++i) {
2181 unsigned c = (swizzle >> (2 * i)) & 3;
2182 component_mask |= (1 << c);
2183 }
2184
2185 return component_mask;
2186 }
2187
2188 static unsigned
2189 vector_to_scalar_source(unsigned u)
2190 {
2191 midgard_vector_alu_src v;
2192 memcpy(&v, &u, sizeof(v));
2193
2194 midgard_scalar_alu_src s = {
2195 .abs = v.abs,
2196 .negate = v.negate,
2197 .full = !v.half,
2198 .component = (v.swizzle & 3) << 1
2199 };
2200
2201 unsigned o;
2202 memcpy(&o, &s, sizeof(s));
2203
2204 return o & ((1 << 6) - 1);
2205 }
2206
2207 static midgard_scalar_alu
2208 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2209 {
2210 /* The output component is from the mask */
2211 midgard_scalar_alu s = {
2212 .op = v.op,
2213 .src1 = vector_to_scalar_source(v.src1),
2214 .src2 = vector_to_scalar_source(v.src2),
2215 .unknown = 0,
2216 .outmod = v.outmod,
2217 .output_full = 1, /* TODO: Half */
2218 .output_component = component_from_mask(v.mask) << 1,
2219 };
2220
2221 /* Inline constant is passed along rather than trying to extract it
2222 * from v */
2223
2224 if (ins->ssa_args.inline_constant) {
2225 uint16_t imm = 0;
2226 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2227 imm |= (lower_11 >> 9) & 3;
2228 imm |= (lower_11 >> 6) & 4;
2229 imm |= (lower_11 >> 2) & 0x38;
2230 imm |= (lower_11 & 63) << 6;
2231
2232 s.src2 = imm;
2233 }
2234
2235 return s;
2236 }
2237
2238 /* Midgard prefetches instruction types, so during emission we need to
2239 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2240 * if this is the second to last and the last is an ALU, then it's also 1... */
2241
2242 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2243 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2244
2245 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2246 bytes_emitted += sizeof(type)
2247
2248 static void
2249 emit_binary_vector_instruction(midgard_instruction *ains,
2250 uint16_t *register_words, int *register_words_count,
2251 uint64_t *body_words, size_t *body_size, int *body_words_count,
2252 size_t *bytes_emitted)
2253 {
2254 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2255 *bytes_emitted += sizeof(midgard_reg_info);
2256
2257 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2258 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2259 *bytes_emitted += sizeof(midgard_vector_alu);
2260 }
2261
2262 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2263 * mind that we are a vector architecture and we can write to different
2264 * components simultaneously */
2265
2266 static bool
2267 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2268 {
2269 /* Each instruction reads some registers and writes to a register. See
2270 * where the first writes */
2271
2272 /* Figure out where exactly we wrote to */
2273 int source = first->ssa_args.dest;
2274 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2275
2276 /* As long as the second doesn't read from the first, we're okay */
2277 if (second->ssa_args.src0 == source) {
2278 if (first->type == TAG_ALU_4) {
2279 /* Figure out which components we just read from */
2280
2281 int q = second->alu.src1;
2282 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2283
2284 /* Check if there are components in common, and fail if so */
2285 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2286 return false;
2287 } else
2288 return false;
2289
2290 }
2291
2292 if (second->ssa_args.src1 == source)
2293 return false;
2294
2295 /* Otherwise, it's safe in that regard. Another data hazard is both
2296 * writing to the same place, of course */
2297
2298 if (second->ssa_args.dest == source) {
2299 /* ...but only if the components overlap */
2300 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2301
2302 if (dest_mask & source_mask)
2303 return false;
2304 }
2305
2306 /* ...That's it */
2307 return true;
2308 }
2309
2310 static bool
2311 midgard_has_hazard(
2312 midgard_instruction **segment, unsigned segment_size,
2313 midgard_instruction *ains)
2314 {
2315 for (int s = 0; s < segment_size; ++s)
2316 if (!can_run_concurrent_ssa(segment[s], ains))
2317 return true;
2318
2319 return false;
2320
2321
2322 }
2323
2324 /* Schedules, but does not emit, a single basic block. After scheduling, the
2325 * final tag and size of the block are known, which are necessary for branching
2326 * */
2327
2328 static midgard_bundle
2329 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2330 {
2331 int instructions_emitted = 0, instructions_consumed = -1;
2332 midgard_bundle bundle = { 0 };
2333
2334 uint8_t tag = ins->type;
2335
2336 /* Default to the instruction's tag */
2337 bundle.tag = tag;
2338
2339 switch (ins->type) {
2340 case TAG_ALU_4: {
2341 uint32_t control = 0;
2342 size_t bytes_emitted = sizeof(control);
2343
2344 /* TODO: Constant combining */
2345 int index = 0, last_unit = 0;
2346
2347 /* Previous instructions, for the purpose of parallelism */
2348 midgard_instruction *segment[4] = {0};
2349 int segment_size = 0;
2350
2351 instructions_emitted = -1;
2352 midgard_instruction *pins = ins;
2353
2354 for (;;) {
2355 midgard_instruction *ains = pins;
2356
2357 /* Advance instruction pointer */
2358 if (index) {
2359 ains = mir_next_op(pins);
2360 pins = ains;
2361 }
2362
2363 /* Out-of-work condition */
2364 if ((struct list_head *) ains == &block->instructions)
2365 break;
2366
2367 /* Ensure that the chain can continue */
2368 if (ains->type != TAG_ALU_4) break;
2369
2370 /* According to the presentation "The ARM
2371 * Mali-T880 Mobile GPU" from HotChips 27,
2372 * there are two pipeline stages. Branching
2373 * position determined experimentally. Lines
2374 * are executed in parallel:
2375 *
2376 * [ VMUL ] [ SADD ]
2377 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2378 *
2379 * Verify that there are no ordering dependencies here.
