panfrost/midgard: Fix regressions in -bjellyfish
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137
1138 /* XXX: Use fmov, not imov for now, since NIR does not
1139 * differentiate well (it'll happily emits imov for floats,
1140 * which the hardware rather dislikes and breaks e.g
1141 * -bjellyfish */
1142 ALU_CASE(imov, fmov);
1143
1144 ALU_CASE(feq32, feq);
1145 ALU_CASE(fne32, fne);
1146 ALU_CASE(flt32, flt);
1147 ALU_CASE(ieq32, ieq);
1148 ALU_CASE(ine32, ine);
1149 ALU_CASE(ilt32, ilt);
1150 ALU_CASE(ult32, ult);
1151
1152 /* We don't have a native b2f32 instruction. Instead, like many
1153 * GPUs, we exploit booleans as 0/~0 for false/true, and
1154 * correspondingly AND
1155 * by 1.0 to do the type conversion. For the moment, prime us
1156 * to emit:
1157 *
1158 * iand [whatever], #0
1159 *
1160 * At the end of emit_alu (as MIR), we'll fix-up the constant
1161 */
1162
1163 ALU_CASE(b2f32, iand);
1164 ALU_CASE(b2i32, iand);
1165
1166 /* Likewise, we don't have a dedicated f2b32 instruction, but
1167 * we can do a "not equal to 0.0" test. */
1168
1169 ALU_CASE(f2b32, fne);
1170 ALU_CASE(i2b32, ine);
1171
1172 ALU_CASE(frcp, frcp);
1173 ALU_CASE(frsq, frsqrt);
1174 ALU_CASE(fsqrt, fsqrt);
1175 ALU_CASE(fexp2, fexp2);
1176 ALU_CASE(flog2, flog2);
1177
1178 ALU_CASE(f2i32, f2i);
1179 ALU_CASE(f2u32, f2u);
1180 ALU_CASE(i2f32, i2f);
1181 ALU_CASE(u2f32, u2f);
1182
1183 ALU_CASE(fsin, fsin);
1184 ALU_CASE(fcos, fcos);
1185
1186 ALU_CASE(iand, iand);
1187 ALU_CASE(ior, ior);
1188 ALU_CASE(ixor, ixor);
1189 ALU_CASE(inot, inand);
1190 ALU_CASE(ishl, ishl);
1191 ALU_CASE(ishr, iasr);
1192 ALU_CASE(ushr, ilsr);
1193
1194 ALU_CASE(b32all_fequal2, fball_eq);
1195 ALU_CASE(b32all_fequal3, fball_eq);
1196 ALU_CASE(b32all_fequal4, fball_eq);
1197
1198 ALU_CASE(b32any_fnequal2, fbany_neq);
1199 ALU_CASE(b32any_fnequal3, fbany_neq);
1200 ALU_CASE(b32any_fnequal4, fbany_neq);
1201
1202 ALU_CASE(b32all_iequal2, iball_eq);
1203 ALU_CASE(b32all_iequal3, iball_eq);
1204 ALU_CASE(b32all_iequal4, iball_eq);
1205
1206 ALU_CASE(b32any_inequal2, ibany_neq);
1207 ALU_CASE(b32any_inequal3, ibany_neq);
1208 ALU_CASE(b32any_inequal4, ibany_neq);
1209
1210 /* For greater-or-equal, we lower to less-or-equal and flip the
1211 * arguments */
1212
1213 case nir_op_fge:
1214 case nir_op_fge32:
1215 case nir_op_ige32:
1216 case nir_op_uge32: {
1217 op =
1218 instr->op == nir_op_fge ? midgard_alu_op_fle :
1219 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1220 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1221 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1222 0;
1223
1224 /* Swap via temporary */
1225 nir_alu_src temp = instr->src[1];
1226 instr->src[1] = instr->src[0];
1227 instr->src[0] = temp;
1228
1229 break;
1230 }
1231
1232 /* For a few special csel cases not handled by NIR, we can opt to
1233 * bitwise. Otherwise, we emit the condition and do a real csel */
1234
1235 case nir_op_b32csel: {
1236 if (nir_is_fzero_constant(instr->src[2].src)) {
1237 /* (b ? v : 0) = (b & v) */
1238 op = midgard_alu_op_iand;
1239 nr_inputs = 2;
1240 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1241 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1242 op = midgard_alu_op_iandnot;
1243 nr_inputs = 2;
1244 instr->src[1] = instr->src[0];
1245 instr->src[0] = instr->src[2];
1246 } else {
1247 op = midgard_alu_op_fcsel;
1248
1249 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1250 nr_inputs = 2;
1251
1252 /* Figure out which component the condition is in */
1253
1254 unsigned comp = instr->src[0].swizzle[0];
1255
1256 /* Make sure NIR isn't throwing a mixed condition at us */
1257
1258 for (unsigned c = 1; c < nr_components; ++c)
1259 assert(instr->src[0].swizzle[c] == comp);
1260
1261 /* Emit the condition into r31.w */
1262 emit_condition(ctx, &instr->src[0].src, false, comp);
1263
1264 /* The condition is the first argument; move the other
1265 * arguments up one to be a binary instruction for
1266 * Midgard */
1267
1268 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1269 }
1270 break;
1271 }
1272
1273 default:
1274 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1275 assert(0);
1276 return;
1277 }
1278
1279 /* Midgard can perform certain modifiers on output ofa n ALU op */
1280 midgard_outmod outmod =
1281 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1282
1283 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1284
1285 if (instr->op == nir_op_fmax) {
1286 if (nir_is_fzero_constant(instr->src[0].src)) {
1287 op = midgard_alu_op_fmov;
1288 nr_inputs = 1;
1289 outmod = midgard_outmod_pos;
1290 instr->src[0] = instr->src[1];
1291 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1292 op = midgard_alu_op_fmov;
1293 nr_inputs = 1;
1294 outmod = midgard_outmod_pos;
1295 }
1296 }
1297
1298 /* Fetch unit, quirks, etc information */
1299 unsigned opcode_props = alu_opcode_props[op].props;
1300 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1301
1302 /* src0 will always exist afaik, but src1 will not for 1-argument
1303 * instructions. The latter can only be fetched if the instruction
1304 * needs it, or else we may segfault. */
1305
1306 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1307 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1308
1309 /* Rather than use the instruction generation helpers, we do it
1310 * ourselves here to avoid the mess */
1311
1312 midgard_instruction ins = {
1313 .type = TAG_ALU_4,
1314 .ssa_args = {
1315 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1316 .src1 = quirk_flipped_r24 ? src0 : src1,
1317 .dest = dest,
1318 }
1319 };
1320
1321 nir_alu_src *nirmods[2] = { NULL };
1322
1323 if (nr_inputs == 2) {
1324 nirmods[0] = &instr->src[0];
1325 nirmods[1] = &instr->src[1];
1326 } else if (nr_inputs == 1) {
1327 nirmods[quirk_flipped_r24] = &instr->src[0];
1328 } else {
1329 assert(0);
1330 }
1331
1332 bool is_int = midgard_is_integer_op(op);
1333
1334 midgard_vector_alu alu = {
1335 .op = op,
1336 .reg_mode = midgard_reg_mode_full,
1337 .dest_override = midgard_dest_override_none,
1338 .outmod = outmod,
1339
1340 /* Writemask only valid for non-SSA NIR */
1341 .mask = expand_writemask((1 << nr_components) - 1),
1342
1343 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1344 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1345 };
1346
1347 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1348
1349 if (!is_ssa)
1350 alu.mask &= expand_writemask(instr->dest.write_mask);
1351
1352 ins.alu = alu;
1353
1354 /* Late fixup for emulated instructions */
1355
1356 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1357 /* Presently, our second argument is an inline #0 constant.
