panfrost: Dynamically set discard branch targets
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "compiler/glsl/glsl_to_nir.h"
34 #include "compiler/nir_types.h"
35 #include "main/imports.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/register_allocate.h"
39 #include "util/u_dynarray.h"
40 #include "util/list.h"
41 #include "main/mtypes.h"
42
43 #include "midgard.h"
44 #include "midgard_nir.h"
45 #include "midgard_compile.h"
46 #include "helpers.h"
47
48 #include "disassemble.h"
49
50 /* Instruction arguments represented as block-local SSA indices, rather than
51 * registers. Negative values mean unused. */
52
53 typedef struct {
54 int src0;
55 int src1;
56 int dest;
57
58 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
59 * in. Only valid for ALU ops. */
60 bool inline_constant;
61 } ssa_args;
62
63 /* Forward declare so midgard_branch can reference */
64 struct midgard_block;
65
66 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
67 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
68 * instruction is actually a discard op. */
69
70 #define TARGET_GOTO 0
71 #define TARGET_BREAK 1
72 #define TARGET_CONTINUE 2
73 #define TARGET_DISCARD 3
74
75 typedef struct midgard_branch {
76 /* If conditional, the condition is specified in r31.w */
77 bool conditional;
78
79 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
80 bool invert_conditional;
81
82 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
83 unsigned target_type;
84
85 /* The actual target */
86 union {
87 int target_block;
88 int target_break;
89 int target_continue;
90 };
91 } midgard_branch;
92
93 /* Generic in-memory data type repesenting a single logical instruction, rather
94 * than a single instruction group. This is the preferred form for code gen.
95 * Multiple midgard_insturctions will later be combined during scheduling,
96 * though this is not represented in this structure. Its format bridges
97 * the low-level binary representation with the higher level semantic meaning.
98 *
99 * Notably, it allows registers to be specified as block local SSA, for code
100 * emitted before the register allocation pass.
101 */
102
103 typedef struct midgard_instruction {
104 /* Must be first for casting */
105 struct list_head link;
106
107 unsigned type; /* ALU, load/store, texture */
108
109 /* If the register allocator has not run yet... */
110 ssa_args ssa_args;
111
112 /* Special fields for an ALU instruction */
113 midgard_reg_info registers;
114
115 /* I.e. (1 << alu_bit) */
116 int unit;
117
118 bool has_constants;
119 float constants[4];
120 uint16_t inline_constant;
121 bool has_blend_constant;
122
123 bool compact_branch;
124 bool writeout;
125 bool prepacked_branch;
126
127 union {
128 midgard_load_store_word load_store;
129 midgard_vector_alu alu;
130 midgard_texture_word texture;
131 midgard_branch_extended branch_extended;
132 uint16_t br_compact;
133
134 /* General branch, rather than packed br_compact. Higher level
135 * than the other components */
136 midgard_branch branch;
137 };
138 } midgard_instruction;
139
140 typedef struct midgard_block {
141 /* Link to next block. Must be first for mir_get_block */
142 struct list_head link;
143
144 /* List of midgard_instructions emitted for the current block */
145 struct list_head instructions;
146
147 bool is_scheduled;
148
149 /* List of midgard_bundles emitted (after the scheduler has run) */
150 struct util_dynarray bundles;
151
152 /* Number of quadwords _actually_ emitted, as determined after scheduling */
153 unsigned quadword_count;
154
155 struct midgard_block *next_fallthrough;
156 } midgard_block;
157
158 /* Helpers to generate midgard_instruction's using macro magic, since every
159 * driver seems to do it that way */
160
161 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
162
163 #define M_LOAD_STORE(name, rname, uname) \
164 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
165 midgard_instruction i = { \
166 .type = TAG_LOAD_STORE_4, \
167 .ssa_args = { \
168 .rname = ssa, \
169 .uname = -1, \
170 .src1 = -1 \
171 }, \
172 .load_store = { \
173 .op = midgard_op_##name, \
174 .mask = 0xF, \
175 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
176 .address = address \
177 } \
178 }; \
179 \
180 return i; \
181 }
182
183 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
184 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
185
186 const midgard_vector_alu_src blank_alu_src = {
187 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
188 };
189
190 const midgard_scalar_alu_src blank_scalar_alu_src = {
191 .full = true
192 };
193
194 /* Used for encoding the unused source of 1-op instructions */
195 const midgard_vector_alu_src zero_alu_src = { 0 };
196
197 /* Coerce structs to integer */
198
199 static unsigned
200 vector_alu_srco_unsigned(midgard_vector_alu_src src)
201 {
202 unsigned u;
203 memcpy(&u, &src, sizeof(src));
204 return u;
205 }
206
207 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
208 * the corresponding Midgard source */
209
210 static midgard_vector_alu_src
211 vector_alu_modifiers(nir_alu_src *src)
212 {
213 if (!src) return blank_alu_src;
214
215 midgard_vector_alu_src alu_src = {
216 .abs = src->abs,
217 .negate = src->negate,
218 .rep_low = 0,
219 .rep_high = 0,
220 .half = 0, /* TODO */
221 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
222 };
223
224 return alu_src;
225 }
226
227 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
228
229 static midgard_instruction
230 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
231 {
232 midgard_instruction ins = {
233 .type = TAG_ALU_4,
234 .ssa_args = {
235 .src0 = SSA_UNUSED_1,
236 .src1 = src,
237 .dest = dest,
238 },
239 .alu = {
240 .op = midgard_alu_op_fmov,
241 .reg_mode = midgard_reg_mode_full,
242 .dest_override = midgard_dest_override_none,
243 .mask = 0xFF,
244 .src1 = vector_alu_srco_unsigned(zero_alu_src),
245 .src2 = vector_alu_srco_unsigned(mod)
246 },
247 };
248
249 return ins;
250 }
251
252 /* load/store instructions have both 32-bit and 16-bit variants, depending on
253 * whether we are using vectors composed of highp or mediump. At the moment, we
254 * don't support half-floats -- this requires changes in other parts of the
255 * compiler -- therefore the 16-bit versions are commented out. */
256
257 //M_LOAD(load_attr_16);
258 M_LOAD(load_attr_32);
259 //M_LOAD(load_vary_16);
260 M_LOAD(load_vary_32);
261 //M_LOAD(load_uniform_16);
262 M_LOAD(load_uniform_32);
263 M_LOAD(load_color_buffer_8);
264 //M_STORE(store_vary_16);
265 M_STORE(store_vary_32);
266
267 static midgard_instruction
268 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
269 {
270 midgard_branch_cond branch = {
271 .op = op,
272 .dest_tag = tag,
273 .offset = offset,
274 .cond = cond
275 };
276
277 uint16_t compact;
278 memcpy(&compact, &branch, sizeof(branch));
279
280 midgard_instruction ins = {
281 .type = TAG_ALU_4,
282 .unit = ALU_ENAB_BR_COMPACT,
283 .prepacked_branch = true,
284 .compact_branch = true,
285 .br_compact = compact
286 };
287
288 if (op == midgard_jmp_writeout_op_writeout)
289 ins.writeout = true;
290
291 return ins;
292 }
293
294 static midgard_instruction
295 v_branch(bool conditional, bool invert)
296 {
297 midgard_instruction ins = {
298 .type = TAG_ALU_4,
299 .unit = ALU_ENAB_BRANCH,
300 .compact_branch = true,
301 .branch = {
302 .conditional = conditional,
303 .invert_conditional = invert
304 }
305 };
306
307 return ins;
308 }
309
310 static midgard_branch_extended
311 midgard_create_branch_extended( midgard_condition cond,
312 midgard_jmp_writeout_op op,
313 unsigned dest_tag,
314 signed quadword_offset)
315 {
316 /* For unclear reasons, the condition code is repeated 8 times */
317 uint16_t duplicated_cond =
318 (cond << 14) |
319 (cond << 12) |
320 (cond << 10) |
321 (cond << 8) |
322 (cond << 6) |
323 (cond << 4) |
324 (cond << 2) |
325 (cond << 0);
326
327 midgard_branch_extended branch = {
328 .op = op,
329 .dest_tag = dest_tag,
330 .offset = quadword_offset,
331 .cond = duplicated_cond
332 };
333
334 return branch;
335 }
336
337 typedef struct midgard_bundle {
338 /* Tag for the overall bundle */
339 int tag;
340
341 /* Instructions contained by the bundle */
342 int instruction_count;
343 midgard_instruction instructions[5];
344
345 /* Bundle-wide ALU configuration */
346 int padding;
347 int control;
348 bool has_embedded_constants;
349 float constants[4];
350 bool has_blend_constant;
351
352 uint16_t register_words[8];
353 int register_words_count;
354
355 uint64_t body_words[8];
356 size_t body_size[8];
357 int body_words_count;
358 } midgard_bundle;
359
360 typedef struct compiler_context {
361 nir_shader *nir;
362 gl_shader_stage stage;
363
364 /* Is internally a blend shader? Depends on stage == FRAGMENT */
365 bool is_blend;
366
367 /* Tracking for blend constant patching */
368 int blend_constant_number;
369 int blend_constant_offset;
370
371 /* Current NIR function */
372 nir_function *func;
373
374 /* Unordered list of midgard_blocks */
375 int block_count;
376 struct list_head blocks;
377
378 midgard_block *initial_block;
379 midgard_block *previous_source_block;
380 midgard_block *final_block;
381
382 /* List of midgard_instructions emitted for the current block */
383 midgard_block *current_block;
384
385 /* The index corresponding to the current loop, e.g. for breaks/contineus */
386 int current_loop;
387
388 /* Constants which have been loaded, for later inlining */
389 struct hash_table_u64 *ssa_constants;
390
391 /* SSA indices to be outputted to corresponding varying offset */
392 struct hash_table_u64 *ssa_varyings;
393
394 /* SSA values / registers which have been aliased. Naively, these
395 * demand a fmov output; instead, we alias them in a later pass to
396 * avoid the wasted op.
