panfrost/midgard: Pipe through varying arrays
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
180
181 #define M_LOAD_STORE(name, rname, uname) \
182 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
183 midgard_instruction i = { \
184 .type = TAG_LOAD_STORE_4, \
185 .ssa_args = { \
186 .rname = ssa, \
187 .uname = -1, \
188 .src1 = -1 \
189 }, \
190 .load_store = { \
191 .op = midgard_op_##name, \
192 .mask = 0xF, \
193 .swizzle = SWIZZLE_XYZW, \
194 .address = address \
195 } \
196 }; \
197 \
198 return i; \
199 }
200
201 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
202 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
203
204 const midgard_vector_alu_src blank_alu_src = {
205 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
206 };
207
208 const midgard_vector_alu_src blank_alu_src_xxxx = {
209 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
210 };
211
212 const midgard_scalar_alu_src blank_scalar_alu_src = {
213 .full = true
214 };
215
216 /* Used for encoding the unused source of 1-op instructions */
217 const midgard_vector_alu_src zero_alu_src = { 0 };
218
219 /* Coerce structs to integer */
220
221 static unsigned
222 vector_alu_srco_unsigned(midgard_vector_alu_src src)
223 {
224 unsigned u;
225 memcpy(&u, &src, sizeof(src));
226 return u;
227 }
228
229 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
230 * the corresponding Midgard source */
231
232 static midgard_vector_alu_src
233 vector_alu_modifiers(nir_alu_src *src)
234 {
235 if (!src) return blank_alu_src;
236
237 midgard_vector_alu_src alu_src = {
238 .abs = src->abs,
239 .negate = src->negate,
240 .rep_low = 0,
241 .rep_high = 0,
242 .half = 0, /* TODO */
243 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
244 };
245
246 return alu_src;
247 }
248
249 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
250
251 static midgard_instruction
252 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
253 {
254 midgard_instruction ins = {
255 .type = TAG_ALU_4,
256 .ssa_args = {
257 .src0 = SSA_UNUSED_1,
258 .src1 = src,
259 .dest = dest,
260 },
261 .alu = {
262 .op = midgard_alu_op_fmov,
263 .reg_mode = midgard_reg_mode_full,
264 .dest_override = midgard_dest_override_none,
265 .mask = 0xFF,
266 .src1 = vector_alu_srco_unsigned(zero_alu_src),
267 .src2 = vector_alu_srco_unsigned(mod)
268 },
269 };
270
271 return ins;
272 }
273
274 /* load/store instructions have both 32-bit and 16-bit variants, depending on
275 * whether we are using vectors composed of highp or mediump. At the moment, we
276 * don't support half-floats -- this requires changes in other parts of the
277 * compiler -- therefore the 16-bit versions are commented out. */
278
279 //M_LOAD(load_attr_16);
280 M_LOAD(load_attr_32);
281 //M_LOAD(load_vary_16);
282 M_LOAD(load_vary_32);
283 //M_LOAD(load_uniform_16);
284 M_LOAD(load_uniform_32);
285 M_LOAD(load_color_buffer_8);
286 //M_STORE(store_vary_16);
287 M_STORE(store_vary_32);
288 M_STORE(store_cubemap_coords);
289
290 static midgard_instruction
291 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
292 {
293 midgard_branch_cond branch = {
294 .op = op,
295 .dest_tag = tag,
296 .offset = offset,
297 .cond = cond
298 };
299
300 uint16_t compact;
301 memcpy(&compact, &branch, sizeof(branch));
302
303 midgard_instruction ins = {
304 .type = TAG_ALU_4,
305 .unit = ALU_ENAB_BR_COMPACT,
306 .prepacked_branch = true,
307 .compact_branch = true,
308 .br_compact = compact
309 };
310
311 if (op == midgard_jmp_writeout_op_writeout)
312 ins.writeout = true;
313
314 return ins;
315 }
316
317 static midgard_instruction
318 v_branch(bool conditional, bool invert)
319 {
320 midgard_instruction ins = {
321 .type = TAG_ALU_4,
322 .unit = ALU_ENAB_BRANCH,
323 .compact_branch = true,
324 .branch = {
325 .conditional = conditional,
326 .invert_conditional = invert
327 }
328 };
329
330 return ins;
331 }
332
333 static midgard_branch_extended
334 midgard_create_branch_extended( midgard_condition cond,
335 midgard_jmp_writeout_op op,
336 unsigned dest_tag,
337 signed quadword_offset)
338 {
339 /* For unclear reasons, the condition code is repeated 8 times */
340 uint16_t duplicated_cond =
341 (cond << 14) |
342 (cond << 12) |
343 (cond << 10) |
344 (cond << 8) |
345 (cond << 6) |
346 (cond << 4) |
347 (cond << 2) |
348 (cond << 0);
349
350 midgard_branch_extended branch = {
351 .op = op,
352 .dest_tag = dest_tag,
353 .offset = quadword_offset,
354 .cond = duplicated_cond
355 };
356
357 return branch;
358 }
359
360 typedef struct midgard_bundle {
361 /* Tag for the overall bundle */
362 int tag;
363
364 /* Instructions contained by the bundle */
365 int instruction_count;
366 midgard_instruction instructions[5];
367
368 /* Bundle-wide ALU configuration */
369 int padding;
370 int control;
371 bool has_embedded_constants;
372 float constants[4];
373 bool has_blend_constant;
374
375 uint16_t register_words[8];
376 int register_words_count;
377
378 uint64_t body_words[8];
379 size_t body_size[8];
380 int body_words_count;
381 } midgard_bundle;
382
383 typedef struct compiler_context {
384 nir_shader *nir;
385 gl_shader_stage stage;
386
387 /* Is internally a blend shader? Depends on stage == FRAGMENT */
388 bool is_blend;
389
390 /* Tracking for blend constant patching */
391 int blend_constant_number;
392 int blend_constant_offset;
393
394 /* Current NIR function */
395 nir_function *func;
396
397 /* Unordered list of midgard_blocks */
398 int block_count;
399 struct list_head blocks;
400
401 midgard_block *initial_block;
402 midgard_block *previous_source_block;
403 midgard_block *final_block;
404
405 /* List of midgard_instructions emitted for the current block */
406 midgard_block *current_block;
407
408 /* The index corresponding to the current loop, e.g. for breaks/contineus */
409 int current_loop;
410
411 /* Constants which have been loaded, for later inlining */
412 struct hash_table_u64 *ssa_constants;
413
414 /* SSA indices to be outputted to corresponding varying offset */
415 struct hash_table_u64 *ssa_varyings;
416
417 /* SSA values / registers which have been aliased. Naively, these
418 * demand a fmov output; instead, we alias them in a later pass to
419 * avoid the wasted op.
420 *
421 * A note on encoding: to avoid dynamic memory management here, rather
422 * than ampping to a pointer, we map to the source index; the key
423 * itself is just the destination index. */
424
425 struct hash_table_u64 *ssa_to_alias;
426 struct set *leftover_ssa_to_alias;
427
428 /* Actual SSA-to-register for RA */
429 struct hash_table_u64 *ssa_to_register;
430
431 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
432 struct hash_table_u64 *hash_to_temp;
433 int temp_count;
434 int max_hash;
435
436 /* Just the count of the max register used. Higher count => higher
437 * register pressure */
438 int work_registers;
439
440 /* Used for cont/last hinting. Increase when a tex op is added.
441 * Decrease when a tex op is removed. */
442 int texture_op_count;
443
444 /* Mapping of texture register -> SSA index for unaliasing */
445 int texture_index[2];
446
447 /* If any path hits a discard instruction */
448 bool can_discard;
449
450 /* The number of uniforms allowable for the fast path */
451 int uniform_cutoff;
452
453 /* Count of instructions emitted from NIR overall, across all blocks */
454 int instruction_count;
455
456 /* Alpha ref value passed in */
457 float alpha_ref;
458
459 /* The index corresponding to the fragment output */
460 unsigned fragment_output;
461
462 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
463 unsigned sysvals[MAX_SYSVAL_COUNT];
464 unsigned sysval_count;
465 struct hash_table_u64 *sysval_to_id;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type, bool bindless)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static int
670 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
671 {
672 switch (instr->intrinsic) {
673 case nir_intrinsic_load_viewport_scale:
674 return PAN_SYSVAL_VIEWPORT_SCALE;
675 case nir_intrinsic_load_viewport_offset:
676 return PAN_SYSVAL_VIEWPORT_OFFSET;
677 default:
678 return -1;
679 }
680 }
681
682 static void
683 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
684 {
685 int sysval = -1;
686
687 if (instr->type == nir_instr_type_intrinsic) {
688 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
689 sysval = midgard_nir_sysval_for_intrinsic(intr);
690 }
691
692 if (sysval < 0)
693 return;
694
695 /* We have a sysval load; check if it's already been assigned */
696
697 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
698 return;
699
700 /* It hasn't -- so assign it now! */
701
702 unsigned id = ctx->sysval_count++;
703 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
704 ctx->sysvals[id] = sysval;
705 }
706
707 static void
708 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
709 {
710 ctx->sysval_count = 0;
711
712 nir_foreach_function(function, shader) {
713 if (!function->impl) continue;
714
715 nir_foreach_block(block, function->impl) {
716 nir_foreach_instr_safe(instr, block) {
717 midgard_nir_assign_sysval_body(ctx, instr);
718 }
719 }
720 }
721 }
722
723 static bool
724 midgard_nir_lower_fdot2(nir_shader *shader)
725 {
726 bool progress = false;
727
728 nir_foreach_function(function, shader) {
729 if (!function->impl) continue;
730
731 nir_builder _b;
732 nir_builder *b = &_b;
733 nir_builder_init(b, function->impl);
734
735 nir_foreach_block(block, function->impl) {
736 nir_foreach_instr_safe(instr, block) {
737 if (instr->type != nir_instr_type_alu) continue;
738
739 nir_alu_instr *alu = nir_instr_as_alu(instr);
740 midgard_nir_lower_fdot2_body(b, alu);
741
742 progress |= true;
743 }
744 }
745
746 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
747
748 }
749
750 return progress;
751 }
752
753 static void
754 optimise_nir(nir_shader *nir)
755 {
756 bool progress;
757
758 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
759 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
760
761 nir_lower_tex_options lower_tex_options = {
762 .lower_rect = true
763 };
764
765 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
766
767 do {
768 progress = false;
769
770 NIR_PASS(progress, nir, nir_lower_var_copies);
771 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
772
773 NIR_PASS(progress, nir, nir_copy_prop);
774 NIR_PASS(progress, nir, nir_opt_dce);
775 NIR_PASS(progress, nir, nir_opt_dead_cf);
776 NIR_PASS(progress, nir, nir_opt_cse);
777 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
778 NIR_PASS(progress, nir, nir_opt_algebraic);
779 NIR_PASS(progress, nir, nir_opt_constant_folding);
780 NIR_PASS(progress, nir, nir_opt_undef);
781 NIR_PASS(progress, nir, nir_opt_loop_unroll,
782 nir_var_shader_in |
783 nir_var_shader_out |
784 nir_var_function_temp);
785
786 /* TODO: Enable vectorize when merged upstream */
787 // NIR_PASS(progress, nir, nir_opt_vectorize);
788 } while (progress);
789
790 /* Must be run at the end to prevent creation of fsin/fcos ops */
791 NIR_PASS(progress, nir, midgard_nir_scale_trig);
792
793 do {
794 progress = false;
795
796 NIR_PASS(progress, nir, nir_opt_dce);
797 NIR_PASS(progress, nir, nir_opt_algebraic);
798 NIR_PASS(progress, nir, nir_opt_constant_folding);
799 NIR_PASS(progress, nir, nir_copy_prop);
800 } while (progress);
801
802 NIR_PASS(progress, nir, nir_opt_algebraic_late);
803 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
804
805 /* Lower mods for float ops only. Integer ops don't support modifiers