1358 * Switch over to an embedded 1.0 constant (that can't fit
1359 * inline, since we're 32-bit, not 16-bit like the inline
1360 * constants) */
1361
1362 ins.ssa_args.inline_constant = false;
1363 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1364 ins.has_constants = true;
1365
1366 if (instr->op == nir_op_b2f32) {
1367 ins.constants[0] = 1.0f;
1368 } else {
1369 /* Type pun it into place */
1370 uint32_t one = 0x1;
1371 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1372 }
1373
1374 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1375 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1376 ins.ssa_args.inline_constant = false;
1377 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1378 ins.has_constants = true;
1379 ins.constants[0] = 0.0f;
1380 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1381 } else if (instr->op == nir_op_inot) {
1382 /* ~b = ~(b & b), so duplicate the source */
1383 ins.ssa_args.src1 = ins.ssa_args.src0;
1384 ins.alu.src2 = ins.alu.src1;
1385 }
1386
1387 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1388 /* To avoid duplicating the lookup tables (probably), true LUT
1389 * instructions can only operate as if they were scalars. Lower
1390 * them here by changing the component. */
1391
1392 uint8_t original_swizzle[4];
1393 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1394
1395 for (int i = 0; i < nr_components; ++i) {
1396 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1397
1398 for (int j = 0; j < 4; ++j)
1399 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1400
1401 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1402 emit_mir_instruction(ctx, ins);
1403 }
1404 } else {
1405 emit_mir_instruction(ctx, ins);
1406 }
1407 }
1408
1409 #undef ALU_CASE
1410
1411 static void
1412 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1413 {
1414 /* TODO: half-floats */
1415
1416 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1417 /* Fast path: For the first 16 uniforms, direct accesses are
1418 * 0-cycle, since they're just a register fetch in the usual
1419 * case. So, we alias the registers while we're still in
1420 * SSA-space */
1421
1422 int reg_slot = 23 - offset;
1423 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1424 } else {
1425 /* Otherwise, read from the 'special' UBO to access
1426 * higher-indexed uniforms, at a performance cost. More
1427 * generally, we're emitting a UBO read instruction. */
1428
1429 midgard_instruction ins = m_load_uniform_32(dest, offset);
1430
1431 /* TODO: Don't split */
1432 ins.load_store.varying_parameters = (offset & 7) << 7;
1433 ins.load_store.address = offset >> 3;
1434
1435 if (indirect_offset) {
1436 emit_indirect_offset(ctx, indirect_offset);
1437 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1438 } else {
1439 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1440 }
1441
1442 emit_mir_instruction(ctx, ins);
1443 }
1444 }
1445
1446 static void
1447 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1448 {
1449 /* First, pull out the destination */
1450 unsigned dest = nir_dest_index(ctx, &instr->dest);
1451
1452 /* Now, figure out which uniform this is */
1453 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1454 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1455
1456 /* Sysvals are prefix uniforms */
1457 unsigned uniform = ((uintptr_t) val) - 1;
1458
1459 /* Emit the read itself -- this is never indirect */
1460 emit_uniform_read(ctx, dest, uniform, NULL);
1461 }
1462
1463 static void
1464 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1465 {
1466 unsigned offset, reg;
1467
1468 switch (instr->intrinsic) {
1469 case nir_intrinsic_discard_if:
1470 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1471
1472 /* fallthrough */
1473
1474 case nir_intrinsic_discard: {
1475 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1476 struct midgard_instruction discard = v_branch(conditional, false);
1477 discard.branch.target_type = TARGET_DISCARD;
1478 emit_mir_instruction(ctx, discard);
1479
1480 ctx->can_discard = true;
1481 break;
1482 }
1483
1484 case nir_intrinsic_load_uniform:
1485 case nir_intrinsic_load_input:
1486 offset = nir_intrinsic_base(instr);
1487
1488 bool direct = nir_src_is_const(instr->src[0]);
1489
1490 if (direct) {
1491 offset += nir_src_as_uint(instr->src[0]);
1492 }
1493
1494 reg = nir_dest_index(ctx, &instr->dest);
1495
1496 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1497 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1498 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1499 /* XXX: Half-floats? */
1500 /* TODO: swizzle, mask */
1501
1502 midgard_instruction ins = m_load_vary_32(reg, offset);
1503
1504 midgard_varying_parameter p = {
1505 .is_varying = 1,
1506 .interpolation = midgard_interp_default,
1507 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1508 };
1509
1510 unsigned u;
1511 memcpy(&u, &p, sizeof(p));
1512 ins.load_store.varying_parameters = u;
1513
1514 if (direct) {
1515 /* We have the offset totally ready */
1516 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1517 } else {
1518 /* We have it partially ready, but we need to
1519 * add in the dynamic index, moved to r27.w */
1520 emit_indirect_offset(ctx, &instr->src[0]);
1521 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1522 }
1523
1524 emit_mir_instruction(ctx, ins);
1525 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1526 /* Constant encoded as a pinned constant */
1527
1528 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1529 ins.has_constants = true;
1530 ins.has_blend_constant = true;
1531 emit_mir_instruction(ctx, ins);
1532 } else if (ctx->is_blend) {
1533 /* For blend shaders, a load might be
1534 * translated various ways depending on what
1535 * we're loading. Figure out how this is used */
1536
1537 nir_variable *out = NULL;
1538
1539 nir_foreach_variable(var, &ctx->nir->inputs) {
1540 int drvloc = var->data.driver_location;
1541
1542 if (nir_intrinsic_base(instr) == drvloc) {
1543 out = var;
1544 break;
1545 }
1546 }
1547
1548 assert(out);
1549
1550 if (out->data.location == VARYING_SLOT_COL0) {
1551 /* Source color preloaded to r0 */
1552
1553 midgard_pin_output(ctx, reg, 0);
1554 } else if (out->data.location == VARYING_SLOT_COL1) {
1555 /* Destination color must be read from framebuffer */
1556
1557 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1558 ins.load_store.swizzle = 0; /* xxxx */
1559
1560 /* Read each component sequentially */
1561
1562 for (int c = 0; c < 4; ++c) {
1563 ins.load_store.mask = (1 << c);
1564 ins.load_store.unknown = c;
1565 emit_mir_instruction(ctx, ins);
1566 }
1567
1568 /* vadd.u2f hr2, zext(hr2), #0 */
1569
1570 midgard_vector_alu_src alu_src = blank_alu_src;
1571 alu_src.mod = midgard_int_zero_extend;
1572 alu_src.half = true;
1573
1574 midgard_instruction u2f = {
1575 .type = TAG_ALU_4,
1576 .ssa_args = {
1577 .src0 = reg,
1578 .src1 = SSA_UNUSED_0,
1579 .dest = reg,
1580 .inline_constant = true
1581 },
1582 .alu = {
1583 .op = midgard_alu_op_u2f,
1584 .reg_mode = midgard_reg_mode_half,
1585 .dest_override = midgard_dest_override_none,
1586 .mask = 0xF,
1587 .src1 = vector_alu_srco_unsigned(alu_src),
1588 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1589 }
1590 };
1591
1592 emit_mir_instruction(ctx, u2f);
1593
1594 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1595
1596 alu_src.mod = 0;
1597
1598 midgard_instruction fmul = {
1599 .type = TAG_ALU_4,
1600 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1601 .ssa_args = {
1602 .src0 = reg,
1603 .dest = reg,
1604 .src1 = SSA_UNUSED_0,
1605 .inline_constant = true
1606 },
1607 .alu = {
1608 .op = midgard_alu_op_fmul,
1609 .reg_mode = midgard_reg_mode_full,
1610 .dest_override = midgard_dest_override_none,
1611 .outmod = midgard_outmod_sat,
1612 .mask = 0xFF,
1613 .src1 = vector_alu_srco_unsigned(alu_src),
1614 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1615 }
1616 };
1617
1618 emit_mir_instruction(ctx, fmul);
1619 } else {
1620 DBG("Unknown input in blend shader\n");
1621 assert(0);
1622 }
1623 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1624 midgard_instruction ins = m_load_attr_32(reg, offset);
1625 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1626 ins.load_store.mask = (1 << instr->num_components) - 1;
1627 emit_mir_instruction(ctx, ins);
1628 } else {
1629 DBG("Unknown load\n");
1630 assert(0);
1631 }
1632
1633 break;
1634
1635 case nir_intrinsic_store_output:
1636 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1637
1638 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1639
1640 reg = nir_src_index(ctx, &instr->src[0]);
1641
1642 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1643 /* gl_FragColor is not emitted with load/store
1644 * instructions. Instead, it gets plonked into
1645 * r0 at the end of the shader and we do the
1646 * framebuffer writeout dance. TODO: Defer
1647 * writes */
1648
1649 midgard_pin_output(ctx, reg, 0);
1650
1651 /* Save the index we're writing to for later reference
1652 * in the epilogue */
1653
1654 ctx->fragment_output = reg;
1655 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1656 /* Varyings are written into one of two special
1657 * varying register, r26 or r27. The register itself is selected as the register
1658 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1659 *
1660 * Normally emitting fmov's is frowned upon,
1661 * but due to unique constraints of
1662 * REGISTER_VARYING, fmov emission + a
1663 * dedicated cleanup pass is the only way to
1664 * guarantee correctness when considering some
1665 * (common) edge cases XXX: FIXME */
1666
1667 /* If this varying corresponds to a constant (why?!),
1668 * emit that now since it won't get picked up by
1669 * hoisting (since there is no corresponding move
1670 * emitted otherwise) */
1671
1672 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1673
1674 if (constant_value) {
1675 /* Special case: emit the varying write
1676 * directly to r26 (looks funny in asm but it's
1677 * fine) and emit the store _now_. Possibly
1678 * slightly slower, but this is a really stupid
1679 * special case anyway (why on earth would you
1680 * have a constant varying? Your own fault for
1681 * slightly worse perf :P) */
1682
1683 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1684 attach_constants(ctx, &ins, constant_value, reg + 1);
1685 emit_mir_instruction(ctx, ins);
1686
1687 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1688 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1689 emit_mir_instruction(ctx, st);
1690 } else {
1691 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1692
1693 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1694 }
1695 } else {
1696 DBG("Unknown store\n");
1697 assert(0);
1698 }
1699
1700 break;
1701
1702 case nir_intrinsic_load_alpha_ref_float:
1703 assert(instr->dest.is_ssa);
1704
1705 float ref_value = ctx->alpha_ref;
1706
1707 float *v = ralloc_array(NULL, float, 4);
1708 memcpy(v, &ref_value, sizeof(float));
1709 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1710 break;
1711
1712 case nir_intrinsic_load_viewport_scale:
1713 case nir_intrinsic_load_viewport_offset:
1714 emit_sysval_read(ctx, instr);
1715 break;
1716
1717 default:
1718 printf ("Unhandled intrinsic\n");
1719 assert(0);
1720 break;
1721 }
1722 }
1723
1724 static unsigned
1725 midgard_tex_format(enum glsl_sampler_dim dim)
1726 {
1727 switch (dim) {
1728 case GLSL_SAMPLER_DIM_2D:
1729 case GLSL_SAMPLER_DIM_EXTERNAL:
1730 return TEXTURE_2D;
1731
1732 case GLSL_SAMPLER_DIM_3D:
1733 return TEXTURE_3D;
1734
1735 case GLSL_SAMPLER_DIM_CUBE:
1736 return TEXTURE_CUBE;
1737
1738 default:
1739 DBG("Unknown sampler dim type\n");
1740 assert(0);
1741 return 0;
1742 }
1743 }
1744
1745 static void
1746 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1747 {
1748 /* TODO */
1749 //assert (!instr->sampler);
1750 //assert (!instr->texture_array_size);
1751 assert (instr->op == nir_texop_tex);
1752
1753 /* Allocate registers via a round robin scheme to alternate between the two registers */
1754 int reg = ctx->texture_op_count & 1;
1755 int in_reg = reg, out_reg = reg;
1756
1757 /* Make room for the reg */
1758
1759 if (ctx->texture_index[reg] > -1)
1760 unalias_ssa(ctx, ctx->texture_index[reg]);
1761
1762 int texture_index = instr->texture_index;
1763 int sampler_index = texture_index;
1764
1765 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1766 switch (instr->src[i].src_type) {
1767 case nir_tex_src_coord: {
1768 int index = nir_src_index(ctx, &instr->src[i].src);
1769
1770 midgard_vector_alu_src alu_src = blank_alu_src;
1771
1772 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1773
1774 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1775 /* For cubemaps, we need to load coords into
1776 * special r27, and then use a special ld/st op
1777 * to copy into the texture register */
1778
1779 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1780
1781 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1782 emit_mir_instruction(ctx, move);
1783
1784 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1785 st.load_store.unknown = 0x24; /* XXX: What is this? */
1786 st.load_store.mask = 0x3; /* xy? */
1787 st.load_store.swizzle = alu_src.swizzle;
1788 emit_mir_instruction(ctx, st);
1789
1790 } else {
1791 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1792
1793 midgard_instruction ins = v_fmov(index, alu_src, reg);
1794 emit_mir_instruction(ctx, ins);
1795 }
1796
1797 break;
1798 }
1799
1800 default: {
1801 DBG("Unknown source type\n");
1802 //assert(0);
1803 break;
1804 }
1805 }
1806 }
1807
1808 /* No helper to build texture words -- we do it all here */
1809 midgard_instruction ins = {
1810 .type = TAG_TEXTURE_4,
1811 .texture = {
1812 .op = TEXTURE_OP_NORMAL,
1813 .format = midgard_tex_format(instr->sampler_dim),
1814 .texture_handle = texture_index,
1815 .sampler_handle = sampler_index,
1816
1817 /* TODO: Don't force xyzw */
1818 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1819 .mask = 0xF,
1820
1821 /* TODO: half */
1822 //.in_reg_full = 1,
1823 .out_full = 1,
1824
1825 .filter = 1,
1826
1827 /* Always 1 */
1828 .unknown7 = 1,
1829
1830 /* Assume we can continue; hint it out later */
1831 .cont = 1,
1832 }
1833 };
1834
1835 /* Set registers to read and write from the same place */
1836 ins.texture.in_reg_select = in_reg;
1837 ins.texture.out_reg_select = out_reg;
1838
1839 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1840 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1841 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1842 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1843 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1844 } else {
1845 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1846 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1847 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1848 }
1849
1850 emit_mir_instruction(ctx, ins);
1851
1852 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1853
1854 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1855 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1856 ctx->texture_index[reg] = o_index;
1857
1858 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1859 emit_mir_instruction(ctx, ins2);
1860
1861 /* Used for .cont and .last hinting */
1862 ctx->texture_op_count++;
1863 }
1864
1865 static void
1866 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1867 {
1868 switch (instr->type) {
1869 case nir_jump_break: {
1870 /* Emit a branch out of the loop */
1871 struct midgard_instruction br = v_branch(false, false);
1872 br.branch.target_type = TARGET_BREAK;
1873 br.branch.target_break = ctx->current_loop_depth;
1874 emit_mir_instruction(ctx, br);
1875
1876 DBG("break..\n");
1877 break;
1878 }
1879
1880 default:
1881 DBG("Unknown jump type %d\n", instr->type);
1882 break;
1883 }
1884 }
1885
1886 static void
1887 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1888 {
1889 switch (instr->type) {
1890 case nir_instr_type_load_const:
1891 emit_load_const(ctx, nir_instr_as_load_const(instr));
1892 break;
1893
1894 case nir_instr_type_intrinsic:
1895 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1896 break;
1897
1898 case nir_instr_type_alu:
1899 emit_alu(ctx, nir_instr_as_alu(instr));
1900 break;
1901
1902 case nir_instr_type_tex:
1903 emit_tex(ctx, nir_instr_as_tex(instr));
1904 break;
1905
1906 case nir_instr_type_jump:
1907 emit_jump(ctx, nir_instr_as_jump(instr));
1908 break;
1909
1910 case nir_instr_type_ssa_undef:
1911 /* Spurious */
1912 break;
1913
1914 default:
1915 DBG("Unhandled instruction type\n");
1916 break;
1917 }
1918 }
1919
1920 /* Determine the actual hardware from the index based on the RA results or special values */
1921
1922 static int
1923 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1924 {
1925 if (reg >= SSA_FIXED_MINIMUM)
1926 return SSA_REG_FROM_FIXED(reg);
1927
1928 if (reg >= 0) {
1929 assert(reg < maxreg);
1930 int r = ra_get_node_reg(g, reg);
1931 ctx->work_registers = MAX2(ctx->work_registers, r);
1932 return r;
1933 }
1934
1935 switch (reg) {
1936 /* fmov style unused */
1937 case SSA_UNUSED_0:
1938 return REGISTER_UNUSED;
1939
1940 /* lut style unused */
1941 case SSA_UNUSED_1:
1942 return REGISTER_UNUSED;
1943
1944 default:
1945 DBG("Unknown SSA register alias %d\n", reg);
1946 assert(0);
1947 return 31;
1948 }
1949 }
1950
1951 static unsigned int
1952 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1953 {
1954 /* Choose the first available register to minimise reported register pressure */
1955
1956 for (int i = 0; i < 16; ++i) {
1957 if (BITSET_TEST(regs, i)) {
1958 return i;
1959 }
1960 }
1961
1962 assert(0);
1963 return 0;
1964 }
1965
1966 static bool
1967 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1968 {
1969 if (ins->ssa_args.src0 == src) return true;
1970 if (ins->ssa_args.src1 == src) return true;
1971
1972 return false;
1973 }
1974
1975 /* Determine if a variable is live in the successors of a block */
1976 static bool
1977 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1978 {
1979 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1980 midgard_block *succ = bl->successors[i];
1981
1982 /* If we already visited, the value we're seeking
1983 * isn't down this path (or we would have short
1984 * circuited */
1985
1986 if (succ->visited) continue;
1987
1988 /* Otherwise (it's visited *now*), check the block */
1989
1990 succ->visited = true;
1991
1992 mir_foreach_instr_in_block(succ, ins) {
1993 if (midgard_is_live_in_instr(ins, src))
1994 return true;
1995 }
1996
1997 /* ...and also, check *its* successors */
1998 if (is_live_after_successors(ctx, succ, src))
1999 return true;
2000
2001 }
2002
2003 /* Welp. We're really not live. */
2004
2005 return false;
2006 }
2007
2008 static bool
2009 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2010 {
2011 /* Check the rest of the block for liveness */
2012
2013 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2014 if (midgard_is_live_in_instr(ins, src))
2015 return true;
2016 }
2017
2018 /* Check the rest of the blocks for liveness recursively */
2019
2020 bool succ = is_live_after_successors(ctx, block, src);
2021
2022 mir_foreach_block(ctx, block) {
2023 block->visited = false;
2024 }
2025
2026 return succ;
2027 }
2028
2029 static void
2030 allocate_registers(compiler_context *ctx)
2031 {
2032 /* First, initialize the RA */
2033 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2034
2035 /* Create a primary (general purpose) class, as well as special purpose
2036 * pipeline register classes */
2037
2038 int primary_class = ra_alloc_reg_class(regs);
2039 int varying_class = ra_alloc_reg_class(regs);
2040
2041 /* Add the full set of work registers */
2042 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2043 for (int i = 0; i < work_count; ++i)
2044 ra_class_add_reg(regs, primary_class, i);
2045
2046 /* Add special registers */
2047 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2048 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2049
2050 /* We're done setting up */
2051 ra_set_finalize(regs, NULL);
2052
2053 /* Transform the MIR into squeezed index form */
2054 mir_foreach_block(ctx, block) {
2055 mir_foreach_instr_in_block(block, ins) {
2056 if (ins->compact_branch) continue;
2057
2058 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2059 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2060 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2061 }
2062 if (midgard_debug & MIDGARD_DBG_SHADERS)
2063 print_mir_block(block);
2064 }
2065
2066 /* Let's actually do register allocation */
2067 int nodes = ctx->temp_count;
2068 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2069
2070 /* Set everything to the work register class, unless it has somewhere
2071 * special to go */
2072
2073 mir_foreach_block(ctx, block) {
2074 mir_foreach_instr_in_block(block, ins) {
2075 if (ins->compact_branch) continue;
2076
2077 if (ins->ssa_args.dest < 0) continue;
2078
2079 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2080
2081 int class = primary_class;
2082
2083 ra_set_node_class(g, ins->ssa_args.dest, class);
2084 }
2085 }
2086
2087 for (int index = 0; index <= ctx->max_hash; ++index) {
2088 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2089
2090 if (temp) {
2091 unsigned reg = temp - 1;
2092 int t = find_or_allocate_temp(ctx, index);
2093 ra_set_node_reg(g, t, reg);
2094 }
2095 }
2096
2097 /* Determine liveness */
2098
2099 int *live_start = malloc(nodes * sizeof(int));
2100 int *live_end = malloc(nodes * sizeof(int));
2101
2102 /* Initialize as non-existent */
2103
2104 for (int i = 0; i < nodes; ++i) {
2105 live_start[i] = live_end[i] = -1;
2106 }
2107
2108 int d = 0;
2109
2110 mir_foreach_block(ctx, block) {
2111 mir_foreach_instr_in_block(block, ins) {
2112 if (ins->compact_branch) continue;
2113
2114 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2115 /* If this destination is not yet live, it is now since we just wrote it */
2116
2117 int dest = ins->ssa_args.dest;
2118
2119 if (live_start[dest] == -1)
2120 live_start[dest] = d;
2121 }
2122
2123 /* Since we just used a source, the source might be
2124 * dead now. Scan the rest of the block for
2125 * invocations, and if there are none, the source dies
2126 * */
2127
2128 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2129
2130 for (int src = 0; src < 2; ++src) {
2131 int s = sources[src];
2132
2133 if (s < 0) continue;
2134
2135 if (s >= SSA_FIXED_MINIMUM) continue;
2136
2137 if (!is_live_after(ctx, block, ins, s)) {
2138 live_end[s] = d;
2139 }
2140 }
2141
2142 ++d;
2143 }
2144 }
2145
2146 /* If a node still hasn't been killed, kill it now */
2147
2148 for (int i = 0; i < nodes; ++i) {
2149 /* live_start == -1 most likely indicates a pinned output */
2150
2151 if (live_end[i] == -1)
2152 live_end[i] = d;
2153 }
2154
2155 /* Setup interference between nodes that are live at the same time */