2380 *
2381 * TODO: Allow for parallelism!!!
2382 */
2383
2384 /* Pick a unit for it if it doesn't force a particular unit */
2385
2386 int unit = ains->unit;
2387
2388 if (!unit) {
2389 int op = ains->alu.op;
2390 int units = alu_opcode_props[op];
2391
2392 /* TODO: Promotion of scalars to vectors */
2393 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2394
2395 if (!vector)
2396 assert(units & UNITS_SCALAR);
2397
2398 if (vector) {
2399 if (last_unit >= UNIT_VADD) {
2400 if (units & UNIT_VLUT)
2401 unit = UNIT_VLUT;
2402 else
2403 break;
2404 } else {
2405 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2406 unit = UNIT_VMUL;
2407 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2408 unit = UNIT_VADD;
2409 else if (units & UNIT_VLUT)
2410 unit = UNIT_VLUT;
2411 else
2412 break;
2413 }
2414 } else {
2415 if (last_unit >= UNIT_VADD) {
2416 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2417 unit = UNIT_SMUL;
2418 else if (units & UNIT_VLUT)
2419 unit = UNIT_VLUT;
2420 else
2421 break;
2422 } else {
2423 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2424 unit = UNIT_SADD;
2425 else if (units & UNIT_SMUL)
2426 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2427 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2428 unit = UNIT_VADD;
2429 else
2430 break;
2431 }
2432 }
2433
2434 assert(unit & units);
2435 }
2436
2437 /* Late unit check, this time for encoding (not parallelism) */
2438 if (unit <= last_unit) break;
2439
2440 /* Clear the segment */
2441 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2442 segment_size = 0;
2443
2444 if (midgard_has_hazard(segment, segment_size, ains))
2445 break;
2446
2447 /* We're good to go -- emit the instruction */
2448 ains->unit = unit;
2449
2450 segment[segment_size++] = ains;
2451
2452 /* Only one set of embedded constants per
2453 * bundle possible; if we have more, we must
2454 * break the chain early, unfortunately */
2455
2456 if (ains->has_constants) {
2457 if (bundle.has_embedded_constants) {
2458 /* ...but if there are already
2459 * constants but these are the
2460 * *same* constants, we let it
2461 * through */
2462
2463 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2464 break;
2465 } else {
2466 bundle.has_embedded_constants = true;
2467 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2468
2469 /* If this is a blend shader special constant, track it for patching */
2470 if (ains->has_blend_constant)
2471 bundle.has_blend_constant = true;
2472 }
2473 }
2474
2475 if (ains->unit & UNITS_ANY_VECTOR) {
2476 emit_binary_vector_instruction(ains, bundle.register_words,
2477 &bundle.register_words_count, bundle.body_words,
2478 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2479 } else if (ains->compact_branch) {
2480 /* All of r0 has to be written out
2481 * along with the branch writeout.
2482 * (slow!) */
2483
2484 if (ains->writeout) {
2485 if (index == 0) {
2486 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2487 ins.unit = UNIT_VMUL;
2488
2489 control |= ins.unit;
2490
2491 emit_binary_vector_instruction(&ins, bundle.register_words,
2492 &bundle.register_words_count, bundle.body_words,
2493 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2494 } else {
2495 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2496 bool written_late = false;
2497 bool components[4] = { 0 };
2498 uint16_t register_dep_mask = 0;
2499 uint16_t written_mask = 0;
2500
2501 midgard_instruction *qins = ins;
2502 for (int t = 0; t < index; ++t) {
2503 if (qins->registers.out_reg != 0) {
2504 /* Mark down writes */
2505
2506 written_mask |= (1 << qins->registers.out_reg);
2507 } else {
2508 /* Mark down the register dependencies for errata check */
2509
2510 if (qins->registers.src1_reg < 16)
2511 register_dep_mask |= (1 << qins->registers.src1_reg);
2512
2513 if (qins->registers.src2_reg < 16)
2514 register_dep_mask |= (1 << qins->registers.src2_reg);
2515
2516 int mask = qins->alu.mask;
2517
2518 for (int c = 0; c < 4; ++c)
2519 if (mask & (0x3 << (2 * c)))
2520 components[c] = true;
2521
2522 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2523
2524 if (qins->unit == UNIT_VLUT)
2525 written_late = true;
2526 }
2527
2528 /* Advance instruction pointer */
2529 qins = mir_next_op(qins);
2530 }
2531
2532
2533 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2534 if (register_dep_mask & written_mask) {
2535 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2536 break;
2537 }
2538
2539 if (written_late)
2540 break;
2541
2542 /* If even a single component is not written, break it up (conservative check). */
2543 bool breakup = false;
2544
2545 for (int c = 0; c < 4; ++c)
2546 if (!components[c])
2547 breakup = true;
2548
2549 if (breakup)
2550 break;
2551
2552 /* Otherwise, we're free to proceed */
2553 }
2554 }
2555
2556 if (ains->unit == ALU_ENAB_BRANCH) {
2557 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2558 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2559 bytes_emitted += sizeof(midgard_branch_extended);
2560 } else {
2561 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2562 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2563 bytes_emitted += sizeof(ains->br_compact);
2564 }
2565 } else {
2566 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2567 bytes_emitted += sizeof(midgard_reg_info);
2568
2569 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2570 bundle.body_words_count++;
2571 bytes_emitted += sizeof(midgard_scalar_alu);
2572 }
2573
2574 /* Defer marking until after writing to allow for break */
2575 control |= ains->unit;
2576 last_unit = ains->unit;
2577 ++instructions_emitted;
2578 ++index;
2579 }
2580
2581 /* Bubble up the number of instructions for skipping */
2582 instructions_consumed = index - 1;
2583
2584 int padding = 0;
2585
2586 /* Pad ALU op to nearest word */
2587
2588 if (bytes_emitted & 15) {
2589 padding = 16 - (bytes_emitted & 15);
2590 bytes_emitted += padding;
2591 }
2592
2593 /* Constants must always be quadwords */
2594 if (bundle.has_embedded_constants)
2595 bytes_emitted += 16;
2596
2597 /* Size ALU instruction for tag */
2598 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2599 bundle.padding = padding;
2600 bundle.control = bundle.tag | control;
2601
2602 break;
2603 }
2604
2605 case TAG_LOAD_STORE_4: {
2606 /* Load store instructions have two words at once. If
2607 * we only have one queued up, we need to NOP pad.