806 * (saturate doesn't make sense on integers, neg/abs require dedicated
807 * instructions) */
808
809 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
810 NIR_PASS(progress, nir, nir_copy_prop);
811 NIR_PASS(progress, nir, nir_opt_dce);
812
813 /* We implement booleans as 32-bit 0/~0 */
814 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
815
816 /* Take us out of SSA */
817 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
818 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
819
820 /* We are a vector architecture; write combine where possible */
821 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
822 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
823
824 NIR_PASS(progress, nir, nir_opt_dce);
825 }
826
827 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
828 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
829 * r0. See the comments in compiler_context */
830
831 static void
832 alias_ssa(compiler_context *ctx, int dest, int src)
833 {
834 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
835 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
836 }
837
838 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
839
840 static void
841 unalias_ssa(compiler_context *ctx, int dest)
842 {
843 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
844 /* TODO: Remove from leftover or no? */
845 }
846
847 static void
848 midgard_pin_output(compiler_context *ctx, int index, int reg)
849 {
850 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
851 }
852
853 static bool
854 midgard_is_pinned(compiler_context *ctx, int index)
855 {
856 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
857 }
858
859 /* Do not actually emit a load; instead, cache the constant for inlining */
860
861 static void
862 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
863 {
864 nir_ssa_def def = instr->def;
865
866 float *v = ralloc_array(NULL, float, 4);
867 nir_const_load_to_arr(v, instr, f32);
868 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
869 }
870
871 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
872 * do the inverse) */
873
874 static unsigned
875 expand_writemask(unsigned mask)
876 {
877 unsigned o = 0;
878
879 for (int i = 0; i < 4; ++i)
880 if (mask & (1 << i))
881 o |= (3 << (2 * i));
882
883 return o;
884 }
885
886 static unsigned
887 squeeze_writemask(unsigned mask)
888 {
889 unsigned o = 0;
890
891 for (int i = 0; i < 4; ++i)
892 if (mask & (3 << (2 * i)))
893 o |= (1 << i);
894
895 return o;
896
897 }
898
899 /* Determines effective writemask, taking quirks and expansion into account */
900 static unsigned
901 effective_writemask(midgard_vector_alu *alu)
902 {
903 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
904 * sense) */
905
906 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
907
908 /* If there is a fixed channel count, construct the appropriate mask */
909
910 if (channel_count)
911 return (1 << channel_count) - 1;
912
913 /* Otherwise, just squeeze the existing mask */
914 return squeeze_writemask(alu->mask);
915 }
916
917 static unsigned
918 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
919 {
920 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
921 return hash;
922
923 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
924
925 if (temp)
926 return temp - 1;
927
928 /* If no temp is find, allocate one */
929 temp = ctx->temp_count++;
930 ctx->max_hash = MAX2(ctx->max_hash, hash);
931
932 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
933
934 return temp;
935 }
936
937 static unsigned
938 nir_src_index(compiler_context *ctx, nir_src *src)
939 {
940 if (src->is_ssa)
941 return src->ssa->index;
942 else
943 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
944 }
945
946 static unsigned
947 nir_dest_index(compiler_context *ctx, nir_dest *dst)
948 {
949 if (dst->is_ssa)
950 return dst->ssa.index;
951 else
952 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
953 }
954
955 static unsigned
956 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
957 {
958 return nir_src_index(ctx, &src->src);
959 }
960
961 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
962 * a conditional test) into that register */
963
964 static void
965 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
966 {
967 /* XXX: Force component correct */
968 int condition = nir_src_index(ctx, src);
969
970 /* There is no boolean move instruction. Instead, we simulate a move by
971 * ANDing the condition with itself to get it into r31.w */
972
973 midgard_instruction ins = {
974 .type = TAG_ALU_4,
975 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
976 .ssa_args = {
977 .src0 = condition,
978 .src1 = condition,
979 .dest = SSA_FIXED_REGISTER(31),
980 },
981 .alu = {
982 .op = midgard_alu_op_iand,
983 .reg_mode = midgard_reg_mode_full,
984 .dest_override = midgard_dest_override_none,
985 .mask = (0x3 << 6), /* w */
986 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
987 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
988 },
989 };
990
991 emit_mir_instruction(ctx, ins);
992 }
993
994 #define ALU_CASE(nir, _op) \
995 case nir_op_##nir: \
996 op = midgard_alu_op_##_op; \
997 break;
998
999 static void
1000 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1001 {
1002 bool is_ssa = instr->dest.dest.is_ssa;
1003
1004 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1005 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1006 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1007
1008 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1009 * supported. A few do not and are commented for now. Also, there are a
1010 * number of NIR ops which Midgard does not support and need to be
1011 * lowered, also TODO. This switch block emits the opcode and calling
1012 * convention of the Midgard instruction; actual packing is done in
1013 * emit_alu below */
1014
1015 unsigned op;
1016
1017 switch (instr->op) {
1018 ALU_CASE(fadd, fadd);
1019 ALU_CASE(fmul, fmul);
1020 ALU_CASE(fmin, fmin);
1021 ALU_CASE(fmax, fmax);
1022 ALU_CASE(imin, imin);
1023 ALU_CASE(imax, imax);
1024 ALU_CASE(umin, umin);
1025 ALU_CASE(umax, umax);
1026 ALU_CASE(fmov, fmov);
1027 ALU_CASE(ffloor, ffloor);
1028 ALU_CASE(fround_even, froundeven);
1029 ALU_CASE(ftrunc, ftrunc);
1030 ALU_CASE(fceil, fceil);
1031 ALU_CASE(fdot3, fdot3);
1032 ALU_CASE(fdot4, fdot4);
1033 ALU_CASE(iadd, iadd);
1034 ALU_CASE(isub, isub);
1035 ALU_CASE(imul, imul);
1036 ALU_CASE(iabs, iabs);
1037
1038 /* XXX: Use fmov, not imov, since imov was causing major
1039 * issues with texture precision? XXX research */
1040 ALU_CASE(imov, fmov);
1041
1042 ALU_CASE(feq32, feq);
1043 ALU_CASE(fne32, fne);
1044 ALU_CASE(flt32, flt);
1045 ALU_CASE(ieq32, ieq);
1046 ALU_CASE(ine32, ine);
1047 ALU_CASE(ilt32, ilt);
1048 ALU_CASE(ult32, ult);
1049
1050 /* We don't have a native b2f32 instruction. Instead, like many
1051 * GPUs, we exploit booleans as 0/~0 for false/true, and
1052 * correspondingly AND
1053 * by 1.0 to do the type conversion. For the moment, prime us
1054 * to emit:
1055 *
1056 * iand [whatever], #0
1057 *
1058 * At the end of emit_alu (as MIR), we'll fix-up the constant
1059 */
1060
1061 ALU_CASE(b2f32, iand);
1062 ALU_CASE(b2i32, iand);
1063
1064 /* Likewise, we don't have a dedicated f2b32 instruction, but
1065 * we can do a "not equal to 0.0" test. */
1066
1067 ALU_CASE(f2b32, fne);
1068 ALU_CASE(i2b32, ine);
1069
1070 ALU_CASE(frcp, frcp);
1071 ALU_CASE(frsq, frsqrt);
1072 ALU_CASE(fsqrt, fsqrt);
1073 ALU_CASE(fexp2, fexp2);
1074 ALU_CASE(flog2, flog2);
1075
1076 ALU_CASE(f2i32, f2i);
1077 ALU_CASE(f2u32, f2u);
1078 ALU_CASE(i2f32, i2f);
1079 ALU_CASE(u2f32, u2f);
1080
1081 ALU_CASE(fsin, fsin);
1082 ALU_CASE(fcos, fcos);
1083
1084 ALU_CASE(iand, iand);
1085 ALU_CASE(ior, ior);
1086 ALU_CASE(ixor, ixor);
1087 ALU_CASE(inot, inot);
1088 ALU_CASE(ishl, ishl);
1089 ALU_CASE(ishr, iasr);
1090 ALU_CASE(ushr, ilsr);
1091
1092 ALU_CASE(b32all_fequal2, fball_eq);
1093 ALU_CASE(b32all_fequal3, fball_eq);
1094 ALU_CASE(b32all_fequal4, fball_eq);
1095
1096 ALU_CASE(b32any_fnequal2, fbany_neq);
1097 ALU_CASE(b32any_fnequal3, fbany_neq);
1098 ALU_CASE(b32any_fnequal4, fbany_neq);
1099
1100 ALU_CASE(b32all_iequal2, iball_eq);
1101 ALU_CASE(b32all_iequal3, iball_eq);
1102 ALU_CASE(b32all_iequal4, iball_eq);
1103
1104 ALU_CASE(b32any_inequal2, ibany_neq);
1105 ALU_CASE(b32any_inequal3, ibany_neq);
1106 ALU_CASE(b32any_inequal4, ibany_neq);
1107
1108 /* For greater-or-equal, we lower to less-or-equal and flip the
1109 * arguments */
1110
1111 case nir_op_fge:
1112 case nir_op_fge32:
1113 case nir_op_ige32:
1114 case nir_op_uge32: {
1115 op =
1116 instr->op == nir_op_fge ? midgard_alu_op_fle :
1117 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1118 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1119 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1120 0;
1121
1122 /* Swap via temporary */
1123 nir_alu_src temp = instr->src[1];
1124 instr->src[1] = instr->src[0];
1125 instr->src[0] = temp;
1126
1127 break;
1128 }
1129
1130 case nir_op_b32csel: {
1131 op = midgard_alu_op_fcsel;
1132
1133 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1134 nr_inputs = 2;
1135
1136 emit_condition(ctx, &instr->src[0].src, false);
1137
1138 /* The condition is the first argument; move the other
1139 * arguments up one to be a binary instruction for
1140 * Midgard */
1141
1142 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1143 break;
1144 }
1145
1146 default:
1147 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1148 assert(0);
1149 return;
1150 }
1151
1152 /* Fetch unit, quirks, etc information */
1153 unsigned opcode_props = alu_opcode_props[op];
1154 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1155
1156 /* Initialise fields common between scalar/vector instructions */
1157 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1158
1159 /* src0 will always exist afaik, but src1 will not for 1-argument
1160 * instructions. The latter can only be fetched if the instruction
1161 * needs it, or else we may segfault. */
1162
1163 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1164 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1165
1166 /* Rather than use the instruction generation helpers, we do it
1167 * ourselves here to avoid the mess */
1168
1169 midgard_instruction ins = {
1170 .type = TAG_ALU_4,
1171 .ssa_args = {
1172 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1173 .src1 = quirk_flipped_r24 ? src0 : src1,
1174 .dest = dest,
1175 }
1176 };
1177
1178 nir_alu_src *nirmods[2] = { NULL };
1179
1180 if (nr_inputs == 2) {
1181 nirmods[0] = &instr->src[0];
1182 nirmods[1] = &instr->src[1];
1183 } else if (nr_inputs == 1) {
1184 nirmods[quirk_flipped_r24] = &instr->src[0];
1185 } else {
1186 assert(0);
1187 }
1188
1189 midgard_vector_alu alu = {
1190 .op = op,
1191 .reg_mode = midgard_reg_mode_full,
1192 .dest_override = midgard_dest_override_none,
1193 .outmod = outmod,
1194
1195 /* Writemask only valid for non-SSA NIR */
1196 .mask = expand_writemask((1 << nr_components) - 1),
1197
1198 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1199 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1200 };
1201
1202 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1203
1204 if (!is_ssa)
1205 alu.mask &= expand_writemask(instr->dest.write_mask);
1206
1207 ins.alu = alu;
1208
1209 /* Late fixup for emulated instructions */
1210
1211 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1212 /* Presently, our second argument is an inline #0 constant.