2156
2157 for (int i = 0; i < nodes; ++i) {
2158 for (int j = i + 1; j < nodes; ++j) {
2159 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2160 ra_add_node_interference(g, i, j);
2161 }
2162 }
2163
2164 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2165
2166 if (!ra_allocate(g)) {
2167 DBG("Error allocating registers\n");
2168 assert(0);
2169 }
2170
2171 /* Cleanup */
2172 free(live_start);
2173 free(live_end);
2174
2175 mir_foreach_block(ctx, block) {
2176 mir_foreach_instr_in_block(block, ins) {
2177 if (ins->compact_branch) continue;
2178
2179 ssa_args args = ins->ssa_args;
2180
2181 switch (ins->type) {
2182 case TAG_ALU_4:
2183 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2184
2185 ins->registers.src2_imm = args.inline_constant;
2186
2187 if (args.inline_constant) {
2188 /* Encode inline 16-bit constant as a vector by default */
2189
2190 ins->registers.src2_reg = ins->inline_constant >> 11;
2191
2192 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2193
2194 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2195 ins->alu.src2 = imm << 2;
2196 } else {
2197 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2198 }
2199
2200 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2201
2202 break;
2203
2204 case TAG_LOAD_STORE_4: {
2205 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2206 /* TODO: use ssa_args for store_vary */
2207 ins->load_store.reg = 0;
2208 } else {
2209 bool has_dest = args.dest >= 0;
2210 int ssa_arg = has_dest ? args.dest : args.src0;
2211
2212 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2213 }
2214
2215 break;
2216 }
2217
2218 default:
2219 break;
2220 }
2221 }
2222 }
2223 }
2224
2225 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2226 * use scalar ALU instructions, for functional or performance reasons. To do
2227 * this, we just demote vector ALU payloads to scalar. */
2228
2229 static int
2230 component_from_mask(unsigned mask)
2231 {
2232 for (int c = 0; c < 4; ++c) {
2233 if (mask & (3 << (2 * c)))
2234 return c;
2235 }
2236
2237 assert(0);
2238 return 0;
2239 }
2240
2241 static bool
2242 is_single_component_mask(unsigned mask)
2243 {
2244 int components = 0;
2245
2246 for (int c = 0; c < 4; ++c)
2247 if (mask & (3 << (2 * c)))
2248 components++;
2249
2250 return components == 1;
2251 }
2252
2253 /* Create a mask of accessed components from a swizzle to figure out vector
2254 * dependencies */
2255
2256 static unsigned
2257 swizzle_to_access_mask(unsigned swizzle)
2258 {
2259 unsigned component_mask = 0;
2260
2261 for (int i = 0; i < 4; ++i) {
2262 unsigned c = (swizzle >> (2 * i)) & 3;
2263 component_mask |= (1 << c);
2264 }
2265
2266 return component_mask;
2267 }
2268
2269 static unsigned
2270 vector_to_scalar_source(unsigned u, bool is_int)
2271 {
2272 midgard_vector_alu_src v;
2273 memcpy(&v, &u, sizeof(v));
2274
2275 /* TODO: Integers */
2276
2277 midgard_scalar_alu_src s = {
2278 .full = !v.half,
2279 .component = (v.swizzle & 3) << 1
2280 };
2281
2282 if (is_int) {
2283 /* TODO */
2284 } else {
2285 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2286 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2287 }
2288
2289 unsigned o;
2290 memcpy(&o, &s, sizeof(s));
2291
2292 return o & ((1 << 6) - 1);
2293 }
2294
2295 static midgard_scalar_alu
2296 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2297 {
2298 bool is_int = midgard_is_integer_op(v.op);
2299
2300 /* The output component is from the mask */
2301 midgard_scalar_alu s = {
2302 .op = v.op,
2303 .src1 = vector_to_scalar_source(v.src1, is_int),
2304 .src2 = vector_to_scalar_source(v.src2, is_int),
2305 .unknown = 0,
2306 .outmod = v.outmod,
2307 .output_full = 1, /* TODO: Half */
2308 .output_component = component_from_mask(v.mask) << 1,
2309 };
2310
2311 /* Inline constant is passed along rather than trying to extract it
2312 * from v */
2313
2314 if (ins->ssa_args.inline_constant) {
2315 uint16_t imm = 0;
2316 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2317 imm |= (lower_11 >> 9) & 3;
2318 imm |= (lower_11 >> 6) & 4;
2319 imm |= (lower_11 >> 2) & 0x38;
2320 imm |= (lower_11 & 63) << 6;
2321
2322 s.src2 = imm;
2323 }
2324
2325 return s;
2326 }
2327
2328 /* Midgard prefetches instruction types, so during emission we need to
2329 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2330 * if this is the second to last and the last is an ALU, then it's also 1... */
2331
2332 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2333 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2334
2335 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2336 bytes_emitted += sizeof(type)
2337
2338 static void
2339 emit_binary_vector_instruction(midgard_instruction *ains,
2340 uint16_t *register_words, int *register_words_count,
2341 uint64_t *body_words, size_t *body_size, int *body_words_count,
2342 size_t *bytes_emitted)
2343 {
2344 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2345 *bytes_emitted += sizeof(midgard_reg_info);
2346
2347 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2348 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2349 *bytes_emitted += sizeof(midgard_vector_alu);
2350 }
2351
2352 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2353 * mind that we are a vector architecture and we can write to different
2354 * components simultaneously */
2355
2356 static bool
2357 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2358 {
2359 /* Each instruction reads some registers and writes to a register. See
2360 * where the first writes */
2361
2362 /* Figure out where exactly we wrote to */
2363 int source = first->ssa_args.dest;
2364 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2365
2366 /* As long as the second doesn't read from the first, we're okay */
2367 if (second->ssa_args.src0 == source) {
2368 if (first->type == TAG_ALU_4) {
2369 /* Figure out which components we just read from */
2370
2371 int q = second->alu.src1;
2372 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2373
2374 /* Check if there are components in common, and fail if so */
2375 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2376 return false;
2377 } else
2378 return false;
2379
2380 }
2381
2382 if (second->ssa_args.src1 == source)
2383 return false;
2384
2385 /* Otherwise, it's safe in that regard. Another data hazard is both
2386 * writing to the same place, of course */
2387
2388 if (second->ssa_args.dest == source) {
2389 /* ...but only if the components overlap */
2390 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2391
2392 if (dest_mask & source_mask)
2393 return false;
2394 }
2395
2396 /* ...That's it */
2397 return true;
2398 }
2399
2400 static bool
2401 midgard_has_hazard(
2402 midgard_instruction **segment, unsigned segment_size,
2403 midgard_instruction *ains)
2404 {
2405 for (int s = 0; s < segment_size; ++s)
2406 if (!can_run_concurrent_ssa(segment[s], ains))
2407 return true;
2408
2409 return false;
2410
2411
2412 }
2413
2414 /* Schedules, but does not emit, a single basic block. After scheduling, the
2415 * final tag and size of the block are known, which are necessary for branching
2416 * */
2417
2418 static midgard_bundle
2419 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2420 {
2421 int instructions_emitted = 0, instructions_consumed = -1;
2422 midgard_bundle bundle = { 0 };
2423
2424 uint8_t tag = ins->type;
2425
2426 /* Default to the instruction's tag */
2427 bundle.tag = tag;
2428
2429 switch (ins->type) {
2430 case TAG_ALU_4: {
2431 uint32_t control = 0;
2432 size_t bytes_emitted = sizeof(control);
2433
2434 /* TODO: Constant combining */
2435 int index = 0, last_unit = 0;
2436
2437 /* Previous instructions, for the purpose of parallelism */
2438 midgard_instruction *segment[4] = {0};
2439 int segment_size = 0;
2440
2441 instructions_emitted = -1;
2442 midgard_instruction *pins = ins;
2443
2444 for (;;) {
2445 midgard_instruction *ains = pins;
2446
2447 /* Advance instruction pointer */
2448 if (index) {
2449 ains = mir_next_op(pins);
2450 pins = ains;
2451 }
2452
2453 /* Out-of-work condition */
2454 if ((struct list_head *) ains == &block->instructions)
2455 break;
2456
2457 /* Ensure that the chain can continue */
2458 if (ains->type != TAG_ALU_4) break;
2459
2460 /* According to the presentation "The ARM
2461 * Mali-T880 Mobile GPU" from HotChips 27,
2462 * there are two pipeline stages. Branching
2463 * position determined experimentally. Lines
2464 * are executed in parallel:
2465 *
2466 * [ VMUL ] [ SADD ]
2467 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2468 *
2469 * Verify that there are no ordering dependencies here.
2470 *
2471 * TODO: Allow for parallelism!!!
2472 */
2473
2474 /* Pick a unit for it if it doesn't force a particular unit */
2475
2476 int unit = ains->unit;
2477
2478 if (!unit) {
2479 int op = ains->alu.op;
2480 int units = alu_opcode_props[op].props;
2481
2482 /* TODO: Promotion of scalars to vectors */
2483 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2484
2485 if (!vector)
2486 assert(units & UNITS_SCALAR);
2487
2488 if (vector) {
2489 if (last_unit >= UNIT_VADD) {
2490 if (units & UNIT_VLUT)
2491 unit = UNIT_VLUT;
2492 else
2493 break;
2494 } else {
2495 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2496 unit = UNIT_VMUL;
2497 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2498 unit = UNIT_VADD;
2499 else if (units & UNIT_VLUT)
2500 unit = UNIT_VLUT;
2501 else
2502 break;
2503 }
2504 } else {
2505 if (last_unit >= UNIT_VADD) {
2506 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2507 unit = UNIT_SMUL;
2508 else if (units & UNIT_VLUT)
2509 unit = UNIT_VLUT;
2510 else
2511 break;
2512 } else {
2513 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2514 unit = UNIT_SADD;
2515 else if (units & UNIT_SMUL)
2516 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2517 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2518 unit = UNIT_VADD;
2519 else
2520 break;
2521 }
2522 }
2523
2524 assert(unit & units);
2525 }
2526
2527 /* Late unit check, this time for encoding (not parallelism) */
2528 if (unit <= last_unit) break;
2529
2530 /* Clear the segment */
2531 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2532 segment_size = 0;
2533
2534 if (midgard_has_hazard(segment, segment_size, ains))
2535 break;
2536
2537 /* We're good to go -- emit the instruction */
2538 ains->unit = unit;
2539
2540 segment[segment_size++] = ains;
2541
2542 /* Only one set of embedded constants per
2543 * bundle possible; if we have more, we must
2544 * break the chain early, unfortunately */
2545
2546 if (ains->has_constants) {
2547 if (bundle.has_embedded_constants) {
2548 /* ...but if there are already
2549 * constants but these are the
2550 * *same* constants, we let it
2551 * through */
2552
2553 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2554 break;
2555 } else {
2556 bundle.has_embedded_constants = true;
2557 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2558
2559 /* If this is a blend shader special constant, track it for patching */
2560 if (ains->has_blend_constant)
2561 bundle.has_blend_constant = true;
2562 }
2563 }
2564
2565 if (ains->unit & UNITS_ANY_VECTOR) {
2566 emit_binary_vector_instruction(ains, bundle.register_words,
2567 &bundle.register_words_count, bundle.body_words,
2568 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2569 } else if (ains->compact_branch) {
2570 /* All of r0 has to be written out
2571 * along with the branch writeout.
