panfrost/midgard: use nir_src_is_const and nir_src_as_uint
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "mesa/state_tracker/st_glsl_types.h"
36 #include "compiler/nir_types.h"
37 #include "main/imports.h"
38 #include "compiler/nir/nir_builder.h"
39 #include "util/half_float.h"
40 #include "util/register_allocate.h"
41 #include "util/u_debug.h"
42 #include "util/u_dynarray.h"
43 #include "util/list.h"
44 #include "main/mtypes.h"
45
46 #include "midgard.h"
47 #include "midgard_nir.h"
48 #include "midgard_compile.h"
49 #include "helpers.h"
50
51 #include "disassemble.h"
52
53 static const struct debug_named_value debug_options[] = {
54 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
55 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
56 DEBUG_NAMED_VALUE_END
57 };
58
59 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
60
61 int midgard_debug = 0;
62
63 #define DBG(fmt, ...) \
64 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
65 fprintf(stderr, "%s:%d: "fmt, \
66 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
67
68 /* Instruction arguments represented as block-local SSA indices, rather than
69 * registers. Negative values mean unused. */
70
71 typedef struct {
72 int src0;
73 int src1;
74 int dest;
75
76 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
77 * in. Only valid for ALU ops. */
78 bool inline_constant;
79 } ssa_args;
80
81 /* Forward declare so midgard_branch can reference */
82 struct midgard_block;
83
84 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
85 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
86 * instruction is actually a discard op. */
87
88 #define TARGET_GOTO 0
89 #define TARGET_BREAK 1
90 #define TARGET_CONTINUE 2
91 #define TARGET_DISCARD 3
92
93 typedef struct midgard_branch {
94 /* If conditional, the condition is specified in r31.w */
95 bool conditional;
96
97 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
98 bool invert_conditional;
99
100 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
101 unsigned target_type;
102
103 /* The actual target */
104 union {
105 int target_block;
106 int target_break;
107 int target_continue;
108 };
109 } midgard_branch;
110
111 /* Generic in-memory data type repesenting a single logical instruction, rather
112 * than a single instruction group. This is the preferred form for code gen.
113 * Multiple midgard_insturctions will later be combined during scheduling,
114 * though this is not represented in this structure. Its format bridges
115 * the low-level binary representation with the higher level semantic meaning.
116 *
117 * Notably, it allows registers to be specified as block local SSA, for code
118 * emitted before the register allocation pass.
119 */
120
121 typedef struct midgard_instruction {
122 /* Must be first for casting */
123 struct list_head link;
124
125 unsigned type; /* ALU, load/store, texture */
126
127 /* If the register allocator has not run yet... */
128 ssa_args ssa_args;
129
130 /* Special fields for an ALU instruction */
131 midgard_reg_info registers;
132
133 /* I.e. (1 << alu_bit) */
134 int unit;
135
136 bool has_constants;
137 float constants[4];
138 uint16_t inline_constant;
139 bool has_blend_constant;
140
141 bool compact_branch;
142 bool writeout;
143 bool prepacked_branch;
144
145 union {
146 midgard_load_store_word load_store;
147 midgard_vector_alu alu;
148 midgard_texture_word texture;
149 midgard_branch_extended branch_extended;
150 uint16_t br_compact;
151
152 /* General branch, rather than packed br_compact. Higher level
153 * than the other components */
154 midgard_branch branch;
155 };
156 } midgard_instruction;
157
158 typedef struct midgard_block {
159 /* Link to next block. Must be first for mir_get_block */
160 struct list_head link;
161
162 /* List of midgard_instructions emitted for the current block */
163 struct list_head instructions;
164
165 bool is_scheduled;
166
167 /* List of midgard_bundles emitted (after the scheduler has run) */
168 struct util_dynarray bundles;
169
170 /* Number of quadwords _actually_ emitted, as determined after scheduling */
171 unsigned quadword_count;
172
173 struct midgard_block *next_fallthrough;
174 } midgard_block;
175
176 /* Helpers to generate midgard_instruction's using macro magic, since every
177 * driver seems to do it that way */
178
179 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
180 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
181
182 #define M_LOAD_STORE(name, rname, uname) \
183 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
184 midgard_instruction i = { \
185 .type = TAG_LOAD_STORE_4, \
186 .ssa_args = { \
187 .rname = ssa, \
188 .uname = -1, \
189 .src1 = -1 \
190 }, \
191 .load_store = { \
192 .op = midgard_op_##name, \
193 .mask = 0xF, \
194 .swizzle = SWIZZLE_XYZW, \
195 .address = address \
196 } \
197 }; \
198 \
199 return i; \
200 }
201
202 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
203 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
204
205 const midgard_vector_alu_src blank_alu_src = {
206 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
207 };
208
209 const midgard_vector_alu_src blank_alu_src_xxxx = {
210 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
211 };
212
213 const midgard_scalar_alu_src blank_scalar_alu_src = {
214 .full = true
215 };
216
217 /* Used for encoding the unused source of 1-op instructions */
218 const midgard_vector_alu_src zero_alu_src = { 0 };
219
220 /* Coerce structs to integer */
221
222 static unsigned
223 vector_alu_srco_unsigned(midgard_vector_alu_src src)
224 {
225 unsigned u;
226 memcpy(&u, &src, sizeof(src));
227 return u;
228 }
229
230 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
231 * the corresponding Midgard source */
232
233 static midgard_vector_alu_src
234 vector_alu_modifiers(nir_alu_src *src)
235 {
236 if (!src) return blank_alu_src;
237
238 midgard_vector_alu_src alu_src = {
239 .abs = src->abs,
240 .negate = src->negate,
241 .rep_low = 0,
242 .rep_high = 0,
243 .half = 0, /* TODO */
244 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
245 };
246
247 return alu_src;
248 }
249
250 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
251
252 static midgard_instruction
253 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
254 {
255 midgard_instruction ins = {
256 .type = TAG_ALU_4,
257 .ssa_args = {
258 .src0 = SSA_UNUSED_1,
259 .src1 = src,
260 .dest = dest,
261 },
262 .alu = {
263 .op = midgard_alu_op_fmov,
264 .reg_mode = midgard_reg_mode_full,
265 .dest_override = midgard_dest_override_none,
266 .mask = 0xFF,
267 .src1 = vector_alu_srco_unsigned(zero_alu_src),
268 .src2 = vector_alu_srco_unsigned(mod)
269 },
270 };
271
272 return ins;
273 }
274
275 /* load/store instructions have both 32-bit and 16-bit variants, depending on
276 * whether we are using vectors composed of highp or mediump. At the moment, we
277 * don't support half-floats -- this requires changes in other parts of the
278 * compiler -- therefore the 16-bit versions are commented out. */
279
280 //M_LOAD(load_attr_16);
281 M_LOAD(load_attr_32);
282 //M_LOAD(load_vary_16);
283 M_LOAD(load_vary_32);
284 //M_LOAD(load_uniform_16);
285 M_LOAD(load_uniform_32);
286 M_LOAD(load_color_buffer_8);
287 //M_STORE(store_vary_16);
288 M_STORE(store_vary_32);
289 M_STORE(store_cubemap_coords);
290
291 static midgard_instruction
292 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
293 {
294 midgard_branch_cond branch = {
295 .op = op,
296 .dest_tag = tag,
297 .offset = offset,
298 .cond = cond
299 };
300
301 uint16_t compact;
302 memcpy(&compact, &branch, sizeof(branch));
303
304 midgard_instruction ins = {
305 .type = TAG_ALU_4,
306 .unit = ALU_ENAB_BR_COMPACT,
307 .prepacked_branch = true,
308 .compact_branch = true,
309 .br_compact = compact
310 };
311
312 if (op == midgard_jmp_writeout_op_writeout)
313 ins.writeout = true;
314
315 return ins;
316 }
317
318 static midgard_instruction
319 v_branch(bool conditional, bool invert)
320 {
321 midgard_instruction ins = {
322 .type = TAG_ALU_4,
323 .unit = ALU_ENAB_BRANCH,
324 .compact_branch = true,
325 .branch = {
326 .conditional = conditional,
327 .invert_conditional = invert
328 }
329 };
330
331 return ins;
332 }
333
334 static midgard_branch_extended
335 midgard_create_branch_extended( midgard_condition cond,
336 midgard_jmp_writeout_op op,
337 unsigned dest_tag,
338 signed quadword_offset)
339 {
340 /* For unclear reasons, the condition code is repeated 8 times */
341 uint16_t duplicated_cond =
342 (cond << 14) |
343 (cond << 12) |
344 (cond << 10) |
345 (cond << 8) |
346 (cond << 6) |
347 (cond << 4) |
348 (cond << 2) |
349 (cond << 0);
350
351 midgard_branch_extended branch = {
352 .op = op,
353 .dest_tag = dest_tag,
354 .offset = quadword_offset,
355 .cond = duplicated_cond
356 };
357
358 return branch;
359 }
360
361 typedef struct midgard_bundle {
362 /* Tag for the overall bundle */
363 int tag;
364
365 /* Instructions contained by the bundle */
366 int instruction_count;
367 midgard_instruction instructions[5];
368
369 /* Bundle-wide ALU configuration */
370 int padding;
371 int control;
372 bool has_embedded_constants;
373 float constants[4];
374 bool has_blend_constant;
375
376 uint16_t register_words[8];
377 int register_words_count;
378
379 uint64_t body_words[8];
380 size_t body_size[8];
381 int body_words_count;
382 } midgard_bundle;
383
384 typedef struct compiler_context {
385 nir_shader *nir;
386 gl_shader_stage stage;
387
388 /* Is internally a blend shader? Depends on stage == FRAGMENT */
389 bool is_blend;
390
391 /* Tracking for blend constant patching */
392 int blend_constant_number;
393 int blend_constant_offset;
394
395 /* Current NIR function */
396 nir_function *func;
397
398 /* Unordered list of midgard_blocks */
399 int block_count;
400 struct list_head blocks;
401
402 midgard_block *initial_block;
403 midgard_block *previous_source_block;
404 midgard_block *final_block;
405
406 /* List of midgard_instructions emitted for the current block */
407 midgard_block *current_block;
408
409 /* The index corresponding to the current loop, e.g. for breaks/contineus */
410 int current_loop;
411
412 /* Constants which have been loaded, for later inlining */
413 struct hash_table_u64 *ssa_constants;
414
415 /* SSA indices to be outputted to corresponding varying offset */
416 struct hash_table_u64 *ssa_varyings;
417
418 /* SSA values / registers which have been aliased. Naively, these
419 * demand a fmov output; instead, we alias them in a later pass to
420 * avoid the wasted op.
421 *
422 * A note on encoding: to avoid dynamic memory management here, rather
423 * than ampping to a pointer, we map to the source index; the key
424 * itself is just the destination index. */
425
426 struct hash_table_u64 *ssa_to_alias;
427 struct set *leftover_ssa_to_alias;
428
429 /* Actual SSA-to-register for RA */
430 struct hash_table_u64 *ssa_to_register;
431
432 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
433 struct hash_table_u64 *hash_to_temp;
434 int temp_count;
435 int max_hash;
436
437 /* Just the count of the max register used. Higher count => higher
438 * register pressure */
439 int work_registers;
440
441 /* Used for cont/last hinting. Increase when a tex op is added.