1213 * Switch over to an embedded 1.0 constant (that can't fit
1214 * inline, since we're 32-bit, not 16-bit like the inline
1215 * constants) */
1216
1217 ins.ssa_args.inline_constant = false;
1218 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1219 ins.has_constants = true;
1220
1221 if (instr->op == nir_op_b2f32) {
1222 ins.constants[0] = 1.0f;
1223 } else {
1224 /* Type pun it into place */
1225 uint32_t one = 0x1;
1226 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1227 }
1228
1229 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1230 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1231 ins.ssa_args.inline_constant = false;
1232 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1233 ins.has_constants = true;
1234 ins.constants[0] = 0.0f;
1235 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1236 }
1237
1238 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1239 /* To avoid duplicating the lookup tables (probably), true LUT
1240 * instructions can only operate as if they were scalars. Lower
1241 * them here by changing the component. */
1242
1243 uint8_t original_swizzle[4];
1244 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1245
1246 for (int i = 0; i < nr_components; ++i) {
1247 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1248
1249 for (int j = 0; j < 4; ++j)
1250 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1251
1252 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1253 emit_mir_instruction(ctx, ins);
1254 }
1255 } else {
1256 emit_mir_instruction(ctx, ins);
1257 }
1258 }
1259
1260 #undef ALU_CASE
1261
1262 static void
1263 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset)
1264 {
1265 /* TODO: half-floats */
1266
1267 if (offset < ctx->uniform_cutoff) {
1268 /* Fast path: For the first 16 uniform,
1269 * accesses are 0-cycle, since they're
1270 * just a register fetch in the usual
1271 * case. So, we alias the registers
1272 * while we're still in SSA-space */
1273
1274 int reg_slot = 23 - offset;
1275 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1276 } else {
1277 /* Otherwise, read from the 'special'
1278 * UBO to access higher-indexed
1279 * uniforms, at a performance cost */
1280
1281 midgard_instruction ins = m_load_uniform_32(dest, offset);
1282
1283 /* TODO: Don't split */
1284 ins.load_store.varying_parameters = (offset & 7) << 7;
1285 ins.load_store.address = offset >> 3;
1286
1287 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1288 emit_mir_instruction(ctx, ins);
1289 }
1290 }
1291
1292 static void
1293 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1294 {
1295 /* First, pull out the destination */
1296 unsigned dest = nir_dest_index(ctx, &instr->dest);
1297
1298 /* Now, figure out which uniform this is */
1299 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1300 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1301
1302 /* Sysvals are prefix uniforms */
1303 unsigned uniform = ((uintptr_t) val) - 1;
1304
1305 emit_uniform_read(ctx, dest, uniform);
1306 }
1307
1308 static void
1309 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1310 {
1311 unsigned offset, reg;
1312
1313 switch (instr->intrinsic) {
1314 case nir_intrinsic_discard_if:
1315 emit_condition(ctx, &instr->src[0], true);
1316
1317 /* fallthrough */
1318
1319 case nir_intrinsic_discard: {
1320 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1321 struct midgard_instruction discard = v_branch(conditional, false);
1322 discard.branch.target_type = TARGET_DISCARD;
1323 emit_mir_instruction(ctx, discard);
1324
1325 ctx->can_discard = true;
1326 break;
1327 }
1328
1329 case nir_intrinsic_load_uniform:
1330 case nir_intrinsic_load_input:
1331 assert(nir_src_is_const(instr->src[0]) && "no indirect inputs");
1332
1333 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[0]);
1334
1335 reg = nir_dest_index(ctx, &instr->dest);
1336
1337 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1338 emit_uniform_read(ctx, reg, ctx->sysval_count + offset);
1339 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1340 /* XXX: Half-floats? */
1341 /* TODO: swizzle, mask */
1342
1343 midgard_instruction ins = m_load_vary_32(reg, offset);
1344
1345 midgard_varying_parameter p = {
1346 .is_varying = 1,
1347 .interpolation = midgard_interp_default,
1348 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1349 };
1350
1351 unsigned u;
1352 memcpy(&u, &p, sizeof(p));
1353 ins.load_store.varying_parameters = u;
1354
1355 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1356 emit_mir_instruction(ctx, ins);
1357 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1358 /* Constant encoded as a pinned constant */
1359
1360 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1361 ins.has_constants = true;
1362 ins.has_blend_constant = true;
1363 emit_mir_instruction(ctx, ins);
1364 } else if (ctx->is_blend) {
1365 /* For blend shaders, a load might be
1366 * translated various ways depending on what
1367 * we're loading. Figure out how this is used */
1368
1369 nir_variable *out = NULL;
1370
1371 nir_foreach_variable(var, &ctx->nir->inputs) {
1372 int drvloc = var->data.driver_location;
1373
1374 if (nir_intrinsic_base(instr) == drvloc) {
1375 out = var;
1376 break;
1377 }
1378 }
1379
1380 assert(out);
1381
1382 if (out->data.location == VARYING_SLOT_COL0) {
1383 /* Source color preloaded to r0 */
1384
1385 midgard_pin_output(ctx, reg, 0);
1386 } else if (out->data.location == VARYING_SLOT_COL1) {
1387 /* Destination color must be read from framebuffer */
1388
1389 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1390 ins.load_store.swizzle = 0; /* xxxx */
1391
1392 /* Read each component sequentially */
1393
1394 for (int c = 0; c < 4; ++c) {
1395 ins.load_store.mask = (1 << c);
1396 ins.load_store.unknown = c;
1397 emit_mir_instruction(ctx, ins);
1398 }
1399
1400 /* vadd.u2f hr2, abs(hr2), #0 */
1401
1402 midgard_vector_alu_src alu_src = blank_alu_src;
1403 alu_src.abs = true;
1404 alu_src.half = true;
1405
1406 midgard_instruction u2f = {
1407 .type = TAG_ALU_4,
1408 .ssa_args = {
1409 .src0 = reg,
1410 .src1 = SSA_UNUSED_0,
1411 .dest = reg,
1412 .inline_constant = true
1413 },
1414 .alu = {
1415 .op = midgard_alu_op_u2f,
1416 .reg_mode = midgard_reg_mode_half,
1417 .dest_override = midgard_dest_override_none,
1418 .mask = 0xF,
1419 .src1 = vector_alu_srco_unsigned(alu_src),
1420 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1421 }
1422 };
1423
1424 emit_mir_instruction(ctx, u2f);
1425
1426 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1427
1428 alu_src.abs = false;
1429
1430 midgard_instruction fmul = {
1431 .type = TAG_ALU_4,
1432 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1433 .ssa_args = {
1434 .src0 = reg,
1435 .dest = reg,
1436 .src1 = SSA_UNUSED_0,
1437 .inline_constant = true
1438 },
1439 .alu = {
1440 .op = midgard_alu_op_fmul,
1441 .reg_mode = midgard_reg_mode_full,
1442 .dest_override = midgard_dest_override_none,
1443 .outmod = midgard_outmod_sat,
1444 .mask = 0xFF,
1445 .src1 = vector_alu_srco_unsigned(alu_src),
1446 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1447 }
1448 };
1449
1450 emit_mir_instruction(ctx, fmul);
1451 } else {
1452 DBG("Unknown input in blend shader\n");
1453 assert(0);
1454 }
1455 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1456 midgard_instruction ins = m_load_attr_32(reg, offset);
1457 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1458 ins.load_store.mask = (1 << instr->num_components) - 1;
1459 emit_mir_instruction(ctx, ins);
1460 } else {
1461 DBG("Unknown load\n");
1462 assert(0);
1463 }
1464
1465 break;
1466
1467 case nir_intrinsic_store_output:
1468 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1469
1470 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1471
1472 reg = nir_src_index(ctx, &instr->src[0]);
1473
1474 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1475 /* gl_FragColor is not emitted with load/store
1476 * instructions. Instead, it gets plonked into
1477 * r0 at the end of the shader and we do the
1478 * framebuffer writeout dance. TODO: Defer
1479 * writes */
1480
1481 midgard_pin_output(ctx, reg, 0);
1482
1483 /* Save the index we're writing to for later reference
1484 * in the epilogue */
1485
1486 ctx->fragment_output = reg;
1487 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1488 /* Varyings are written into one of two special
1489 * varying register, r26 or r27. The register itself is selected as the register
1490 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1491 *
1492 * Normally emitting fmov's is frowned upon,
1493 * but due to unique constraints of
1494 * REGISTER_VARYING, fmov emission + a
1495 * dedicated cleanup pass is the only way to
1496 * guarantee correctness when considering some
1497 * (common) edge cases XXX: FIXME */
1498
1499 /* If this varying corresponds to a constant (why?!),
1500 * emit that now since it won't get picked up by
1501 * hoisting (since there is no corresponding move
1502 * emitted otherwise) */
1503
1504 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1505
1506 if (constant_value) {
1507 /* Special case: emit the varying write
1508 * directly to r26 (looks funny in asm but it's
1509 * fine) and emit the store _now_. Possibly
1510 * slightly slower, but this is a really stupid
1511 * special case anyway (why on earth would you
1512 * have a constant varying? Your own fault for
1513 * slightly worse perf :P) */
1514
1515 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1516 attach_constants(ctx, &ins, constant_value, reg + 1);
1517 emit_mir_instruction(ctx, ins);
1518
1519 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1520 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1521 emit_mir_instruction(ctx, st);
1522 } else {
1523 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1524
1525 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1526 }
1527 } else {
1528 DBG("Unknown store\n");
1529 assert(0);
1530 }
1531
1532 break;
1533
1534 case nir_intrinsic_load_alpha_ref_float:
1535 assert(instr->dest.is_ssa);
1536
1537 float ref_value = ctx->alpha_ref;
1538
1539 float *v = ralloc_array(NULL, float, 4);
1540 memcpy(v, &ref_value, sizeof(float));
1541 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1542 break;
1543
1544 case nir_intrinsic_load_viewport_scale:
1545 case nir_intrinsic_load_viewport_offset:
1546 emit_sysval_read(ctx, instr);
1547 break;
1548
1549 default:
1550 printf ("Unhandled intrinsic\n");
1551 assert(0);
1552 break;
1553 }
1554 }
1555
1556 static unsigned
1557 midgard_tex_format(enum glsl_sampler_dim dim)
1558 {
1559 switch (dim) {
1560 case GLSL_SAMPLER_DIM_2D:
1561 case GLSL_SAMPLER_DIM_EXTERNAL:
1562 return TEXTURE_2D;
1563
1564 case GLSL_SAMPLER_DIM_3D:
1565 return TEXTURE_3D;
1566
1567 case GLSL_SAMPLER_DIM_CUBE:
1568 return TEXTURE_CUBE;
1569
1570 default:
1571 DBG("Unknown sampler dim type\n");
1572 assert(0);
1573 return 0;
1574 }
1575 }
1576
1577 static void
1578 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1579 {
1580 /* TODO */
1581 //assert (!instr->sampler);
1582 //assert (!instr->texture_array_size);
1583 assert (instr->op == nir_texop_tex);
1584
1585 /* Allocate registers via a round robin scheme to alternate between the two registers */
1586 int reg = ctx->texture_op_count & 1;
1587 int in_reg = reg, out_reg = reg;
1588
1589 /* Make room for the reg */
1590
1591 if (ctx->texture_index[reg] > -1)
1592 unalias_ssa(ctx, ctx->texture_index[reg]);
1593
1594 int texture_index = instr->texture_index;
1595 int sampler_index = texture_index;
1596
1597 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1598 switch (instr->src[i].src_type) {
1599 case nir_tex_src_coord: {
1600 int index = nir_src_index(ctx, &instr->src[i].src);
1601
1602 midgard_vector_alu_src alu_src = blank_alu_src;
1603
1604 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1605
1606 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1607 /* For cubemaps, we need to load coords into
1608 * special r27, and then use a special ld/st op
1609 * to copy into the texture register */