2572 * (slow!) */
2573
2574 if (ains->writeout) {
2575 if (index == 0) {
2576 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2577 ins.unit = UNIT_VMUL;
2578
2579 control |= ins.unit;
2580
2581 emit_binary_vector_instruction(&ins, bundle.register_words,
2582 &bundle.register_words_count, bundle.body_words,
2583 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2584 } else {
2585 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2586 bool written_late = false;
2587 bool components[4] = { 0 };
2588 uint16_t register_dep_mask = 0;
2589 uint16_t written_mask = 0;
2590
2591 midgard_instruction *qins = ins;
2592 for (int t = 0; t < index; ++t) {
2593 if (qins->registers.out_reg != 0) {
2594 /* Mark down writes */
2595
2596 written_mask |= (1 << qins->registers.out_reg);
2597 } else {
2598 /* Mark down the register dependencies for errata check */
2599
2600 if (qins->registers.src1_reg < 16)
2601 register_dep_mask |= (1 << qins->registers.src1_reg);
2602
2603 if (qins->registers.src2_reg < 16)
2604 register_dep_mask |= (1 << qins->registers.src2_reg);
2605
2606 int mask = qins->alu.mask;
2607
2608 for (int c = 0; c < 4; ++c)
2609 if (mask & (0x3 << (2 * c)))
2610 components[c] = true;
2611
2612 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2613
2614 if (qins->unit == UNIT_VLUT)
2615 written_late = true;
2616 }
2617
2618 /* Advance instruction pointer */
2619 qins = mir_next_op(qins);
2620 }
2621
2622
2623 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2624 if (register_dep_mask & written_mask) {
2625 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2626 break;
2627 }
2628
2629 if (written_late)
2630 break;
2631
2632 /* If even a single component is not written, break it up (conservative check). */
2633 bool breakup = false;
2634
2635 for (int c = 0; c < 4; ++c)
2636 if (!components[c])
2637 breakup = true;
2638
2639 if (breakup)
2640 break;
2641
2642 /* Otherwise, we're free to proceed */
2643 }
2644 }
2645
2646 if (ains->unit == ALU_ENAB_BRANCH) {
2647 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2648 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2649 bytes_emitted += sizeof(midgard_branch_extended);
2650 } else {
2651 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2652 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2653 bytes_emitted += sizeof(ains->br_compact);
2654 }
2655 } else {
2656 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2657 bytes_emitted += sizeof(midgard_reg_info);
2658
2659 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2660 bundle.body_words_count++;
2661 bytes_emitted += sizeof(midgard_scalar_alu);
2662 }
2663
2664 /* Defer marking until after writing to allow for break */
2665 control |= ains->unit;
2666 last_unit = ains->unit;
2667 ++instructions_emitted;
2668 ++index;
2669 }
2670
2671 /* Bubble up the number of instructions for skipping */
2672 instructions_consumed = index - 1;
2673
2674 int padding = 0;
2675
2676 /* Pad ALU op to nearest word */
2677
2678 if (bytes_emitted & 15) {
2679 padding = 16 - (bytes_emitted & 15);
2680 bytes_emitted += padding;
2681 }
2682
2683 /* Constants must always be quadwords */
2684 if (bundle.has_embedded_constants)
2685 bytes_emitted += 16;
2686
2687 /* Size ALU instruction for tag */
2688 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2689 bundle.padding = padding;
2690 bundle.control = bundle.tag | control;
2691
2692 break;
2693 }
2694
2695 case TAG_LOAD_STORE_4: {
2696 /* Load store instructions have two words at once. If
2697 * we only have one queued up, we need to NOP pad.
2698 * Otherwise, we store both in succession to save space
2699 * and cycles -- letting them go in parallel -- skip
2700 * the next. The usefulness of this optimisation is
2701 * greatly dependent on the quality of the instruction
2702 * scheduler.
2703 */
2704
2705 midgard_instruction *next_op = mir_next_op(ins);
2706
2707 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2708 /* As the two operate concurrently, make sure
2709 * they are not dependent */
2710
2711 if (can_run_concurrent_ssa(ins, next_op) || true) {
2712 /* Skip ahead, since it's redundant with the pair */
2713 instructions_consumed = 1 + (instructions_emitted++);
2714 }
2715 }
2716
2717 break;
2718 }
2719
2720 default:
2721 /* Texture ops default to single-op-per-bundle scheduling */
2722 break;
2723 }
2724
2725 /* Copy the instructions into the bundle */
2726 bundle.instruction_count = instructions_emitted + 1;
2727
2728 int used_idx = 0;
2729
2730 midgard_instruction *uins = ins;
2731 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2732 bundle.instructions[used_idx++] = *uins;
2733 uins = mir_next_op(uins);
2734 }
2735
2736 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2737
2738 return bundle;
2739 }
2740
2741 static int
2742 quadword_size(int tag)
2743 {
2744 switch (tag) {
2745 case TAG_ALU_4:
2746 return 1;
2747
2748 case TAG_ALU_8:
2749 return 2;
2750
2751 case TAG_ALU_12:
2752 return 3;
2753
2754 case TAG_ALU_16:
2755 return 4;
2756
2757 case TAG_LOAD_STORE_4:
2758 return 1;
2759
2760 case TAG_TEXTURE_4:
2761 return 1;
2762
2763 default:
2764 assert(0);
2765 return 0;
2766 }
2767 }
2768
2769 /* Schedule a single block by iterating its instruction to create bundles.
2770 * While we go, tally about the bundle sizes to compute the block size. */
2771
2772 static void
2773 schedule_block(compiler_context *ctx, midgard_block *block)
2774 {
2775 util_dynarray_init(&block->bundles, NULL);
2776
2777 block->quadword_count = 0;
2778
2779 mir_foreach_instr_in_block(block, ins) {
2780 int skip;
2781 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2782 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2783
2784 if (bundle.has_blend_constant) {
2785 /* TODO: Multiblock? */
2786 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2787 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2788 }
2789
2790 while(skip--)
2791 ins = mir_next_op(ins);
2792
2793 block->quadword_count += quadword_size(bundle.tag);
2794 }
2795
2796 block->is_scheduled = true;
2797 }
2798
2799 static void
2800 schedule_program(compiler_context *ctx)
2801 {
2802 allocate_registers(ctx);
2803
2804 mir_foreach_block(ctx, block) {
2805 schedule_block(ctx, block);
2806 }
2807 }
2808
2809 /* After everything is scheduled, emit whole bundles at a time */
2810
2811 static void
2812 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2813 {
2814 int lookahead = next_tag << 4;
2815
2816 switch (bundle->tag) {
2817 case TAG_ALU_4:
2818 case TAG_ALU_8:
2819 case TAG_ALU_12:
2820 case TAG_ALU_16: {
2821 /* Actually emit each component */
2822 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2823
2824 for (int i = 0; i < bundle->register_words_count; ++i)
2825 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2826
2827 /* Emit body words based on the instructions bundled */
2828 for (int i = 0; i < bundle->instruction_count; ++i) {
2829 midgard_instruction *ins = &bundle->instructions[i];
2830
2831 if (ins->unit & UNITS_ANY_VECTOR) {
2832 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2833 } else if (ins->compact_branch) {
2834 /* Dummy move, XXX DRY */
2835 if ((i == 0) && ins->writeout) {
2836 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2837 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2838 }
2839
2840 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2841 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2842 } else {
2843 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2844 }
2845 } else {
2846 /* Scalar */
2847 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2848 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2849 }
2850 }
2851
2852 /* Emit padding (all zero) */
2853 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2854
2855 /* Tack on constants */
2856
2857 if (bundle->has_embedded_constants) {
2858 util_dynarray_append(emission, float, bundle->constants[0]);
2859 util_dynarray_append(emission, float, bundle->constants[1]);
2860 util_dynarray_append(emission, float, bundle->constants[2]);
2861 util_dynarray_append(emission, float, bundle->constants[3]);
2862 }
2863
2864 break;
2865 }
2866
2867 case TAG_LOAD_STORE_4: {
2868 /* One or two composing instructions */
2869
2870 uint64_t current64, next64 = LDST_NOP;
2871
2872 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2873
2874 if (bundle->instruction_count == 2)
2875 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2876
2877 midgard_load_store instruction = {
2878 .type = bundle->tag,
2879 .next_type = next_tag,
2880 .word1 = current64,
2881 .word2 = next64
2882 };
2883
2884 util_dynarray_append(emission, midgard_load_store, instruction);
2885
2886 break;
2887 }
2888
2889 case TAG_TEXTURE_4: {
2890 /* Texture instructions are easy, since there is no
2891 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2892
2893 midgard_instruction *ins = &bundle->instructions[0];
2894
2895 ins->texture.type = TAG_TEXTURE_4;
2896 ins->texture.next_type = next_tag;
2897
2898 ctx->texture_op_count--;
2899
2900 if (!ctx->texture_op_count) {
2901 ins->texture.cont = 0;
2902 ins->texture.last = 1;
2903 }
2904
2905 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2906 break;
2907 }
2908
2909 default:
2910 DBG("Unknown midgard instruction type\n");
2911 assert(0);
2912 break;
2913 }
2914 }
2915
2916
2917 /* ALU instructions can inline or embed constants, which decreases register
2918 * pressure and saves space. */
2919
2920 #define CONDITIONAL_ATTACH(src) { \
2921 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2922 \
2923 if (entry) { \
2924 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2925 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2926 } \
2927 }
2928
2929 static void
2930 inline_alu_constants(compiler_context *ctx)
2931 {
2932 mir_foreach_instr(ctx, alu) {
2933 /* Other instructions cannot inline constants */
2934 if (alu->type != TAG_ALU_4) continue;
2935
2936 /* If there is already a constant here, we can do nothing */
2937 if (alu->has_constants) continue;
2938
2939 /* It makes no sense to inline constants on a branch */
2940 if (alu->compact_branch || alu->prepacked_branch) continue;
2941
2942 CONDITIONAL_ATTACH(src0);
2943
2944 if (!alu->has_constants) {
2945 CONDITIONAL_ATTACH(src1)
2946 } else if (!alu->inline_constant) {
2947 /* Corner case: _two_ vec4 constants, for instance with a
2948 * csel. For this case, we can only use a constant
2949 * register for one, we'll have to emit a move for the
2950 * other. Note, if both arguments are constants, then
2951 * necessarily neither argument depends on the value of
2952 * any particular register. As the destination register
2953 * will be wiped, that means we can spill the constant
2954 * to the destination register.