397 *
398 * A note on encoding: to avoid dynamic memory management here, rather
399 * than ampping to a pointer, we map to the source index; the key
400 * itself is just the destination index. */
401
402 struct hash_table_u64 *ssa_to_alias;
403 struct set *leftover_ssa_to_alias;
404
405 /* Actual SSA-to-register for RA */
406 struct hash_table_u64 *ssa_to_register;
407
408 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
409 struct hash_table_u64 *hash_to_temp;
410 int temp_count;
411 int max_hash;
412
413 /* Uniform IDs for mdg */
414 struct hash_table_u64 *uniform_nir_to_mdg;
415 int uniform_count;
416
417 struct hash_table_u64 *varying_nir_to_mdg;
418 int varying_count;
419
420 /* Just the count of the max register used. Higher count => higher
421 * register pressure */
422 int work_registers;
423
424 /* Used for cont/last hinting. Increase when a tex op is added.
425 * Decrease when a tex op is removed. */
426 int texture_op_count;
427
428 /* Mapping of texture register -> SSA index for unaliasing */
429 int texture_index[2];
430
431 /* Count of special uniforms (viewport, etc) in vec4 units */
432 int special_uniforms;
433
434 /* If any path hits a discard instruction */
435 bool can_discard;
436
437 /* The number of uniforms allowable for the fast path */
438 int uniform_cutoff;
439
440 /* Count of instructions emitted from NIR overall, across all blocks */
441 int instruction_count;
442
443 /* Alpha ref value passed in */
444 float alpha_ref;
445
446 /* The index corresponding to the fragment output */
447 unsigned fragment_output;
448 } compiler_context;
449
450 /* Append instruction to end of current block */
451
452 static midgard_instruction *
453 mir_upload_ins(struct midgard_instruction ins)
454 {
455 midgard_instruction *heap = malloc(sizeof(ins));
456 memcpy(heap, &ins, sizeof(ins));
457 return heap;
458 }
459
460 static void
461 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
462 {
463 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
464 }
465
466 static void
467 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
468 {
469 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
470 }
471
472 static void
473 mir_remove_instruction(struct midgard_instruction *ins)
474 {
475 list_del(&ins->link);
476 }
477
478 static midgard_instruction*
479 mir_prev_op(struct midgard_instruction *ins)
480 {
481 return list_last_entry(&(ins->link), midgard_instruction, link);
482 }
483
484 static midgard_instruction*
485 mir_next_op(struct midgard_instruction *ins)
486 {
487 return list_first_entry(&(ins->link), midgard_instruction, link);
488 }
489
490 static midgard_block *
491 mir_next_block(struct midgard_block *blk)
492 {
493 return list_first_entry(&(blk->link), midgard_block, link);
494 }
495
496
497 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
498 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
499
500 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
501 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
502 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
503 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
504 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
505 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
506
507
508 static midgard_instruction *
509 mir_last_in_block(struct midgard_block *block)
510 {
511 return list_last_entry(&block->instructions, struct midgard_instruction, link);
512 }
513
514 static midgard_block *
515 mir_get_block(compiler_context *ctx, int idx)
516 {
517 struct list_head *lst = &ctx->blocks;
518
519 while ((idx--) + 1)
520 lst = lst->next;
521
522 return (struct midgard_block *) lst;
523 }
524
525 /* Pretty printer for internal Midgard IR */
526
527 static void
528 print_mir_source(int source)
529 {
530 if (source >= SSA_FIXED_MINIMUM) {
531 /* Specific register */
532 int reg = SSA_REG_FROM_FIXED(source);
533
534 /* TODO: Moving threshold */
535 if (reg > 16 && reg < 24)
536 printf("u%d", 23 - reg);
537 else
538 printf("r%d", reg);
539 } else {
540 printf("%d", source);
541 }
542 }
543
544 static void
545 print_mir_instruction(midgard_instruction *ins)
546 {
547 printf("\t");
548
549 switch (ins->type) {
550 case TAG_ALU_4: {
551 midgard_alu_op op = ins->alu.op;
552 const char *name = alu_opcode_names[op];
553
554 if (ins->unit)
555 printf("%d.", ins->unit);
556
557 printf("%s", name ? name : "??");
558 break;
559 }
560
561 case TAG_LOAD_STORE_4: {
562 midgard_load_store_op op = ins->load_store.op;
563 const char *name = load_store_opcode_names[op];
564
565 assert(name);
566 printf("%s", name);
567 break;
568 }
569
570 case TAG_TEXTURE_4: {
571 printf("texture");
572 break;
573 }
574
575 default:
576 assert(0);
577 }
578
579 ssa_args *args = &ins->ssa_args;
580
581 printf(" %d, ", args->dest);
582
583 print_mir_source(args->src0);
584 printf(", ");
585
586 if (args->inline_constant)
587 printf("#%d", ins->inline_constant);
588 else
589 print_mir_source(args->src1);
590
591 if (ins->has_constants)
592 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
593
594 printf("\n");
595 }
596
597 static void
598 print_mir_block(midgard_block *block)
599 {
600 printf("{\n");
601
602 mir_foreach_instr_in_block(block, ins) {
603 print_mir_instruction(ins);
604 }
605
606 printf("}\n");
607 }
608
609
610
611 static void
612 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
613 {
614 ins->has_constants = true;
615 memcpy(&ins->constants, constants, 16);
616
617 /* If this is the special blend constant, mark this instruction */
618
619 if (ctx->is_blend && ctx->blend_constant_number == name)
620 ins->has_blend_constant = true;
621 }
622
623 static int
624 glsl_type_size(const struct glsl_type *type)
625 {
626 return glsl_count_attribute_slots(type, false);
627 }
628
629 /* Lower fdot2 to a vector multiplication followed by channel addition */
630 static void
631 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
632 {
633 if (alu->op != nir_op_fdot2)
634 return;
635
636 b->cursor = nir_before_instr(&alu->instr);
637
638 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
639 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
640
641 nir_ssa_def *product = nir_fmul(b, src0, src1);
642
643 nir_ssa_def *sum = nir_fadd(b,
644 nir_channel(b, product, 0),
645 nir_channel(b, product, 1));
646
647 /* Replace the fdot2 with this sum */
648 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
649 }
650
651 static bool
652 midgard_nir_lower_fdot2(nir_shader *shader)
653 {
654 bool progress = false;
655
656 nir_foreach_function(function, shader) {
657 if (!function->impl) continue;
658
659 nir_builder _b;
660 nir_builder *b = &_b;
661 nir_builder_init(b, function->impl);
662
663 nir_foreach_block(block, function->impl) {
664 nir_foreach_instr_safe(instr, block) {
665 if (instr->type != nir_instr_type_alu) continue;
666
667 nir_alu_instr *alu = nir_instr_as_alu(instr);
668 midgard_nir_lower_fdot2_body(b, alu);
669
670 progress |= true;
671 }
672 }
673
674 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
675
676 }
677
678 return progress;
679 }
680
681 static void
682 optimise_nir(nir_shader *nir)
683 {
684 bool progress;
685
686 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
687 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
688
689 nir_lower_tex_options lower_tex_options = {
690 .lower_rect = true
691 };
692
693 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
694
695 do {
696 progress = false;
697
698 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
699 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
700 NIR_PASS(progress, nir, nir_lower_var_copies);
701 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
702
703 NIR_PASS(progress, nir, nir_copy_prop);
704 NIR_PASS(progress, nir, nir_opt_dce);
705 NIR_PASS(progress, nir, nir_opt_dead_cf);
706 NIR_PASS(progress, nir, nir_opt_cse);
707 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
708 NIR_PASS(progress, nir, nir_opt_algebraic);
709 NIR_PASS(progress, nir, nir_opt_constant_folding);
710 NIR_PASS(progress, nir, nir_opt_undef);
711 NIR_PASS(progress, nir, nir_opt_loop_unroll,
712 nir_var_shader_in |
713 nir_var_shader_out |
714 nir_var_function_temp);
715
716 /* TODO: Enable vectorize when merged upstream */
717 // NIR_PASS(progress, nir, nir_opt_vectorize);
718 } while (progress);
719
720 /* Must be run at the end to prevent creation of fsin/fcos ops */