1610
1611 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1612
1613 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1614 emit_mir_instruction(ctx, move);
1615
1616 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1617 st.load_store.unknown = 0x24; /* XXX: What is this? */
1618 st.load_store.mask = 0x3; /* xy? */
1619 st.load_store.swizzle = alu_src.swizzle;
1620 emit_mir_instruction(ctx, st);
1621
1622 } else {
1623 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1624
1625 midgard_instruction ins = v_fmov(index, alu_src, reg);
1626 emit_mir_instruction(ctx, ins);
1627 }
1628
1629 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1630
1631 break;
1632 }
1633
1634 default: {
1635 DBG("Unknown source type\n");
1636 //assert(0);
1637 break;
1638 }
1639 }
1640 }
1641
1642 /* No helper to build texture words -- we do it all here */
1643 midgard_instruction ins = {
1644 .type = TAG_TEXTURE_4,
1645 .texture = {
1646 .op = TEXTURE_OP_NORMAL,
1647 .format = midgard_tex_format(instr->sampler_dim),
1648 .texture_handle = texture_index,
1649 .sampler_handle = sampler_index,
1650
1651 /* TODO: Don't force xyzw */
1652 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1653 .mask = 0xF,
1654
1655 /* TODO: half */
1656 //.in_reg_full = 1,
1657 .out_full = 1,
1658
1659 .filter = 1,
1660
1661 /* Always 1 */
1662 .unknown7 = 1,
1663
1664 /* Assume we can continue; hint it out later */
1665 .cont = 1,
1666 }
1667 };
1668
1669 /* Set registers to read and write from the same place */
1670 ins.texture.in_reg_select = in_reg;
1671 ins.texture.out_reg_select = out_reg;
1672
1673 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1674 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1675 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1676 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1677 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1678 } else {
1679 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1680 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1681 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1682 }
1683
1684 emit_mir_instruction(ctx, ins);
1685
1686 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1687
1688 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1689 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1690 ctx->texture_index[reg] = o_index;
1691
1692 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1693 emit_mir_instruction(ctx, ins2);
1694
1695 /* Used for .cont and .last hinting */
1696 ctx->texture_op_count++;
1697 }
1698
1699 static void
1700 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1701 {
1702 switch (instr->type) {
1703 case nir_jump_break: {
1704 /* Emit a branch out of the loop */
1705 struct midgard_instruction br = v_branch(false, false);
1706 br.branch.target_type = TARGET_BREAK;
1707 br.branch.target_break = ctx->current_loop;
1708 emit_mir_instruction(ctx, br);
1709
1710 DBG("break..\n");
1711 break;
1712 }
1713
1714 default:
1715 DBG("Unknown jump type %d\n", instr->type);
1716 break;
1717 }
1718 }
1719
1720 static void
1721 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1722 {
1723 switch (instr->type) {
1724 case nir_instr_type_load_const:
1725 emit_load_const(ctx, nir_instr_as_load_const(instr));
1726 break;
1727
1728 case nir_instr_type_intrinsic:
1729 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1730 break;
1731
1732 case nir_instr_type_alu:
1733 emit_alu(ctx, nir_instr_as_alu(instr));
1734 break;
1735
1736 case nir_instr_type_tex:
1737 emit_tex(ctx, nir_instr_as_tex(instr));
1738 break;
1739
1740 case nir_instr_type_jump:
1741 emit_jump(ctx, nir_instr_as_jump(instr));
1742 break;
1743
1744 case nir_instr_type_ssa_undef:
1745 /* Spurious */
1746 break;
1747
1748 default:
1749 DBG("Unhandled instruction type\n");
1750 break;
1751 }
1752 }
1753
1754 /* Determine the actual hardware from the index based on the RA results or special values */
1755
1756 static int
1757 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1758 {
1759 if (reg >= SSA_FIXED_MINIMUM)
1760 return SSA_REG_FROM_FIXED(reg);
1761
1762 if (reg >= 0) {
1763 assert(reg < maxreg);
1764 int r = ra_get_node_reg(g, reg);
1765 ctx->work_registers = MAX2(ctx->work_registers, r);
1766 return r;
1767 }
1768
1769 switch (reg) {
1770 /* fmov style unused */
1771 case SSA_UNUSED_0:
1772 return REGISTER_UNUSED;
1773
1774 /* lut style unused */
1775 case SSA_UNUSED_1:
1776 return REGISTER_UNUSED;
1777
1778 default:
1779 DBG("Unknown SSA register alias %d\n", reg);
1780 assert(0);
1781 return 31;
1782 }
1783 }
1784
1785 static unsigned int
1786 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1787 {
1788 /* Choose the first available register to minimise reported register pressure */
1789
1790 for (int i = 0; i < 16; ++i) {
1791 if (BITSET_TEST(regs, i)) {
1792 return i;
1793 }
1794 }
1795
1796 assert(0);
1797 return 0;
1798 }
1799
1800 static bool
1801 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1802 {
1803 if (ins->ssa_args.src0 == src) return true;
1804 if (ins->ssa_args.src1 == src) return true;
1805
1806 return false;
1807 }
1808
1809 static bool
1810 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1811 {
1812 /* Check the rest of the block for liveness */
1813 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1814 if (midgard_is_live_in_instr(ins, src))
1815 return true;
1816 }
1817
1818 /* Check the rest of the blocks for liveness */
1819 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1820 mir_foreach_instr_in_block(b, ins) {
1821 if (midgard_is_live_in_instr(ins, src))
1822 return true;
1823 }
1824 }
1825
1826 /* TODO: How does control flow interact in complex shaders? */
1827
1828 return false;
1829 }
1830
1831 static void
1832 allocate_registers(compiler_context *ctx)
1833 {
1834 /* First, initialize the RA */
1835 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1836
1837 /* Create a primary (general purpose) class, as well as special purpose
1838 * pipeline register classes */
1839
1840 int primary_class = ra_alloc_reg_class(regs);
1841 int varying_class = ra_alloc_reg_class(regs);
1842
1843 /* Add the full set of work registers */
1844 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1845 for (int i = 0; i < work_count; ++i)
1846 ra_class_add_reg(regs, primary_class, i);
1847
1848 /* Add special registers */
1849 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1850 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1851
1852 /* We're done setting up */
1853 ra_set_finalize(regs, NULL);
1854
1855 /* Transform the MIR into squeezed index form */
1856 mir_foreach_block(ctx, block) {
1857 mir_foreach_instr_in_block(block, ins) {
1858 if (ins->compact_branch) continue;
1859
1860 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1861 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1862 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1863 }
1864 if (midgard_debug & MIDGARD_DBG_SHADERS)
1865 print_mir_block(block);
1866 }
1867
1868 /* Let's actually do register allocation */
1869 int nodes = ctx->temp_count;
1870 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1871
1872 /* Set everything to the work register class, unless it has somewhere
1873 * special to go */
1874
1875 mir_foreach_block(ctx, block) {
1876 mir_foreach_instr_in_block(block, ins) {
1877 if (ins->compact_branch) continue;
1878
1879 if (ins->ssa_args.dest < 0) continue;
1880
1881 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1882
1883 int class = primary_class;
1884
1885 ra_set_node_class(g, ins->ssa_args.dest, class);
1886 }
1887 }
1888
1889 for (int index = 0; index <= ctx->max_hash; ++index) {
1890 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1891
1892 if (temp) {
1893 unsigned reg = temp - 1;
1894 int t = find_or_allocate_temp(ctx, index);
1895 ra_set_node_reg(g, t, reg);
1896 }
1897 }
1898
1899 /* Determine liveness */
1900
1901 int *live_start = malloc(nodes * sizeof(int));
1902 int *live_end = malloc(nodes * sizeof(int));
1903
1904 /* Initialize as non-existent */
1905
1906 for (int i = 0; i < nodes; ++i) {
1907 live_start[i] = live_end[i] = -1;
1908 }
1909
1910 int d = 0;
1911
1912 mir_foreach_block(ctx, block) {
1913 mir_foreach_instr_in_block(block, ins) {
1914 if (ins->compact_branch) continue;
1915
1916 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1917 /* If this destination is not yet live, it is now since we just wrote it */
1918
1919 int dest = ins->ssa_args.dest;
1920
1921 if (live_start[dest] == -1)
1922 live_start[dest] = d;
1923 }
1924
1925 /* Since we just used a source, the source might be
1926 * dead now. Scan the rest of the block for
1927 * invocations, and if there are none, the source dies
1928 * */
1929
1930 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1931
1932 for (int src = 0; src < 2; ++src) {
1933 int s = sources[src];
1934
1935 if (s < 0) continue;
1936
1937 if (s >= SSA_FIXED_MINIMUM) continue;
1938
1939 if (!is_live_after(ctx, block, ins, s)) {
1940 live_end[s] = d;
1941 }
1942 }
1943
1944 ++d;
1945 }
1946 }
1947
1948 /* If a node still hasn't been killed, kill it now */
1949
1950 for (int i = 0; i < nodes; ++i) {
1951 /* live_start == -1 most likely indicates a pinned output */
1952
1953 if (live_end[i] == -1)
1954 live_end[i] = d;
1955 }
1956
1957 /* Setup interference between nodes that are live at the same time */
1958
1959 for (int i = 0; i < nodes; ++i) {
1960 for (int j = i + 1; j < nodes; ++j) {
1961 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1962 ra_add_node_interference(g, i, j);
1963 }
1964 }
1965
1966 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1967
1968 if (!ra_allocate(g)) {
1969 DBG("Error allocating registers\n");
1970 assert(0);
1971 }
1972
1973 /* Cleanup */
1974 free(live_start);
1975 free(live_end);
1976
1977 mir_foreach_block(ctx, block) {
1978 mir_foreach_instr_in_block(block, ins) {
1979 if (ins->compact_branch) continue;
1980
1981 ssa_args args = ins->ssa_args;
1982
1983 switch (ins->type) {
1984 case TAG_ALU_4:
1985 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1986
1987 ins->registers.src2_imm = args.inline_constant;
1988
1989 if (args.inline_constant) {
1990 /* Encode inline 16-bit constant as a vector by default */
1991
1992 ins->registers.src2_reg = ins->inline_constant >> 11;
1993
1994 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1995
1996 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1997 ins->alu.src2 = imm << 2;
1998 } else {
1999 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2000 }
2001
2002 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2003
2004 break;
2005
2006 case TAG_LOAD_STORE_4: {
2007 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2008 /* TODO: use ssa_args for store_vary */
2009 ins->load_store.reg = 0;
2010 } else {
2011 bool has_dest = args.dest >= 0;
2012 int ssa_arg = has_dest ? args.dest : args.src0;
2013
2014 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2015 }
2016
2017 break;
2018 }
2019
2020 default:
2021 break;
2022 }
2023 }
2024 }
2025 }
2026
2027 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2028 * use scalar ALU instructions, for functional or performance reasons. To do
2029 * this, we just demote vector ALU payloads to scalar. */
2030
2031 static int
2032 component_from_mask(unsigned mask)
2033 {
2034 for (int c = 0; c < 4; ++c) {
2035 if (mask & (3 << (2 * c)))
2036 return c;
2037 }
2038
2039 assert(0);
2040 return 0;
2041 }
2042
2043 static bool
2044 is_single_component_mask(unsigned mask)
2045 {
2046 int components = 0;
2047
2048 for (int c = 0; c < 4; ++c)
2049 if (mask & (3 << (2 * c)))
2050 components++;
2051
2052 return components == 1;
2053 }
2054
2055 /* Create a mask of accessed components from a swizzle to figure out vector
2056 * dependencies */
2057
2058 static unsigned
2059 swizzle_to_access_mask(unsigned swizzle)
2060 {
2061 unsigned component_mask = 0;
2062
2063 for (int i = 0; i < 4; ++i) {
2064 unsigned c = (swizzle >> (2 * i)) & 3;
2065 component_mask |= (1 << c);
2066 }
2067
2068 return component_mask;
2069 }
2070