2608 * Otherwise, we store both in succession to save space
2609 * and cycles -- letting them go in parallel -- skip
2610 * the next. The usefulness of this optimisation is
2611 * greatly dependent on the quality of the instruction
2612 * scheduler.
2613 */
2614
2615 midgard_instruction *next_op = mir_next_op(ins);
2616
2617 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2618 /* As the two operate concurrently, make sure
2619 * they are not dependent */
2620
2621 if (can_run_concurrent_ssa(ins, next_op) || true) {
2622 /* Skip ahead, since it's redundant with the pair */
2623 instructions_consumed = 1 + (instructions_emitted++);
2624 }
2625 }
2626
2627 break;
2628 }
2629
2630 default:
2631 /* Texture ops default to single-op-per-bundle scheduling */
2632 break;
2633 }
2634
2635 /* Copy the instructions into the bundle */
2636 bundle.instruction_count = instructions_emitted + 1;
2637
2638 int used_idx = 0;
2639
2640 midgard_instruction *uins = ins;
2641 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2642 bundle.instructions[used_idx++] = *uins;
2643 uins = mir_next_op(uins);
2644 }
2645
2646 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2647
2648 return bundle;
2649 }
2650
2651 static int
2652 quadword_size(int tag)
2653 {
2654 switch (tag) {
2655 case TAG_ALU_4:
2656 return 1;
2657
2658 case TAG_ALU_8:
2659 return 2;
2660
2661 case TAG_ALU_12:
2662 return 3;
2663
2664 case TAG_ALU_16:
2665 return 4;
2666
2667 case TAG_LOAD_STORE_4:
2668 return 1;
2669
2670 case TAG_TEXTURE_4:
2671 return 1;
2672
2673 default:
2674 assert(0);
2675 return 0;
2676 }
2677 }
2678
2679 /* Schedule a single block by iterating its instruction to create bundles.
2680 * While we go, tally about the bundle sizes to compute the block size. */
2681
2682 static void
2683 schedule_block(compiler_context *ctx, midgard_block *block)
2684 {
2685 util_dynarray_init(&block->bundles, NULL);
2686
2687 block->quadword_count = 0;
2688
2689 mir_foreach_instr_in_block(block, ins) {
2690 int skip;
2691 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2692 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2693
2694 if (bundle.has_blend_constant) {
2695 /* TODO: Multiblock? */
2696 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2697 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2698 }
2699
2700 while(skip--)
2701 ins = mir_next_op(ins);
2702
2703 block->quadword_count += quadword_size(bundle.tag);
2704 }
2705
2706 block->is_scheduled = true;
2707 }
2708
2709 static void
2710 schedule_program(compiler_context *ctx)
2711 {
2712 allocate_registers(ctx);
2713
2714 mir_foreach_block(ctx, block) {
2715 schedule_block(ctx, block);
2716 }
2717 }
2718
2719 /* After everything is scheduled, emit whole bundles at a time */
2720
2721 static void
2722 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2723 {
2724 int lookahead = next_tag << 4;
2725
2726 switch (bundle->tag) {
2727 case TAG_ALU_4:
2728 case TAG_ALU_8:
2729 case TAG_ALU_12:
2730 case TAG_ALU_16: {
2731 /* Actually emit each component */
2732 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2733
2734 for (int i = 0; i < bundle->register_words_count; ++i)
2735 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2736
2737 /* Emit body words based on the instructions bundled */
2738 for (int i = 0; i < bundle->instruction_count; ++i) {
2739 midgard_instruction *ins = &bundle->instructions[i];
2740
2741 if (ins->unit & UNITS_ANY_VECTOR) {
2742 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2743 } else if (ins->compact_branch) {
2744 /* Dummy move, XXX DRY */
2745 if ((i == 0) && ins->writeout) {
2746 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2747 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2748 }
2749
2750 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2751 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2752 } else {
2753 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2754 }
2755 } else {
2756 /* Scalar */
2757 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2758 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2759 }
2760 }
2761
2762 /* Emit padding (all zero) */
2763 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2764
2765 /* Tack on constants */
2766
2767 if (bundle->has_embedded_constants) {
2768 util_dynarray_append(emission, float, bundle->constants[0]);
2769 util_dynarray_append(emission, float, bundle->constants[1]);
2770 util_dynarray_append(emission, float, bundle->constants[2]);
2771 util_dynarray_append(emission, float, bundle->constants[3]);
2772 }
2773
2774 break;
2775 }
2776
2777 case TAG_LOAD_STORE_4: {
2778 /* One or two composing instructions */
2779
2780 uint64_t current64, next64 = LDST_NOP;
2781
2782 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2783
2784 if (bundle->instruction_count == 2)
2785 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2786
2787 midgard_load_store instruction = {
2788 .type = bundle->tag,
2789 .next_type = next_tag,
2790 .word1 = current64,
2791 .word2 = next64
2792 };
2793
2794 util_dynarray_append(emission, midgard_load_store, instruction);
2795
2796 break;
2797 }
2798
2799 case TAG_TEXTURE_4: {
2800 /* Texture instructions are easy, since there is no
2801 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2802
2803 midgard_instruction *ins = &bundle->instructions[0];
2804
2805 ins->texture.type = TAG_TEXTURE_4;
2806 ins->texture.next_type = next_tag;
2807
2808 ctx->texture_op_count--;
2809
2810 if (!ctx->texture_op_count) {
2811 ins->texture.cont = 0;
2812 ins->texture.last = 1;
2813 }
2814
2815 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2816 break;
2817 }
2818
2819 default:
2820 DBG("Unknown midgard instruction type\n");
2821 assert(0);
2822 break;
2823 }
2824 }
2825
2826
2827 /* ALU instructions can inline or embed constants, which decreases register
2828 * pressure and saves space. */
2829
2830 #define CONDITIONAL_ATTACH(src) { \
2831 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2832 \
2833 if (entry) { \
2834 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2835 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2836 } \
2837 }
2838
2839 static void
2840 inline_alu_constants(compiler_context *ctx)
2841 {
2842 mir_foreach_instr(ctx, alu) {
2843 /* Other instructions cannot inline constants */
2844 if (alu->type != TAG_ALU_4) continue;
2845
2846 /* If there is already a constant here, we can do nothing */
2847 if (alu->has_constants) continue;
2848
2849 /* It makes no sense to inline constants on a branch */
2850 if (alu->compact_branch || alu->prepacked_branch) continue;
2851
2852 CONDITIONAL_ATTACH(src0);
2853
2854 if (!alu->has_constants) {
2855 CONDITIONAL_ATTACH(src1)
2856 } else if (!alu->inline_constant) {
2857 /* Corner case: _two_ vec4 constants, for instance with a
2858 * csel. For this case, we can only use a constant
2859 * register for one, we'll have to emit a move for the
2860 * other. Note, if both arguments are constants, then
2861 * necessarily neither argument depends on the value of
2862 * any particular register. As the destination register
2863 * will be wiped, that means we can spill the constant
2864 * to the destination register.