721 NIR_PASS(progress, nir, midgard_nir_scale_trig);
722
723 do {
724 progress = false;
725
726 NIR_PASS(progress, nir, nir_opt_dce);
727 NIR_PASS(progress, nir, nir_opt_algebraic);
728 NIR_PASS(progress, nir, nir_opt_constant_folding);
729 NIR_PASS(progress, nir, nir_copy_prop);
730 } while (progress);
731
732 NIR_PASS(progress, nir, nir_opt_algebraic_late);
733
734 /* Lower mods */
735 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
736 NIR_PASS(progress, nir, nir_copy_prop);
737 NIR_PASS(progress, nir, nir_opt_dce);
738
739 /* Take us out of SSA */
740 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
741 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
742
743 /* We are a vector architecture; write combine where possible */
744 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
745 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
746
747 NIR_PASS(progress, nir, nir_opt_dce);
748 }
749
750 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
751 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
752 * r0. See the comments in compiler_context */
753
754 static void
755 alias_ssa(compiler_context *ctx, int dest, int src)
756 {
757 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
758 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
759 }
760
761 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
762
763 static void
764 unalias_ssa(compiler_context *ctx, int dest)
765 {
766 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
767 /* TODO: Remove from leftover or no? */
768 }
769
770 static void
771 midgard_pin_output(compiler_context *ctx, int index, int reg)
772 {
773 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
774 }
775
776 static bool
777 midgard_is_pinned(compiler_context *ctx, int index)
778 {
779 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
780 }
781
782 /* Do not actually emit a load; instead, cache the constant for inlining */
783
784 static void
785 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
786 {
787 nir_ssa_def def = instr->def;
788
789 float *v = ralloc_array(NULL, float, 4);
790 memcpy(v, &instr->value.f32, 4 * sizeof(float));
791 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
792 }
793
794 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
795 * do the inverse) */
796
797 static unsigned
798 expand_writemask(unsigned mask)
799 {
800 unsigned o = 0;
801
802 for (int i = 0; i < 4; ++i)
803 if (mask & (1 << i))
804 o |= (3 << (2 * i));
805
806 return o;
807 }
808
809 static unsigned
810 squeeze_writemask(unsigned mask)
811 {
812 unsigned o = 0;
813
814 for (int i = 0; i < 4; ++i)
815 if (mask & (3 << (2 * i)))
816 o |= (1 << i);
817
818 return o;
819
820 }
821
822 /* Determines effective writemask, taking quirks and expansion into account */
823 static unsigned
824 effective_writemask(midgard_vector_alu *alu)
825 {
826 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
827 * sense) */
828
829 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
830
831 /* If there is a fixed channel count, construct the appropriate mask */
832
833 if (channel_count)
834 return (1 << channel_count) - 1;
835
836 /* Otherwise, just squeeze the existing mask */
837 return squeeze_writemask(alu->mask);
838 }
839
840 static unsigned
841 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
842 {
843 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
844 return hash;
845
846 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
847
848 if (temp)
849 return temp - 1;
850
851 /* If no temp is find, allocate one */
852 temp = ctx->temp_count++;
853 ctx->max_hash = MAX2(ctx->max_hash, hash);
854
855 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
856
857 return temp;
858 }
859
860 static unsigned
861 nir_src_index(compiler_context *ctx, nir_src *src)
862 {
863 if (src->is_ssa)
864 return src->ssa->index;
865 else
866 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
867 }
868
869 static unsigned
870 nir_dest_index(compiler_context *ctx, nir_dest *dst)
871 {
872 if (dst->is_ssa)
873 return dst->ssa.index;
874 else
875 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
876 }
877
878 static unsigned
879 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
880 {
881 return nir_src_index(ctx, &src->src);
882 }
883
884 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
885 * a conditional test) into that register */
886
887 static void
888 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
889 {
890 /* XXX: Force component correct */
891 int condition = nir_src_index(ctx, src);
892
893 const midgard_vector_alu_src alu_src = {
894 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
895 };
896
897 /* There is no boolean move instruction. Instead, we simulate a move by
898 * ANDing the condition with itself to get it into r31.w */
899
900 midgard_instruction ins = {
901 .type = TAG_ALU_4,
902 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
903 .ssa_args = {
904 .src0 = condition,
905 .src1 = condition,
906 .dest = SSA_FIXED_REGISTER(31),
907 },
908 .alu = {
909 .op = midgard_alu_op_iand,
910 .reg_mode = midgard_reg_mode_full,
911 .dest_override = midgard_dest_override_none,
912 .mask = (0x3 << 6), /* w */
913 .src1 = vector_alu_srco_unsigned(alu_src),
914 .src2 = vector_alu_srco_unsigned(alu_src)
915 },
916 };
917
918 emit_mir_instruction(ctx, ins);
919 }
920
921 #define ALU_CASE(nir, _op) \
922 case nir_op_##nir: \
923 op = midgard_alu_op_##_op; \
924 break;
925
926 static void
927 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
928 {
929 bool is_ssa = instr->dest.dest.is_ssa;
930
931 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
932 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
933 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
934
935 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
936 * supported. A few do not and are commented for now. Also, there are a
937 * number of NIR ops which Midgard does not support and need to be
938 * lowered, also TODO. This switch block emits the opcode and calling
939 * convention of the Midgard instruction; actual packing is done in
940 * emit_alu below */
941
942 unsigned op;
943
944 switch (instr->op) {
945 ALU_CASE(fadd, fadd);
946 ALU_CASE(fmul, fmul);
947 ALU_CASE(fmin, fmin);
948 ALU_CASE(fmax, fmax);
949 ALU_CASE(imin, imin);
950 ALU_CASE(imax, imax);
951 ALU_CASE(fmov, fmov);
952 ALU_CASE(ffloor, ffloor);
953 ALU_CASE(fceil, fceil);
954 ALU_CASE(fdot3, fdot3);
955 ALU_CASE(fdot4, fdot4);
956 ALU_CASE(iadd, iadd);
957 ALU_CASE(isub, isub);
958 ALU_CASE(imul, imul);
959
960 /* XXX: Use fmov, not imov, since imov was causing major
961 * issues with texture precision? XXX research */
962 ALU_CASE(imov, fmov);
963
964 ALU_CASE(feq, feq);
965 ALU_CASE(fne, fne);
966 ALU_CASE(flt, flt);
967 ALU_CASE(ieq, ieq);
968 ALU_CASE(ine, ine);
969 ALU_CASE(ilt, ilt);
970
971 ALU_CASE(frcp, frcp);
972 ALU_CASE(frsq, frsqrt);
973 ALU_CASE(fsqrt, fsqrt);
974 ALU_CASE(fexp2, fexp2);
975 ALU_CASE(flog2, flog2);
976
977 ALU_CASE(f2i32, f2i);
978 ALU_CASE(f2u32, f2u);
979 ALU_CASE(i2f32, i2f);
980 ALU_CASE(u2f32, u2f);
981
982 ALU_CASE(fsin, fsin);
983 ALU_CASE(fcos, fcos);
984
985 ALU_CASE(iand, iand);
986 ALU_CASE(ior, ior);
987 ALU_CASE(ixor, ixor);
988 ALU_CASE(inot, inot);
989 ALU_CASE(ishl, ishl);
990 ALU_CASE(ishr, iasr);
991 ALU_CASE(ushr, ilsr);
992
993 ALU_CASE(ball_fequal4, fball_eq);
994 ALU_CASE(bany_fnequal4, fbany_neq);
995 ALU_CASE(ball_iequal4, iball_eq);
996 ALU_CASE(bany_inequal4, ibany_neq);
997
998 /* For greater-or-equal, we use less-or-equal and flip the
999 * arguments */
1000
1001 case nir_op_ige: {
1002 op = midgard_alu_op_ile;
1003
1004 /* Swap via temporary */
1005 nir_alu_src temp = instr->src[1];
1006 instr->src[1] = instr->src[0];
1007 instr->src[0] = temp;
1008
1009 break;
1010 }
1011
1012 case nir_op_bcsel: {
1013 op = midgard_alu_op_fcsel;
1014
1015 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1016 nr_inputs = 2;
1017
1018 emit_condition(ctx, &instr->src[0].src, false);
1019
1020 /* The condition is the first argument; move the other
1021 * arguments up one to be a binary instruction for
1022 * Midgard */
1023
1024 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1025 break;
1026 }
1027
1028 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1029 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1030 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1031 *