2071 static unsigned
2072 vector_to_scalar_source(unsigned u)
2073 {
2074 midgard_vector_alu_src v;
2075 memcpy(&v, &u, sizeof(v));
2076
2077 midgard_scalar_alu_src s = {
2078 .abs = v.abs,
2079 .negate = v.negate,
2080 .full = !v.half,
2081 .component = (v.swizzle & 3) << 1
2082 };
2083
2084 unsigned o;
2085 memcpy(&o, &s, sizeof(s));
2086
2087 return o & ((1 << 6) - 1);
2088 }
2089
2090 static midgard_scalar_alu
2091 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2092 {
2093 /* The output component is from the mask */
2094 midgard_scalar_alu s = {
2095 .op = v.op,
2096 .src1 = vector_to_scalar_source(v.src1),
2097 .src2 = vector_to_scalar_source(v.src2),
2098 .unknown = 0,
2099 .outmod = v.outmod,
2100 .output_full = 1, /* TODO: Half */
2101 .output_component = component_from_mask(v.mask) << 1,
2102 };
2103
2104 /* Inline constant is passed along rather than trying to extract it
2105 * from v */
2106
2107 if (ins->ssa_args.inline_constant) {
2108 uint16_t imm = 0;
2109 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2110 imm |= (lower_11 >> 9) & 3;
2111 imm |= (lower_11 >> 6) & 4;
2112 imm |= (lower_11 >> 2) & 0x38;
2113 imm |= (lower_11 & 63) << 6;
2114
2115 s.src2 = imm;
2116 }
2117
2118 return s;
2119 }
2120
2121 /* Midgard prefetches instruction types, so during emission we need to
2122 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2123 * if this is the second to last and the last is an ALU, then it's also 1... */
2124
2125 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2126 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2127
2128 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2129 bytes_emitted += sizeof(type)
2130
2131 static void
2132 emit_binary_vector_instruction(midgard_instruction *ains,
2133 uint16_t *register_words, int *register_words_count,
2134 uint64_t *body_words, size_t *body_size, int *body_words_count,
2135 size_t *bytes_emitted)
2136 {
2137 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2138 *bytes_emitted += sizeof(midgard_reg_info);
2139
2140 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2141 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2142 *bytes_emitted += sizeof(midgard_vector_alu);
2143 }
2144
2145 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2146 * mind that we are a vector architecture and we can write to different
2147 * components simultaneously */
2148
2149 static bool
2150 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2151 {
2152 /* Each instruction reads some registers and writes to a register. See
2153 * where the first writes */
2154
2155 /* Figure out where exactly we wrote to */
2156 int source = first->ssa_args.dest;
2157 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2158
2159 /* As long as the second doesn't read from the first, we're okay */
2160 if (second->ssa_args.src0 == source) {
2161 if (first->type == TAG_ALU_4) {
2162 /* Figure out which components we just read from */
2163
2164 int q = second->alu.src1;
2165 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2166
2167 /* Check if there are components in common, and fail if so */
2168 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2169 return false;
2170 } else
2171 return false;
2172
2173 }
2174
2175 if (second->ssa_args.src1 == source)
2176 return false;
2177
2178 /* Otherwise, it's safe in that regard. Another data hazard is both
2179 * writing to the same place, of course */
2180
2181 if (second->ssa_args.dest == source) {
2182 /* ...but only if the components overlap */
2183 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2184
2185 if (dest_mask & source_mask)
2186 return false;
2187 }
2188
2189 /* ...That's it */
2190 return true;
2191 }
2192
2193 static bool
2194 midgard_has_hazard(
2195 midgard_instruction **segment, unsigned segment_size,
2196 midgard_instruction *ains)
2197 {
2198 for (int s = 0; s < segment_size; ++s)
2199 if (!can_run_concurrent_ssa(segment[s], ains))
2200 return true;
2201
2202 return false;
2203
2204
2205 }
2206
2207 /* Schedules, but does not emit, a single basic block. After scheduling, the
2208 * final tag and size of the block are known, which are necessary for branching
2209 * */
2210
2211 static midgard_bundle
2212 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2213 {
2214 int instructions_emitted = 0, instructions_consumed = -1;
2215 midgard_bundle bundle = { 0 };
2216
2217 uint8_t tag = ins->type;
2218
2219 /* Default to the instruction's tag */
2220 bundle.tag = tag;
2221
2222 switch (ins->type) {
2223 case TAG_ALU_4: {
2224 uint32_t control = 0;
2225 size_t bytes_emitted = sizeof(control);
2226
2227 /* TODO: Constant combining */
2228 int index = 0, last_unit = 0;
2229
2230 /* Previous instructions, for the purpose of parallelism */
2231 midgard_instruction *segment[4] = {0};
2232 int segment_size = 0;
2233
2234 instructions_emitted = -1;
2235 midgard_instruction *pins = ins;
2236
2237 for (;;) {
2238 midgard_instruction *ains = pins;
2239
2240 /* Advance instruction pointer */
2241 if (index) {
2242 ains = mir_next_op(pins);
2243 pins = ains;
2244 }
2245
2246 /* Out-of-work condition */
2247 if ((struct list_head *) ains == &block->instructions)
2248 break;
2249
2250 /* Ensure that the chain can continue */
2251 if (ains->type != TAG_ALU_4) break;
2252
2253 /* According to the presentation "The ARM
2254 * Mali-T880 Mobile GPU" from HotChips 27,
2255 * there are two pipeline stages. Branching
2256 * position determined experimentally. Lines
2257 * are executed in parallel:
2258 *
2259 * [ VMUL ] [ SADD ]
2260 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2261 *
2262 * Verify that there are no ordering dependencies here.
2263 *
2264 * TODO: Allow for parallelism!!!
2265 */
2266
2267 /* Pick a unit for it if it doesn't force a particular unit */
2268
2269 int unit = ains->unit;
2270
2271 if (!unit) {
2272 int op = ains->alu.op;
2273 int units = alu_opcode_props[op];
2274
2275 /* TODO: Promotion of scalars to vectors */
2276 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2277
2278 if (!vector)
2279 assert(units & UNITS_SCALAR);
2280
2281 if (vector) {
2282 if (last_unit >= UNIT_VADD) {
2283 if (units & UNIT_VLUT)
2284 unit = UNIT_VLUT;
2285 else
2286 break;
2287 } else {
2288 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2289 unit = UNIT_VMUL;
2290 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2291 unit = UNIT_VADD;
2292 else if (units & UNIT_VLUT)
2293 unit = UNIT_VLUT;
2294 else
2295 break;
2296 }
2297 } else {
2298 if (last_unit >= UNIT_VADD) {
2299 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2300 unit = UNIT_SMUL;
2301 else if (units & UNIT_VLUT)
2302 unit = UNIT_VLUT;
2303 else
2304 break;
2305 } else {
2306 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2307 unit = UNIT_SADD;
2308 else if (units & UNIT_SMUL)
2309 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2310 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2311 unit = UNIT_VADD;
2312 else
2313 break;
2314 }
2315 }
2316
2317 assert(unit & units);
2318 }
2319
2320 /* Late unit check, this time for encoding (not parallelism) */
2321 if (unit <= last_unit) break;
2322
2323 /* Clear the segment */
2324 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2325 segment_size = 0;
2326
2327 if (midgard_has_hazard(segment, segment_size, ains))
2328 break;
2329
2330 /* We're good to go -- emit the instruction */
2331 ains->unit = unit;
2332
2333 segment[segment_size++] = ains;
2334
2335 /* Only one set of embedded constants per
2336 * bundle possible; if we have more, we must
2337 * break the chain early, unfortunately */
2338
2339 if (ains->has_constants) {
2340 if (bundle.has_embedded_constants) {
2341 /* ...but if there are already
2342 * constants but these are the
2343 * *same* constants, we let it
2344 * through */
2345
2346 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2347 break;
2348 } else {
2349 bundle.has_embedded_constants = true;
2350 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2351
2352 /* If this is a blend shader special constant, track it for patching */
2353 if (ains->has_blend_constant)
2354 bundle.has_blend_constant = true;
2355 }
2356 }
2357
2358 if (ains->unit & UNITS_ANY_VECTOR) {
2359 emit_binary_vector_instruction(ains, bundle.register_words,
2360 &bundle.register_words_count, bundle.body_words,
2361 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2362 } else if (ains->compact_branch) {
2363 /* All of r0 has to be written out
2364 * along with the branch writeout.
2365 * (slow!) */
2366
2367 if (ains->writeout) {
2368 if (index == 0) {
2369 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2370 ins.unit = UNIT_VMUL;
2371
2372 control |= ins.unit;
2373
2374 emit_binary_vector_instruction(&ins, bundle.register_words,
2375 &bundle.register_words_count, bundle.body_words,
2376 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2377 } else {
2378 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2379 bool written_late = false;
2380 bool components[4] = { 0 };
2381 uint16_t register_dep_mask = 0;
2382 uint16_t written_mask = 0;
2383
2384 midgard_instruction *qins = ins;
2385 for (int t = 0; t < index; ++t) {
2386 if (qins->registers.out_reg != 0) {
2387 /* Mark down writes */
2388
2389 written_mask |= (1 << qins->registers.out_reg);
2390 } else {
2391 /* Mark down the register dependencies for errata check */
2392
2393 if (qins->registers.src1_reg < 16)
2394 register_dep_mask |= (1 << qins->registers.src1_reg);
2395
2396 if (qins->registers.src2_reg < 16)
2397 register_dep_mask |= (1 << qins->registers.src2_reg);
2398
2399 int mask = qins->alu.mask;
2400
2401 for (int c = 0; c < 4; ++c)
2402 if (mask & (0x3 << (2 * c)))
2403 components[c] = true;
2404
2405 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2406
2407 if (qins->unit == UNIT_VLUT)
2408 written_late = true;
2409 }
2410
2411 /* Advance instruction pointer */
2412 qins = mir_next_op(qins);
2413 }
2414
2415
2416 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2417 if (register_dep_mask & written_mask) {
2418 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2419 break;
2420 }
2421
2422 if (written_late)
2423 break;
2424
2425 /* If even a single component is not written, break it up (conservative check). */
2426 bool breakup = false;
2427
2428 for (int c = 0; c < 4; ++c)
2429 if (!components[c])
2430 breakup = true;
2431
2432 if (breakup)
2433 break;
2434
2435 /* Otherwise, we're free to proceed */
2436 }
2437 }
2438
2439 if (ains->unit == ALU_ENAB_BRANCH) {
2440 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2441 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2442 bytes_emitted += sizeof(midgard_branch_extended);
2443 } else {
2444 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2445 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2446 bytes_emitted += sizeof(ains->br_compact);
2447 }
2448 } else {
2449 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2450 bytes_emitted += sizeof(midgard_reg_info);
2451
2452 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2453 bundle.body_words_count++;
2454 bytes_emitted += sizeof(midgard_scalar_alu);
2455 }
2456
2457 /* Defer marking until after writing to allow for break */
2458 control |= ains->unit;
2459 last_unit = ains->unit;
2460 ++instructions_emitted;
2461 ++index;
2462 }
2463
2464 /* Bubble up the number of instructions for skipping */
2465 instructions_consumed = index - 1;
2466
2467 int padding = 0;
2468
2469 /* Pad ALU op to nearest word */
2470
2471 if (bytes_emitted & 15) {
2472 padding = 16 - (bytes_emitted & 15);
2473 bytes_emitted += padding;
2474 }
2475
2476 /* Constants must always be quadwords */
2477 if (bundle.has_embedded_constants)
2478 bytes_emitted += 16;
2479
2480 /* Size ALU instruction for tag */
2481 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2482 bundle.padding = padding;
2483 bundle.control = bundle.tag | control;
2484
2485 break;
2486 }
2487
2488 case TAG_LOAD_STORE_4: {
2489 /* Load store instructions have two words at once. If
2490 * we only have one queued up, we need to NOP pad.