2955 */
2956
2957 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2958 unsigned scratch = alu->ssa_args.dest;
2959
2960 if (entry) {
2961 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2962 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2963
2964 /* Force a break XXX Defer r31 writes */
2965 ins.unit = UNIT_VLUT;
2966
2967 /* Set the source */
2968 alu->ssa_args.src1 = scratch;
2969
2970 /* Inject us -before- the last instruction which set r31 */
2971 mir_insert_instruction_before(mir_prev_op(alu), ins);
2972 }
2973 }
2974 }
2975 }
2976
2977 /* Midgard supports two types of constants, embedded constants (128-bit) and
2978 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2979 * constants can be demoted to inline constants, for space savings and
2980 * sometimes a performance boost */
2981
2982 static void
2983 embedded_to_inline_constant(compiler_context *ctx)
2984 {
2985 mir_foreach_instr(ctx, ins) {
2986 if (!ins->has_constants) continue;
2987
2988 if (ins->ssa_args.inline_constant) continue;
2989
2990 /* Blend constants must not be inlined by definition */
2991 if (ins->has_blend_constant) continue;
2992
2993 /* src1 cannot be an inline constant due to encoding
2994 * restrictions. So, if possible we try to flip the arguments
2995 * in that case */
2996
2997 int op = ins->alu.op;
2998
2999 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3000 switch (op) {
3001 /* These ops require an operational change to flip
3002 * their arguments TODO */
3003 case midgard_alu_op_flt:
3004 case midgard_alu_op_fle:
3005 case midgard_alu_op_ilt:
3006 case midgard_alu_op_ile:
3007 case midgard_alu_op_fcsel:
3008 case midgard_alu_op_icsel:
3009 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3010 default:
3011 break;
3012 }
3013
3014 if (alu_opcode_props[op].props & OP_COMMUTES) {
3015 /* Flip the SSA numbers */
3016 ins->ssa_args.src0 = ins->ssa_args.src1;
3017 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3018
3019 /* And flip the modifiers */
3020
3021 unsigned src_temp;
3022
3023 src_temp = ins->alu.src2;
3024 ins->alu.src2 = ins->alu.src1;
3025 ins->alu.src1 = src_temp;
3026 }
3027 }
3028
3029 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3030 /* Extract the source information */
3031
3032 midgard_vector_alu_src *src;
3033 int q = ins->alu.src2;
3034 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3035 src = m;
3036
3037 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3038 int component = src->swizzle & 3;
3039
3040 /* Scale constant appropriately, if we can legally */
3041 uint16_t scaled_constant = 0;
3042
3043 /* XXX: Check legality */
3044 if (midgard_is_integer_op(op)) {
3045 /* TODO: Inline integer */
3046 continue;
3047
3048 unsigned int *iconstants = (unsigned int *) ins->constants;
3049 scaled_constant = (uint16_t) iconstants[component];
3050
3051 /* Constant overflow after resize */
3052 if (scaled_constant != iconstants[component])
3053 continue;
3054 } else {
3055 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3056 }
3057
3058 /* We don't know how to handle these with a constant */
3059
3060 if (src->mod || src->half || src->rep_low || src->rep_high) {
3061 DBG("Bailing inline constant...\n");
3062 continue;
3063 }
3064
3065 /* Make sure that the constant is not itself a
3066 * vector by checking if all accessed values
3067 * (by the swizzle) are the same. */
3068
3069 uint32_t *cons = (uint32_t *) ins->constants;
3070 uint32_t value = cons[component];
3071
3072 bool is_vector = false;
3073 unsigned mask = effective_writemask(&ins->alu);
3074
3075 for (int c = 1; c < 4; ++c) {
3076 /* We only care if this component is actually used */
3077 if (!(mask & (1 << c)))
3078 continue;
3079
3080 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3081
3082 if (test != value) {
3083 is_vector = true;
3084 break;
3085 }
3086 }
3087
3088 if (is_vector)
3089 continue;
3090
3091 /* Get rid of the embedded constant */
3092 ins->has_constants = false;
3093 ins->ssa_args.src1 = SSA_UNUSED_0;
3094 ins->ssa_args.inline_constant = true;
3095 ins->inline_constant = scaled_constant;
3096 }
3097 }
3098 }
3099
3100 /* Map normal SSA sources to other SSA sources / fixed registers (like
3101 * uniforms) */
3102
3103 static void
3104 map_ssa_to_alias(compiler_context *ctx, int *ref)
3105 {
3106 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3107
3108 if (alias) {
3109 /* Remove entry in leftovers to avoid a redunant fmov */
3110
3111 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3112
3113 if (leftover)
3114 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3115
3116 /* Assign the alias map */
3117 *ref = alias - 1;
3118 return;
3119 }
3120 }
3121
3122 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3123 * texture pipeline */
3124
3125 static bool
3126 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3127 {
3128 bool progress = false;
3129
3130 mir_foreach_instr_in_block_safe(block, ins) {
3131 if (ins->type != TAG_ALU_4) continue;
3132 if (ins->compact_branch) continue;
3133
3134 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3135 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3136 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3137
3138 mir_remove_instruction(ins);
3139 progress = true;
3140 }
3141
3142 return progress;
3143 }
3144
3145 static bool
3146 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3147 {
3148 bool progress = false;
3149
3150 mir_foreach_instr_in_block_safe(block, ins) {
3151 if (ins->type != TAG_ALU_4) continue;
3152 if (!OP_IS_MOVE(ins->alu.op)) continue;
3153
3154 unsigned from = ins->ssa_args.src1;
3155 unsigned to = ins->ssa_args.dest;
3156
3157 /* We only work on pure SSA */
3158
3159 if (to >= SSA_FIXED_MINIMUM) continue;
3160 if (from >= SSA_FIXED_MINIMUM) continue;
3161 if (to >= ctx->func->impl->ssa_alloc) continue;
3162 if (from >= ctx->func->impl->ssa_alloc) continue;
3163
3164 /* Also, if the move has side effects, we're helpless */
3165
3166 midgard_vector_alu_src src =
3167 vector_alu_from_unsigned(ins->alu.src2);
3168 unsigned mask = squeeze_writemask(ins->alu.mask);
3169 bool is_int = midgard_is_integer_op(ins->alu.op);
3170
3171 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3172 if (ins->alu.outmod != midgard_outmod_none) continue;
3173
3174 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3175 if (v->ssa_args.src0 == to) {
3176 v->ssa_args.src0 = from;
3177 progress = true;
3178 }
3179
3180 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3181 v->ssa_args.src1 = from;
3182 progress = true;
3183 }
3184 }
3185 }
3186
3187 return progress;
3188 }
3189
3190 static bool
3191 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3192 {
3193 bool progress = false;
3194
3195 mir_foreach_instr_in_block_safe(block, ins) {
3196 if (ins->type != TAG_ALU_4) continue;
3197 if (!OP_IS_MOVE(ins->alu.op)) continue;
3198
3199 unsigned from = ins->ssa_args.src1;
3200 unsigned to = ins->ssa_args.dest;
3201
3202 /* Make sure it's a familiar type of special move. Basically we
3203 * just handle the special dummy moves emitted by the texture
3204 * pipeline. TODO: verify. TODO: why does this break varyings?
3205 */
3206
3207 if (from >= SSA_FIXED_MINIMUM) continue;
3208 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3209 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3210
3211 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3212 if (v->ssa_args.dest == from) {
3213 v->ssa_args.dest = to;
3214 progress = true;
3215 }
3216 }
3217
3218 mir_remove_instruction(ins);
3219 }
3220
3221 return progress;
3222 }
3223
3224 /* The following passes reorder MIR instructions to enable better scheduling */
3225
3226 static void
3227 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3228 {
3229 mir_foreach_instr_in_block_safe(block, ins) {
3230 if (ins->type != TAG_LOAD_STORE_4) continue;
3231
3232 /* We've found a load/store op. Check if next is also load/store. */
3233 midgard_instruction *next_op = mir_next_op(ins);
3234 if (&next_op->link != &block->instructions) {
3235 if (next_op->type == TAG_LOAD_STORE_4) {
3236 /* If so, we're done since we're a pair */
3237 ins = mir_next_op(ins);
3238 continue;
3239 }
3240
3241 /* Maximum search distance to pair, to avoid register pressure disasters */
3242 int search_distance = 8;
3243
3244 /* Otherwise, we have an orphaned load/store -- search for another load */
3245 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3246 /* Terminate search if necessary */
3247 if (!(search_distance--)) break;
3248
3249 if (c->type != TAG_LOAD_STORE_4) continue;
3250
3251 /* Stores cannot be reordered, since they have
3252 * dependencies. For the same reason, indirect
3253 * loads cannot be reordered as their index is
3254 * loaded in r27.w */
3255
3256 if (OP_IS_STORE(c->load_store.op)) continue;
3257
3258 /* It appears the 0x800 bit is set whenever a
3259 * load is direct, unset when it is indirect.