1032 * iand [whatever], #0
1033 *
1034 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1035
1036 case nir_op_b2f32: {
1037 op = midgard_alu_op_iand;
1038 break;
1039 }
1040
1041 default:
1042 printf("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1043 assert(0);
1044 return;
1045 }
1046
1047 /* Fetch unit, quirks, etc information */
1048 unsigned opcode_props = alu_opcode_props[op];
1049 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1050
1051 /* Initialise fields common between scalar/vector instructions */
1052 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1053
1054 /* src0 will always exist afaik, but src1 will not for 1-argument
1055 * instructions. The latter can only be fetched if the instruction
1056 * needs it, or else we may segfault. */
1057
1058 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1059 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1060
1061 /* Rather than use the instruction generation helpers, we do it
1062 * ourselves here to avoid the mess */
1063
1064 midgard_instruction ins = {
1065 .type = TAG_ALU_4,
1066 .ssa_args = {
1067 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1068 .src1 = quirk_flipped_r24 ? src0 : src1,
1069 .dest = dest,
1070 .inline_constant = (nr_inputs == 1) && !quirk_flipped_r24
1071 }
1072 };
1073
1074 nir_alu_src *nirmods[2] = { NULL };
1075
1076 if (nr_inputs == 2) {
1077 nirmods[0] = &instr->src[0];
1078 nirmods[1] = &instr->src[1];
1079 } else if (nr_inputs == 1) {
1080 nirmods[quirk_flipped_r24] = &instr->src[0];
1081 } else {
1082 assert(0);
1083 }
1084
1085 midgard_vector_alu alu = {
1086 .op = op,
1087 .reg_mode = midgard_reg_mode_full,
1088 .dest_override = midgard_dest_override_none,
1089 .outmod = outmod,
1090
1091 /* Writemask only valid for non-SSA NIR */
1092 .mask = expand_writemask((1 << nr_components) - 1),
1093
1094 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1095 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1096 };
1097
1098 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1099
1100 if (!is_ssa)
1101 alu.mask &= expand_writemask(instr->dest.write_mask);
1102
1103 ins.alu = alu;
1104
1105 /* Late fixup for emulated instructions */
1106
1107 if (instr->op == nir_op_b2f32) {
1108 /* Presently, our second argument is an inline #0 constant.
1109 * Switch over to an embedded 1.0 constant (that can't fit
1110 * inline, since we're 32-bit, not 16-bit like the inline
1111 * constants) */
1112
1113 ins.ssa_args.inline_constant = false;
1114 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1115 ins.has_constants = true;
1116 ins.constants[0] = 1.0;
1117 }
1118
1119 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1120 /* To avoid duplicating the lookup tables (probably), true LUT
1121 * instructions can only operate as if they were scalars. Lower
1122 * them here by changing the component. */
1123
1124 uint8_t original_swizzle[4];
1125 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1126
1127 for (int i = 0; i < nr_components; ++i) {
1128 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1129
1130 for (int j = 0; j < 4; ++j)
1131 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1132
1133 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1134 emit_mir_instruction(ctx, ins);
1135 }
1136 } else {
1137 emit_mir_instruction(ctx, ins);
1138 }
1139 }
1140
1141 #undef ALU_CASE
1142
1143 static void
1144 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1145 {
1146 nir_const_value *const_offset;
1147 unsigned offset, reg;
1148
1149 switch (instr->intrinsic) {
1150 case nir_intrinsic_discard_if:
1151 emit_condition(ctx, &instr->src[0], true);
1152
1153 /* fallthrough */
1154
1155 case nir_intrinsic_discard: {
1156 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1157 struct midgard_instruction discard = v_branch(conditional, false);
1158 discard.branch.target_type = TARGET_DISCARD;
1159 emit_mir_instruction(ctx, discard);
1160
1161 ctx->can_discard = true;
1162 break;
1163 }
1164
1165 case nir_intrinsic_load_uniform:
1166 case nir_intrinsic_load_input:
1167 const_offset = nir_src_as_const_value(instr->src[0]);
1168 assert (const_offset && "no indirect inputs");
1169
1170 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1171
1172 reg = nir_dest_index(ctx, &instr->dest);
1173
1174 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1175 /* TODO: half-floats */
1176
1177 int uniform_offset = 0;
1178
1179 if (offset >= SPECIAL_UNIFORM_BASE) {
1180 /* XXX: Resolve which uniform */
1181 uniform_offset = 0;
1182 } else {
1183 /* Offset away from the special
1184 * uniform block */
1185
1186 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1187
1188 /* XXX */
1189 if (!entry) {
1190 printf("WARNING: Unknown uniform %d\n", offset);
1191 break;
1192 }
1193
1194 uniform_offset = (uintptr_t) (entry) - 1;
1195 uniform_offset += ctx->special_uniforms;
1196 }
1197
1198 if (uniform_offset < ctx->uniform_cutoff) {
1199 /* Fast path: For the first 16 uniform,
1200 * accesses are 0-cycle, since they're
1201 * just a register fetch in the usual
1202 * case. So, we alias the registers
1203 * while we're still in SSA-space */
1204
1205 int reg_slot = 23 - uniform_offset;
1206 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1207 } else {
1208 /* Otherwise, read from the 'special'
1209 * UBO to access higher-indexed
1210 * uniforms, at a performance cost */
1211
1212 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1213
1214 /* TODO: Don't split */
1215 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1216 ins.load_store.address = uniform_offset >> 3;
1217
1218 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1219 emit_mir_instruction(ctx, ins);
1220 }
1221 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1222 /* XXX: Half-floats? */
1223 /* TODO: swizzle, mask */
1224
1225 midgard_instruction ins = m_load_vary_32(reg, offset);
1226
1227 midgard_varying_parameter p = {
1228 .is_varying = 1,
1229 .interpolation = midgard_interp_default,
1230 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1231 };
1232
1233 unsigned u;
1234 memcpy(&u, &p, sizeof(p));
1235 ins.load_store.varying_parameters = u;
1236
1237 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1238 emit_mir_instruction(ctx, ins);
1239 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1240 /* Constant encoded as a pinned constant */
1241
1242 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1243 ins.has_constants = true;
1244 ins.has_blend_constant = true;
1245 emit_mir_instruction(ctx, ins);
1246 } else if (ctx->is_blend) {
1247 /* For blend shaders, a load might be
1248 * translated various ways depending on what
1249 * we're loading. Figure out how this is used */
1250
1251 nir_variable *out = NULL;
1252
1253 nir_foreach_variable(var, &ctx->nir->inputs) {
1254 int drvloc = var->data.driver_location;
1255
1256 if (nir_intrinsic_base(instr) == drvloc) {
1257 out = var;
1258 break;
1259 }
1260 }
1261
1262 assert(out);
1263
1264 if (out->data.location == VARYING_SLOT_COL0) {
1265 /* Source color preloaded to r0 */
1266
1267 midgard_pin_output(ctx, reg, 0);
1268 } else if (out->data.location == VARYING_SLOT_COL1) {
1269 /* Destination color must be read from framebuffer */
1270
1271 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1272 ins.load_store.swizzle = 0; /* xxxx */
1273
1274 /* Read each component sequentially */
1275
1276 for (int c = 0; c < 4; ++c) {
1277 ins.load_store.mask = (1 << c);
1278 ins.load_store.unknown = c;
1279 emit_mir_instruction(ctx, ins);
1280 }
1281
1282 /* vadd.u2f hr2, abs(hr2), #0 */
1283
1284 midgard_vector_alu_src alu_src = blank_alu_src;
1285 alu_src.abs = true;
1286 alu_src.half = true;
1287
1288 midgard_instruction u2f = {
1289 .type = TAG_ALU_4,
1290 .ssa_args = {
1291 .src0 = reg,
1292 .src1 = SSA_UNUSED_0,
1293 .dest = reg,
1294 .inline_constant = true
1295 },
1296 .alu = {
1297 .op = midgard_alu_op_u2f,
1298 .reg_mode = midgard_reg_mode_half,
1299 .dest_override = midgard_dest_override_none,
1300 .mask = 0xF,
1301 .src1 = vector_alu_srco_unsigned(alu_src),
1302 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1303 }
1304 };
1305
1306 emit_mir_instruction(ctx, u2f);
1307
1308 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1309
1310 alu_src.abs = false;
1311
1312 midgard_instruction fmul = {
1313 .type = TAG_ALU_4,
1314 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1315 .ssa_args = {