442 * Decrease when a tex op is removed. */
443 int texture_op_count;
444
445 /* Mapping of texture register -> SSA index for unaliasing */
446 int texture_index[2];
447
448 /* If any path hits a discard instruction */
449 bool can_discard;
450
451 /* The number of uniforms allowable for the fast path */
452 int uniform_cutoff;
453
454 /* Count of instructions emitted from NIR overall, across all blocks */
455 int instruction_count;
456
457 /* Alpha ref value passed in */
458 float alpha_ref;
459
460 /* The index corresponding to the fragment output */
461 unsigned fragment_output;
462
463 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
464 unsigned sysvals[MAX_SYSVAL_COUNT];
465 unsigned sysval_count;
466 struct hash_table_u64 *sysval_to_id;
467 } compiler_context;
468
469 /* Append instruction to end of current block */
470
471 static midgard_instruction *
472 mir_upload_ins(struct midgard_instruction ins)
473 {
474 midgard_instruction *heap = malloc(sizeof(ins));
475 memcpy(heap, &ins, sizeof(ins));
476 return heap;
477 }
478
479 static void
480 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
481 {
482 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
483 }
484
485 static void
486 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
487 {
488 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
489 }
490
491 static void
492 mir_remove_instruction(struct midgard_instruction *ins)
493 {
494 list_del(&ins->link);
495 }
496
497 static midgard_instruction*
498 mir_prev_op(struct midgard_instruction *ins)
499 {
500 return list_last_entry(&(ins->link), midgard_instruction, link);
501 }
502
503 static midgard_instruction*
504 mir_next_op(struct midgard_instruction *ins)
505 {
506 return list_first_entry(&(ins->link), midgard_instruction, link);
507 }
508
509 static midgard_block *
510 mir_next_block(struct midgard_block *blk)
511 {
512 return list_first_entry(&(blk->link), midgard_block, link);
513 }
514
515
516 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
517 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
518
519 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
521 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
524 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
525
526
527 static midgard_instruction *
528 mir_last_in_block(struct midgard_block *block)
529 {
530 return list_last_entry(&block->instructions, struct midgard_instruction, link);
531 }
532
533 static midgard_block *
534 mir_get_block(compiler_context *ctx, int idx)
535 {
536 struct list_head *lst = &ctx->blocks;
537
538 while ((idx--) + 1)
539 lst = lst->next;
540
541 return (struct midgard_block *) lst;
542 }
543
544 /* Pretty printer for internal Midgard IR */
545
546 static void
547 print_mir_source(int source)
548 {
549 if (source >= SSA_FIXED_MINIMUM) {
550 /* Specific register */
551 int reg = SSA_REG_FROM_FIXED(source);
552
553 /* TODO: Moving threshold */
554 if (reg > 16 && reg < 24)
555 printf("u%d", 23 - reg);
556 else
557 printf("r%d", reg);
558 } else {
559 printf("%d", source);
560 }
561 }
562
563 static void
564 print_mir_instruction(midgard_instruction *ins)
565 {
566 printf("\t");
567
568 switch (ins->type) {
569 case TAG_ALU_4: {
570 midgard_alu_op op = ins->alu.op;
571 const char *name = alu_opcode_names[op];
572
573 if (ins->unit)
574 printf("%d.", ins->unit);
575
576 printf("%s", name ? name : "??");
577 break;
578 }
579
580 case TAG_LOAD_STORE_4: {
581 midgard_load_store_op op = ins->load_store.op;
582 const char *name = load_store_opcode_names[op];
583
584 assert(name);
585 printf("%s", name);
586 break;
587 }
588
589 case TAG_TEXTURE_4: {
590 printf("texture");
591 break;
592 }
593
594 default:
595 assert(0);
596 }
597
598 ssa_args *args = &ins->ssa_args;
599
600 printf(" %d, ", args->dest);
601
602 print_mir_source(args->src0);
603 printf(", ");
604
605 if (args->inline_constant)
606 printf("#%d", ins->inline_constant);
607 else
608 print_mir_source(args->src1);
609
610 if (ins->has_constants)
611 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
612
613 printf("\n");
614 }
615
616 static void
617 print_mir_block(midgard_block *block)
618 {
619 printf("{\n");
620
621 mir_foreach_instr_in_block(block, ins) {
622 print_mir_instruction(ins);
623 }
624
625 printf("}\n");
626 }
627
628
629
630 static void
631 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
632 {
633 ins->has_constants = true;
634 memcpy(&ins->constants, constants, 16);
635
636 /* If this is the special blend constant, mark this instruction */
637
638 if (ctx->is_blend && ctx->blend_constant_number == name)
639 ins->has_blend_constant = true;
640 }
641
642 static int
643 glsl_type_size(const struct glsl_type *type)
644 {
645 return glsl_count_attribute_slots(type, false);
646 }
647
648 static int
649 uniform_type_size(const struct glsl_type *type)
650 {
651 return st_glsl_storage_type_size(type, false);
652 }
653
654 /* Lower fdot2 to a vector multiplication followed by channel addition */
655 static void
656 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
657 {
658 if (alu->op != nir_op_fdot2)
659 return;
660
661 b->cursor = nir_before_instr(&alu->instr);
662
663 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
664 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
665
666 nir_ssa_def *product = nir_fmul(b, src0, src1);
667
668 nir_ssa_def *sum = nir_fadd(b,
669 nir_channel(b, product, 0),
670 nir_channel(b, product, 1));
671
672 /* Replace the fdot2 with this sum */
673 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
674 }
675
676 static int
677 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
678 {
679 switch (instr->intrinsic) {
680 case nir_intrinsic_load_viewport_scale:
681 return PAN_SYSVAL_VIEWPORT_SCALE;
682 case nir_intrinsic_load_viewport_offset:
683 return PAN_SYSVAL_VIEWPORT_OFFSET;
684 default:
685 return -1;
686 }
687 }
688
689 static void
690 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
691 {
692 int sysval = -1;
693
694 if (instr->type == nir_instr_type_intrinsic) {
695 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
696 sysval = midgard_nir_sysval_for_intrinsic(intr);
697 }
698
699 if (sysval < 0)
700 return;
701
702 /* We have a sysval load; check if it's already been assigned */
703
704 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
705 return;
706
707 /* It hasn't -- so assign it now! */
708
709 unsigned id = ctx->sysval_count++;
710 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
711 ctx->sysvals[id] = sysval;
712 }
713
714 static void
715 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
716 {
717 ctx->sysval_count = 0;
718
719 nir_foreach_function(function, shader) {
720 if (!function->impl) continue;
721
722 nir_foreach_block(block, function->impl) {
723 nir_foreach_instr_safe(instr, block) {
724 midgard_nir_assign_sysval_body(ctx, instr);
725 }
726 }
727 }
728 }
729
730 static bool
731 midgard_nir_lower_fdot2(nir_shader *shader)
732 {
733 bool progress = false;
734
735 nir_foreach_function(function, shader) {
736 if (!function->impl) continue;
737
738 nir_builder _b;
739 nir_builder *b = &_b;
740 nir_builder_init(b, function->impl);
741
742 nir_foreach_block(block, function->impl) {
743 nir_foreach_instr_safe(instr, block) {
744 if (instr->type != nir_instr_type_alu) continue;
745
746 nir_alu_instr *alu = nir_instr_as_alu(instr);
747 midgard_nir_lower_fdot2_body(b, alu);
748
749 progress |= true;
750 }
751 }
752
753 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
754
755 }
756
757 return progress;
758 }
759
760 static void
761 optimise_nir(nir_shader *nir)
762 {
763 bool progress;
764
765 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
766 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
767
768 nir_lower_tex_options lower_tex_options = {
769 .lower_rect = true
770 };
771
772 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
773
774 do {
775 progress = false;
776
777 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
778 NIR_PASS(progress, nir, nir_lower_var_copies);
779 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
780
781 NIR_PASS(progress, nir, nir_copy_prop);
782 NIR_PASS(progress, nir, nir_opt_dce);
783 NIR_PASS(progress, nir, nir_opt_dead_cf);
784 NIR_PASS(progress, nir, nir_opt_cse);
785 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
786 NIR_PASS(progress, nir, nir_opt_algebraic);
787 NIR_PASS(progress, nir, nir_opt_constant_folding);
788 NIR_PASS(progress, nir, nir_opt_undef);
789 NIR_PASS(progress, nir, nir_opt_loop_unroll,
790 nir_var_shader_in |
791 nir_var_shader_out |
792 nir_var_function_temp);
793
794 /* TODO: Enable vectorize when merged upstream */
795 // NIR_PASS(progress, nir, nir_opt_vectorize);
796 } while (progress);
797
798 /* Must be run at the end to prevent creation of fsin/fcos ops */
799 NIR_PASS(progress, nir, midgard_nir_scale_trig);
800
801 do {
802 progress = false;
803
804 NIR_PASS(progress, nir, nir_opt_dce);
805 NIR_PASS(progress, nir, nir_opt_algebraic);
806 NIR_PASS(progress, nir, nir_opt_constant_folding);
807 NIR_PASS(progress, nir, nir_copy_prop);
808 } while (progress);
809
810 NIR_PASS(progress, nir, nir_opt_algebraic_late);
811 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
812
813 /* Lower mods for float ops only. Integer ops don't support modifiers
814 * (saturate doesn't make sense on integers, neg/abs require dedicated
815 * instructions) */
816
817 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
818 NIR_PASS(progress, nir, nir_copy_prop);
819 NIR_PASS(progress, nir, nir_opt_dce);
820
821 /* We implement booleans as 32-bit 0/~0 */
822 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
823
824 /* Take us out of SSA */
825 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
826 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
827
828 /* We are a vector architecture; write combine where possible */
829 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
830 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
831
832 NIR_PASS(progress, nir, nir_opt_dce);
833 }
834
835 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
836 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
837 * r0. See the comments in compiler_context */
838
839 static void
840 alias_ssa(compiler_context *ctx, int dest, int src)
841 {
842 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
843 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
844 }
845
846 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
847
848 static void
849 unalias_ssa(compiler_context *ctx, int dest)
850 {
851 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
852 /* TODO: Remove from leftover or no? */
853 }
854
855 static void
856 midgard_pin_output(compiler_context *ctx, int index, int reg)
857 {
858 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
859 }
860
861 static bool
862 midgard_is_pinned(compiler_context *ctx, int index)
863 {
864 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
865 }
866
867 /* Do not actually emit a load; instead, cache the constant for inlining */
868
869 static void
870 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
871 {
872 nir_ssa_def def = instr->def;
873
874 float *v = ralloc_array(NULL, float, 4);
875 memcpy(v, &instr->value.f32, 4 * sizeof(float));
876 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
877 }
878
879 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
880 * do the inverse) */
881
882 static unsigned
883 expand_writemask(unsigned mask)
884 {
885 unsigned o = 0;
886
887 for (int i = 0; i < 4; ++i)
888 if (mask & (1 << i))
889 o |= (3 << (2 * i));
890
891 return o;
892 }
893
894 static unsigned
895 squeeze_writemask(unsigned mask)
896 {
897 unsigned o = 0;
898
899 for (int i = 0; i < 4; ++i)
900 if (mask & (3 << (2 * i)))
901 o |= (1 << i);
902
903 return o;
904
905 }
906
907 /* Determines effective writemask, taking quirks and expansion into account */
908 static unsigned
909 effective_writemask(midgard_vector_alu *alu)
910 {
911 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
912 * sense) */
913
914 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
915
916 /* If there is a fixed channel count, construct the appropriate mask */
917
918 if (channel_count)
919 return (1 << channel_count) - 1;
920
921 /* Otherwise, just squeeze the existing mask */
922 return squeeze_writemask(alu->mask);
923 }
924
925 static unsigned
926 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
927 {
928 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
929 return hash;
930
931 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
932
933 if (temp)
934 return temp - 1;
935
936 /* If no temp is find, allocate one */
937 temp = ctx->temp_count++;
938 ctx->max_hash = MAX2(ctx->max_hash, hash);
939
940 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
941
942 return temp;
943 }
944
945 static unsigned
946 nir_src_index(compiler_context *ctx, nir_src *src)
947 {
948 if (src->is_ssa)
949 return src->ssa->index;
950 else
951 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
952 }
953
954 static unsigned
955 nir_dest_index(compiler_context *ctx, nir_dest *dst)
956 {
957 if (dst->is_ssa)
958 return dst->ssa.index;
959 else
960 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
961 }
962
963 static unsigned
964 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
965 {