2865 */
2866
2867 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2868 unsigned scratch = alu->ssa_args.dest;
2869
2870 if (entry) {
2871 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2872 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2873
2874 /* Force a break XXX Defer r31 writes */
2875 ins.unit = UNIT_VLUT;
2876
2877 /* Set the source */
2878 alu->ssa_args.src1 = scratch;
2879
2880 /* Inject us -before- the last instruction which set r31 */
2881 mir_insert_instruction_before(mir_prev_op(alu), ins);
2882 }
2883 }
2884 }
2885 }
2886
2887 /* Midgard supports two types of constants, embedded constants (128-bit) and
2888 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2889 * constants can be demoted to inline constants, for space savings and
2890 * sometimes a performance boost */
2891
2892 static void
2893 embedded_to_inline_constant(compiler_context *ctx)
2894 {
2895 mir_foreach_instr(ctx, ins) {
2896 if (!ins->has_constants) continue;
2897
2898 if (ins->ssa_args.inline_constant) continue;
2899
2900 /* Blend constants must not be inlined by definition */
2901 if (ins->has_blend_constant) continue;
2902
2903 /* src1 cannot be an inline constant due to encoding
2904 * restrictions. So, if possible we try to flip the arguments
2905 * in that case */
2906
2907 int op = ins->alu.op;
2908
2909 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2910 /* Flip based on op. Fallthrough intentional */
2911
2912 switch (op) {
2913 /* These ops require an operational change to flip their arguments TODO */
2914 case midgard_alu_op_flt:
2915 case midgard_alu_op_fle:
2916 case midgard_alu_op_ilt:
2917 case midgard_alu_op_ile:
2918 case midgard_alu_op_fcsel:
2919 case midgard_alu_op_icsel:
2920 case midgard_alu_op_isub:
2921 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2922 break;
2923
2924 /* These ops are commutative and Just Flip */
2925 case midgard_alu_op_fne:
2926 case midgard_alu_op_fadd:
2927 case midgard_alu_op_fmul:
2928 case midgard_alu_op_fmin:
2929 case midgard_alu_op_fmax:
2930 case midgard_alu_op_iadd:
2931 case midgard_alu_op_imul:
2932 case midgard_alu_op_feq:
2933 case midgard_alu_op_ieq:
2934 case midgard_alu_op_ine:
2935 case midgard_alu_op_iand:
2936 case midgard_alu_op_ior:
2937 case midgard_alu_op_ixor:
2938 /* Flip the SSA numbers */
2939 ins->ssa_args.src0 = ins->ssa_args.src1;
2940 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2941
2942 /* And flip the modifiers */
2943
2944 unsigned src_temp;
2945
2946 src_temp = ins->alu.src2;
2947 ins->alu.src2 = ins->alu.src1;
2948 ins->alu.src1 = src_temp;
2949
2950 default:
2951 break;
2952 }
2953 }
2954
2955 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2956 /* Extract the source information */
2957
2958 midgard_vector_alu_src *src;
2959 int q = ins->alu.src2;
2960 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2961 src = m;
2962
2963 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2964 int component = src->swizzle & 3;
2965
2966 /* Scale constant appropriately, if we can legally */
2967 uint16_t scaled_constant = 0;
2968
2969 /* XXX: Check legality */
2970 if (midgard_is_integer_op(op)) {
2971 /* TODO: Inline integer */
2972 continue;
2973
2974 unsigned int *iconstants = (unsigned int *) ins->constants;
2975 scaled_constant = (uint16_t) iconstants[component];
2976
2977 /* Constant overflow after resize */
2978 if (scaled_constant != iconstants[component])
2979 continue;
2980 } else {
2981 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2982 }
2983
2984 /* We don't know how to handle these with a constant */
2985
2986 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2987 DBG("Bailing inline constant...\n");
2988 continue;
2989 }
2990
2991 /* Make sure that the constant is not itself a
2992 * vector by checking if all accessed values
2993 * (by the swizzle) are the same. */
2994
2995 uint32_t *cons = (uint32_t *) ins->constants;
2996 uint32_t value = cons[component];
2997
2998 bool is_vector = false;
2999 unsigned mask = effective_writemask(&ins->alu);
3000
3001 for (int c = 1; c < 4; ++c) {
3002 /* We only care if this component is actually used */
3003 if (!(mask & (1 << c)))
3004 continue;
3005
3006 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3007
3008 if (test != value) {
3009 is_vector = true;
3010 break;
3011 }
3012 }
3013
3014 if (is_vector)
3015 continue;
3016
3017 /* Get rid of the embedded constant */
3018 ins->has_constants = false;
3019 ins->ssa_args.src1 = SSA_UNUSED_0;
3020 ins->ssa_args.inline_constant = true;
3021 ins->inline_constant = scaled_constant;
3022 }
3023 }
3024 }
3025
3026 /* Map normal SSA sources to other SSA sources / fixed registers (like
3027 * uniforms) */
3028
3029 static void
3030 map_ssa_to_alias(compiler_context *ctx, int *ref)
3031 {
3032 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3033
3034 if (alias) {
3035 /* Remove entry in leftovers to avoid a redunant fmov */
3036
3037 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3038
3039 if (leftover)
3040 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3041
3042 /* Assign the alias map */
3043 *ref = alias - 1;
3044 return;
3045 }
3046 }
3047
3048 #define AS_SRC(to, u) \
3049 int q##to = ins->alu.src2; \
3050 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
3051
3052 /* Removing unused moves is necessary to clean up the texture pipeline results.