1316 .src0 = reg,
1317 .dest = reg,
1318 .src1 = SSA_UNUSED_0,
1319 .inline_constant = true
1320 },
1321 .alu = {
1322 .op = midgard_alu_op_fmul,
1323 .reg_mode = midgard_reg_mode_full,
1324 .dest_override = midgard_dest_override_none,
1325 .outmod = midgard_outmod_sat,
1326 .mask = 0xFF,
1327 .src1 = vector_alu_srco_unsigned(alu_src),
1328 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1329 }
1330 };
1331
1332 emit_mir_instruction(ctx, fmul);
1333 } else {
1334 printf("Unknown input in blend shader\n");
1335 assert(0);
1336 }
1337 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1338 midgard_instruction ins = m_load_attr_32(reg, offset);
1339 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1340 ins.load_store.mask = (1 << instr->num_components) - 1;
1341 emit_mir_instruction(ctx, ins);
1342 } else {
1343 printf("Unknown load\n");
1344 assert(0);
1345 }
1346
1347 break;
1348
1349 case nir_intrinsic_store_output:
1350 const_offset = nir_src_as_const_value(instr->src[1]);
1351 assert(const_offset && "no indirect outputs");
1352
1353 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1354
1355 reg = nir_src_index(ctx, &instr->src[0]);
1356
1357 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1358 /* gl_FragColor is not emitted with load/store
1359 * instructions. Instead, it gets plonked into
1360 * r0 at the end of the shader and we do the
1361 * framebuffer writeout dance. TODO: Defer
1362 * writes */
1363
1364 midgard_pin_output(ctx, reg, 0);
1365
1366 /* Save the index we're writing to for later reference
1367 * in the epilogue */
1368
1369 ctx->fragment_output = reg;
1370 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1371 /* Varyings are written into one of two special
1372 * varying register, r26 or r27. The register itself is selected as the register
1373 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1374 *
1375 * Normally emitting fmov's is frowned upon,
1376 * but due to unique constraints of
1377 * REGISTER_VARYING, fmov emission + a
1378 * dedicated cleanup pass is the only way to
1379 * guarantee correctness when considering some
1380 * (common) edge cases XXX: FIXME */
1381
1382 /* Look up how it was actually laid out */
1383
1384 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1385
1386 if (!entry) {
1387 printf("WARNING: skipping varying\n");
1388 break;
1389 }
1390
1391 offset = (uintptr_t) (entry) - 1;
1392
1393 /* If this varying corresponds to a constant (why?!),
1394 * emit that now since it won't get picked up by
1395 * hoisting (since there is no corresponding move
1396 * emitted otherwise) */
1397
1398 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1399
1400 if (constant_value) {
1401 /* Special case: emit the varying write
1402 * directly to r26 (looks funny in asm but it's
1403 * fine) and emit the store _now_. Possibly
1404 * slightly slower, but this is a really stupid
1405 * special case anyway (why on earth would you
1406 * have a constant varying? Your own fault for
1407 * slightly worse perf :P) */
1408
1409 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1410 attach_constants(ctx, &ins, constant_value, reg + 1);
1411 emit_mir_instruction(ctx, ins);
1412
1413 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1414 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1415 emit_mir_instruction(ctx, st);
1416 } else {
1417 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1418
1419 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1420 }
1421 } else {
1422 printf("Unknown store\n");
1423 assert(0);
1424 }
1425
1426 break;
1427
1428 case nir_intrinsic_load_alpha_ref_float:
1429 assert(instr->dest.is_ssa);
1430
1431 float ref_value = ctx->alpha_ref;
1432
1433 float *v = ralloc_array(NULL, float, 4);
1434 memcpy(v, &ref_value, sizeof(float));
1435 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1436 break;
1437
1438
1439 default:
1440 printf ("Unhandled intrinsic\n");
1441 assert(0);
1442 break;
1443 }
1444 }
1445
1446 static unsigned
1447 midgard_tex_format(enum glsl_sampler_dim dim)
1448 {
1449 switch (dim) {
1450 case GLSL_SAMPLER_DIM_2D:
1451 case GLSL_SAMPLER_DIM_EXTERNAL:
1452 return TEXTURE_2D;
1453
1454 case GLSL_SAMPLER_DIM_3D:
1455 return TEXTURE_3D;
1456
1457 case GLSL_SAMPLER_DIM_CUBE:
1458 return TEXTURE_CUBE;
1459
1460 default:
1461 printf("Unknown sampler dim type\n");
1462 assert(0);
1463 return 0;
1464 }
1465 }
1466
1467 static void
1468 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1469 {
1470 /* TODO */
1471 //assert (!instr->sampler);
1472 //assert (!instr->texture_array_size);
1473 assert (instr->op == nir_texop_tex);
1474
1475 /* Allocate registers via a round robin scheme to alternate between the two registers */
1476 int reg = ctx->texture_op_count & 1;
1477 int in_reg = reg, out_reg = reg;
1478
1479 /* Make room for the reg */
1480
1481 if (ctx->texture_index[reg] > -1)
1482 unalias_ssa(ctx, ctx->texture_index[reg]);
1483
1484 int texture_index = instr->texture_index;
1485 int sampler_index = texture_index;
1486
1487 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1488 switch (instr->src[i].src_type) {
1489 case nir_tex_src_coord: {
1490 int index = nir_src_index(ctx, &instr->src[i].src);
1491
1492 midgard_vector_alu_src alu_src = blank_alu_src;
1493 alu_src.swizzle = (COMPONENT_Y << 2);
1494
1495 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1496 emit_mir_instruction(ctx, ins);
1497
1498 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1499
1500 break;
1501 }
1502
1503 default: {
1504 printf("Unknown source type\n");
1505 //assert(0);
1506 break;
1507 }
1508 }
1509 }
1510
1511 /* No helper to build texture words -- we do it all here */
1512 midgard_instruction ins = {
1513 .type = TAG_TEXTURE_4,
1514 .texture = {
1515 .op = TEXTURE_OP_NORMAL,
1516 .format = midgard_tex_format(instr->sampler_dim),
1517 .texture_handle = texture_index,
1518 .sampler_handle = sampler_index,
1519
1520 /* TODO: Don't force xyzw */
1521 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1522 .mask = 0xF,
1523
1524 /* TODO: half */
1525 //.in_reg_full = 1,
1526 .out_full = 1,
1527
1528 .filter = 1,
1529
1530 /* Always 1 */
1531 .unknown7 = 1,
1532
1533 /* Assume we can continue; hint it out later */
1534 .cont = 1,
1535 }
1536 };
1537
1538 /* Set registers to read and write from the same place */
1539 ins.texture.in_reg_select = in_reg;
1540 ins.texture.out_reg_select = out_reg;
1541
1542 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1543 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1544 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1545 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1546 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1547 } else {
1548 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1549 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1550 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1551 }
1552
1553 emit_mir_instruction(ctx, ins);
1554
1555 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1556
1557 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1558 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1559 ctx->texture_index[reg] = o_index;
1560
1561 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1562 emit_mir_instruction(ctx, ins2);
1563
1564 /* Used for .cont and .last hinting */
1565 ctx->texture_op_count++;
1566 }
1567
1568 static void
1569 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1570 {
1571 switch (instr->type) {
1572 case nir_jump_break: {
1573 /* Emit a branch out of the loop */
1574 struct midgard_instruction br = v_branch(false, false);
1575 br.branch.target_type = TARGET_BREAK;
1576 br.branch.target_break = ctx->current_loop;
1577 emit_mir_instruction(ctx, br);
1578
1579 printf("break..\n");
1580 break;
1581 }
1582
1583 default:
1584 printf("Unknown jump type %d\n", instr->type);
1585 break;
1586 }
1587 }
1588
1589 static void
1590 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1591 {
1592 switch (instr->type) {
1593 case nir_instr_type_load_const:
1594 emit_load_const(ctx, nir_instr_as_load_const(instr));
1595 break;
1596
1597 case nir_instr_type_intrinsic:
1598 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1599 break;
1600
1601 case nir_instr_type_alu:
1602 emit_alu(ctx, nir_instr_as_alu(instr));
1603 break;
1604
1605 case nir_instr_type_tex:
1606 emit_tex(ctx, nir_instr_as_tex(instr));