966 return nir_src_index(ctx, &src->src);
967 }
968
969 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
970 * a conditional test) into that register */
971
972 static void
973 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
974 {
975 /* XXX: Force component correct */
976 int condition = nir_src_index(ctx, src);
977
978 /* There is no boolean move instruction. Instead, we simulate a move by
979 * ANDing the condition with itself to get it into r31.w */
980
981 midgard_instruction ins = {
982 .type = TAG_ALU_4,
983 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
984 .ssa_args = {
985 .src0 = condition,
986 .src1 = condition,
987 .dest = SSA_FIXED_REGISTER(31),
988 },
989 .alu = {
990 .op = midgard_alu_op_iand,
991 .reg_mode = midgard_reg_mode_full,
992 .dest_override = midgard_dest_override_none,
993 .mask = (0x3 << 6), /* w */
994 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
995 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
996 },
997 };
998
999 emit_mir_instruction(ctx, ins);
1000 }
1001
1002 #define ALU_CASE(nir, _op) \
1003 case nir_op_##nir: \
1004 op = midgard_alu_op_##_op; \
1005 break;
1006
1007 static void
1008 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1009 {
1010 bool is_ssa = instr->dest.dest.is_ssa;
1011
1012 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1013 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1014 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1015
1016 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1017 * supported. A few do not and are commented for now. Also, there are a
1018 * number of NIR ops which Midgard does not support and need to be
1019 * lowered, also TODO. This switch block emits the opcode and calling
1020 * convention of the Midgard instruction; actual packing is done in
1021 * emit_alu below */
1022
1023 unsigned op;
1024
1025 switch (instr->op) {
1026 ALU_CASE(fadd, fadd);
1027 ALU_CASE(fmul, fmul);
1028 ALU_CASE(fmin, fmin);
1029 ALU_CASE(fmax, fmax);
1030 ALU_CASE(imin, imin);
1031 ALU_CASE(imax, imax);
1032 ALU_CASE(fmov, fmov);
1033 ALU_CASE(ffloor, ffloor);
1034 ALU_CASE(fround_even, froundeven);
1035 ALU_CASE(ftrunc, ftrunc);
1036 ALU_CASE(fceil, fceil);
1037 ALU_CASE(fdot3, fdot3);
1038 ALU_CASE(fdot4, fdot4);
1039 ALU_CASE(iadd, iadd);
1040 ALU_CASE(isub, isub);
1041 ALU_CASE(imul, imul);
1042 ALU_CASE(iabs, iabs);
1043
1044 /* XXX: Use fmov, not imov, since imov was causing major
1045 * issues with texture precision? XXX research */
1046 ALU_CASE(imov, fmov);
1047
1048 ALU_CASE(feq32, feq);
1049 ALU_CASE(fne32, fne);
1050 ALU_CASE(flt32, flt);
1051 ALU_CASE(ieq32, ieq);
1052 ALU_CASE(ine32, ine);
1053 ALU_CASE(ilt32, ilt);
1054 ALU_CASE(ult32, ult);
1055
1056 /* We don't have a native b2f32 instruction. Instead, like many
1057 * GPUs, we exploit booleans as 0/~0 for false/true, and
1058 * correspondingly AND
1059 * by 1.0 to do the type conversion. For the moment, prime us
1060 * to emit:
1061 *
1062 * iand [whatever], #0
1063 *
1064 * At the end of emit_alu (as MIR), we'll fix-up the constant
1065 */
1066
1067 ALU_CASE(b2f32, iand);
1068 ALU_CASE(b2i32, iand);
1069
1070 /* Likewise, we don't have a dedicated f2b32 instruction, but
1071 * we can do a "not equal to 0.0" test. */
1072
1073 ALU_CASE(f2b32, fne);
1074 ALU_CASE(i2b32, ine);
1075
1076 ALU_CASE(frcp, frcp);
1077 ALU_CASE(frsq, frsqrt);
1078 ALU_CASE(fsqrt, fsqrt);
1079 ALU_CASE(fexp2, fexp2);
1080 ALU_CASE(flog2, flog2);
1081
1082 ALU_CASE(f2i32, f2i);
1083 ALU_CASE(f2u32, f2u);
1084 ALU_CASE(i2f32, i2f);
1085 ALU_CASE(u2f32, u2f);
1086
1087 ALU_CASE(fsin, fsin);
1088 ALU_CASE(fcos, fcos);
1089
1090 ALU_CASE(iand, iand);
1091 ALU_CASE(ior, ior);
1092 ALU_CASE(ixor, ixor);
1093 ALU_CASE(inot, inot);
1094 ALU_CASE(ishl, ishl);
1095 ALU_CASE(ishr, iasr);
1096 ALU_CASE(ushr, ilsr);
1097
1098 ALU_CASE(b32all_fequal2, fball_eq);
1099 ALU_CASE(b32all_fequal3, fball_eq);
1100 ALU_CASE(b32all_fequal4, fball_eq);
1101
1102 ALU_CASE(b32any_fnequal2, fbany_neq);
1103 ALU_CASE(b32any_fnequal3, fbany_neq);
1104 ALU_CASE(b32any_fnequal4, fbany_neq);
1105
1106 ALU_CASE(b32all_iequal2, iball_eq);
1107 ALU_CASE(b32all_iequal3, iball_eq);
1108 ALU_CASE(b32all_iequal4, iball_eq);
1109
1110 ALU_CASE(b32any_inequal2, ibany_neq);
1111 ALU_CASE(b32any_inequal3, ibany_neq);
1112 ALU_CASE(b32any_inequal4, ibany_neq);
1113
1114 /* For greater-or-equal, we lower to less-or-equal and flip the
1115 * arguments */
1116
1117 case nir_op_fge:
1118 case nir_op_fge32:
1119 case nir_op_ige32:
1120 case nir_op_uge32: {
1121 op =
1122 instr->op == nir_op_fge ? midgard_alu_op_fle :
1123 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1124 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1125 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1126 0;
1127
1128 /* Swap via temporary */
1129 nir_alu_src temp = instr->src[1];
1130 instr->src[1] = instr->src[0];
1131 instr->src[0] = temp;
1132
1133 break;
1134 }
1135
1136 case nir_op_b32csel: {
1137 op = midgard_alu_op_fcsel;
1138
1139 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1140 nr_inputs = 2;
1141
1142 emit_condition(ctx, &instr->src[0].src, false);
1143
1144 /* The condition is the first argument; move the other
1145 * arguments up one to be a binary instruction for
1146 * Midgard */
1147
1148 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1149 break;
1150 }
1151
1152 default:
1153 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1154 assert(0);
1155 return;
1156 }
1157
1158 /* Fetch unit, quirks, etc information */
1159 unsigned opcode_props = alu_opcode_props[op];
1160 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1161
1162 /* Initialise fields common between scalar/vector instructions */
1163 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1164
1165 /* src0 will always exist afaik, but src1 will not for 1-argument
1166 * instructions. The latter can only be fetched if the instruction
1167 * needs it, or else we may segfault. */
1168
1169 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1170 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1171
1172 /* Rather than use the instruction generation helpers, we do it
1173 * ourselves here to avoid the mess */
1174
1175 midgard_instruction ins = {
1176 .type = TAG_ALU_4,
1177 .ssa_args = {
1178 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1179 .src1 = quirk_flipped_r24 ? src0 : src1,
1180 .dest = dest,
1181 }
1182 };
1183
1184 nir_alu_src *nirmods[2] = { NULL };
1185
1186 if (nr_inputs == 2) {
1187 nirmods[0] = &instr->src[0];
1188 nirmods[1] = &instr->src[1];
1189 } else if (nr_inputs == 1) {
1190 nirmods[quirk_flipped_r24] = &instr->src[0];
1191 } else {
1192 assert(0);
1193 }
1194
1195 midgard_vector_alu alu = {
1196 .op = op,
1197 .reg_mode = midgard_reg_mode_full,
1198 .dest_override = midgard_dest_override_none,
1199 .outmod = outmod,
1200
1201 /* Writemask only valid for non-SSA NIR */
1202 .mask = expand_writemask((1 << nr_components) - 1),
1203
1204 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1205 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1206 };
1207
1208 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1209
1210 if (!is_ssa)
1211 alu.mask &= expand_writemask(instr->dest.write_mask);
1212
1213 ins.alu = alu;
1214
1215 /* Late fixup for emulated instructions */
1216
1217 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1218 /* Presently, our second argument is an inline #0 constant.
1219 * Switch over to an embedded 1.0 constant (that can't fit
1220 * inline, since we're 32-bit, not 16-bit like the inline
1221 * constants) */
1222
1223 ins.ssa_args.inline_constant = false;
1224 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1225 ins.has_constants = true;
1226
1227 if (instr->op == nir_op_b2f32) {
1228 ins.constants[0] = 1.0f;
1229 } else {
1230 /* Type pun it into place */
1231 uint32_t one = 0x1;
1232 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1233 }
1234
1235 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1236 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1237 ins.ssa_args.inline_constant = false;
1238 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1239 ins.has_constants = true;
1240 ins.constants[0] = 0.0f;
1241 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1242 }
1243
1244 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1245 /* To avoid duplicating the lookup tables (probably), true LUT
1246 * instructions can only operate as if they were scalars. Lower
1247 * them here by changing the component. */
1248
1249 uint8_t original_swizzle[4];
1250 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1251
1252 for (int i = 0; i < nr_components; ++i) {
1253 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1254
1255 for (int j = 0; j < 4; ++j)
1256 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1257
1258 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1259 emit_mir_instruction(ctx, ins);
1260 }
1261 } else {
1262 emit_mir_instruction(ctx, ins);
1263 }
1264 }
1265
1266 #undef ALU_CASE
1267
1268 static void
1269 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset)
1270 {
1271 /* TODO: half-floats */
1272
1273 if (offset < ctx->uniform_cutoff) {
1274 /* Fast path: For the first 16 uniform,
1275 * accesses are 0-cycle, since they're
1276 * just a register fetch in the usual
1277 * case. So, we alias the registers
1278 * while we're still in SSA-space */
1279
1280 int reg_slot = 23 - offset;
1281 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1282 } else {
1283 /* Otherwise, read from the 'special'
1284 * UBO to access higher-indexed
1285 * uniforms, at a performance cost */
1286
1287 midgard_instruction ins = m_load_uniform_32(dest, offset);
1288
1289 /* TODO: Don't split */
1290 ins.load_store.varying_parameters = (offset & 7) << 7;
1291 ins.load_store.address = offset >> 3;
1292
1293 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1294 emit_mir_instruction(ctx, ins);
1295 }
1296 }
1297
1298 static void
1299 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1300 {
1301 /* First, pull out the destination */
1302 unsigned dest = nir_dest_index(ctx, &instr->dest);
1303
1304 /* Now, figure out which uniform this is */
1305 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1306 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1307
1308 /* Sysvals are prefix uniforms */
1309 unsigned uniform = ((uintptr_t) val) - 1;
1310
1311 emit_uniform_read(ctx, dest, uniform);
1312 }
1313
1314 static void
1315 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1316 {
1317 unsigned offset, reg;
1318
1319 switch (instr->intrinsic) {
1320 case nir_intrinsic_discard_if:
1321 emit_condition(ctx, &instr->src[0], true);
1322
1323 /* fallthrough */
1324
1325 case nir_intrinsic_discard: {
1326 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1327 struct midgard_instruction discard = v_branch(conditional, false);
1328 discard.branch.target_type = TARGET_DISCARD;
1329 emit_mir_instruction(ctx, discard);
1330
1331 ctx->can_discard = true;
1332 break;
1333 }
1334
1335 case nir_intrinsic_load_uniform:
1336 case nir_intrinsic_load_input:
1337 assert(nir_src_is_const(instr->src[0]) && "no indirect inputs");
1338
1339 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
1340
1341 reg = nir_dest_index(ctx, &instr->dest);
1342
1343 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1344 emit_uniform_read(ctx, reg, ctx->sysval_count + offset);
1345 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1346 /* XXX: Half-floats? */
1347 /* TODO: swizzle, mask */
1348
1349 midgard_instruction ins = m_load_vary_32(reg, offset);
1350
1351 midgard_varying_parameter p = {
1352 .is_varying = 1,
1353 .interpolation = midgard_interp_default,
1354 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1355 };
1356
1357 unsigned u;
1358 memcpy(&u, &p, sizeof(p));
1359 ins.load_store.varying_parameters = u;
1360
1361 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1362 emit_mir_instruction(ctx, ins);
1363 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1364 /* Constant encoded as a pinned constant */
1365
1366 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1367 ins.has_constants = true;
1368 ins.has_blend_constant = true;
1369 emit_mir_instruction(ctx, ins);
1370 } else if (ctx->is_blend) {
1371 /* For blend shaders, a load might be
1372 * translated various ways depending on what
1373 * we're loading. Figure out how this is used */
1374
1375 nir_variable *out = NULL;
1376
1377 nir_foreach_variable(var, &ctx->nir->inputs) {
1378 int drvloc = var->data.driver_location;
1379
1380 if (nir_intrinsic_base(instr) == drvloc) {
1381 out = var;
1382 break;
1383 }
1384 }
1385
1386 assert(out);
1387
1388 if (out->data.location == VARYING_SLOT_COL0) {
1389 /* Source color preloaded to r0 */
1390
1391 midgard_pin_output(ctx, reg, 0);
1392 } else if (out->data.location == VARYING_SLOT_COL1) {
1393 /* Destination color must be read from framebuffer */
1394
1395 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1396 ins.load_store.swizzle = 0; /* xxxx */
1397
1398 /* Read each component sequentially */
1399
1400 for (int c = 0; c < 4; ++c) {
1401 ins.load_store.mask = (1 << c);
1402 ins.load_store.unknown = c;
1403 emit_mir_instruction(ctx, ins);
1404 }
1405
1406 /* vadd.u2f hr2, abs(hr2), #0 */
1407
1408 midgard_vector_alu_src alu_src = blank_alu_src;