3053 *
3054 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
3055
3056 static void
3057 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
3058 {
3059 mir_foreach_instr_in_block_safe(block, ins) {
3060 if (ins->type != TAG_ALU_4) continue;
3061
3062 if (ins->alu.op != midgard_alu_op_fmov) continue;
3063
3064 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3065
3066 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3067
3068 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3069
3070 mir_remove_instruction(ins);
3071 }
3072 }
3073
3074 /* The following passes reorder MIR instructions to enable better scheduling */
3075
3076 static void
3077 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3078 {
3079 mir_foreach_instr_in_block_safe(block, ins) {
3080 if (ins->type != TAG_LOAD_STORE_4) continue;
3081
3082 /* We've found a load/store op. Check if next is also load/store. */
3083 midgard_instruction *next_op = mir_next_op(ins);
3084 if (&next_op->link != &block->instructions) {
3085 if (next_op->type == TAG_LOAD_STORE_4) {
3086 /* If so, we're done since we're a pair */
3087 ins = mir_next_op(ins);
3088 continue;
3089 }
3090
3091 /* Maximum search distance to pair, to avoid register pressure disasters */
3092 int search_distance = 8;
3093
3094 /* Otherwise, we have an orphaned load/store -- search for another load */
3095 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3096 /* Terminate search if necessary */
3097 if (!(search_distance--)) break;
3098
3099 if (c->type != TAG_LOAD_STORE_4) continue;
3100
3101 /* Stores cannot be reordered, since they have
3102 * dependencies. For the same reason, indirect
3103 * loads cannot be reordered as their index is
3104 * loaded in r27.w */
3105
3106 if (OP_IS_STORE(c->load_store.op)) continue;
3107
3108 /* It appears the 0x800 bit is set whenever a
3109 * load is direct, unset when it is indirect.
3110 * Skip indirect loads. */
3111
3112 if (!(c->load_store.unknown & 0x800)) continue;
3113
3114 /* We found one! Move it up to pair and remove it from the old location */
3115
3116 mir_insert_instruction_before(ins, *c);
3117 mir_remove_instruction(c);
3118
3119 break;
3120 }
3121 }
3122 }
3123 }
3124
3125 /* Emit varying stores late */
3126
3127 static void
3128 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3129 /* Iterate in reverse to get the final write, rather than the first */
3130
3131 mir_foreach_instr_in_block_safe_rev(block, ins) {
3132 /* Check if what we just wrote needs a store */
3133 int idx = ins->ssa_args.dest;
3134 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3135
3136 if (!varying) continue;
3137
3138 varying -= 1;
3139
3140 /* We need to store to the appropriate varying, so emit the
3141 * move/store */
3142
3143 /* TODO: Integrate with special purpose RA (and scheduler?) */
3144 bool high_varying_register = false;
3145
3146 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3147
3148 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3149 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3150
3151 mir_insert_instruction_before(mir_next_op(ins), st);
3152 mir_insert_instruction_before(mir_next_op(ins), mov);
3153
3154 /* We no longer need to store this varying */
3155 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3156 }
3157 }
3158
3159 /* If there are leftovers after the below pass, emit actual fmov
3160 * instructions for the slow-but-correct path */
3161
3162 static void
3163 emit_leftover_move(compiler_context *ctx)
3164 {
3165 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3166 int base = ((uintptr_t) leftover->key) - 1;
3167 int mapped = base;
3168
3169 map_ssa_to_alias(ctx, &mapped);
3170 EMIT(fmov, mapped, blank_alu_src, base);
3171 }
3172 }
3173
3174 static void
3175 actualise_ssa_to_alias(compiler_context *ctx)
3176 {
3177 mir_foreach_instr(ctx, ins) {
3178 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3179 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3180 }
3181
3182 emit_leftover_move(ctx);
3183 }
3184
3185 static void
3186 emit_fragment_epilogue(compiler_context *ctx)
3187 {
3188 /* Special case: writing out constants requires us to include the move
3189 * explicitly now, so shove it into r0 */
3190
3191 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3192
3193 if (constant_value) {
3194 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3195 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3196 emit_mir_instruction(ctx, ins);
3197 }
3198
3199 /* Perform the actual fragment writeout. We have two writeout/branch
3200 * instructions, forming a loop until writeout is successful as per the
3201 * docs. TODO: gl_FragDepth */
3202
3203 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3204 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3205 }
3206
3207 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3208 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3209 * with the int8 analogue to the fragment epilogue */
3210
3211 static void
3212 emit_blend_epilogue(compiler_context *ctx)
3213 {
3214 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3215
3216 midgard_instruction scale = {
3217 .type = TAG_ALU_4,
3218 .unit = UNIT_VMUL,
3219 .inline_constant = _mesa_float_to_half(255.0),
3220 .ssa_args = {
3221 .src0 = SSA_FIXED_REGISTER(0),
3222 .src1 = SSA_UNUSED_0,
3223 .dest = SSA_FIXED_REGISTER(24),
3224 .inline_constant = true
3225 },
3226 .alu = {
3227 .op = midgard_alu_op_fmul,
3228 .reg_mode = midgard_reg_mode_full,
3229 .dest_override = midgard_dest_override_lower,
3230 .mask = 0xFF,
3231 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3232 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3233 }