2491 * Otherwise, we store both in succession to save space
2492 * and cycles -- letting them go in parallel -- skip
2493 * the next. The usefulness of this optimisation is
2494 * greatly dependent on the quality of the instruction
2495 * scheduler.
2496 */
2497
2498 midgard_instruction *next_op = mir_next_op(ins);
2499
2500 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2501 /* As the two operate concurrently, make sure
2502 * they are not dependent */
2503
2504 if (can_run_concurrent_ssa(ins, next_op) || true) {
2505 /* Skip ahead, since it's redundant with the pair */
2506 instructions_consumed = 1 + (instructions_emitted++);
2507 }
2508 }
2509
2510 break;
2511 }
2512
2513 default:
2514 /* Texture ops default to single-op-per-bundle scheduling */
2515 break;
2516 }
2517
2518 /* Copy the instructions into the bundle */
2519 bundle.instruction_count = instructions_emitted + 1;
2520
2521 int used_idx = 0;
2522
2523 midgard_instruction *uins = ins;
2524 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2525 bundle.instructions[used_idx++] = *uins;
2526 uins = mir_next_op(uins);
2527 }
2528
2529 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2530
2531 return bundle;
2532 }
2533
2534 static int
2535 quadword_size(int tag)
2536 {
2537 switch (tag) {
2538 case TAG_ALU_4:
2539 return 1;
2540
2541 case TAG_ALU_8:
2542 return 2;
2543
2544 case TAG_ALU_12:
2545 return 3;
2546
2547 case TAG_ALU_16:
2548 return 4;
2549
2550 case TAG_LOAD_STORE_4:
2551 return 1;
2552
2553 case TAG_TEXTURE_4:
2554 return 1;
2555
2556 default:
2557 assert(0);
2558 return 0;
2559 }
2560 }
2561
2562 /* Schedule a single block by iterating its instruction to create bundles.
2563 * While we go, tally about the bundle sizes to compute the block size. */
2564
2565 static void
2566 schedule_block(compiler_context *ctx, midgard_block *block)
2567 {
2568 util_dynarray_init(&block->bundles, NULL);
2569
2570 block->quadword_count = 0;
2571
2572 mir_foreach_instr_in_block(block, ins) {
2573 int skip;
2574 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2575 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2576
2577 if (bundle.has_blend_constant) {
2578 /* TODO: Multiblock? */
2579 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2580 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2581 }
2582
2583 while(skip--)
2584 ins = mir_next_op(ins);
2585
2586 block->quadword_count += quadword_size(bundle.tag);
2587 }
2588
2589 block->is_scheduled = true;
2590 }
2591
2592 static void
2593 schedule_program(compiler_context *ctx)
2594 {
2595 allocate_registers(ctx);
2596
2597 mir_foreach_block(ctx, block) {
2598 schedule_block(ctx, block);
2599 }
2600 }
2601
2602 /* After everything is scheduled, emit whole bundles at a time */
2603
2604 static void
2605 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2606 {
2607 int lookahead = next_tag << 4;
2608
2609 switch (bundle->tag) {
2610 case TAG_ALU_4:
2611 case TAG_ALU_8:
2612 case TAG_ALU_12:
2613 case TAG_ALU_16: {
2614 /* Actually emit each component */
2615 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2616
2617 for (int i = 0; i < bundle->register_words_count; ++i)
2618 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2619
2620 /* Emit body words based on the instructions bundled */
2621 for (int i = 0; i < bundle->instruction_count; ++i) {
2622 midgard_instruction *ins = &bundle->instructions[i];
2623
2624 if (ins->unit & UNITS_ANY_VECTOR) {
2625 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2626 } else if (ins->compact_branch) {
2627 /* Dummy move, XXX DRY */
2628 if ((i == 0) && ins->writeout) {
2629 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2630 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2631 }
2632
2633 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2634 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2635 } else {
2636 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2637 }
2638 } else {
2639 /* Scalar */
2640 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2641 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2642 }
2643 }
2644
2645 /* Emit padding (all zero) */
2646 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2647
2648 /* Tack on constants */
2649
2650 if (bundle->has_embedded_constants) {
2651 util_dynarray_append(emission, float, bundle->constants[0]);
2652 util_dynarray_append(emission, float, bundle->constants[1]);
2653 util_dynarray_append(emission, float, bundle->constants[2]);
2654 util_dynarray_append(emission, float, bundle->constants[3]);
2655 }
2656
2657 break;
2658 }
2659
2660 case TAG_LOAD_STORE_4: {
2661 /* One or two composing instructions */
2662
2663 uint64_t current64, next64 = LDST_NOP;
2664
2665 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2666
2667 if (bundle->instruction_count == 2)
2668 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2669
2670 midgard_load_store instruction = {
2671 .type = bundle->tag,
2672 .next_type = next_tag,
2673 .word1 = current64,
2674 .word2 = next64
2675 };
2676
2677 util_dynarray_append(emission, midgard_load_store, instruction);
2678
2679 break;
2680 }
2681
2682 case TAG_TEXTURE_4: {
2683 /* Texture instructions are easy, since there is no
2684 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2685
2686 midgard_instruction *ins = &bundle->instructions[0];
2687
2688 ins->texture.type = TAG_TEXTURE_4;
2689 ins->texture.next_type = next_tag;
2690
2691 ctx->texture_op_count--;
2692
2693 if (!ctx->texture_op_count) {
2694 ins->texture.cont = 0;
2695 ins->texture.last = 1;
2696 }
2697
2698 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2699 break;
2700 }
2701
2702 default:
2703 DBG("Unknown midgard instruction type\n");
2704 assert(0);
2705 break;
2706 }
2707 }
2708
2709
2710 /* ALU instructions can inline or embed constants, which decreases register
2711 * pressure and saves space. */
2712
2713 #define CONDITIONAL_ATTACH(src) { \
2714 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2715 \
2716 if (entry) { \
2717 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2718 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2719 } \
2720 }
2721
2722 static void
2723 inline_alu_constants(compiler_context *ctx)
2724 {
2725 mir_foreach_instr(ctx, alu) {
2726 /* Other instructions cannot inline constants */
2727 if (alu->type != TAG_ALU_4) continue;
2728
2729 /* If there is already a constant here, we can do nothing */
2730 if (alu->has_constants) continue;
2731
2732 CONDITIONAL_ATTACH(src0);
2733
2734 if (!alu->has_constants) {
2735 CONDITIONAL_ATTACH(src1)
2736 } else if (!alu->inline_constant) {
2737 /* Corner case: _two_ vec4 constants, for instance with a
2738 * csel. For this case, we can only use a constant
2739 * register for one, we'll have to emit a move for the
2740 * other. Note, if both arguments are constants, then
2741 * necessarily neither argument depends on the value of
2742 * any particular register. As the destination register
2743 * will be wiped, that means we can spill the constant
2744 * to the destination register.
2745 */
2746
2747 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2748 unsigned scratch = alu->ssa_args.dest;
2749
2750 if (entry) {
2751 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2752 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2753
2754 /* Force a break XXX Defer r31 writes */
2755 ins.unit = UNIT_VLUT;
2756
2757 /* Set the source */
2758 alu->ssa_args.src1 = scratch;
2759
2760 /* Inject us -before- the last instruction which set r31 */
2761 mir_insert_instruction_before(mir_prev_op(alu), ins);
2762 }
2763 }
2764 }
2765 }
2766
2767 /* Midgard supports two types of constants, embedded constants (128-bit) and
2768 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2769 * constants can be demoted to inline constants, for space savings and
2770 * sometimes a performance boost */
2771
2772 static void
2773 embedded_to_inline_constant(compiler_context *ctx)
2774 {
2775 mir_foreach_instr(ctx, ins) {
2776 if (!ins->has_constants) continue;
2777
2778 if (ins->ssa_args.inline_constant) continue;
2779
2780 /* Blend constants must not be inlined by definition */
2781 if (ins->has_blend_constant) continue;
2782
2783 /* src1 cannot be an inline constant due to encoding
2784 * restrictions. So, if possible we try to flip the arguments
2785 * in that case */
2786
2787 int op = ins->alu.op;
2788
2789 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2790 /* Flip based on op. Fallthrough intentional */
2791
2792 switch (op) {
2793 /* These ops require an operational change to flip their arguments TODO */
2794 case midgard_alu_op_flt:
2795 case midgard_alu_op_fle:
2796 case midgard_alu_op_ilt:
2797 case midgard_alu_op_ile:
2798 case midgard_alu_op_fcsel:
2799 case midgard_alu_op_icsel:
2800 case midgard_alu_op_isub:
2801 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2802 break;
2803
2804 /* These ops are commutative and Just Flip */
2805 case midgard_alu_op_fne:
2806 case midgard_alu_op_fadd:
2807 case midgard_alu_op_fmul:
2808 case midgard_alu_op_fmin:
2809 case midgard_alu_op_fmax:
2810 case midgard_alu_op_iadd:
2811 case midgard_alu_op_imul:
2812 case midgard_alu_op_feq:
2813 case midgard_alu_op_ieq:
2814 case midgard_alu_op_ine:
2815 case midgard_alu_op_iand:
2816 case midgard_alu_op_ior:
2817 case midgard_alu_op_ixor:
2818 /* Flip the SSA numbers */
2819 ins->ssa_args.src0 = ins->ssa_args.src1;
2820 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2821
2822 /* And flip the modifiers */
2823
2824 unsigned src_temp;
2825
2826 src_temp = ins->alu.src2;
2827 ins->alu.src2 = ins->alu.src1;
2828 ins->alu.src1 = src_temp;
2829
2830 default:
2831 break;
2832 }
2833 }
2834
2835 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2836 /* Extract the source information */
2837
2838 midgard_vector_alu_src *src;
2839 int q = ins->alu.src2;
2840 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2841 src = m;
2842
2843 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2844 int component = src->swizzle & 3;
2845
2846 /* Scale constant appropriately, if we can legally */
2847 uint16_t scaled_constant = 0;
2848
2849 /* XXX: Check legality */
2850 if (midgard_is_integer_op(op)) {
2851 /* TODO: Inline integer */
2852 continue;
2853
2854 unsigned int *iconstants = (unsigned int *) ins->constants;
2855 scaled_constant = (uint16_t) iconstants[component];
2856
2857 /* Constant overflow after resize */
2858 if (scaled_constant != iconstants[component])
2859 continue;
2860 } else {
2861 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2862 }
2863
2864 /* We don't know how to handle these with a constant */
2865
2866 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2867 DBG("Bailing inline constant...\n");
2868 continue;
2869 }
2870
2871 /* Make sure that the constant is not itself a
2872 * vector by checking if all accessed values
2873 * (by the swizzle) are the same. */
2874
2875 uint32_t *cons = (uint32_t *) ins->constants;
2876 uint32_t value = cons[component];
2877
2878 bool is_vector = false;
2879 unsigned mask = effective_writemask(&ins->alu);
2880
2881 for (int c = 1; c < 4; ++c) {
2882 /* We only care if this component is actually used */
2883 if (!(mask & (1 << c)))
2884 continue;
2885
2886 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2887
2888 if (test != value) {
2889 is_vector = true;
2890 break;
2891 }
2892 }
2893
2894 if (is_vector)
2895 continue;
2896
2897 /* Get rid of the embedded constant */
2898 ins->has_constants = false;
2899 ins->ssa_args.src1 = SSA_UNUSED_0;
2900 ins->ssa_args.inline_constant = true;
2901 ins->inline_constant = scaled_constant;
2902 }
2903 }
2904 }
2905
2906 /* Map normal SSA sources to other SSA sources / fixed registers (like
2907 * uniforms) */
2908
2909 static void
2910 map_ssa_to_alias(compiler_context *ctx, int *ref)
2911 {
2912 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2913
2914 if (alias) {
2915 /* Remove entry in leftovers to avoid a redunant fmov */
2916
2917 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2918
2919 if (leftover)
2920 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2921
2922 /* Assign the alias map */
2923 *ref = alias - 1;
2924 return;
2925 }
2926 }
2927
2928 #define AS_SRC(to, u) \
2929 int q##to = ins->alu.src2; \
2930 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2931
2932 /* Removing unused moves is necessary to clean up the texture pipeline results.