1409 alu_src.abs = true;
1410 alu_src.half = true;
1411
1412 midgard_instruction u2f = {
1413 .type = TAG_ALU_4,
1414 .ssa_args = {
1415 .src0 = reg,
1416 .src1 = SSA_UNUSED_0,
1417 .dest = reg,
1418 .inline_constant = true
1419 },
1420 .alu = {
1421 .op = midgard_alu_op_u2f,
1422 .reg_mode = midgard_reg_mode_half,
1423 .dest_override = midgard_dest_override_none,
1424 .mask = 0xF,
1425 .src1 = vector_alu_srco_unsigned(alu_src),
1426 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1427 }
1428 };
1429
1430 emit_mir_instruction(ctx, u2f);
1431
1432 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1433
1434 alu_src.abs = false;
1435
1436 midgard_instruction fmul = {
1437 .type = TAG_ALU_4,
1438 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1439 .ssa_args = {
1440 .src0 = reg,
1441 .dest = reg,
1442 .src1 = SSA_UNUSED_0,
1443 .inline_constant = true
1444 },
1445 .alu = {
1446 .op = midgard_alu_op_fmul,
1447 .reg_mode = midgard_reg_mode_full,
1448 .dest_override = midgard_dest_override_none,
1449 .outmod = midgard_outmod_sat,
1450 .mask = 0xFF,
1451 .src1 = vector_alu_srco_unsigned(alu_src),
1452 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1453 }
1454 };
1455
1456 emit_mir_instruction(ctx, fmul);
1457 } else {
1458 DBG("Unknown input in blend shader\n");
1459 assert(0);
1460 }
1461 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1462 midgard_instruction ins = m_load_attr_32(reg, offset);
1463 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1464 ins.load_store.mask = (1 << instr->num_components) - 1;
1465 emit_mir_instruction(ctx, ins);
1466 } else {
1467 DBG("Unknown load\n");
1468 assert(0);
1469 }
1470
1471 break;
1472
1473 case nir_intrinsic_store_output:
1474 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1475
1476 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1477
1478 reg = nir_src_index(ctx, &instr->src[0]);
1479
1480 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1481 /* gl_FragColor is not emitted with load/store
1482 * instructions. Instead, it gets plonked into
1483 * r0 at the end of the shader and we do the
1484 * framebuffer writeout dance. TODO: Defer
1485 * writes */
1486
1487 midgard_pin_output(ctx, reg, 0);
1488
1489 /* Save the index we're writing to for later reference
1490 * in the epilogue */
1491
1492 ctx->fragment_output = reg;
1493 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1494 /* Varyings are written into one of two special
1495 * varying register, r26 or r27. The register itself is selected as the register
1496 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1497 *
1498 * Normally emitting fmov's is frowned upon,
1499 * but due to unique constraints of
1500 * REGISTER_VARYING, fmov emission + a
1501 * dedicated cleanup pass is the only way to
1502 * guarantee correctness when considering some
1503 * (common) edge cases XXX: FIXME */
1504
1505 /* If this varying corresponds to a constant (why?!),
1506 * emit that now since it won't get picked up by
1507 * hoisting (since there is no corresponding move
1508 * emitted otherwise) */
1509
1510 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1511
1512 if (constant_value) {
1513 /* Special case: emit the varying write
1514 * directly to r26 (looks funny in asm but it's
1515 * fine) and emit the store _now_. Possibly
1516 * slightly slower, but this is a really stupid
1517 * special case anyway (why on earth would you
1518 * have a constant varying? Your own fault for
1519 * slightly worse perf :P) */
1520
1521 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1522 attach_constants(ctx, &ins, constant_value, reg + 1);
1523 emit_mir_instruction(ctx, ins);
1524
1525 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1526 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1527 emit_mir_instruction(ctx, st);
1528 } else {
1529 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1530
1531 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1532 }
1533 } else {
1534 DBG("Unknown store\n");
1535 assert(0);
1536 }
1537
1538 break;
1539
1540 case nir_intrinsic_load_alpha_ref_float:
1541 assert(instr->dest.is_ssa);
1542
1543 float ref_value = ctx->alpha_ref;
1544
1545 float *v = ralloc_array(NULL, float, 4);
1546 memcpy(v, &ref_value, sizeof(float));
1547 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1548 break;
1549
1550 case nir_intrinsic_load_viewport_scale:
1551 case nir_intrinsic_load_viewport_offset:
1552 emit_sysval_read(ctx, instr);
1553 break;
1554
1555 default:
1556 printf ("Unhandled intrinsic\n");
1557 assert(0);
1558 break;
1559 }
1560 }
1561
1562 static unsigned
1563 midgard_tex_format(enum glsl_sampler_dim dim)
1564 {
1565 switch (dim) {
1566 case GLSL_SAMPLER_DIM_2D:
1567 case GLSL_SAMPLER_DIM_EXTERNAL:
1568 return TEXTURE_2D;
1569
1570 case GLSL_SAMPLER_DIM_3D:
1571 return TEXTURE_3D;
1572
1573 case GLSL_SAMPLER_DIM_CUBE:
1574 return TEXTURE_CUBE;
1575
1576 default:
1577 DBG("Unknown sampler dim type\n");
1578 assert(0);
1579 return 0;
1580 }
1581 }
1582
1583 static void
1584 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1585 {
1586 /* TODO */
1587 //assert (!instr->sampler);
1588 //assert (!instr->texture_array_size);
1589 assert (instr->op == nir_texop_tex);
1590
1591 /* Allocate registers via a round robin scheme to alternate between the two registers */
1592 int reg = ctx->texture_op_count & 1;
1593 int in_reg = reg, out_reg = reg;
1594
1595 /* Make room for the reg */
1596
1597 if (ctx->texture_index[reg] > -1)
1598 unalias_ssa(ctx, ctx->texture_index[reg]);
1599
1600 int texture_index = instr->texture_index;
1601 int sampler_index = texture_index;
1602
1603 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1604 switch (instr->src[i].src_type) {
1605 case nir_tex_src_coord: {
1606 int index = nir_src_index(ctx, &instr->src[i].src);
1607
1608 midgard_vector_alu_src alu_src = blank_alu_src;
1609
1610 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1611
1612 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1613 /* For cubemaps, we need to load coords into
1614 * special r27, and then use a special ld/st op
1615 * to copy into the texture register */
1616
1617 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1618
1619 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1620 emit_mir_instruction(ctx, move);
1621
1622 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1623 st.load_store.unknown = 0x24; /* XXX: What is this? */
1624 st.load_store.mask = 0x3; /* xy? */
1625 st.load_store.swizzle = alu_src.swizzle;
1626 emit_mir_instruction(ctx, st);
1627
1628 } else {
1629 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1630
1631 midgard_instruction ins = v_fmov(index, alu_src, reg);
1632 emit_mir_instruction(ctx, ins);
1633 }
1634
1635 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1636
1637 break;
1638 }
1639
1640 default: {
1641 DBG("Unknown source type\n");
1642 //assert(0);
1643 break;
1644 }
1645 }
1646 }
1647
1648 /* No helper to build texture words -- we do it all here */
1649 midgard_instruction ins = {
1650 .type = TAG_TEXTURE_4,
1651 .texture = {
1652 .op = TEXTURE_OP_NORMAL,
1653 .format = midgard_tex_format(instr->sampler_dim),
1654 .texture_handle = texture_index,
1655 .sampler_handle = sampler_index,
1656
1657 /* TODO: Don't force xyzw */
1658 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1659 .mask = 0xF,
1660
1661 /* TODO: half */
1662 //.in_reg_full = 1,
1663 .out_full = 1,
1664
1665 .filter = 1,
1666
1667 /* Always 1 */
1668 .unknown7 = 1,
1669
1670 /* Assume we can continue; hint it out later */
1671 .cont = 1,
1672 }
1673 };
1674
1675 /* Set registers to read and write from the same place */
1676 ins.texture.in_reg_select = in_reg;
1677 ins.texture.out_reg_select = out_reg;
1678
1679 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1680 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1681 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1682 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1683 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1684 } else {
1685 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1686 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1687 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1688 }
1689
1690 emit_mir_instruction(ctx, ins);
1691
1692 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1693
1694 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1695 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1696 ctx->texture_index[reg] = o_index;
1697
1698 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1699 emit_mir_instruction(ctx, ins2);
1700
1701 /* Used for .cont and .last hinting */
1702 ctx->texture_op_count++;
1703 }
1704
1705 static void
1706 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1707 {
1708 switch (instr->type) {
1709 case nir_jump_break: {
1710 /* Emit a branch out of the loop */
1711 struct midgard_instruction br = v_branch(false, false);
1712 br.branch.target_type = TARGET_BREAK;
1713 br.branch.target_break = ctx->current_loop;
1714 emit_mir_instruction(ctx, br);
1715
1716 DBG("break..\n");
1717 break;
1718 }
1719
1720 default:
1721 DBG("Unknown jump type %d\n", instr->type);
1722 break;
1723 }
1724 }
1725
1726 static void
1727 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1728 {
1729 switch (instr->type) {
1730 case nir_instr_type_load_const:
1731 emit_load_const(ctx, nir_instr_as_load_const(instr));
1732 break;
1733
1734 case nir_instr_type_intrinsic:
1735 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1736 break;
1737
1738 case nir_instr_type_alu:
1739 emit_alu(ctx, nir_instr_as_alu(instr));
1740 break;
1741
1742 case nir_instr_type_tex:
1743 emit_tex(ctx, nir_instr_as_tex(instr));
1744 break;
1745
1746 case nir_instr_type_jump:
1747 emit_jump(ctx, nir_instr_as_jump(instr));
1748 break;
1749
1750 case nir_instr_type_ssa_undef:
1751 /* Spurious */
1752 break;
1753
1754 default:
1755 DBG("Unhandled instruction type\n");
1756 break;
1757 }
1758 }
1759
1760 /* Determine the actual hardware from the index based on the RA results or special values */
1761
1762 static int
1763 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1764 {
1765 if (reg >= SSA_FIXED_MINIMUM)
1766 return SSA_REG_FROM_FIXED(reg);
1767
1768 if (reg >= 0) {
1769 assert(reg < maxreg);
1770 int r = ra_get_node_reg(g, reg);
1771 ctx->work_registers = MAX2(ctx->work_registers, r);
1772 return r;
1773 }
1774
1775 switch (reg) {
1776 /* fmov style unused */
1777 case SSA_UNUSED_0:
1778 return REGISTER_UNUSED;
1779
1780 /* lut style unused */
1781 case SSA_UNUSED_1:
1782 return REGISTER_UNUSED;
1783
1784 default:
1785 DBG("Unknown SSA register alias %d\n", reg);
1786 assert(0);
1787 return 31;
1788 }
1789 }
1790
1791 static unsigned int
1792 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1793 {
1794 /* Choose the first available register to minimise reported register pressure */
1795
1796 for (int i = 0; i < 16; ++i) {
1797 if (BITSET_TEST(regs, i)) {
1798 return i;
1799 }
1800 }
1801
1802 assert(0);
1803 return 0;
1804 }
1805
1806 static bool
1807 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1808 {
1809 if (ins->ssa_args.src0 == src) return true;
1810 if (ins->ssa_args.src1 == src) return true;
1811
1812 return false;
1813 }
1814
1815 static bool
1816 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1817 {
1818 /* Check the rest of the block for liveness */
1819 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1820 if (midgard_is_live_in_instr(ins, src))
1821 return true;
1822 }
1823
1824 /* Check the rest of the blocks for liveness */
1825 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1826 mir_foreach_instr_in_block(b, ins) {
1827 if (midgard_is_live_in_instr(ins, src))
1828 return true;
1829 }
1830 }
1831
1832 /* TODO: How does control flow interact in complex shaders? */
1833
1834 return false;
1835 }
1836
1837 static void
1838 allocate_registers(compiler_context *ctx)
1839 {
1840 /* First, initialize the RA */
1841 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1842
1843 /* Create a primary (general purpose) class, as well as special purpose
1844 * pipeline register classes */
1845
1846 int primary_class = ra_alloc_reg_class(regs);
1847 int varying_class = ra_alloc_reg_class(regs);
1848
1849 /* Add the full set of work registers */
1850 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1851 for (int i = 0; i < work_count; ++i)
1852 ra_class_add_reg(regs, primary_class, i);
1853
1854 /* Add special registers */
1855 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1856 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1857
1858 /* We're done setting up */
1859 ra_set_finalize(regs, NULL);
1860
1861 /* Transform the MIR into squeezed index form */
1862 mir_foreach_block(ctx, block) {
1863 mir_foreach_instr_in_block(block, ins) {
1864 if (ins->compact_branch) continue;
1865
1866 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1867 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1868 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1869 }
1870 if (midgard_debug & MIDGARD_DBG_SHADERS)
1871 print_mir_block(block);
1872 }
1873
1874 /* Let's actually do register allocation */
1875 int nodes = ctx->temp_count;
1876 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1877
1878 /* Set everything to the work register class, unless it has somewhere