3234 };
3235
3236 emit_mir_instruction(ctx, scale);
3237
3238 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3239
3240 midgard_vector_alu_src alu_src = blank_alu_src;
3241 alu_src.half = true;
3242
3243 midgard_instruction f2u8 = {
3244 .type = TAG_ALU_4,
3245 .ssa_args = {
3246 .src0 = SSA_FIXED_REGISTER(24),
3247 .src1 = SSA_UNUSED_0,
3248 .dest = SSA_FIXED_REGISTER(0),
3249 .inline_constant = true
3250 },
3251 .alu = {
3252 .op = midgard_alu_op_f2u8,
3253 .reg_mode = midgard_reg_mode_half,
3254 .dest_override = midgard_dest_override_lower,
3255 .outmod = midgard_outmod_pos,
3256 .mask = 0xF,
3257 .src1 = vector_alu_srco_unsigned(alu_src),
3258 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3259 }
3260 };
3261
3262 emit_mir_instruction(ctx, f2u8);
3263
3264 /* vmul.imov.quarter r0, r0, r0 */
3265
3266 midgard_instruction imov_8 = {
3267 .type = TAG_ALU_4,
3268 .ssa_args = {
3269 .src0 = SSA_UNUSED_1,
3270 .src1 = SSA_FIXED_REGISTER(0),
3271 .dest = SSA_FIXED_REGISTER(0),
3272 },
3273 .alu = {
3274 .op = midgard_alu_op_imov,
3275 .reg_mode = midgard_reg_mode_quarter,
3276 .dest_override = midgard_dest_override_none,
3277 .mask = 0xFF,
3278 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3279 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3280 }
3281 };
3282
3283 /* Emit branch epilogue with the 8-bit move as the source */
3284
3285 emit_mir_instruction(ctx, imov_8);
3286 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3287
3288 emit_mir_instruction(ctx, imov_8);
3289 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3290 }
3291
3292 static midgard_block *
3293 emit_block(compiler_context *ctx, nir_block *block)
3294 {
3295 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3296 list_addtail(&this_block->link, &ctx->blocks);
3297
3298 this_block->is_scheduled = false;
3299 ++ctx->block_count;
3300
3301 ctx->texture_index[0] = -1;
3302 ctx->texture_index[1] = -1;
3303
3304 /* Add us as a successor to the block we are following */
3305 if (ctx->current_block)
3306 midgard_block_add_successor(ctx->current_block, this_block);
3307
3308 /* Set up current block */
3309 list_inithead(&this_block->instructions);
3310 ctx->current_block = this_block;
3311
3312 nir_foreach_instr(instr, block) {
3313 emit_instr(ctx, instr);
3314 ++ctx->instruction_count;
3315 }
3316
3317 inline_alu_constants(ctx);
3318 embedded_to_inline_constant(ctx);
3319
3320 /* Perform heavylifting for aliasing */
3321 actualise_ssa_to_alias(ctx);
3322
3323 midgard_emit_store(ctx, this_block);
3324 midgard_eliminate_orphan_moves(ctx, this_block);
3325 midgard_pair_load_store(ctx, this_block);
3326
3327 /* Append fragment shader epilogue (value writeout) */
3328 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3329 if (block == nir_impl_last_block(ctx->func->impl)) {
3330 if (ctx->is_blend)
3331 emit_blend_epilogue(ctx);
3332 else
3333 emit_fragment_epilogue(ctx);
3334 }
3335 }
3336
3337 if (block == nir_start_block(ctx->func->impl))
3338 ctx->initial_block = this_block;
3339
3340 if (block == nir_impl_last_block(ctx->func->impl))
3341 ctx->final_block = this_block;
3342
3343 /* Allow the next control flow to access us retroactively, for
3344 * branching etc */
3345 ctx->current_block = this_block;
3346
3347 /* Document the fallthrough chain */
3348 ctx->previous_source_block = this_block;
3349
3350 return this_block;
3351 }
3352
3353 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3354
3355 static void
3356 emit_if(struct compiler_context *ctx, nir_if *nif)
3357 {
3358 /* Conditional branches expect the condition in r31.w; emit a move for
3359 * that in the _previous_ block (which is the current block). */
3360 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3361
3362 /* Speculatively emit the branch, but we can't fill it in until later */
3363 EMIT(branch, true, true);
3364 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3365
3366 /* Emit the two subblocks */
3367 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3368
3369 /* Emit a jump from the end of the then block to the end of the else */
3370 EMIT(branch, false, false);
3371 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3372
3373 /* Emit second block, and check if it's empty */
3374
3375 int else_idx = ctx->block_count;
3376 int count_in = ctx->instruction_count;
3377 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3378 int after_else_idx = ctx->block_count;
3379
3380 /* Now that we have the subblocks emitted, fix up the branches */
3381
3382 assert(then_block);
3383 assert(else_block);
3384
3385 if (ctx->instruction_count == count_in) {
3386 /* The else block is empty, so don't emit an exit jump */
3387 mir_remove_instruction(then_exit);
3388 then_branch->branch.target_block = after_else_idx;
3389 } else {
3390 then_branch->branch.target_block = else_idx;
3391 then_exit->branch.target_block = after_else_idx;
3392 }
3393 }
3394
3395 static void
3396 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3397 {
3398 /* Remember where we are */
3399 midgard_block *start_block = ctx->current_block;
3400
3401 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3402 * single current_loop variable, maybe we need a stack */
3403
3404 int loop_idx = ++ctx->current_loop;
3405
3406 /* Get index from before the body so we can loop back later */
3407 int start_idx = ctx->block_count;
3408
3409 /* Emit the body itself */
3410 emit_cf_list(ctx, &nloop->body);
3411
3412 /* Branch back to loop back */
3413 struct midgard_instruction br_back = v_branch(false, false);
3414 br_back.branch.target_block = start_idx;
3415 emit_mir_instruction(ctx, br_back);
3416
3417 /* Mark down that branch in the graph */