2933 *
2934 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2935
2936 static void
2937 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2938 {
2939 mir_foreach_instr_in_block_safe(block, ins) {
2940 if (ins->type != TAG_ALU_4) continue;
2941
2942 if (ins->alu.op != midgard_alu_op_fmov) continue;
2943
2944 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2945
2946 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2947
2948 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2949
2950 mir_remove_instruction(ins);
2951 }
2952 }
2953
2954 /* The following passes reorder MIR instructions to enable better scheduling */
2955
2956 static void
2957 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2958 {
2959 mir_foreach_instr_in_block_safe(block, ins) {
2960 if (ins->type != TAG_LOAD_STORE_4) continue;
2961
2962 /* We've found a load/store op. Check if next is also load/store. */
2963 midgard_instruction *next_op = mir_next_op(ins);
2964 if (&next_op->link != &block->instructions) {
2965 if (next_op->type == TAG_LOAD_STORE_4) {
2966 /* If so, we're done since we're a pair */
2967 ins = mir_next_op(ins);
2968 continue;
2969 }
2970
2971 /* Maximum search distance to pair, to avoid register pressure disasters */
2972 int search_distance = 8;
2973
2974 /* Otherwise, we have an orphaned load/store -- search for another load */
2975 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2976 /* Terminate search if necessary */
2977 if (!(search_distance--)) break;
2978
2979 if (c->type != TAG_LOAD_STORE_4) continue;
2980
2981 if (OP_IS_STORE(c->load_store.op)) continue;
2982
2983 /* We found one! Move it up to pair and remove it from the old location */
2984
2985 mir_insert_instruction_before(ins, *c);
2986 mir_remove_instruction(c);
2987
2988 break;
2989 }
2990 }
2991 }
2992 }
2993
2994 /* Emit varying stores late */
2995
2996 static void
2997 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2998 /* Iterate in reverse to get the final write, rather than the first */
2999
3000 mir_foreach_instr_in_block_safe_rev(block, ins) {
3001 /* Check if what we just wrote needs a store */
3002 int idx = ins->ssa_args.dest;
3003 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3004
3005 if (!varying) continue;
3006
3007 varying -= 1;
3008
3009 /* We need to store to the appropriate varying, so emit the
3010 * move/store */
3011
3012 /* TODO: Integrate with special purpose RA (and scheduler?) */
3013 bool high_varying_register = false;
3014
3015 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3016
3017 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3018 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3019
3020 mir_insert_instruction_before(mir_next_op(ins), st);
3021 mir_insert_instruction_before(mir_next_op(ins), mov);
3022
3023 /* We no longer need to store this varying */
3024 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3025 }
3026 }
3027
3028 /* If there are leftovers after the below pass, emit actual fmov
3029 * instructions for the slow-but-correct path */
3030
3031 static void
3032 emit_leftover_move(compiler_context *ctx)
3033 {
3034 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3035 int base = ((uintptr_t) leftover->key) - 1;
3036 int mapped = base;
3037
3038 map_ssa_to_alias(ctx, &mapped);
3039 EMIT(fmov, mapped, blank_alu_src, base);
3040 }
3041 }
3042
3043 static void
3044 actualise_ssa_to_alias(compiler_context *ctx)
3045 {
3046 mir_foreach_instr(ctx, ins) {
3047 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3048 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3049 }
3050
3051 emit_leftover_move(ctx);
3052 }
3053
3054 static void
3055 emit_fragment_epilogue(compiler_context *ctx)
3056 {
3057 /* Special case: writing out constants requires us to include the move
3058 * explicitly now, so shove it into r0 */
3059
3060 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3061
3062 if (constant_value) {
3063 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3064 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3065 emit_mir_instruction(ctx, ins);
3066 }
3067
3068 /* Perform the actual fragment writeout. We have two writeout/branch
3069 * instructions, forming a loop until writeout is successful as per the
3070 * docs. TODO: gl_FragDepth */
3071
3072 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3073 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3074 }
3075
3076 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3077 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3078 * with the int8 analogue to the fragment epilogue */
3079
3080 static void
3081 emit_blend_epilogue(compiler_context *ctx)
3082 {
3083 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3084
3085 midgard_instruction scale = {
3086 .type = TAG_ALU_4,
3087 .unit = UNIT_VMUL,
3088 .inline_constant = _mesa_float_to_half(255.0),
3089 .ssa_args = {
3090 .src0 = SSA_FIXED_REGISTER(0),
3091 .src1 = SSA_UNUSED_0,
3092 .dest = SSA_FIXED_REGISTER(24),
3093 .inline_constant = true
3094 },
3095 .alu = {
3096 .op = midgard_alu_op_fmul,
3097 .reg_mode = midgard_reg_mode_full,
3098 .dest_override = midgard_dest_override_lower,
3099 .mask = 0xFF,
3100 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3101 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3102 }
3103 };
3104
3105 emit_mir_instruction(ctx, scale);
3106
3107 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3108
3109 midgard_vector_alu_src alu_src = blank_alu_src;
3110 alu_src.half = true;
3111
3112 midgard_instruction f2u8 = {
3113 .type = TAG_ALU_4,
3114 .ssa_args = {
3115 .src0 = SSA_FIXED_REGISTER(24),
3116 .src1 = SSA_UNUSED_0,
3117 .dest = SSA_FIXED_REGISTER(0),
3118 .inline_constant = true
3119 },
3120 .alu = {
3121 .op = midgard_alu_op_f2u8,
3122 .reg_mode = midgard_reg_mode_half,
3123 .dest_override = midgard_dest_override_lower,
3124 .outmod = midgard_outmod_pos,
3125 .mask = 0xF,
3126 .src1 = vector_alu_srco_unsigned(alu_src),
3127 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3128 }
3129 };
3130
3131 emit_mir_instruction(ctx, f2u8);
3132
3133 /* vmul.imov.quarter r0, r0, r0 */
3134
3135 midgard_instruction imov_8 = {
3136 .type = TAG_ALU_4,
3137 .ssa_args = {
3138 .src0 = SSA_UNUSED_1,
3139 .src1 = SSA_FIXED_REGISTER(0),
3140 .dest = SSA_FIXED_REGISTER(0),
3141 },
3142 .alu = {
3143 .op = midgard_alu_op_imov,
3144 .reg_mode = midgard_reg_mode_quarter,
3145 .dest_override = midgard_dest_override_none,
3146 .mask = 0xFF,
3147 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3148 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3149 }
3150 };
3151
3152 /* Emit branch epilogue with the 8-bit move as the source */
3153
3154 emit_mir_instruction(ctx, imov_8);
3155 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3156
3157 emit_mir_instruction(ctx, imov_8);
3158 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3159 }
3160
3161 static midgard_block *
3162 emit_block(compiler_context *ctx, nir_block *block)
3163 {
3164 midgard_block *this_block = malloc(sizeof(midgard_block));
3165 list_addtail(&this_block->link, &ctx->blocks);
3166
3167 this_block->is_scheduled = false;
3168 ++ctx->block_count;
3169
3170 ctx->texture_index[0] = -1;
3171 ctx->texture_index[1] = -1;
3172
3173 /* Set up current block */
3174 list_inithead(&this_block->instructions);
3175 ctx->current_block = this_block;
3176
3177 nir_foreach_instr(instr, block) {
3178 emit_instr(ctx, instr);
3179 ++ctx->instruction_count;
3180 }
3181
3182 inline_alu_constants(ctx);
3183 embedded_to_inline_constant(ctx);
3184
3185 /* Perform heavylifting for aliasing */
3186 actualise_ssa_to_alias(ctx);
3187
3188 midgard_emit_store(ctx, this_block);
3189 midgard_eliminate_orphan_moves(ctx, this_block);
3190 midgard_pair_load_store(ctx, this_block);
3191
3192 /* Append fragment shader epilogue (value writeout) */
3193 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3194 if (block == nir_impl_last_block(ctx->func->impl)) {
3195 if (ctx->is_blend)
3196 emit_blend_epilogue(ctx);
3197 else
3198 emit_fragment_epilogue(ctx);
3199 }
3200 }
3201
3202 /* Fallthrough save */
3203 this_block->next_fallthrough = ctx->previous_source_block;
3204
3205 if (block == nir_start_block(ctx->func->impl))
3206 ctx->initial_block = this_block;
3207
3208 if (block == nir_impl_last_block(ctx->func->impl))
3209 ctx->final_block = this_block;
3210
3211 /* Allow the next control flow to access us retroactively, for
3212 * branching etc */
3213 ctx->current_block = this_block;
3214
3215 /* Document the fallthrough chain */
3216 ctx->previous_source_block = this_block;
3217
3218 return this_block;
3219 }
3220
3221 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3222
3223 static void
3224 emit_if(struct compiler_context *ctx, nir_if *nif)
3225 {
3226 /* Conditional branches expect the condition in r31.w; emit a move for
3227 * that in the _previous_ block (which is the current block). */
3228 emit_condition(ctx, &nif->condition, true);
3229
3230 /* Speculatively emit the branch, but we can't fill it in until later */
3231 EMIT(branch, true, true);
3232 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3233
3234 /* Emit the two subblocks */
3235 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3236
3237 /* Emit a jump from the end of the then block to the end of the else */
3238 EMIT(branch, false, false);
3239 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3240
3241 /* Emit second block, and check if it's empty */
3242
3243 int else_idx = ctx->block_count;
3244 int count_in = ctx->instruction_count;
3245 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3246 int after_else_idx = ctx->block_count;
3247
3248 /* Now that we have the subblocks emitted, fix up the branches */
3249
3250 assert(then_block);
3251 assert(else_block);
3252
3253 if (ctx->instruction_count == count_in) {
3254 /* The else block is empty, so don't emit an exit jump */
3255 mir_remove_instruction(then_exit);
3256 then_branch->branch.target_block = after_else_idx;
3257 } else {
3258 then_branch->branch.target_block = else_idx;
3259 then_exit->branch.target_block = after_else_idx;
3260 }
3261 }
3262
3263 static void
3264 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3265 {
3266 /* Remember where we are */
3267 midgard_block *start_block = ctx->current_block;
3268
3269 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3270 * single current_loop variable, maybe we need a stack */
3271
3272 int loop_idx = ++ctx->current_loop;
3273
3274 /* Get index from before the body so we can loop back later */
3275 int start_idx = ctx->block_count;
3276
3277 /* Emit the body itself */
3278 emit_cf_list(ctx, &nloop->body);
3279
3280 /* Branch back to loop back */
3281 struct midgard_instruction br_back = v_branch(false, false);
3282 br_back.branch.target_block = start_idx;
3283 emit_mir_instruction(ctx, br_back);
3284
3285 /* Find the index of the block about to follow us (note: we don't add
3286 * one; blocks are 0-indexed so we get a fencepost problem) */
3287 int break_block_idx = ctx->block_count;
3288
3289 /* Fix up the break statements we emitted to point to the right place,
3290 * now that we can allocate a block number for them */
3291
3292 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3293 if (midgard_debug & MIDGARD_DBG_SHADERS)
3294 print_mir_block(block);
3295 mir_foreach_instr_in_block(block, ins) {
3296 if (ins->type != TAG_ALU_4) continue;
3297 if (!ins->compact_branch) continue;
3298 if (ins->prepacked_branch) continue;
3299
3300 /* We found a branch -- check the type to see if we need to do anything */
3301 if (ins->branch.target_type != TARGET_BREAK) continue;
3302
3303 /* It's a break! Check if it's our break */
3304 if (ins->branch.target_break != loop_idx) continue;
3305
3306 /* Okay, cool, we're breaking out of this loop.