1879 * special to go */
1880
1881 mir_foreach_block(ctx, block) {
1882 mir_foreach_instr_in_block(block, ins) {
1883 if (ins->compact_branch) continue;
1884
1885 if (ins->ssa_args.dest < 0) continue;
1886
1887 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1888
1889 int class = primary_class;
1890
1891 ra_set_node_class(g, ins->ssa_args.dest, class);
1892 }
1893 }
1894
1895 for (int index = 0; index <= ctx->max_hash; ++index) {
1896 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1897
1898 if (temp) {
1899 unsigned reg = temp - 1;
1900 int t = find_or_allocate_temp(ctx, index);
1901 ra_set_node_reg(g, t, reg);
1902 }
1903 }
1904
1905 /* Determine liveness */
1906
1907 int *live_start = malloc(nodes * sizeof(int));
1908 int *live_end = malloc(nodes * sizeof(int));
1909
1910 /* Initialize as non-existent */
1911
1912 for (int i = 0; i < nodes; ++i) {
1913 live_start[i] = live_end[i] = -1;
1914 }
1915
1916 int d = 0;
1917
1918 mir_foreach_block(ctx, block) {
1919 mir_foreach_instr_in_block(block, ins) {
1920 if (ins->compact_branch) continue;
1921
1922 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1923 /* If this destination is not yet live, it is now since we just wrote it */
1924
1925 int dest = ins->ssa_args.dest;
1926
1927 if (live_start[dest] == -1)
1928 live_start[dest] = d;
1929 }
1930
1931 /* Since we just used a source, the source might be
1932 * dead now. Scan the rest of the block for
1933 * invocations, and if there are none, the source dies
1934 * */
1935
1936 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1937
1938 for (int src = 0; src < 2; ++src) {
1939 int s = sources[src];
1940
1941 if (s < 0) continue;
1942
1943 if (s >= SSA_FIXED_MINIMUM) continue;
1944
1945 if (!is_live_after(ctx, block, ins, s)) {
1946 live_end[s] = d;
1947 }
1948 }
1949
1950 ++d;
1951 }
1952 }
1953
1954 /* If a node still hasn't been killed, kill it now */
1955
1956 for (int i = 0; i < nodes; ++i) {
1957 /* live_start == -1 most likely indicates a pinned output */
1958
1959 if (live_end[i] == -1)
1960 live_end[i] = d;
1961 }
1962
1963 /* Setup interference between nodes that are live at the same time */
1964
1965 for (int i = 0; i < nodes; ++i) {
1966 for (int j = i + 1; j < nodes; ++j) {
1967 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1968 ra_add_node_interference(g, i, j);
1969 }
1970 }
1971
1972 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1973
1974 if (!ra_allocate(g)) {
1975 DBG("Error allocating registers\n");
1976 assert(0);
1977 }
1978
1979 /* Cleanup */
1980 free(live_start);
1981 free(live_end);
1982
1983 mir_foreach_block(ctx, block) {
1984 mir_foreach_instr_in_block(block, ins) {
1985 if (ins->compact_branch) continue;
1986
1987 ssa_args args = ins->ssa_args;
1988
1989 switch (ins->type) {
1990 case TAG_ALU_4:
1991 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1992
1993 ins->registers.src2_imm = args.inline_constant;
1994
1995 if (args.inline_constant) {
1996 /* Encode inline 16-bit constant as a vector by default */
1997
1998 ins->registers.src2_reg = ins->inline_constant >> 11;
1999
2000 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2001
2002 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2003 ins->alu.src2 = imm << 2;
2004 } else {
2005 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2006 }
2007
2008 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2009
2010 break;
2011
2012 case TAG_LOAD_STORE_4: {
2013 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2014 /* TODO: use ssa_args for store_vary */
2015 ins->load_store.reg = 0;
2016 } else {
2017 bool has_dest = args.dest >= 0;
2018 int ssa_arg = has_dest ? args.dest : args.src0;
2019
2020 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2021 }
2022
2023 break;
2024 }
2025
2026 default:
2027 break;
2028 }
2029 }
2030 }
2031 }
2032
2033 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2034 * use scalar ALU instructions, for functional or performance reasons. To do
2035 * this, we just demote vector ALU payloads to scalar. */
2036
2037 static int
2038 component_from_mask(unsigned mask)
2039 {
2040 for (int c = 0; c < 4; ++c) {
2041 if (mask & (3 << (2 * c)))
2042 return c;
2043 }
2044
2045 assert(0);
2046 return 0;
2047 }
2048
2049 static bool
2050 is_single_component_mask(unsigned mask)
2051 {
2052 int components = 0;
2053
2054 for (int c = 0; c < 4; ++c)
2055 if (mask & (3 << (2 * c)))
2056 components++;
2057
2058 return components == 1;
2059 }
2060
2061 /* Create a mask of accessed components from a swizzle to figure out vector
2062 * dependencies */
2063
2064 static unsigned
2065 swizzle_to_access_mask(unsigned swizzle)
2066 {
2067 unsigned component_mask = 0;
2068
2069 for (int i = 0; i < 4; ++i) {
2070 unsigned c = (swizzle >> (2 * i)) & 3;
2071 component_mask |= (1 << c);
2072 }
2073
2074 return component_mask;
2075 }
2076
2077 static unsigned
2078 vector_to_scalar_source(unsigned u)
2079 {
2080 midgard_vector_alu_src v;
2081 memcpy(&v, &u, sizeof(v));
2082
2083 midgard_scalar_alu_src s = {
2084 .abs = v.abs,
2085 .negate = v.negate,
2086 .full = !v.half,
2087 .component = (v.swizzle & 3) << 1
2088 };
2089
2090 unsigned o;
2091 memcpy(&o, &s, sizeof(s));
2092
2093 return o & ((1 << 6) - 1);
2094 }
2095
2096 static midgard_scalar_alu
2097 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2098 {
2099 /* The output component is from the mask */
2100 midgard_scalar_alu s = {
2101 .op = v.op,
2102 .src1 = vector_to_scalar_source(v.src1),
2103 .src2 = vector_to_scalar_source(v.src2),
2104 .unknown = 0,
2105 .outmod = v.outmod,
2106 .output_full = 1, /* TODO: Half */
2107 .output_component = component_from_mask(v.mask) << 1,
2108 };
2109
2110 /* Inline constant is passed along rather than trying to extract it
2111 * from v */
2112
2113 if (ins->ssa_args.inline_constant) {
2114 uint16_t imm = 0;
2115 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2116 imm |= (lower_11 >> 9) & 3;
2117 imm |= (lower_11 >> 6) & 4;
2118 imm |= (lower_11 >> 2) & 0x38;
2119 imm |= (lower_11 & 63) << 6;
2120
2121 s.src2 = imm;
2122 }
2123
2124 return s;
2125 }
2126
2127 /* Midgard prefetches instruction types, so during emission we need to
2128 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2129 * if this is the second to last and the last is an ALU, then it's also 1... */
2130
2131 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2132 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2133
2134 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2135 bytes_emitted += sizeof(type)
2136
2137 static void
2138 emit_binary_vector_instruction(midgard_instruction *ains,
2139 uint16_t *register_words, int *register_words_count,
2140 uint64_t *body_words, size_t *body_size, int *body_words_count,
2141 size_t *bytes_emitted)
2142 {
2143 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2144 *bytes_emitted += sizeof(midgard_reg_info);
2145
2146 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2147 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2148 *bytes_emitted += sizeof(midgard_vector_alu);
2149 }
2150
2151 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2152 * mind that we are a vector architecture and we can write to different
2153 * components simultaneously */
2154
2155 static bool
2156 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2157 {
2158 /* Each instruction reads some registers and writes to a register. See
2159 * where the first writes */
2160
2161 /* Figure out where exactly we wrote to */
2162 int source = first->ssa_args.dest;
2163 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2164
2165 /* As long as the second doesn't read from the first, we're okay */
2166 if (second->ssa_args.src0 == source) {
2167 if (first->type == TAG_ALU_4) {
2168 /* Figure out which components we just read from */
2169
2170 int q = second->alu.src1;
2171 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2172
2173 /* Check if there are components in common, and fail if so */
2174 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2175 return false;
2176 } else
2177 return false;
2178
2179 }
2180
2181 if (second->ssa_args.src1 == source)
2182 return false;
2183
2184 /* Otherwise, it's safe in that regard. Another data hazard is both
2185 * writing to the same place, of course */
2186
2187 if (second->ssa_args.dest == source) {
2188 /* ...but only if the components overlap */
2189 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2190
2191 if (dest_mask & source_mask)
2192 return false;
2193 }
2194
2195 /* ...That's it */
2196 return true;
2197 }
2198
2199 static bool
2200 midgard_has_hazard(
2201 midgard_instruction **segment, unsigned segment_size,
2202 midgard_instruction *ains)
2203 {
2204 for (int s = 0; s < segment_size; ++s)
2205 if (!can_run_concurrent_ssa(segment[s], ains))
2206 return true;
2207
2208 return false;
2209
2210
2211 }
2212
2213 /* Schedules, but does not emit, a single basic block. After scheduling, the
2214 * final tag and size of the block are known, which are necessary for branching
2215 * */
2216
2217 static midgard_bundle
2218 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2219 {
2220 int instructions_emitted = 0, instructions_consumed = -1;
2221 midgard_bundle bundle = { 0 };
2222
2223 uint8_t tag = ins->type;
2224
2225 /* Default to the instruction's tag */
2226 bundle.tag = tag;
2227
2228 switch (ins->type) {
2229 case TAG_ALU_4: {
2230 uint32_t control = 0;
2231 size_t bytes_emitted = sizeof(control);
2232
2233 /* TODO: Constant combining */
2234 int index = 0, last_unit = 0;
2235
2236 /* Previous instructions, for the purpose of parallelism */
2237 midgard_instruction *segment[4] = {0};
2238 int segment_size = 0;
2239
2240 instructions_emitted = -1;
2241 midgard_instruction *pins = ins;
2242
2243 for (;;) {
2244 midgard_instruction *ains = pins;
2245
2246 /* Advance instruction pointer */
2247 if (index) {
2248 ains = mir_next_op(pins);
2249 pins = ains;
2250 }
2251
2252 /* Out-of-work condition */
2253 if ((struct list_head *) ains == &block->instructions)
2254 break;
2255
2256 /* Ensure that the chain can continue */
2257 if (ains->type != TAG_ALU_4) break;
2258
2259 /* According to the presentation "The ARM
2260 * Mali-T880 Mobile GPU" from HotChips 27,
2261 * there are two pipeline stages. Branching
2262 * position determined experimentally. Lines
2263 * are executed in parallel:
2264 *
2265 * [ VMUL ] [ SADD ]
2266 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2267 *
2268 * Verify that there are no ordering dependencies here.
2269 *
2270 * TODO: Allow for parallelism!!!
2271 */
2272
2273 /* Pick a unit for it if it doesn't force a particular unit */
2274
2275 int unit = ains->unit;
2276
2277 if (!unit) {
2278 int op = ains->alu.op;
2279 int units = alu_opcode_props[op];
2280
2281 /* TODO: Promotion of scalars to vectors */
2282 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2283
2284 if (!vector)
2285 assert(units & UNITS_SCALAR);
2286
2287 if (vector) {
2288 if (last_unit >= UNIT_VADD) {
2289 if (units & UNIT_VLUT)
2290 unit = UNIT_VLUT;
2291 else
2292 break;
2293 } else {
2294 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2295 unit = UNIT_VMUL;
2296 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2297 unit = UNIT_VADD;
2298 else if (units & UNIT_VLUT)
2299 unit = UNIT_VLUT;
2300 else
2301 break;
2302 }
2303 } else {
2304 if (last_unit >= UNIT_VADD) {
2305 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2306 unit = UNIT_SMUL;
2307 else if (units & UNIT_VLUT)
2308 unit = UNIT_VLUT;
2309 else
2310 break;
2311 } else {
2312 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2313 unit = UNIT_SADD;
2314 else if (units & UNIT_SMUL)
2315 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2316 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2317 unit = UNIT_VADD;
2318 else
2319 break;
2320 }
2321 }
2322
2323 assert(unit & units);
2324 }
2325
2326 /* Late unit check, this time for encoding (not parallelism) */
2327 if (unit <= last_unit) break;
2328
2329 /* Clear the segment */
2330 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2331 segment_size = 0;
2332
2333 if (midgard_has_hazard(segment, segment_size, ains))
2334 break;
2335
2336 /* We're good to go -- emit the instruction */
2337 ains->unit = unit;
2338
2339 segment[segment_size++] = ains;
2340
2341 /* Only one set of embedded constants per
2342 * bundle possible; if we have more, we must
2343 * break the chain early, unfortunately */
2344
2345 if (ains->has_constants) {
2346 if (bundle.has_embedded_constants) {
2347 /* ...but if there are already
2348 * constants but these are the
2349 * *same* constants, we let it
2350 * through */
2351
2352 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2353 break;
2354 } else {
2355 bundle.has_embedded_constants = true;
2356 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2357
2358 /* If this is a blend shader special constant, track it for patching */
2359 if (ains->has_blend_constant)
2360 bundle.has_blend_constant = true;
2361 }
2362 }
2363
2364 if (ains->unit & UNITS_ANY_VECTOR) {
2365 emit_binary_vector_instruction(ains, bundle.register_words,
2366 &bundle.register_words_count, bundle.body_words,
2367 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2368 } else if (ains->compact_branch) {
2369 /* All of r0 has to be written out
2370 * along with the branch writeout.