3418 midgard_block_add_successor(ctx->current_block, start_block);
3419
3420 /* Find the index of the block about to follow us (note: we don't add
3421 * one; blocks are 0-indexed so we get a fencepost problem) */
3422 int break_block_idx = ctx->block_count;
3423
3424 /* Fix up the break statements we emitted to point to the right place,
3425 * now that we can allocate a block number for them */
3426
3427 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3428 mir_foreach_instr_in_block(block, ins) {
3429 if (ins->type != TAG_ALU_4) continue;
3430 if (!ins->compact_branch) continue;
3431 if (ins->prepacked_branch) continue;
3432
3433 /* We found a branch -- check the type to see if we need to do anything */
3434 if (ins->branch.target_type != TARGET_BREAK) continue;
3435
3436 /* It's a break! Check if it's our break */
3437 if (ins->branch.target_break != loop_idx) continue;
3438
3439 /* Okay, cool, we're breaking out of this loop.
3440 * Rewrite from a break to a goto */
3441
3442 ins->branch.target_type = TARGET_GOTO;
3443 ins->branch.target_block = break_block_idx;
3444 }
3445 }
3446 }
3447
3448 static midgard_block *
3449 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3450 {
3451 midgard_block *start_block = NULL;
3452
3453 foreach_list_typed(nir_cf_node, node, node, list) {
3454 switch (node->type) {
3455 case nir_cf_node_block: {
3456 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3457
3458 if (!start_block)
3459 start_block = block;
3460
3461 break;
3462 }
3463
3464 case nir_cf_node_if:
3465 emit_if(ctx, nir_cf_node_as_if(node));
3466 break;
3467
3468 case nir_cf_node_loop:
3469 emit_loop(ctx, nir_cf_node_as_loop(node));
3470 break;
3471
3472 case nir_cf_node_function:
3473 assert(0);
3474 break;
3475 }
3476 }
3477
3478 return start_block;
3479 }
3480
3481 /* Due to lookahead, we need to report the first tag executed in the command
3482 * stream and in branch targets. An initial block might be empty, so iterate
3483 * until we find one that 'works' */
3484
3485 static unsigned
3486 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3487 {
3488 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3489
3490 unsigned first_tag = 0;
3491
3492 do {
3493 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3494
3495 if (initial_bundle) {
3496 first_tag = initial_bundle->tag;
3497 break;
3498 }
3499
3500 /* Initial block is empty, try the next block */
3501 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3502 } while(initial_block != NULL);
3503
3504 assert(first_tag);
3505 return first_tag;
3506 }
3507
3508 int
3509 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3510 {
3511 struct util_dynarray *compiled = &program->compiled;
3512
3513 midgard_debug = debug_get_option_midgard_debug();
3514
3515 compiler_context ictx = {
3516 .nir = nir,
3517 .stage = nir->info.stage,
3518
3519 .is_blend = is_blend,
3520 .blend_constant_offset = -1,
3521
3522 .alpha_ref = program->alpha_ref
3523 };
3524
3525 compiler_context *ctx = &ictx;
3526
3527 /* TODO: Decide this at runtime */
3528 ctx->uniform_cutoff = 8;
3529
3530 /* Assign var locations early, so the epilogue can use them if necessary */
3531
3532 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3533 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3534 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3535
3536 /* Initialize at a global (not block) level hash tables */
3537
3538 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3539 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3540 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3541 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3542 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3543 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3544 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3545
3546 /* Record the varying mapping for the command stream's bookkeeping */
3547
3548 struct exec_list *varyings =
3549 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3550
3551 nir_foreach_variable(var, varyings) {
3552 unsigned loc = var->data.driver_location;
3553 unsigned sz = glsl_type_size(var->type, FALSE);
3554
3555 for (int c = 0; c < sz; ++c) {
3556 program->varyings[loc + c] = var->data.location;
3557 }
3558 }
3559
3560 /* Lower gl_Position pre-optimisation */
3561
3562 if (ctx->stage == MESA_SHADER_VERTEX)
3563 NIR_PASS_V(nir, nir_lower_viewport_transform);
3564
3565 NIR_PASS_V(nir, nir_lower_var_copies);
3566 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3567 NIR_PASS_V(nir, nir_split_var_copies);
3568 NIR_PASS_V(nir, nir_lower_var_copies);
3569 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3570 NIR_PASS_V(nir, nir_lower_var_copies);
3571 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3572
3573 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3574
3575 /* Optimisation passes */
3576
3577 optimise_nir(nir);
3578
3579 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3580 nir_print_shader(nir, stdout);
3581 }
3582
3583 /* Assign sysvals and counts, now that we're sure
3584 * (post-optimisation) */
3585
3586 midgard_nir_assign_sysvals(ctx, nir);
3587
3588 program->uniform_count = nir->num_uniforms;
3589 program->sysval_count = ctx->sysval_count;
3590 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3591
3592 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3593 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3594
3595 nir_foreach_function(func, nir) {
3596 if (!func->impl)
3597 continue;
3598
3599 list_inithead(&ctx->blocks);
3600 ctx->block_count = 0;
3601 ctx->func = func;
3602
3603 emit_cf_list(ctx, &func->impl->body);
3604 emit_block(ctx, func->impl->end_block);