3260 * Skip indirect loads. */
3261
3262 if (!(c->load_store.unknown & 0x800)) continue;
3263
3264 /* We found one! Move it up to pair and remove it from the old location */
3265
3266 mir_insert_instruction_before(ins, *c);
3267 mir_remove_instruction(c);
3268
3269 break;
3270 }
3271 }
3272 }
3273 }
3274
3275 /* Emit varying stores late */
3276
3277 static void
3278 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3279 /* Iterate in reverse to get the final write, rather than the first */
3280
3281 mir_foreach_instr_in_block_safe_rev(block, ins) {
3282 /* Check if what we just wrote needs a store */
3283 int idx = ins->ssa_args.dest;
3284 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3285
3286 if (!varying) continue;
3287
3288 varying -= 1;
3289
3290 /* We need to store to the appropriate varying, so emit the
3291 * move/store */
3292
3293 /* TODO: Integrate with special purpose RA (and scheduler?) */
3294 bool high_varying_register = false;
3295
3296 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3297
3298 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3299 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3300
3301 mir_insert_instruction_before(mir_next_op(ins), st);
3302 mir_insert_instruction_before(mir_next_op(ins), mov);
3303
3304 /* We no longer need to store this varying */
3305 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3306 }
3307 }
3308
3309 /* If there are leftovers after the below pass, emit actual fmov
3310 * instructions for the slow-but-correct path */
3311
3312 static void
3313 emit_leftover_move(compiler_context *ctx)
3314 {
3315 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3316 int base = ((uintptr_t) leftover->key) - 1;
3317 int mapped = base;
3318
3319 map_ssa_to_alias(ctx, &mapped);
3320 EMIT(fmov, mapped, blank_alu_src, base);
3321 }
3322 }
3323
3324 static void
3325 actualise_ssa_to_alias(compiler_context *ctx)
3326 {
3327 mir_foreach_instr(ctx, ins) {
3328 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3329 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3330 }
3331
3332 emit_leftover_move(ctx);
3333 }
3334
3335 static void
3336 emit_fragment_epilogue(compiler_context *ctx)
3337 {
3338 /* Special case: writing out constants requires us to include the move
3339 * explicitly now, so shove it into r0 */
3340
3341 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3342
3343 if (constant_value) {
3344 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3345 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3346 emit_mir_instruction(ctx, ins);
3347 }
3348
3349 /* Perform the actual fragment writeout. We have two writeout/branch
3350 * instructions, forming a loop until writeout is successful as per the
3351 * docs. TODO: gl_FragDepth */
3352
3353 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3354 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3355 }
3356
3357 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3358 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3359 * with the int8 analogue to the fragment epilogue */
3360
3361 static void
3362 emit_blend_epilogue(compiler_context *ctx)
3363 {
3364 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3365
3366 midgard_instruction scale = {
3367 .type = TAG_ALU_4,
3368 .unit = UNIT_VMUL,
3369 .inline_constant = _mesa_float_to_half(255.0),
3370 .ssa_args = {
3371 .src0 = SSA_FIXED_REGISTER(0),
3372 .src1 = SSA_UNUSED_0,
3373 .dest = SSA_FIXED_REGISTER(24),
3374 .inline_constant = true
3375 },
3376 .alu = {
3377 .op = midgard_alu_op_fmul,
3378 .reg_mode = midgard_reg_mode_full,
3379 .dest_override = midgard_dest_override_lower,
3380 .mask = 0xFF,
3381 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3382 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3383 }
3384 };
3385
3386 emit_mir_instruction(ctx, scale);
3387
3388 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3389
3390 midgard_vector_alu_src alu_src = blank_alu_src;
3391 alu_src.half = true;
3392
3393 midgard_instruction f2u8 = {
3394 .type = TAG_ALU_4,
3395 .ssa_args = {
3396 .src0 = SSA_FIXED_REGISTER(24),
3397 .src1 = SSA_UNUSED_0,
3398 .dest = SSA_FIXED_REGISTER(0),
3399 .inline_constant = true
3400 },
3401 .alu = {
3402 .op = midgard_alu_op_f2u8,
3403 .reg_mode = midgard_reg_mode_half,
3404 .dest_override = midgard_dest_override_lower,
3405 .outmod = midgard_outmod_pos,
3406 .mask = 0xF,
3407 .src1 = vector_alu_srco_unsigned(alu_src),
3408 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3409 }
3410 };
3411
3412 emit_mir_instruction(ctx, f2u8);
3413
3414 /* vmul.imov.quarter r0, r0, r0 */
3415
3416 midgard_instruction imov_8 = {
3417 .type = TAG_ALU_4,
3418 .ssa_args = {
3419 .src0 = SSA_UNUSED_1,
3420 .src1 = SSA_FIXED_REGISTER(0),
3421 .dest = SSA_FIXED_REGISTER(0),
3422 },
3423 .alu = {
3424 .op = midgard_alu_op_imov,
3425 .reg_mode = midgard_reg_mode_quarter,
3426 .dest_override = midgard_dest_override_none,
3427 .mask = 0xFF,
3428 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3429 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3430 }
3431 };
3432
3433 /* Emit branch epilogue with the 8-bit move as the source */
3434
3435 emit_mir_instruction(ctx, imov_8);
3436 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3437
3438 emit_mir_instruction(ctx, imov_8);
3439 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3440 }
3441
3442 static midgard_block *
3443 emit_block(compiler_context *ctx, nir_block *block)
3444 {
3445 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3446 list_addtail(&this_block->link, &ctx->blocks);
3447
3448 this_block->is_scheduled = false;
3449 ++ctx->block_count;
3450
3451 ctx->texture_index[0] = -1;
3452 ctx->texture_index[1] = -1;
3453
3454 /* Add us as a successor to the block we are following */
3455 if (ctx->current_block)
3456 midgard_block_add_successor(ctx->current_block, this_block);
3457
3458 /* Set up current block */
3459 list_inithead(&this_block->instructions);
3460 ctx->current_block = this_block;
3461
3462 nir_foreach_instr(instr, block) {
3463 emit_instr(ctx, instr);
3464 ++ctx->instruction_count;
3465 }
3466
3467 inline_alu_constants(ctx);
3468 embedded_to_inline_constant(ctx);
3469
3470 /* Perform heavylifting for aliasing */
3471 actualise_ssa_to_alias(ctx);
3472
3473 midgard_emit_store(ctx, this_block);
3474 midgard_pair_load_store(ctx, this_block);
3475
3476 /* Append fragment shader epilogue (value writeout) */
3477 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3478 if (block == nir_impl_last_block(ctx->func->impl)) {
3479 if (ctx->is_blend)
3480 emit_blend_epilogue(ctx);
3481 else
3482 emit_fragment_epilogue(ctx);
3483 }
3484 }
3485
3486 if (block == nir_start_block(ctx->func->impl))
3487 ctx->initial_block = this_block;
3488
3489 if (block == nir_impl_last_block(ctx->func->impl))
3490 ctx->final_block = this_block;
3491
3492 /* Allow the next control flow to access us retroactively, for
3493 * branching etc */
3494 ctx->current_block = this_block;
3495
3496 /* Document the fallthrough chain */
3497 ctx->previous_source_block = this_block;
3498
3499 return this_block;
3500 }
3501
3502 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3503
3504 static void
3505 emit_if(struct compiler_context *ctx, nir_if *nif)
3506 {
3507 /* Conditional branches expect the condition in r31.w; emit a move for
3508 * that in the _previous_ block (which is the current block). */
3509 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3510
3511 /* Speculatively emit the branch, but we can't fill it in until later */
3512 EMIT(branch, true, true);
3513 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3514
3515 /* Emit the two subblocks */
3516 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3517
3518 /* Emit a jump from the end of the then block to the end of the else */
3519 EMIT(branch, false, false);
3520 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3521
3522 /* Emit second block, and check if it's empty */
3523
3524 int else_idx = ctx->block_count;
3525 int count_in = ctx->instruction_count;
3526 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3527 int after_else_idx = ctx->block_count;
3528
3529 /* Now that we have the subblocks emitted, fix up the branches */
3530
3531 assert(then_block);
3532 assert(else_block);
3533
3534 if (ctx->instruction_count == count_in) {
3535 /* The else block is empty, so don't emit an exit jump */
3536 mir_remove_instruction(then_exit);
3537 then_branch->branch.target_block = after_else_idx;
3538 } else {
3539 then_branch->branch.target_block = else_idx;
3540 then_exit->branch.target_block = after_else_idx;
3541 }
3542 }
3543
3544 static void
3545 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3546 {
3547 /* Remember where we are */
3548 midgard_block *start_block = ctx->current_block;
3549
3550 /* Allocate a loop number, growing the current inner loop depth */
3551 int loop_idx = ++ctx->current_loop_depth;
3552
3553 /* Get index from before the body so we can loop back later */
3554 int start_idx = ctx->block_count;
3555
3556 /* Emit the body itself */
3557 emit_cf_list(ctx, &nloop->body);
3558
3559 /* Branch back to loop back */
3560 struct midgard_instruction br_back = v_branch(false, false);
3561 br_back.branch.target_block = start_idx;
3562 emit_mir_instruction(ctx, br_back);
3563
3564 /* Mark down that branch in the graph. Note that we're really branching
3565 * to the block *after* we started in. TODO: Why doesn't the branch
3566 * itself have an off-by-one then...? */
3567 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3568
3569 /* Find the index of the block about to follow us (note: we don't add
3570 * one; blocks are 0-indexed so we get a fencepost problem) */
3571 int break_block_idx = ctx->block_count;
3572
3573 /* Fix up the break statements we emitted to point to the right place,
3574 * now that we can allocate a block number for them */
3575
3576 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3577 mir_foreach_instr_in_block(block, ins) {
3578 if (ins->type != TAG_ALU_4) continue;
3579 if (!ins->compact_branch) continue;
3580 if (ins->prepacked_branch) continue;
3581
3582 /* We found a branch -- check the type to see if we need to do anything */
3583 if (ins->branch.target_type != TARGET_BREAK) continue;
3584
3585 /* It's a break! Check if it's our break */
3586 if (ins->branch.target_break != loop_idx) continue;
3587
3588 /* Okay, cool, we're breaking out of this loop.