2371 * (slow!) */
2372
2373 if (ains->writeout) {
2374 if (index == 0) {
2375 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2376 ins.unit = UNIT_VMUL;
2377
2378 control |= ins.unit;
2379
2380 emit_binary_vector_instruction(&ins, bundle.register_words,
2381 &bundle.register_words_count, bundle.body_words,
2382 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2383 } else {
2384 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2385 bool written_late = false;
2386 bool components[4] = { 0 };
2387 uint16_t register_dep_mask = 0;
2388 uint16_t written_mask = 0;
2389
2390 midgard_instruction *qins = ins;
2391 for (int t = 0; t < index; ++t) {
2392 if (qins->registers.out_reg != 0) {
2393 /* Mark down writes */
2394
2395 written_mask |= (1 << qins->registers.out_reg);
2396 } else {
2397 /* Mark down the register dependencies for errata check */
2398
2399 if (qins->registers.src1_reg < 16)
2400 register_dep_mask |= (1 << qins->registers.src1_reg);
2401
2402 if (qins->registers.src2_reg < 16)
2403 register_dep_mask |= (1 << qins->registers.src2_reg);
2404
2405 int mask = qins->alu.mask;
2406
2407 for (int c = 0; c < 4; ++c)
2408 if (mask & (0x3 << (2 * c)))
2409 components[c] = true;
2410
2411 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2412
2413 if (qins->unit == UNIT_VLUT)
2414 written_late = true;
2415 }
2416
2417 /* Advance instruction pointer */
2418 qins = mir_next_op(qins);
2419 }
2420
2421
2422 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2423 if (register_dep_mask & written_mask) {
2424 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2425 break;
2426 }
2427
2428 if (written_late)
2429 break;
2430
2431 /* If even a single component is not written, break it up (conservative check). */
2432 bool breakup = false;
2433
2434 for (int c = 0; c < 4; ++c)
2435 if (!components[c])
2436 breakup = true;
2437
2438 if (breakup)
2439 break;
2440
2441 /* Otherwise, we're free to proceed */
2442 }
2443 }
2444
2445 if (ains->unit == ALU_ENAB_BRANCH) {
2446 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2447 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2448 bytes_emitted += sizeof(midgard_branch_extended);
2449 } else {
2450 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2451 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2452 bytes_emitted += sizeof(ains->br_compact);
2453 }
2454 } else {
2455 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2456 bytes_emitted += sizeof(midgard_reg_info);
2457
2458 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2459 bundle.body_words_count++;
2460 bytes_emitted += sizeof(midgard_scalar_alu);
2461 }
2462
2463 /* Defer marking until after writing to allow for break */
2464 control |= ains->unit;
2465 last_unit = ains->unit;
2466 ++instructions_emitted;
2467 ++index;
2468 }
2469
2470 /* Bubble up the number of instructions for skipping */
2471 instructions_consumed = index - 1;
2472
2473 int padding = 0;
2474
2475 /* Pad ALU op to nearest word */
2476
2477 if (bytes_emitted & 15) {
2478 padding = 16 - (bytes_emitted & 15);
2479 bytes_emitted += padding;
2480 }
2481
2482 /* Constants must always be quadwords */
2483 if (bundle.has_embedded_constants)
2484 bytes_emitted += 16;
2485
2486 /* Size ALU instruction for tag */
2487 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2488 bundle.padding = padding;
2489 bundle.control = bundle.tag | control;
2490
2491 break;
2492 }
2493
2494 case TAG_LOAD_STORE_4: {
2495 /* Load store instructions have two words at once. If
2496 * we only have one queued up, we need to NOP pad.
2497 * Otherwise, we store both in succession to save space
2498 * and cycles -- letting them go in parallel -- skip
2499 * the next. The usefulness of this optimisation is
2500 * greatly dependent on the quality of the instruction
2501 * scheduler.
2502 */
2503
2504 midgard_instruction *next_op = mir_next_op(ins);
2505
2506 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2507 /* As the two operate concurrently, make sure
2508 * they are not dependent */
2509
2510 if (can_run_concurrent_ssa(ins, next_op) || true) {
2511 /* Skip ahead, since it's redundant with the pair */
2512 instructions_consumed = 1 + (instructions_emitted++);
2513 }
2514 }
2515
2516 break;
2517 }
2518
2519 default:
2520 /* Texture ops default to single-op-per-bundle scheduling */
2521 break;
2522 }
2523
2524 /* Copy the instructions into the bundle */
2525 bundle.instruction_count = instructions_emitted + 1;
2526
2527 int used_idx = 0;
2528
2529 midgard_instruction *uins = ins;
2530 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2531 bundle.instructions[used_idx++] = *uins;
2532 uins = mir_next_op(uins);
2533 }
2534
2535 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2536
2537 return bundle;
2538 }
2539
2540 static int
2541 quadword_size(int tag)
2542 {
2543 switch (tag) {
2544 case TAG_ALU_4:
2545 return 1;
2546
2547 case TAG_ALU_8:
2548 return 2;
2549
2550 case TAG_ALU_12:
2551 return 3;
2552
2553 case TAG_ALU_16:
2554 return 4;
2555
2556 case TAG_LOAD_STORE_4:
2557 return 1;
2558
2559 case TAG_TEXTURE_4:
2560 return 1;
2561
2562 default:
2563 assert(0);
2564 return 0;
2565 }
2566 }
2567
2568 /* Schedule a single block by iterating its instruction to create bundles.
2569 * While we go, tally about the bundle sizes to compute the block size. */
2570
2571 static void
2572 schedule_block(compiler_context *ctx, midgard_block *block)
2573 {
2574 util_dynarray_init(&block->bundles, NULL);
2575
2576 block->quadword_count = 0;
2577
2578 mir_foreach_instr_in_block(block, ins) {
2579 int skip;
2580 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2581 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2582
2583 if (bundle.has_blend_constant) {
2584 /* TODO: Multiblock? */
2585 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2586 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2587 }
2588
2589 while(skip--)
2590 ins = mir_next_op(ins);
2591
2592 block->quadword_count += quadword_size(bundle.tag);
2593 }
2594
2595 block->is_scheduled = true;
2596 }
2597
2598 static void
2599 schedule_program(compiler_context *ctx)
2600 {
2601 allocate_registers(ctx);
2602
2603 mir_foreach_block(ctx, block) {
2604 schedule_block(ctx, block);
2605 }
2606 }
2607
2608 /* After everything is scheduled, emit whole bundles at a time */
2609
2610 static void
2611 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2612 {
2613 int lookahead = next_tag << 4;
2614
2615 switch (bundle->tag) {
2616 case TAG_ALU_4:
2617 case TAG_ALU_8:
2618 case TAG_ALU_12:
2619 case TAG_ALU_16: {
2620 /* Actually emit each component */
2621 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2622
2623 for (int i = 0; i < bundle->register_words_count; ++i)
2624 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2625
2626 /* Emit body words based on the instructions bundled */
2627 for (int i = 0; i < bundle->instruction_count; ++i) {
2628 midgard_instruction *ins = &bundle->instructions[i];
2629
2630 if (ins->unit & UNITS_ANY_VECTOR) {
2631 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2632 } else if (ins->compact_branch) {
2633 /* Dummy move, XXX DRY */
2634 if ((i == 0) && ins->writeout) {
2635 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2636 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2637 }
2638
2639 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2640 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2641 } else {
2642 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2643 }
2644 } else {
2645 /* Scalar */
2646 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2647 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2648 }
2649 }
2650
2651 /* Emit padding (all zero) */
2652 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2653
2654 /* Tack on constants */
2655
2656 if (bundle->has_embedded_constants) {
2657 util_dynarray_append(emission, float, bundle->constants[0]);
2658 util_dynarray_append(emission, float, bundle->constants[1]);
2659 util_dynarray_append(emission, float, bundle->constants[2]);
2660 util_dynarray_append(emission, float, bundle->constants[3]);
2661 }
2662
2663 break;
2664 }
2665
2666 case TAG_LOAD_STORE_4: {
2667 /* One or two composing instructions */
2668
2669 uint64_t current64, next64 = LDST_NOP;
2670
2671 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2672
2673 if (bundle->instruction_count == 2)
2674 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2675
2676 midgard_load_store instruction = {
2677 .type = bundle->tag,
2678 .next_type = next_tag,
2679 .word1 = current64,
2680 .word2 = next64
2681 };
2682
2683 util_dynarray_append(emission, midgard_load_store, instruction);
2684
2685 break;
2686 }
2687
2688 case TAG_TEXTURE_4: {
2689 /* Texture instructions are easy, since there is no
2690 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2691
2692 midgard_instruction *ins = &bundle->instructions[0];
2693
2694 ins->texture.type = TAG_TEXTURE_4;
2695 ins->texture.next_type = next_tag;
2696
2697 ctx->texture_op_count--;
2698
2699 if (!ctx->texture_op_count) {
2700 ins->texture.cont = 0;
2701 ins->texture.last = 1;
2702 }
2703
2704 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2705 break;
2706 }
2707
2708 default:
2709 DBG("Unknown midgard instruction type\n");
2710 assert(0);
2711 break;
2712 }
2713 }
2714
2715
2716 /* ALU instructions can inline or embed constants, which decreases register
2717 * pressure and saves space. */
2718
2719 #define CONDITIONAL_ATTACH(src) { \
2720 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2721 \
2722 if (entry) { \
2723 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2724 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2725 } \
2726 }
2727
2728 static void
2729 inline_alu_constants(compiler_context *ctx)
2730 {
2731 mir_foreach_instr(ctx, alu) {
2732 /* Other instructions cannot inline constants */
2733 if (alu->type != TAG_ALU_4) continue;
2734
2735 /* If there is already a constant here, we can do nothing */
2736 if (alu->has_constants) continue;
2737
2738 CONDITIONAL_ATTACH(src0);
2739
2740 if (!alu->has_constants) {
2741 CONDITIONAL_ATTACH(src1)
2742 } else if (!alu->inline_constant) {
2743 /* Corner case: _two_ vec4 constants, for instance with a
2744 * csel. For this case, we can only use a constant
2745 * register for one, we'll have to emit a move for the
2746 * other. Note, if both arguments are constants, then
2747 * necessarily neither argument depends on the value of
2748 * any particular register. As the destination register
2749 * will be wiped, that means we can spill the constant
2750 * to the destination register.
2751 */
2752
2753 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2754 unsigned scratch = alu->ssa_args.dest;
2755
2756 if (entry) {
2757 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2758 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2759
2760 /* Force a break XXX Defer r31 writes */
2761 ins.unit = UNIT_VLUT;
2762
2763 /* Set the source */
2764 alu->ssa_args.src1 = scratch;
2765
2766 /* Inject us -before- the last instruction which set r31 */
2767 mir_insert_instruction_before(mir_prev_op(alu), ins);
2768 }
2769 }
2770 }
2771 }
2772
2773 /* Midgard supports two types of constants, embedded constants (128-bit) and
2774 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2775 * constants can be demoted to inline constants, for space savings and
2776 * sometimes a performance boost */
2777
2778 static void
2779 embedded_to_inline_constant(compiler_context *ctx)
2780 {
2781 mir_foreach_instr(ctx, ins) {
2782 if (!ins->has_constants) continue;
2783
2784 if (ins->ssa_args.inline_constant) continue;
2785
2786 /* Blend constants must not be inlined by definition */
2787 if (ins->has_blend_constant) continue;
2788
2789 /* src1 cannot be an inline constant due to encoding
2790 * restrictions. So, if possible we try to flip the arguments
2791 * in that case */
2792
2793 int op = ins->alu.op;
2794
2795 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2796 /* Flip based on op. Fallthrough intentional */
2797
2798 switch (op) {
2799 /* These ops require an operational change to flip their arguments TODO */
2800 case midgard_alu_op_flt:
2801 case midgard_alu_op_fle:
2802 case midgard_alu_op_ilt:
2803 case midgard_alu_op_ile:
2804 case midgard_alu_op_fcsel:
2805 case midgard_alu_op_icsel:
2806 case midgard_alu_op_isub:
2807 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2808 break;
2809
2810 /* These ops are commutative and Just Flip */
2811 case midgard_alu_op_fne:
2812 case midgard_alu_op_fadd:
2813 case midgard_alu_op_fmul:
2814 case midgard_alu_op_fmin:
2815 case midgard_alu_op_fmax:
2816 case midgard_alu_op_iadd:
2817 case midgard_alu_op_imul:
2818 case midgard_alu_op_feq:
2819 case midgard_alu_op_ieq:
2820 case midgard_alu_op_ine:
2821 case midgard_alu_op_iand:
2822 case midgard_alu_op_ior:
2823 case midgard_alu_op_ixor:
2824 /* Flip the SSA numbers */
2825 ins->ssa_args.src0 = ins->ssa_args.src1;
2826 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2827
2828 /* And flip the modifiers */
2829
2830 unsigned src_temp;
2831
2832 src_temp = ins->alu.src2;
2833 ins->alu.src2 = ins->alu.src1;
2834 ins->alu.src1 = src_temp;
2835
2836 default:
2837 break;
2838 }
2839 }
2840
2841 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2842 /* Extract the source information */
2843
2844 midgard_vector_alu_src *src;
2845 int q = ins->alu.src2;
2846 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2847 src = m;
2848
2849 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2850 int component = src->swizzle & 3;
2851
2852 /* Scale constant appropriately, if we can legally */
2853 uint16_t scaled_constant = 0;
2854
2855 /* XXX: Check legality */
2856 if (midgard_is_integer_op(op)) {
2857 /* TODO: Inline integer */
2858 continue;
2859
2860 unsigned int *iconstants = (unsigned int *) ins->constants;
2861 scaled_constant = (uint16_t) iconstants[component];
2862
2863 /* Constant overflow after resize */
2864 if (scaled_constant != iconstants[component])
2865 continue;
2866 } else {
2867 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2868 }
2869
2870 /* We don't know how to handle these with a constant */
2871
2872 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2873 DBG("Bailing inline constant...\n");
2874 continue;
2875 }
2876
2877 /* Make sure that the constant is not itself a
2878 * vector by checking if all accessed values
2879 * (by the swizzle) are the same. */
2880
2881 uint32_t *cons = (uint32_t *) ins->constants;
2882 uint32_t value = cons[component];
2883
2884 bool is_vector = false;
2885 unsigned mask = effective_writemask(&ins->alu);
2886
2887 for (int c = 1; c < 4; ++c) {
2888 /* We only care if this component is actually used */
2889 if (!(mask & (1 << c)))
2890 continue;
2891
2892 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2893
2894 if (test != value) {
2895 is_vector = true;
2896 break;
2897 }
2898 }
2899
2900 if (is_vector)
2901 continue;
2902
2903 /* Get rid of the embedded constant */
2904 ins->has_constants = false;
2905 ins->ssa_args.src1 = SSA_UNUSED_0;
2906 ins->ssa_args.inline_constant = true;
2907 ins->inline_constant = scaled_constant;
2908 }
2909 }
2910 }
2911
2912 /* Map normal SSA sources to other SSA sources / fixed registers (like
2913 * uniforms) */
2914
2915 static void
2916 map_ssa_to_alias(compiler_context *ctx, int *ref)
2917 {
2918 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2919
2920 if (alias) {
2921 /* Remove entry in leftovers to avoid a redunant fmov */
2922
2923 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2924
2925 if (leftover)
2926 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2927
2928 /* Assign the alias map */
2929 *ref = alias - 1;
2930 return;
2931 }
2932 }
2933
2934 #define AS_SRC(to, u) \
2935 int q##to = ins->alu.src2; \
2936 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2937
2938 /* Removing unused moves is necessary to clean up the texture pipeline results.