1607 break;
1608
1609 case nir_instr_type_jump:
1610 emit_jump(ctx, nir_instr_as_jump(instr));
1611 break;
1612
1613 case nir_instr_type_ssa_undef:
1614 /* Spurious */
1615 break;
1616
1617 default:
1618 printf("Unhandled instruction type\n");
1619 break;
1620 }
1621 }
1622
1623 /* Determine the actual hardware from the index based on the RA results or special values */
1624
1625 static int
1626 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1627 {
1628 if (reg >= SSA_FIXED_MINIMUM)
1629 return SSA_REG_FROM_FIXED(reg);
1630
1631 if (reg >= 0) {
1632 assert(reg < maxreg);
1633 int r = ra_get_node_reg(g, reg);
1634 ctx->work_registers = MAX2(ctx->work_registers, r);
1635 return r;
1636 }
1637
1638 switch (reg) {
1639 /* fmov style unused */
1640 case SSA_UNUSED_0:
1641 return REGISTER_UNUSED;
1642
1643 /* lut style unused */
1644 case SSA_UNUSED_1:
1645 return REGISTER_UNUSED;
1646
1647 default:
1648 printf("Unknown SSA register alias %d\n", reg);
1649 assert(0);
1650 return 31;
1651 }
1652 }
1653
1654 static unsigned int
1655 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1656 {
1657 /* Choose the first available register to minimise reported register pressure */
1658
1659 for (int i = 0; i < 16; ++i) {
1660 if (BITSET_TEST(regs, i)) {
1661 return i;
1662 }
1663 }
1664
1665 assert(0);
1666 return 0;
1667 }
1668
1669 static bool
1670 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1671 {
1672 if (ins->ssa_args.src0 == src) return true;
1673 if (ins->ssa_args.src1 == src) return true;
1674
1675 return false;
1676 }
1677
1678 static bool
1679 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1680 {
1681 /* Check the rest of the block for liveness */
1682 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1683 if (midgard_is_live_in_instr(ins, src))
1684 return true;
1685 }
1686
1687 /* Check the rest of the blocks for liveness */
1688 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1689 mir_foreach_instr_in_block(b, ins) {
1690 if (midgard_is_live_in_instr(ins, src))
1691 return true;
1692 }
1693 }
1694
1695 /* TODO: How does control flow interact in complex shaders? */
1696
1697 return false;
1698 }
1699
1700 static void
1701 allocate_registers(compiler_context *ctx)
1702 {
1703 /* First, initialize the RA */
1704 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1705
1706 /* Create a primary (general purpose) class, as well as special purpose
1707 * pipeline register classes */
1708
1709 int primary_class = ra_alloc_reg_class(regs);
1710 int varying_class = ra_alloc_reg_class(regs);
1711
1712 /* Add the full set of work registers */
1713 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1714 for (int i = 0; i < work_count; ++i)
1715 ra_class_add_reg(regs, primary_class, i);
1716
1717 /* Add special registers */
1718 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1719 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1720
1721 /* We're done setting up */
1722 ra_set_finalize(regs, NULL);
1723
1724 /* Transform the MIR into squeezed index form */
1725 mir_foreach_block(ctx, block) {
1726 mir_foreach_instr_in_block(block, ins) {
1727 if (ins->compact_branch) continue;
1728
1729 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1730 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1731 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1732 }
1733
1734 print_mir_block(block);
1735 }
1736
1737 /* Let's actually do register allocation */
1738 int nodes = ctx->temp_count;
1739 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1740
1741 /* Set everything to the work register class, unless it has somewhere
1742 * special to go */
1743
1744 mir_foreach_block(ctx, block) {
1745 mir_foreach_instr_in_block(block, ins) {
1746 if (ins->compact_branch) continue;
1747
1748 if (ins->ssa_args.dest < 0) continue;
1749
1750 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1751
1752 int class = primary_class;
1753
1754 ra_set_node_class(g, ins->ssa_args.dest, class);
1755 }
1756 }
1757
1758 for (int index = 0; index <= ctx->max_hash; ++index) {
1759 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1760
1761 if (temp) {
1762 unsigned reg = temp - 1;
1763 int t = find_or_allocate_temp(ctx, index);
1764 ra_set_node_reg(g, t, reg);
1765 }
1766 }
1767
1768 /* Determine liveness */
1769
1770 int *live_start = malloc(nodes * sizeof(int));
1771 int *live_end = malloc(nodes * sizeof(int));
1772
1773 /* Initialize as non-existent */
1774
1775 for (int i = 0; i < nodes; ++i) {
1776 live_start[i] = live_end[i] = -1;
1777 }
1778
1779 int d = 0;
1780
1781 mir_foreach_block(ctx, block) {
1782 mir_foreach_instr_in_block(block, ins) {
1783 if (ins->compact_branch) continue;
1784
1785 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1786 /* If this destination is not yet live, it is now since we just wrote it */
1787
1788 int dest = ins->ssa_args.dest;
1789
1790 if (live_start[dest] == -1)
1791 live_start[dest] = d;
1792 }
1793
1794 /* Since we just used a source, the source might be
1795 * dead now. Scan the rest of the block for
1796 * invocations, and if there are none, the source dies
1797 * */
1798
1799 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1800
1801 for (int src = 0; src < 2; ++src) {
1802 int s = sources[src];
1803
1804 if (s < 0) continue;
1805
1806 if (s >= SSA_FIXED_MINIMUM) continue;
1807
1808 if (!is_live_after(ctx, block, ins, s)) {
1809 live_end[s] = d;
1810 }
1811 }
1812
1813 ++d;
1814 }
1815 }
1816
1817 /* If a node still hasn't been killed, kill it now */
1818
1819 for (int i = 0; i < nodes; ++i) {
1820 /* live_start == -1 most likely indicates a pinned output */
1821
1822 if (live_end[i] == -1)
1823 live_end[i] = d;
1824 }
1825
1826 /* Setup interference between nodes that are live at the same time */
1827
1828 for (int i = 0; i < nodes; ++i) {
1829 for (int j = i + 1; j < nodes; ++j) {
1830 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1831 ra_add_node_interference(g, i, j);
1832 }
1833 }
1834
1835 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1836
1837 if (!ra_allocate(g)) {
1838 printf("Error allocating registers\n");
1839 assert(0);
1840 }
1841
1842 /* Cleanup */
1843 free(live_start);
1844 free(live_end);
1845
1846 mir_foreach_block(ctx, block) {
1847 mir_foreach_instr_in_block(block, ins) {
1848 if (ins->compact_branch) continue;
1849
1850 ssa_args args = ins->ssa_args;
1851
1852 switch (ins->type) {
1853 case TAG_ALU_4:
1854 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1855
1856 ins->registers.src2_imm = args.inline_constant;
1857
1858 if (args.inline_constant) {
1859 /* Encode inline 16-bit constant as a vector by default */
1860
1861 ins->registers.src2_reg = ins->inline_constant >> 11;
1862
1863 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1864
1865 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1866 ins->alu.src2 = imm << 2;
1867 } else {
1868 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1869 }
1870
1871 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1872
1873 break;
1874
1875 case TAG_LOAD_STORE_4: {
1876 if (OP_IS_STORE(ins->load_store.op)) {
1877 /* TODO: use ssa_args for store_vary */
1878 ins->load_store.reg = 0;
1879 } else {
1880 bool has_dest = args.dest >= 0;
1881 int ssa_arg = has_dest ? args.dest : args.src0;
1882
1883 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1884 }
1885
1886 break;
1887 }
1888
1889 default:
1890 break;
1891 }
1892 }
1893 }
1894 }
1895
1896 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1897 * use scalar ALU instructions, for functional or performance reasons. To do
1898 * this, we just demote vector ALU payloads to scalar. */
1899
1900 static int
1901 component_from_mask(unsigned mask)
1902 {
1903 for (int c = 0; c < 4; ++c) {
1904 if (mask & (3 << (2 * c)))
1905 return c;
1906 }
1907
1908 assert(0);
1909 return 0;
1910 }
1911
1912 static bool
1913 is_single_component_mask(unsigned mask)
1914 {
1915 int components = 0;
1916
1917 for (int c = 0; c < 4; ++c)
1918 if (mask & (3 << (2 * c)))
1919 components++;
1920
1921 return components == 1;
1922 }
1923
1924 /* Create a mask of accessed components from a swizzle to figure out vector
1925 * dependencies */
1926
1927 static unsigned
1928 swizzle_to_access_mask(unsigned swizzle)
1929 {
1930 unsigned component_mask = 0;
1931
1932 for (int i = 0; i < 4; ++i) {
1933 unsigned c = (swizzle >> (2 * i)) & 3;
1934 component_mask |= (1 << c);