3589 * Rewrite from a break to a goto */
3590
3591 ins->branch.target_type = TARGET_GOTO;
3592 ins->branch.target_block = break_block_idx;
3593 }
3594 }
3595
3596 /* Now that we've finished emitting the loop, free up the depth again
3597 * so we play nice with recursion amid nested loops */
3598 --ctx->current_loop_depth;
3599 }
3600
3601 static midgard_block *
3602 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3603 {
3604 midgard_block *start_block = NULL;
3605
3606 foreach_list_typed(nir_cf_node, node, node, list) {
3607 switch (node->type) {
3608 case nir_cf_node_block: {
3609 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3610
3611 if (!start_block)
3612 start_block = block;
3613
3614 break;
3615 }
3616
3617 case nir_cf_node_if:
3618 emit_if(ctx, nir_cf_node_as_if(node));
3619 break;
3620
3621 case nir_cf_node_loop:
3622 emit_loop(ctx, nir_cf_node_as_loop(node));
3623 break;
3624
3625 case nir_cf_node_function:
3626 assert(0);
3627 break;
3628 }
3629 }
3630
3631 return start_block;
3632 }
3633
3634 /* Due to lookahead, we need to report the first tag executed in the command
3635 * stream and in branch targets. An initial block might be empty, so iterate
3636 * until we find one that 'works' */
3637
3638 static unsigned
3639 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3640 {
3641 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3642
3643 unsigned first_tag = 0;
3644
3645 do {
3646 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3647
3648 if (initial_bundle) {
3649 first_tag = initial_bundle->tag;
3650 break;
3651 }
3652
3653 /* Initial block is empty, try the next block */
3654 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3655 } while(initial_block != NULL);
3656
3657 assert(first_tag);
3658 return first_tag;
3659 }
3660
3661 int
3662 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3663 {
3664 struct util_dynarray *compiled = &program->compiled;
3665
3666 midgard_debug = debug_get_option_midgard_debug();
3667
3668 compiler_context ictx = {
3669 .nir = nir,
3670 .stage = nir->info.stage,
3671
3672 .is_blend = is_blend,
3673 .blend_constant_offset = -1,
3674
3675 .alpha_ref = program->alpha_ref
3676 };
3677
3678 compiler_context *ctx = &ictx;
3679
3680 /* TODO: Decide this at runtime */
3681 ctx->uniform_cutoff = 8;
3682
3683 /* Assign var locations early, so the epilogue can use them if necessary */
3684
3685 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3686 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3687 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3688
3689 /* Initialize at a global (not block) level hash tables */
3690
3691 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3692 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3693 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3694 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3695 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3696 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3697 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3698
3699 /* Record the varying mapping for the command stream's bookkeeping */
3700
3701 struct exec_list *varyings =
3702 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3703
3704 nir_foreach_variable(var, varyings) {
3705 unsigned loc = var->data.driver_location;
3706 unsigned sz = glsl_type_size(var->type, FALSE);
3707
3708 for (int c = 0; c < sz; ++c) {
3709 program->varyings[loc + c] = var->data.location;
3710 }
3711 }
3712
3713 /* Lower gl_Position pre-optimisation */
3714
3715 if (ctx->stage == MESA_SHADER_VERTEX)
3716 NIR_PASS_V(nir, nir_lower_viewport_transform);
3717
3718 NIR_PASS_V(nir, nir_lower_var_copies);
3719 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3720 NIR_PASS_V(nir, nir_split_var_copies);
3721 NIR_PASS_V(nir, nir_lower_var_copies);
3722 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3723 NIR_PASS_V(nir, nir_lower_var_copies);
3724 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3725
3726 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3727
3728 /* Optimisation passes */
3729
3730 optimise_nir(nir);
3731
3732 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3733 nir_print_shader(nir, stdout);
3734 }
3735
3736 /* Assign sysvals and counts, now that we're sure
3737 * (post-optimisation) */
3738
3739 midgard_nir_assign_sysvals(ctx, nir);
3740
3741 program->uniform_count = nir->num_uniforms;
3742 program->sysval_count = ctx->sysval_count;
3743 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3744
3745 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3746 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3747
3748 nir_foreach_function(func, nir) {
3749 if (!func->impl)
3750 continue;
3751
3752 list_inithead(&ctx->blocks);
3753 ctx->block_count = 0;
3754 ctx->func = func;
3755
3756 emit_cf_list(ctx, &func->impl->body);
3757 emit_block(ctx, func->impl->end_block);
3758
3759 break; /* TODO: Multi-function shaders */
3760 }
3761
3762 util_dynarray_init(compiled, NULL);
3763
3764 /* MIR-level optimizations */
3765
3766 bool progress = false;
3767
3768 do {
3769 progress = false;
3770
3771 mir_foreach_block(ctx, block) {
3772 progress |= midgard_opt_copy_prop(ctx, block);
3773 progress |= midgard_opt_copy_prop_tex(ctx, block);
3774 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3775 }
3776 } while (progress);
3777
3778 /* Schedule! */
3779 schedule_program(ctx);
3780
3781 /* Now that all the bundles are scheduled and we can calculate block
3782 * sizes, emit actual branch instructions rather than placeholders */
3783
3784 int br_block_idx = 0;
3785
3786 mir_foreach_block(ctx, block) {
3787 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3788 for (int c = 0; c < bundle->instruction_count; ++c) {
3789 midgard_instruction *ins = &bundle->instructions[c];
3790
3791 if (!midgard_is_branch_unit(ins->unit)) continue;
3792
3793 if (ins->prepacked_branch) continue;
3794
3795 /* Parse some basic branch info */
3796 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3797 bool is_conditional = ins->branch.conditional;
3798 bool is_inverted = ins->branch.invert_conditional;
3799 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3800
3801 /* Determine the block we're jumping to */
3802 int target_number = ins->branch.target_block;
3803
3804 /* Report the destination tag. Discards don't need this */
3805 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3806
3807 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3808 int quadword_offset = 0;
3809
3810 if (is_discard) {
3811 /* Jump to the end of the shader. We
3812 * need to include not only the
3813 * following blocks, but also the
3814 * contents of our current block (since
3815 * discard can come in the middle of
3816 * the block) */
3817
3818 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3819
3820 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3821 quadword_offset += quadword_size(bun->tag);
3822 }
3823
3824 mir_foreach_block_from(ctx, blk, b) {
3825 quadword_offset += b->quadword_count;
3826 }
3827
3828 } else if (target_number > br_block_idx) {
3829 /* Jump forward */
3830
3831 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3832 midgard_block *blk = mir_get_block(ctx, idx);
3833 assert(blk);
3834
3835 quadword_offset += blk->quadword_count;
3836 }
3837 } else {
3838 /* Jump backwards */
3839
3840 for (int idx = br_block_idx; idx >= target_number; --idx) {
3841 midgard_block *blk = mir_get_block(ctx, idx);
3842 assert(blk);
3843
3844 quadword_offset -= blk->quadword_count;
3845 }
3846 }
3847
3848 /* Unconditional extended branches (far jumps)
3849 * have issues, so we always use a conditional
3850 * branch, setting the condition to always for
3851 * unconditional. For compact unconditional
3852 * branches, cond isn't used so it doesn't
3853 * matter what we pick. */
3854
3855 midgard_condition cond =
3856 !is_conditional ? midgard_condition_always :
3857 is_inverted ? midgard_condition_false :
3858 midgard_condition_true;
3859
3860 midgard_jmp_writeout_op op =
3861 is_discard ? midgard_jmp_writeout_op_discard :
3862 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3863 midgard_jmp_writeout_op_branch_cond;
3864
3865 if (!is_compact) {
3866 midgard_branch_extended branch =
3867 midgard_create_branch_extended(
3868 cond, op,
3869 dest_tag,
3870 quadword_offset);
3871
3872 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3873 } else if (is_conditional || is_discard) {
3874 midgard_branch_cond branch = {
3875 .op = op,
3876 .dest_tag = dest_tag,
3877 .offset = quadword_offset,
3878 .cond = cond
3879 };
3880
3881 assert(branch.offset == quadword_offset);
3882
3883 memcpy(&ins->br_compact, &branch, sizeof(branch));
3884 } else {
3885 assert(op == midgard_jmp_writeout_op_branch_uncond);
3886
3887 midgard_branch_uncond branch = {
3888 .op = op,
3889 .dest_tag = dest_tag,
3890 .offset = quadword_offset,
3891 .unknown = 1
3892 };
3893
3894 assert(branch.offset == quadword_offset);
3895
3896 memcpy(&ins->br_compact, &branch, sizeof(branch));
3897 }
3898 }
3899 }
3900
3901 ++br_block_idx;
3902 }
3903
3904 /* Emit flat binary from the instruction arrays. Iterate each block in
3905 * sequence. Save instruction boundaries such that lookahead tags can
3906 * be assigned easily */
3907
3908 /* Cache _all_ bundles in source order for lookahead across failed branches */
3909
3910 int bundle_count = 0;
3911 mir_foreach_block(ctx, block) {
3912 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3913 }
3914 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3915 int bundle_idx = 0;
3916 mir_foreach_block(ctx, block) {
3917 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3918 source_order_bundles[bundle_idx++] = bundle;
3919 }
3920 }
3921
3922 int current_bundle = 0;
3923
3924 mir_foreach_block(ctx, block) {
3925 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3926 int lookahead = 1;
3927
3928 if (current_bundle + 1 < bundle_count) {
3929 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3930
3931 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3932 lookahead = 1;
3933 } else {
3934 lookahead = next;
3935 }
3936 }
3937
3938 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3939 ++current_bundle;
3940 }
3941
3942 /* TODO: Free deeper */
3943 //util_dynarray_fini(&block->instructions);
3944 }
3945
3946 free(source_order_bundles);
3947
3948 /* Report the very first tag executed */
3949 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3950
3951 /* Deal with off-by-one related to the fencepost problem */
3952 program->work_register_count = ctx->work_registers + 1;
3953
3954 program->can_discard = ctx->can_discard;
3955 program->uniform_cutoff = ctx->uniform_cutoff;
3956
3957 program->blend_patch_offset = ctx->blend_constant_offset;
3958
3959 if (midgard_debug & MIDGARD_DBG_SHADERS)
3960 disassemble_midgard(program->compiled.data, program->compiled.size);
3961
3962 return 0;
3963 }