2939 *
2940 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2941
2942 static void
2943 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2944 {
2945 mir_foreach_instr_in_block_safe(block, ins) {
2946 if (ins->type != TAG_ALU_4) continue;
2947
2948 if (ins->alu.op != midgard_alu_op_fmov) continue;
2949
2950 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2951
2952 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2953
2954 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2955
2956 mir_remove_instruction(ins);
2957 }
2958 }
2959
2960 /* The following passes reorder MIR instructions to enable better scheduling */
2961
2962 static void
2963 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2964 {
2965 mir_foreach_instr_in_block_safe(block, ins) {
2966 if (ins->type != TAG_LOAD_STORE_4) continue;
2967
2968 /* We've found a load/store op. Check if next is also load/store. */
2969 midgard_instruction *next_op = mir_next_op(ins);
2970 if (&next_op->link != &block->instructions) {
2971 if (next_op->type == TAG_LOAD_STORE_4) {
2972 /* If so, we're done since we're a pair */
2973 ins = mir_next_op(ins);
2974 continue;
2975 }
2976
2977 /* Maximum search distance to pair, to avoid register pressure disasters */
2978 int search_distance = 8;
2979
2980 /* Otherwise, we have an orphaned load/store -- search for another load */
2981 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2982 /* Terminate search if necessary */
2983 if (!(search_distance--)) break;
2984
2985 if (c->type != TAG_LOAD_STORE_4) continue;
2986
2987 if (OP_IS_STORE(c->load_store.op)) continue;
2988
2989 /* We found one! Move it up to pair and remove it from the old location */
2990
2991 mir_insert_instruction_before(ins, *c);
2992 mir_remove_instruction(c);
2993
2994 break;
2995 }
2996 }
2997 }
2998 }
2999
3000 /* Emit varying stores late */
3001
3002 static void
3003 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3004 /* Iterate in reverse to get the final write, rather than the first */
3005
3006 mir_foreach_instr_in_block_safe_rev(block, ins) {
3007 /* Check if what we just wrote needs a store */
3008 int idx = ins->ssa_args.dest;
3009 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3010
3011 if (!varying) continue;
3012
3013 varying -= 1;
3014
3015 /* We need to store to the appropriate varying, so emit the
3016 * move/store */
3017
3018 /* TODO: Integrate with special purpose RA (and scheduler?) */
3019 bool high_varying_register = false;
3020
3021 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3022
3023 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3024 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3025
3026 mir_insert_instruction_before(mir_next_op(ins), st);
3027 mir_insert_instruction_before(mir_next_op(ins), mov);
3028
3029 /* We no longer need to store this varying */
3030 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3031 }
3032 }
3033
3034 /* If there are leftovers after the below pass, emit actual fmov
3035 * instructions for the slow-but-correct path */
3036
3037 static void
3038 emit_leftover_move(compiler_context *ctx)
3039 {
3040 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3041 int base = ((uintptr_t) leftover->key) - 1;
3042 int mapped = base;
3043
3044 map_ssa_to_alias(ctx, &mapped);
3045 EMIT(fmov, mapped, blank_alu_src, base);
3046 }
3047 }
3048
3049 static void
3050 actualise_ssa_to_alias(compiler_context *ctx)
3051 {
3052 mir_foreach_instr(ctx, ins) {
3053 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3054 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3055 }
3056
3057 emit_leftover_move(ctx);
3058 }
3059
3060 /* Vertex shaders do not write gl_Position as is; instead, they write a
3061 * transformed screen space position as a varying. See section 12.5 "Coordinate
3062 * Transformation" of the ES 3.2 full specification for details.
3063 *
3064 * This transformation occurs early on, as NIR and prior to optimisation, in
3065 * order to take advantage of NIR optimisation passes of the transform itself.
3066 * */
3067
3068 static void
3069 write_transformed_position(nir_builder *b, nir_src input_point_src)
3070 {
3071 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
3072 nir_ssa_def *scale = nir_load_viewport_scale(b);
3073 nir_ssa_def *offset = nir_load_viewport_offset(b);
3074
3075 /* World space to normalised device coordinates to screen space */
3076
3077 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
3078 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
3079 nir_ssa_def *screen = nir_fadd(b, nir_fmul(b, ndc_point, scale), offset);
3080
3081 /* gl_Position will be written out in screenspace xyz, with w set to
3082 * the reciprocal we computed earlier. The transformed w component is
3083 * then used for perspective-correct varying interpolation. The
3084 * transformed w component must preserve its original sign; this is
3085 * used in depth clipping computations */
3086
3087 nir_ssa_def *screen_space = nir_vec4(b,
3088 nir_channel(b, screen, 0),
3089 nir_channel(b, screen, 1),
3090 nir_channel(b, screen, 2),
3091 w_recip);
3092
3093 /* Finally, write out the transformed values to the varying */
3094
3095 nir_intrinsic_instr *store;
3096 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3097 store->num_components = 4;
3098 nir_intrinsic_set_base(store, 0);
3099 nir_intrinsic_set_write_mask(store, 0xf);
3100 store->src[0].ssa = screen_space;
3101 store->src[0].is_ssa = true;
3102 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3103 nir_builder_instr_insert(b, &store->instr);
3104 }
3105
3106 static void
3107 transform_position_writes(nir_shader *shader)
3108 {
3109 nir_foreach_function(func, shader) {
3110 nir_foreach_block(block, func->impl) {
3111 nir_foreach_instr_safe(instr, block) {
3112 if (instr->type != nir_instr_type_intrinsic) continue;
3113
3114 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3115 nir_variable *out = NULL;
3116
3117 switch (intr->intrinsic) {
3118 case nir_intrinsic_store_output:
3119 /* already had i/o lowered.. lookup the matching output var: */
3120 nir_foreach_variable(var, &shader->outputs) {
3121 int drvloc = var->data.driver_location;
3122
3123 if (nir_intrinsic_base(intr) == drvloc) {
3124 out = var;
3125 break;
3126 }
3127 }
3128
3129 break;
3130
3131 default:
3132 break;
3133 }
3134
3135 if (!out) continue;
3136
3137 if (out->data.mode != nir_var_shader_out)
3138 continue;
3139
3140 if (out->data.location != VARYING_SLOT_POS)
3141 continue;
3142
3143 nir_builder b;
3144 nir_builder_init(&b, func->impl);
3145 b.cursor = nir_before_instr(instr);
3146
3147 write_transformed_position(&b, intr->src[0]);
3148 nir_instr_remove(instr);
3149 }
3150 }
3151 }
3152 }
3153
3154 static void
3155 emit_fragment_epilogue(compiler_context *ctx)
3156 {
3157 /* Special case: writing out constants requires us to include the move
3158 * explicitly now, so shove it into r0 */
3159
3160 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3161
3162 if (constant_value) {
3163 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3164 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3165 emit_mir_instruction(ctx, ins);
3166 }
3167
3168 /* Perform the actual fragment writeout. We have two writeout/branch
3169 * instructions, forming a loop until writeout is successful as per the
3170 * docs. TODO: gl_FragDepth */
3171
3172 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3173 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3174 }
3175
3176 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3177 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3178 * with the int8 analogue to the fragment epilogue */
3179
3180 static void
3181 emit_blend_epilogue(compiler_context *ctx)
3182 {
3183 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3184
3185 midgard_instruction scale = {
3186 .type = TAG_ALU_4,
3187 .unit = UNIT_VMUL,
3188 .inline_constant = _mesa_float_to_half(255.0),
3189 .ssa_args = {
3190 .src0 = SSA_FIXED_REGISTER(0),
3191 .src1 = SSA_UNUSED_0,
3192 .dest = SSA_FIXED_REGISTER(24),
3193 .inline_constant = true
3194 },
3195 .alu = {
3196 .op = midgard_alu_op_fmul,
3197 .reg_mode = midgard_reg_mode_full,
3198 .dest_override = midgard_dest_override_lower,
3199 .mask = 0xFF,
3200 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3201 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3202 }
3203 };
3204
3205 emit_mir_instruction(ctx, scale);
3206
3207 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3208
3209 midgard_vector_alu_src alu_src = blank_alu_src;
3210 alu_src.half = true;
3211
3212 midgard_instruction f2u8 = {
3213 .type = TAG_ALU_4,
3214 .ssa_args = {
3215 .src0 = SSA_FIXED_REGISTER(24),
3216 .src1 = SSA_UNUSED_0,
3217 .dest = SSA_FIXED_REGISTER(0),
3218 .inline_constant = true
3219 },
3220 .alu = {
3221 .op = midgard_alu_op_f2u8,
3222 .reg_mode = midgard_reg_mode_half,
3223 .dest_override = midgard_dest_override_lower,
3224 .outmod = midgard_outmod_pos,
3225 .mask = 0xF,
3226 .src1 = vector_alu_srco_unsigned(alu_src),
3227 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3228 }
3229 };
3230
3231 emit_mir_instruction(ctx, f2u8);
3232
3233 /* vmul.imov.quarter r0, r0, r0 */
3234
3235 midgard_instruction imov_8 = {
3236 .type = TAG_ALU_4,
3237 .ssa_args = {
3238 .src0 = SSA_UNUSED_1,
3239 .src1 = SSA_FIXED_REGISTER(0),
3240 .dest = SSA_FIXED_REGISTER(0),
3241 },
3242 .alu = {
3243 .op = midgard_alu_op_imov,
3244 .reg_mode = midgard_reg_mode_quarter,
3245 .dest_override = midgard_dest_override_none,
3246 .mask = 0xFF,
3247 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3248 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3249 }
3250 };
3251
3252 /* Emit branch epilogue with the 8-bit move as the source */
3253
3254 emit_mir_instruction(ctx, imov_8);
3255 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3256
3257 emit_mir_instruction(ctx, imov_8);
3258 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3259 }
3260
3261 static midgard_block *
3262 emit_block(compiler_context *ctx, nir_block *block)
3263 {
3264 midgard_block *this_block = malloc(sizeof(midgard_block));
3265 list_addtail(&this_block->link, &ctx->blocks);
3266
3267 this_block->is_scheduled = false;
3268 ++ctx->block_count;
3269
3270 ctx->texture_index[0] = -1;
3271 ctx->texture_index[1] = -1;
3272
3273 /* Set up current block */
3274 list_inithead(&this_block->instructions);
3275 ctx->current_block = this_block;
3276
3277 nir_foreach_instr(instr, block) {
3278 emit_instr(ctx, instr);
3279 ++ctx->instruction_count;
3280 }
3281
3282 inline_alu_constants(ctx);
3283 embedded_to_inline_constant(ctx);
3284
3285 /* Perform heavylifting for aliasing */
3286 actualise_ssa_to_alias(ctx);
3287
3288 midgard_emit_store(ctx, this_block);
3289 midgard_eliminate_orphan_moves(ctx, this_block);
3290 midgard_pair_load_store(ctx, this_block);
3291
3292 /* Append fragment shader epilogue (value writeout) */
3293 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3294 if (block == nir_impl_last_block(ctx->func->impl)) {
3295 if (ctx->is_blend)
3296 emit_blend_epilogue(ctx);
3297 else
3298 emit_fragment_epilogue(ctx);
3299 }
3300 }
3301
3302 /* Fallthrough save */
3303 this_block->next_fallthrough = ctx->previous_source_block;
3304
3305 if (block == nir_start_block(ctx->func->impl))
3306 ctx->initial_block = this_block;
3307
3308 if (block == nir_impl_last_block(ctx->func->impl))
3309 ctx->final_block = this_block;
3310
3311 /* Allow the next control flow to access us retroactively, for
3312 * branching etc */
3313 ctx->current_block = this_block;
3314
3315 /* Document the fallthrough chain */
3316 ctx->previous_source_block = this_block;
3317
3318 return this_block;
3319 }
3320
3321 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3322
3323 static void
3324 emit_if(struct compiler_context *ctx, nir_if *nif)
3325 {
3326 /* Conditional branches expect the condition in r31.w; emit a move for
3327 * that in the _previous_ block (which is the current block). */
3328 emit_condition(ctx, &nif->condition, true);
3329
3330 /* Speculatively emit the branch, but we can't fill it in until later */
3331 EMIT(branch, true, true);
3332 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3333
3334 /* Emit the two subblocks */
3335 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3336
3337 /* Emit a jump from the end of the then block to the end of the else */
3338 EMIT(branch, false, false);
3339 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3340
3341 /* Emit second block, and check if it's empty */
3342
3343 int else_idx = ctx->block_count;
3344 int count_in = ctx->instruction_count;
3345 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3346 int after_else_idx = ctx->block_count;
3347
3348 /* Now that we have the subblocks emitted, fix up the branches */
3349
3350 assert(then_block);
3351 assert(else_block);
3352
3353 if (ctx->instruction_count == count_in) {
3354 /* The else block is empty, so don't emit an exit jump */
3355 mir_remove_instruction(then_exit);
3356 then_branch->branch.target_block = after_else_idx;
3357 } else {
3358 then_branch->branch.target_block = else_idx;
3359 then_exit->branch.target_block = after_else_idx;
3360 }
3361 }
3362
3363 static void
3364 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3365 {
3366 /* Remember where we are */
3367 midgard_block *start_block = ctx->current_block;
3368
3369 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3370 * single current_loop variable, maybe we need a stack */
3371
3372 int loop_idx = ++ctx->current_loop;
3373
3374 /* Get index from before the body so we can loop back later */
3375 int start_idx = ctx->block_count;
3376
3377 /* Emit the body itself */
3378 emit_cf_list(ctx, &nloop->body);
3379
3380 /* Branch back to loop back */
3381 struct midgard_instruction br_back = v_branch(false, false);
3382 br_back.branch.target_block = start_idx;
3383 emit_mir_instruction(ctx, br_back);
3384
3385 /* Find the index of the block about to follow us (note: we don't add
3386 * one; blocks are 0-indexed so we get a fencepost problem) */
3387 int break_block_idx = ctx->block_count;
3388
3389 /* Fix up the break statements we emitted to point to the right place,
3390 * now that we can allocate a block number for them */
3391
3392 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3393 if (midgard_debug & MIDGARD_DBG_SHADERS)
3394 print_mir_block(block);
3395 mir_foreach_instr_in_block(block, ins) {
3396 if (ins->type != TAG_ALU_4) continue;
3397 if (!ins->compact_branch) continue;
3398 if (ins->prepacked_branch) continue;
3399
3400 /* We found a branch -- check the type to see if we need to do anything */
3401 if (ins->branch.target_type != TARGET_BREAK) continue;
3402
3403 /* It's a break! Check if it's our break */
3404 if (ins->branch.target_break != loop_idx) continue;
3405
3406 /* Okay, cool, we're breaking out of this loop.