3605
3606 break; /* TODO: Multi-function shaders */
3607 }
3608
3609 util_dynarray_init(compiled, NULL);
3610
3611 /* Schedule! */
3612 schedule_program(ctx);
3613
3614 /* Now that all the bundles are scheduled and we can calculate block
3615 * sizes, emit actual branch instructions rather than placeholders */
3616
3617 int br_block_idx = 0;
3618
3619 mir_foreach_block(ctx, block) {
3620 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3621 for (int c = 0; c < bundle->instruction_count; ++c) {
3622 midgard_instruction *ins = &bundle->instructions[c];
3623
3624 if (!midgard_is_branch_unit(ins->unit)) continue;
3625
3626 if (ins->prepacked_branch) continue;
3627
3628 /* Parse some basic branch info */
3629 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3630 bool is_conditional = ins->branch.conditional;
3631 bool is_inverted = ins->branch.invert_conditional;
3632 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3633
3634 /* Determine the block we're jumping to */
3635 int target_number = ins->branch.target_block;
3636
3637 /* Report the destination tag. Discards don't need this */
3638 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3639
3640 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3641 int quadword_offset = 0;
3642
3643 if (is_discard) {
3644 /* Jump to the end of the shader. We
3645 * need to include not only the
3646 * following blocks, but also the
3647 * contents of our current block (since
3648 * discard can come in the middle of
3649 * the block) */
3650
3651 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3652
3653 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3654 quadword_offset += quadword_size(bun->tag);
3655 }
3656
3657 mir_foreach_block_from(ctx, blk, b) {
3658 quadword_offset += b->quadword_count;
3659 }
3660
3661 } else if (target_number > br_block_idx) {
3662 /* Jump forward */
3663
3664 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3665 midgard_block *blk = mir_get_block(ctx, idx);
3666 assert(blk);
3667
3668 quadword_offset += blk->quadword_count;
3669 }
3670 } else {
3671 /* Jump backwards */
3672
3673 for (int idx = br_block_idx; idx >= target_number; --idx) {
3674 midgard_block *blk = mir_get_block(ctx, idx);
3675 assert(blk);
3676
3677 quadword_offset -= blk->quadword_count;
3678 }
3679 }
3680
3681 /* Unconditional extended branches (far jumps)
3682 * have issues, so we always use a conditional
3683 * branch, setting the condition to always for
3684 * unconditional. For compact unconditional
3685 * branches, cond isn't used so it doesn't
3686 * matter what we pick. */
3687
3688 midgard_condition cond =
3689 !is_conditional ? midgard_condition_always :
3690 is_inverted ? midgard_condition_false :
3691 midgard_condition_true;
3692
3693 midgard_jmp_writeout_op op =
3694 is_discard ? midgard_jmp_writeout_op_discard :
3695 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3696 midgard_jmp_writeout_op_branch_cond;
3697
3698 if (!is_compact) {
3699 midgard_branch_extended branch =
3700 midgard_create_branch_extended(
3701 cond, op,
3702 dest_tag,
3703 quadword_offset);
3704
3705 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3706 } else if (is_conditional || is_discard) {
3707 midgard_branch_cond branch = {
3708 .op = op,
3709 .dest_tag = dest_tag,
3710 .offset = quadword_offset,
3711 .cond = cond
3712 };
3713
3714 assert(branch.offset == quadword_offset);
3715
3716 memcpy(&ins->br_compact, &branch, sizeof(branch));
3717 } else {
3718 assert(op == midgard_jmp_writeout_op_branch_uncond);
3719
3720 midgard_branch_uncond branch = {
3721 .op = op,
3722 .dest_tag = dest_tag,
3723 .offset = quadword_offset,
3724 .unknown = 1
3725 };
3726
3727 assert(branch.offset == quadword_offset);
3728
3729 memcpy(&ins->br_compact, &branch, sizeof(branch));
3730 }
3731 }
3732 }
3733
3734 ++br_block_idx;
3735 }
3736
3737 /* Emit flat binary from the instruction arrays. Iterate each block in
3738 * sequence. Save instruction boundaries such that lookahead tags can
3739 * be assigned easily */
3740
3741 /* Cache _all_ bundles in source order for lookahead across failed branches */
3742
3743 int bundle_count = 0;
3744 mir_foreach_block(ctx, block) {
3745 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3746 }
3747 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3748 int bundle_idx = 0;
3749 mir_foreach_block(ctx, block) {
3750 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3751 source_order_bundles[bundle_idx++] = bundle;
3752 }
3753 }
3754
3755 int current_bundle = 0;
3756
3757 mir_foreach_block(ctx, block) {
3758 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3759 int lookahead = 1;
3760
3761 if (current_bundle + 1 < bundle_count) {
3762 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3763
3764 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3765 lookahead = 1;
3766 } else {
3767 lookahead = next;
3768 }
3769 }
3770
3771 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3772 ++current_bundle;
3773 }
3774
3775 /* TODO: Free deeper */
3776 //util_dynarray_fini(&block->instructions);
3777 }
3778
3779 free(source_order_bundles);
3780
3781 /* Report the very first tag executed */
3782 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3783
3784 /* Deal with off-by-one related to the fencepost problem */
3785 program->work_register_count = ctx->work_registers + 1;
3786
3787 program->can_discard = ctx->can_discard;
3788 program->uniform_cutoff = ctx->uniform_cutoff;
3789
3790 program->blend_patch_offset = ctx->blend_constant_offset;
3791
3792 if (midgard_debug & MIDGARD_DBG_SHADERS)
3793 disassemble_midgard(program->compiled.data, program->compiled.size);
3794
3795 return 0;
3796 }