1935 }
1936
1937 return component_mask;
1938 }
1939
1940 static unsigned
1941 vector_to_scalar_source(unsigned u)
1942 {
1943 midgard_vector_alu_src v;
1944 memcpy(&v, &u, sizeof(v));
1945
1946 midgard_scalar_alu_src s = {
1947 .abs = v.abs,
1948 .negate = v.negate,
1949 .full = !v.half,
1950 .component = (v.swizzle & 3) << 1
1951 };
1952
1953 unsigned o;
1954 memcpy(&o, &s, sizeof(s));
1955
1956 return o & ((1 << 6) - 1);
1957 }
1958
1959 static midgard_scalar_alu
1960 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1961 {
1962 /* The output component is from the mask */
1963 midgard_scalar_alu s = {
1964 .op = v.op,
1965 .src1 = vector_to_scalar_source(v.src1),
1966 .src2 = vector_to_scalar_source(v.src2),
1967 .unknown = 0,
1968 .outmod = v.outmod,
1969 .output_full = 1, /* TODO: Half */
1970 .output_component = component_from_mask(v.mask) << 1,
1971 };
1972
1973 /* Inline constant is passed along rather than trying to extract it
1974 * from v */
1975
1976 if (ins->ssa_args.inline_constant) {
1977 uint16_t imm = 0;
1978 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1979 imm |= (lower_11 >> 9) & 3;
1980 imm |= (lower_11 >> 6) & 4;
1981 imm |= (lower_11 >> 2) & 0x38;
1982 imm |= (lower_11 & 63) << 6;
1983
1984 s.src2 = imm;
1985 }
1986
1987 return s;
1988 }
1989
1990 /* Midgard prefetches instruction types, so during emission we need to
1991 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1992 * if this is the second to last and the last is an ALU, then it's also 1... */
1993
1994 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1995 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1996
1997 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
1998 bytes_emitted += sizeof(type)
1999
2000 static void
2001 emit_binary_vector_instruction(midgard_instruction *ains,
2002 uint16_t *register_words, int *register_words_count,
2003 uint64_t *body_words, size_t *body_size, int *body_words_count,
2004 size_t *bytes_emitted)
2005 {
2006 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2007 *bytes_emitted += sizeof(midgard_reg_info);
2008
2009 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2010 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2011 *bytes_emitted += sizeof(midgard_vector_alu);
2012 }
2013
2014 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2015 * mind that we are a vector architecture and we can write to different
2016 * components simultaneously */
2017
2018 static bool
2019 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2020 {
2021 /* Each instruction reads some registers and writes to a register. See
2022 * where the first writes */
2023
2024 /* Figure out where exactly we wrote to */
2025 int source = first->ssa_args.dest;
2026 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2027
2028 /* As long as the second doesn't read from the first, we're okay */
2029 if (second->ssa_args.src0 == source) {
2030 if (first->type == TAG_ALU_4) {
2031 /* Figure out which components we just read from */
2032
2033 int q = second->alu.src1;
2034 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2035
2036 /* Check if there are components in common, and fail if so */
2037 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2038 return false;
2039 } else
2040 return false;
2041
2042 }
2043
2044 if (second->ssa_args.src1 == source)
2045 return false;
2046
2047 /* Otherwise, it's safe in that regard. Another data hazard is both
2048 * writing to the same place, of course */
2049
2050 if (second->ssa_args.dest == source) {
2051 /* ...but only if the components overlap */
2052 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2053
2054 if (dest_mask & source_mask)
2055 return false;
2056 }
2057
2058 /* ...That's it */
2059 return true;
2060 }
2061
2062 /* Schedules, but does not emit, a single basic block. After scheduling, the
2063 * final tag and size of the block are known, which are necessary for branching
2064 * */
2065
2066 static midgard_bundle
2067 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2068 {
2069 int instructions_emitted = 0, instructions_consumed = -1;
2070 midgard_bundle bundle = { 0 };
2071
2072 uint8_t tag = ins->type;
2073
2074 /* Default to the instruction's tag */
2075 bundle.tag = tag;
2076
2077 switch (ins->type) {
2078 case TAG_ALU_4: {
2079 uint32_t control = 0;
2080 size_t bytes_emitted = sizeof(control);
2081
2082 /* TODO: Constant combining */
2083 int index = 0, last_unit = 0;
2084
2085 /* Previous instructions, for the purpose of parallelism */
2086 midgard_instruction *segment[4] = {0};
2087 int segment_size = 0;
2088
2089 instructions_emitted = -1;
2090 midgard_instruction *pins = ins;
2091
2092 for (;;) {
2093 midgard_instruction *ains = pins;
2094
2095 /* Advance instruction pointer */
2096 if (index) {
2097 ains = mir_next_op(pins);
2098 pins = ains;
2099 }
2100
2101 /* Out-of-work condition */
2102 if ((struct list_head *) ains == &block->instructions)
2103 break;
2104
2105 /* Ensure that the chain can continue */
2106 if (ains->type != TAG_ALU_4) break;
2107
2108 /* According to the presentation "The ARM
2109 * Mali-T880 Mobile GPU" from HotChips 27,
2110 * there are two pipeline stages. Branching
2111 * position determined experimentally. Lines
2112 * are executed in parallel:
2113 *
2114 * [ VMUL ] [ SADD ]
2115 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2116 *
2117 * Verify that there are no ordering dependencies here.
2118 *
2119 * TODO: Allow for parallelism!!!
2120 */
2121
2122 /* Pick a unit for it if it doesn't force a particular unit */
2123
2124 int unit = ains->unit;
2125
2126 if (!unit) {
2127 int op = ains->alu.op;
2128 int units = alu_opcode_props[op];
2129
2130 /* TODO: Promotion of scalars to vectors */
2131 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2132
2133 if (!vector)
2134 assert(units & UNITS_SCALAR);
2135
2136 if (vector) {
2137 if (last_unit >= UNIT_VADD) {
2138 if (units & UNIT_VLUT)
2139 unit = UNIT_VLUT;
2140 else
2141 break;
2142 } else {
2143 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2144 unit = UNIT_VMUL;
2145 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2146 unit = UNIT_VADD;
2147 else if (units & UNIT_VLUT)
2148 unit = UNIT_VLUT;
2149 else
2150 break;
2151 }
2152 } else {
2153 if (last_unit >= UNIT_VADD) {
2154 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2155 unit = UNIT_SMUL;
2156 else if (units & UNIT_VLUT)
2157 unit = UNIT_VLUT;
2158 else
2159 break;
2160 } else {
2161 if ((units & UNIT_SADD) && !(control & UNIT_SADD))
2162 unit = UNIT_SADD;
2163 else if (units & UNIT_SMUL)
2164 unit = UNIT_SMUL;
2165 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2166 unit = UNIT_VADD;
2167 else
2168 break;
2169 }
2170 }
2171
2172 assert(unit & units);
2173 }
2174
2175 /* Late unit check, this time for encoding (not parallelism) */
2176 if (unit <= last_unit) break;
2177
2178 /* Clear the segment */
2179 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2180 segment_size = 0;
2181
2182 /* Check for data hazards */
2183 int has_hazard = false;
2184
2185 for (int s = 0; s < segment_size; ++s)
2186 if (!can_run_concurrent_ssa(segment[s], ains))
2187 has_hazard = true;
2188
2189 if (has_hazard)
2190 break;
2191
2192 /* We're good to go -- emit the instruction */
2193 ains->unit = unit;
2194
2195 segment[segment_size++] = ains;
2196
2197 /* Only one set of embedded constants per
2198 * bundle possible; if we have more, we must
2199 * break the chain early, unfortunately */
2200
2201 if (ains->has_constants) {
2202 if (bundle.has_embedded_constants) {
2203 /* ...but if there are already
2204 * constants but these are the
2205 * *same* constants, we let it
2206 * through */
2207
2208 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2209 break;
2210 } else {
2211 bundle.has_embedded_constants = true;
2212 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2213
2214 /* If this is a blend shader special constant, track it for patching */
2215 if (ains->has_blend_constant)
2216 bundle.has_blend_constant = true;
2217 }
2218 }
2219
2220 if (ains->unit & UNITS_ANY_VECTOR) {
2221 emit_binary_vector_instruction(ains, bundle.register_words,
2222 &bundle.register_words_count, bundle.body_words,
2223 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2224 } else if (ains->compact_branch) {
2225 /* All of r0 has to be written out
2226 * along with the branch writeout.