3307 * Rewrite from a break to a goto */
3308
3309 ins->branch.target_type = TARGET_GOTO;
3310 ins->branch.target_block = break_block_idx;
3311 }
3312 }
3313 }
3314
3315 static midgard_block *
3316 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3317 {
3318 midgard_block *start_block = NULL;
3319
3320 foreach_list_typed(nir_cf_node, node, node, list) {
3321 switch (node->type) {
3322 case nir_cf_node_block: {
3323 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3324
3325 if (!start_block)
3326 start_block = block;
3327
3328 break;
3329 }
3330
3331 case nir_cf_node_if:
3332 emit_if(ctx, nir_cf_node_as_if(node));
3333 break;
3334
3335 case nir_cf_node_loop:
3336 emit_loop(ctx, nir_cf_node_as_loop(node));
3337 break;
3338
3339 case nir_cf_node_function:
3340 assert(0);
3341 break;
3342 }
3343 }
3344
3345 return start_block;
3346 }
3347
3348 /* Due to lookahead, we need to report the first tag executed in the command
3349 * stream and in branch targets. An initial block might be empty, so iterate
3350 * until we find one that 'works' */
3351
3352 static unsigned
3353 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3354 {
3355 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3356
3357 unsigned first_tag = 0;
3358
3359 do {
3360 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3361
3362 if (initial_bundle) {
3363 first_tag = initial_bundle->tag;
3364 break;
3365 }
3366
3367 /* Initial block is empty, try the next block */
3368 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3369 } while(initial_block != NULL);
3370
3371 assert(first_tag);
3372 return first_tag;
3373 }
3374
3375 int
3376 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3377 {
3378 struct util_dynarray *compiled = &program->compiled;
3379
3380 midgard_debug = debug_get_option_midgard_debug();
3381
3382 compiler_context ictx = {
3383 .nir = nir,
3384 .stage = nir->info.stage,
3385
3386 .is_blend = is_blend,
3387 .blend_constant_offset = -1,
3388
3389 .alpha_ref = program->alpha_ref
3390 };
3391
3392 compiler_context *ctx = &ictx;
3393
3394 /* TODO: Decide this at runtime */
3395 ctx->uniform_cutoff = 8;
3396
3397 /* Assign var locations early, so the epilogue can use them if necessary */
3398
3399 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3400 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3401 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3402
3403 /* Initialize at a global (not block) level hash tables */
3404
3405 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3406 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3407 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3408 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3409 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3410 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3411 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3412
3413 /* Record the varying mapping for the command stream's bookkeeping */
3414
3415 struct exec_list *varyings =
3416 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3417
3418 nir_foreach_variable(var, varyings) {
3419 unsigned loc = var->data.driver_location;
3420 unsigned sz = glsl_type_size(var->type, FALSE);
3421
3422 for (int c = 0; c < sz; ++c) {
3423 program->varyings[loc + c] = var->data.location;
3424 }
3425 }
3426
3427 /* Lower gl_Position pre-optimisation */
3428
3429 if (ctx->stage == MESA_SHADER_VERTEX)
3430 NIR_PASS_V(nir, nir_lower_viewport_transform);
3431
3432 NIR_PASS_V(nir, nir_lower_var_copies);
3433 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3434 NIR_PASS_V(nir, nir_split_var_copies);
3435 NIR_PASS_V(nir, nir_lower_var_copies);
3436 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3437 NIR_PASS_V(nir, nir_lower_var_copies);
3438 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3439
3440 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3441
3442 /* Optimisation passes */
3443
3444 optimise_nir(nir);
3445
3446 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3447 nir_print_shader(nir, stdout);
3448 }
3449
3450 /* Assign sysvals and counts, now that we're sure
3451 * (post-optimisation) */
3452
3453 midgard_nir_assign_sysvals(ctx, nir);
3454
3455 program->uniform_count = nir->num_uniforms;
3456 program->sysval_count = ctx->sysval_count;
3457 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3458
3459 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3460 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3461
3462 nir_foreach_function(func, nir) {
3463 if (!func->impl)
3464 continue;
3465
3466 list_inithead(&ctx->blocks);
3467 ctx->block_count = 0;
3468 ctx->func = func;
3469
3470 emit_cf_list(ctx, &func->impl->body);
3471 emit_block(ctx, func->impl->end_block);
3472
3473 break; /* TODO: Multi-function shaders */
3474 }
3475
3476 util_dynarray_init(compiled, NULL);
3477
3478 /* Schedule! */
3479 schedule_program(ctx);
3480
3481 /* Now that all the bundles are scheduled and we can calculate block
3482 * sizes, emit actual branch instructions rather than placeholders */
3483
3484 int br_block_idx = 0;
3485
3486 mir_foreach_block(ctx, block) {
3487 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3488 for (int c = 0; c < bundle->instruction_count; ++c) {
3489 midgard_instruction *ins = &bundle->instructions[c];
3490
3491 if (!midgard_is_branch_unit(ins->unit)) continue;
3492
3493 if (ins->prepacked_branch) continue;
3494
3495 /* Parse some basic branch info */
3496 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3497 bool is_conditional = ins->branch.conditional;
3498 bool is_inverted = ins->branch.invert_conditional;
3499 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3500
3501 /* Determine the block we're jumping to */
3502 int target_number = ins->branch.target_block;
3503
3504 /* Report the destination tag. Discards don't need this */
3505 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3506
3507 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3508 int quadword_offset = 0;
3509
3510 if (is_discard) {
3511 /* Jump to the end of the shader. We
3512 * need to include not only the
3513 * following blocks, but also the
3514 * contents of our current block (since
3515 * discard can come in the middle of
3516 * the block) */
3517
3518 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3519
3520 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3521 quadword_offset += quadword_size(bun->tag);
3522 }
3523
3524 mir_foreach_block_from(ctx, blk, b) {
3525 quadword_offset += b->quadword_count;
3526 }
3527
3528 } else if (target_number > br_block_idx) {
3529 /* Jump forward */
3530
3531 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3532 midgard_block *blk = mir_get_block(ctx, idx);
3533 assert(blk);
3534
3535 quadword_offset += blk->quadword_count;
3536 }
3537 } else {
3538 /* Jump backwards */
3539
3540 for (int idx = br_block_idx; idx >= target_number; --idx) {
3541 midgard_block *blk = mir_get_block(ctx, idx);
3542 assert(blk);
3543
3544 quadword_offset -= blk->quadword_count;
3545 }
3546 }
3547
3548 /* Unconditional extended branches (far jumps)
3549 * have issues, so we always use a conditional
3550 * branch, setting the condition to always for
3551 * unconditional. For compact unconditional
3552 * branches, cond isn't used so it doesn't
3553 * matter what we pick. */
3554
3555 midgard_condition cond =
3556 !is_conditional ? midgard_condition_always :
3557 is_inverted ? midgard_condition_false :
3558 midgard_condition_true;
3559
3560 midgard_jmp_writeout_op op =
3561 is_discard ? midgard_jmp_writeout_op_discard :
3562 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3563 midgard_jmp_writeout_op_branch_cond;
3564
3565 if (!is_compact) {
3566 midgard_branch_extended branch =
3567 midgard_create_branch_extended(
3568 cond, op,
3569 dest_tag,
3570 quadword_offset);
3571
3572 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3573 } else if (is_conditional || is_discard) {
3574 midgard_branch_cond branch = {
3575 .op = op,
3576 .dest_tag = dest_tag,
3577 .offset = quadword_offset,
3578 .cond = cond
3579 };
3580
3581 assert(branch.offset == quadword_offset);
3582
3583 memcpy(&ins->br_compact, &branch, sizeof(branch));
3584 } else {
3585 assert(op == midgard_jmp_writeout_op_branch_uncond);
3586
3587 midgard_branch_uncond branch = {
3588 .op = op,
3589 .dest_tag = dest_tag,
3590 .offset = quadword_offset,
3591 .unknown = 1
3592 };
3593
3594 assert(branch.offset == quadword_offset);
3595
3596 memcpy(&ins->br_compact, &branch, sizeof(branch));
3597 }
3598 }
3599 }
3600
3601 ++br_block_idx;
3602 }
3603
3604 /* Emit flat binary from the instruction arrays. Iterate each block in
3605 * sequence. Save instruction boundaries such that lookahead tags can
3606 * be assigned easily */
3607
3608 /* Cache _all_ bundles in source order for lookahead across failed branches */
3609
3610 int bundle_count = 0;
3611 mir_foreach_block(ctx, block) {
3612 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3613 }
3614 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3615 int bundle_idx = 0;
3616 mir_foreach_block(ctx, block) {
3617 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3618 source_order_bundles[bundle_idx++] = bundle;
3619 }
3620 }
3621
3622 int current_bundle = 0;
3623
3624 mir_foreach_block(ctx, block) {
3625 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3626 int lookahead = 1;
3627
3628 if (current_bundle + 1 < bundle_count) {
3629 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3630
3631 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3632 lookahead = 1;
3633 } else {
3634 lookahead = next;
3635 }
3636 }
3637
3638 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3639 ++current_bundle;
3640 }
3641
3642 /* TODO: Free deeper */
3643 //util_dynarray_fini(&block->instructions);
3644 }
3645
3646 free(source_order_bundles);
3647
3648 /* Report the very first tag executed */
3649 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3650
3651 /* Deal with off-by-one related to the fencepost problem */
3652 program->work_register_count = ctx->work_registers + 1;
3653
3654 program->can_discard = ctx->can_discard;
3655 program->uniform_cutoff = ctx->uniform_cutoff;
3656
3657 program->blend_patch_offset = ctx->blend_constant_offset;
3658
3659 if (midgard_debug & MIDGARD_DBG_SHADERS)
3660 disassemble_midgard(program->compiled.data, program->compiled.size);
3661
3662 return 0;
3663 }