3407 * Rewrite from a break to a goto */
3408
3409 ins->branch.target_type = TARGET_GOTO;
3410 ins->branch.target_block = break_block_idx;
3411 }
3412 }
3413 }
3414
3415 static midgard_block *
3416 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3417 {
3418 midgard_block *start_block = NULL;
3419
3420 foreach_list_typed(nir_cf_node, node, node, list) {
3421 switch (node->type) {
3422 case nir_cf_node_block: {
3423 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3424
3425 if (!start_block)
3426 start_block = block;
3427
3428 break;
3429 }
3430
3431 case nir_cf_node_if:
3432 emit_if(ctx, nir_cf_node_as_if(node));
3433 break;
3434
3435 case nir_cf_node_loop:
3436 emit_loop(ctx, nir_cf_node_as_loop(node));
3437 break;
3438
3439 case nir_cf_node_function:
3440 assert(0);
3441 break;
3442 }
3443 }
3444
3445 return start_block;
3446 }
3447
3448 /* Due to lookahead, we need to report the first tag executed in the command
3449 * stream and in branch targets. An initial block might be empty, so iterate
3450 * until we find one that 'works' */
3451
3452 static unsigned
3453 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3454 {
3455 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3456
3457 unsigned first_tag = 0;
3458
3459 do {
3460 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3461
3462 if (initial_bundle) {
3463 first_tag = initial_bundle->tag;
3464 break;
3465 }
3466
3467 /* Initial block is empty, try the next block */
3468 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3469 } while(initial_block != NULL);
3470
3471 assert(first_tag);
3472 return first_tag;
3473 }
3474
3475 int
3476 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3477 {
3478 struct util_dynarray *compiled = &program->compiled;
3479
3480 midgard_debug = debug_get_option_midgard_debug();
3481
3482 compiler_context ictx = {
3483 .nir = nir,
3484 .stage = nir->info.stage,
3485
3486 .is_blend = is_blend,
3487 .blend_constant_offset = -1,
3488
3489 .alpha_ref = program->alpha_ref
3490 };
3491
3492 compiler_context *ctx = &ictx;
3493
3494 /* TODO: Decide this at runtime */
3495 ctx->uniform_cutoff = 8;
3496
3497 /* Assign var locations early, so the epilogue can use them if necessary */
3498
3499 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3500 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3501 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, uniform_type_size);
3502
3503 /* Initialize at a global (not block) level hash tables */
3504
3505 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3506 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3507 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3508 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3509 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3510 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3511 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3512
3513 /* Record the varying mapping for the command stream's bookkeeping */
3514
3515 struct exec_list *varyings =
3516 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3517
3518 nir_foreach_variable(var, varyings) {
3519 unsigned loc = var->data.driver_location;
3520 program->varyings[loc] = var->data.location;
3521 }
3522
3523 /* Lower vars -- not I/O -- before epilogue */
3524
3525 NIR_PASS_V(nir, nir_lower_var_copies);
3526 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3527 NIR_PASS_V(nir, nir_split_var_copies);
3528 NIR_PASS_V(nir, nir_lower_var_copies);
3529 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3530 NIR_PASS_V(nir, nir_lower_var_copies);
3531 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3532
3533 NIR_PASS_V(nir, nir_lower_io, nir_var_uniform, uniform_type_size, 0);
3534 NIR_PASS_V(nir, nir_lower_io, nir_var_all & ~nir_var_uniform, glsl_type_size, 0);
3535
3536 /* Append vertex epilogue before optimisation, so the epilogue itself
3537 * is optimised */
3538
3539 if (ctx->stage == MESA_SHADER_VERTEX)
3540 transform_position_writes(nir);
3541
3542 /* Optimisation passes */
3543
3544 optimise_nir(nir);
3545
3546 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3547 nir_print_shader(nir, stdout);
3548 }
3549
3550 /* Assign sysvals and counts, now that we're sure
3551 * (post-optimisation) */
3552
3553 midgard_nir_assign_sysvals(ctx, nir);
3554
3555 program->uniform_count = nir->num_uniforms;
3556 program->sysval_count = ctx->sysval_count;
3557 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3558
3559 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3560 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3561
3562 nir_foreach_function(func, nir) {
3563 if (!func->impl)
3564 continue;
3565
3566 list_inithead(&ctx->blocks);
3567 ctx->block_count = 0;
3568 ctx->func = func;
3569
3570 emit_cf_list(ctx, &func->impl->body);
3571 emit_block(ctx, func->impl->end_block);
3572
3573 break; /* TODO: Multi-function shaders */
3574 }
3575
3576 util_dynarray_init(compiled, NULL);
3577
3578 /* Schedule! */
3579 schedule_program(ctx);
3580
3581 /* Now that all the bundles are scheduled and we can calculate block
3582 * sizes, emit actual branch instructions rather than placeholders */
3583
3584 int br_block_idx = 0;
3585
3586 mir_foreach_block(ctx, block) {
3587 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3588 for (int c = 0; c < bundle->instruction_count; ++c) {
3589 midgard_instruction *ins = &bundle->instructions[c];
3590
3591 if (!midgard_is_branch_unit(ins->unit)) continue;
3592
3593 if (ins->prepacked_branch) continue;
3594
3595 /* Parse some basic branch info */
3596 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3597 bool is_conditional = ins->branch.conditional;
3598 bool is_inverted = ins->branch.invert_conditional;
3599 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3600
3601 /* Determine the block we're jumping to */
3602 int target_number = ins->branch.target_block;
3603
3604 /* Report the destination tag. Discards don't need this */
3605 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3606
3607 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3608 int quadword_offset = 0;
3609
3610 if (is_discard) {
3611 /* Jump to the end of the shader. We
3612 * need to include not only the
3613 * following blocks, but also the
3614 * contents of our current block (since
3615 * discard can come in the middle of
3616 * the block) */
3617
3618 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3619
3620 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3621 quadword_offset += quadword_size(bun->tag);
3622 }
3623
3624 mir_foreach_block_from(ctx, blk, b) {
3625 quadword_offset += b->quadword_count;
3626 }
3627
3628 } else if (target_number > br_block_idx) {
3629 /* Jump forward */
3630
3631 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3632 midgard_block *blk = mir_get_block(ctx, idx);
3633 assert(blk);
3634
3635 quadword_offset += blk->quadword_count;
3636 }
3637 } else {
3638 /* Jump backwards */
3639
3640 for (int idx = br_block_idx; idx >= target_number; --idx) {
3641 midgard_block *blk = mir_get_block(ctx, idx);
3642 assert(blk);
3643
3644 quadword_offset -= blk->quadword_count;
3645 }
3646 }
3647
3648 /* Unconditional extended branches (far jumps)
3649 * have issues, so we always use a conditional
3650 * branch, setting the condition to always for
3651 * unconditional. For compact unconditional
3652 * branches, cond isn't used so it doesn't
3653 * matter what we pick. */
3654
3655 midgard_condition cond =
3656 !is_conditional ? midgard_condition_always :
3657 is_inverted ? midgard_condition_false :
3658 midgard_condition_true;
3659
3660 midgard_jmp_writeout_op op =
3661 is_discard ? midgard_jmp_writeout_op_discard :
3662 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3663 midgard_jmp_writeout_op_branch_cond;
3664
3665 if (!is_compact) {
3666 midgard_branch_extended branch =
3667 midgard_create_branch_extended(
3668 cond, op,
3669 dest_tag,
3670 quadword_offset);
3671
3672 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3673 } else if (is_conditional || is_discard) {
3674 midgard_branch_cond branch = {
3675 .op = op,
3676 .dest_tag = dest_tag,
3677 .offset = quadword_offset,
3678 .cond = cond
3679 };
3680
3681 assert(branch.offset == quadword_offset);
3682
3683 memcpy(&ins->br_compact, &branch, sizeof(branch));
3684 } else {
3685 assert(op == midgard_jmp_writeout_op_branch_uncond);
3686
3687 midgard_branch_uncond branch = {
3688 .op = op,
3689 .dest_tag = dest_tag,
3690 .offset = quadword_offset,
3691 .unknown = 1
3692 };
3693
3694 assert(branch.offset == quadword_offset);
3695
3696 memcpy(&ins->br_compact, &branch, sizeof(branch));
3697 }
3698 }
3699 }
3700
3701 ++br_block_idx;
3702 }
3703
3704 /* Emit flat binary from the instruction arrays. Iterate each block in
3705 * sequence. Save instruction boundaries such that lookahead tags can
3706 * be assigned easily */
3707
3708 /* Cache _all_ bundles in source order for lookahead across failed branches */
3709
3710 int bundle_count = 0;
3711 mir_foreach_block(ctx, block) {
3712 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3713 }
3714 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3715 int bundle_idx = 0;
3716 mir_foreach_block(ctx, block) {
3717 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3718 source_order_bundles[bundle_idx++] = bundle;
3719 }
3720 }
3721
3722 int current_bundle = 0;
3723
3724 mir_foreach_block(ctx, block) {
3725 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3726 int lookahead = 1;
3727
3728 if (current_bundle + 1 < bundle_count) {
3729 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3730
3731 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3732 lookahead = 1;
3733 } else {
3734 lookahead = next;
3735 }
3736 }
3737
3738 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3739 ++current_bundle;
3740 }
3741
3742 /* TODO: Free deeper */
3743 //util_dynarray_fini(&block->instructions);
3744 }
3745
3746 free(source_order_bundles);
3747
3748 /* Report the very first tag executed */
3749 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3750
3751 /* Deal with off-by-one related to the fencepost problem */
3752 program->work_register_count = ctx->work_registers + 1;
3753
3754 program->can_discard = ctx->can_discard;
3755 program->uniform_cutoff = ctx->uniform_cutoff;
3756
3757 program->blend_patch_offset = ctx->blend_constant_offset;
3758
3759 if (midgard_debug & MIDGARD_DBG_SHADERS)
3760 disassemble_midgard(program->compiled.data, program->compiled.size);
3761
3762 return 0;
3763 }