2227 * (slow!) */
2228
2229 if (ains->writeout) {
2230 if (index == 0) {
2231 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2232 ins.unit = UNIT_VMUL;
2233
2234 control |= ins.unit;
2235
2236 emit_binary_vector_instruction(&ins, bundle.register_words,
2237 &bundle.register_words_count, bundle.body_words,
2238 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2239 } else {
2240 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2241 bool written_late = false;
2242 bool components[4] = { 0 };
2243 uint16_t register_dep_mask = 0;
2244 uint16_t written_mask = 0;
2245
2246 midgard_instruction *qins = ins;
2247 for (int t = 0; t < index; ++t) {
2248 if (qins->registers.out_reg != 0) {
2249 /* Mark down writes */
2250
2251 written_mask |= (1 << qins->registers.out_reg);
2252 } else {
2253 /* Mark down the register dependencies for errata check */
2254
2255 if (qins->registers.src1_reg < 16)
2256 register_dep_mask |= (1 << qins->registers.src1_reg);
2257
2258 if (qins->registers.src2_reg < 16)
2259 register_dep_mask |= (1 << qins->registers.src2_reg);
2260
2261 int mask = qins->alu.mask;
2262
2263 for (int c = 0; c < 4; ++c)
2264 if (mask & (0x3 << (2 * c)))
2265 components[c] = true;
2266
2267 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2268
2269 if (qins->unit == UNIT_VLUT)
2270 written_late = true;
2271 }
2272
2273 /* Advance instruction pointer */
2274 qins = mir_next_op(qins);
2275 }
2276
2277
2278 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2279 if (register_dep_mask & written_mask) {
2280 printf("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2281 break;
2282 }
2283
2284 if (written_late)
2285 break;
2286
2287 /* If even a single component is not written, break it up (conservative check). */
2288 bool breakup = false;
2289
2290 for (int c = 0; c < 4; ++c)
2291 if (!components[c])
2292 breakup = true;
2293
2294 if (breakup)
2295 break;
2296
2297 /* Otherwise, we're free to proceed */
2298 }
2299 }
2300
2301 if (ains->unit == ALU_ENAB_BRANCH) {
2302 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2303 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2304 bytes_emitted += sizeof(midgard_branch_extended);
2305 } else {
2306 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2307 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2308 bytes_emitted += sizeof(ains->br_compact);
2309 }
2310 } else {
2311 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2312 bytes_emitted += sizeof(midgard_reg_info);
2313
2314 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2315 bundle.body_words_count++;
2316 bytes_emitted += sizeof(midgard_scalar_alu);
2317 }
2318
2319 /* Defer marking until after writing to allow for break */
2320 control |= ains->unit;
2321 last_unit = ains->unit;
2322 ++instructions_emitted;
2323 ++index;
2324 }
2325
2326 /* Bubble up the number of instructions for skipping */
2327 instructions_consumed = index - 1;
2328
2329 int padding = 0;
2330
2331 /* Pad ALU op to nearest word */
2332
2333 if (bytes_emitted & 15) {
2334 padding = 16 - (bytes_emitted & 15);
2335 bytes_emitted += padding;
2336 }
2337
2338 /* Constants must always be quadwords */
2339 if (bundle.has_embedded_constants)
2340 bytes_emitted += 16;
2341
2342 /* Size ALU instruction for tag */
2343 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2344 bundle.padding = padding;
2345 bundle.control = bundle.tag | control;
2346
2347 break;
2348 }
2349
2350 case TAG_LOAD_STORE_4: {
2351 /* Load store instructions have two words at once. If
2352 * we only have one queued up, we need to NOP pad.
2353 * Otherwise, we store both in succession to save space
2354 * and cycles -- letting them go in parallel -- skip
2355 * the next. The usefulness of this optimisation is
2356 * greatly dependent on the quality of the instruction
2357 * scheduler.
2358 */
2359
2360 midgard_instruction *next_op = mir_next_op(ins);
2361
2362 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2363 /* As the two operate concurrently, make sure
2364 * they are not dependent */
2365
2366 if (can_run_concurrent_ssa(ins, next_op) || true) {
2367 /* Skip ahead, since it's redundant with the pair */
2368 instructions_consumed = 1 + (instructions_emitted++);
2369 }
2370 }
2371
2372 break;
2373 }
2374
2375 default:
2376 /* Texture ops default to single-op-per-bundle scheduling */
2377 break;
2378 }
2379
2380 /* Copy the instructions into the bundle */
2381 bundle.instruction_count = instructions_emitted + 1;
2382
2383 int used_idx = 0;
2384
2385 midgard_instruction *uins = ins;
2386 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2387 bundle.instructions[used_idx++] = *uins;
2388 uins = mir_next_op(uins);
2389 }
2390
2391 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2392
2393 return bundle;
2394 }
2395
2396 static int
2397 quadword_size(int tag)
2398 {
2399 switch (tag) {
2400 case TAG_ALU_4:
2401 return 1;
2402
2403 case TAG_ALU_8:
2404 return 2;
2405
2406 case TAG_ALU_12:
2407 return 3;
2408
2409 case TAG_ALU_16:
2410 return 4;
2411
2412 case TAG_LOAD_STORE_4:
2413 return 1;
2414
2415 case TAG_TEXTURE_4:
2416 return 1;
2417
2418 default:
2419 assert(0);
2420 return 0;
2421 }
2422 }
2423
2424 /* Schedule a single block by iterating its instruction to create bundles.
2425 * While we go, tally about the bundle sizes to compute the block size. */
2426
2427 static void
2428 schedule_block(compiler_context *ctx, midgard_block *block)
2429 {
2430 util_dynarray_init(&block->bundles, NULL);
2431
2432 block->quadword_count = 0;
2433
2434 mir_foreach_instr_in_block(block, ins) {
2435 int skip;
2436 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2437 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2438
2439 if (bundle.has_blend_constant) {
2440 /* TODO: Multiblock? */
2441 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2442 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2443 }
2444
2445 while(skip--)
2446 ins = mir_next_op(ins);
2447
2448 block->quadword_count += quadword_size(bundle.tag);
2449 }
2450
2451 block->is_scheduled = true;
2452 }
2453
2454 static void
2455 schedule_program(compiler_context *ctx)
2456 {
2457 allocate_registers(ctx);
2458
2459 mir_foreach_block(ctx, block) {
2460 schedule_block(ctx, block);
2461 }
2462 }
2463
2464 /* After everything is scheduled, emit whole bundles at a time */
2465
2466 static void
2467 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2468 {
2469 int lookahead = next_tag << 4;
2470
2471 switch (bundle->tag) {
2472 case TAG_ALU_4:
2473 case TAG_ALU_8:
2474 case TAG_ALU_12:
2475 case TAG_ALU_16: {
2476 /* Actually emit each component */
2477 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2478
2479 for (int i = 0; i < bundle->register_words_count; ++i)
2480 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2481
2482 /* Emit body words based on the instructions bundled */
2483 for (int i = 0; i < bundle->instruction_count; ++i) {
2484 midgard_instruction *ins = &bundle->instructions[i];
2485
2486 if (ins->unit & UNITS_ANY_VECTOR) {
2487 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2488 } else if (ins->compact_branch) {
2489 /* Dummy move, XXX DRY */
2490 if ((i == 0) && ins->writeout) {
2491 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2492 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2493 }
2494
2495 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2496 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2497 } else {
2498 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2499 }
2500 } else {
2501 /* Scalar */
2502 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2503 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2504 }
2505 }
2506
2507 /* Emit padding (all zero) */
2508 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2509
2510 /* Tack on constants */
2511
2512 if (bundle->has_embedded_constants) {
2513 util_dynarray_append(emission, float, bundle->constants[0]);
2514 util_dynarray_append(emission, float, bundle->constants[1]);
2515 util_dynarray_append(emission, float, bundle->constants[2]);
2516 util_dynarray_append(emission, float, bundle->constants[3]);
2517 }
2518
2519 break;
2520 }
2521
2522 case TAG_LOAD_STORE_4: {
2523 /* One or two composing instructions */
2524
2525 uint64_t current64, next64 = LDST_NOP;
2526
2527 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2528
2529 if (bundle->instruction_count == 2)
2530 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2531
2532 midgard_load_store instruction = {
2533 .type = bundle->tag,
2534 .next_type = next_tag,
2535 .word1 = current64,
2536 .word2 = next64
2537 };
2538
2539 util_dynarray_append(emission, midgard_load_store, instruction);
2540
2541 break;
2542 }
2543
2544 case TAG_TEXTURE_4: {
2545 /* Texture instructions are easy, since there is no
2546 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2547
2548 midgard_instruction *ins = &bundle->instructions[0];
2549
2550 ins->texture.type = TAG_TEXTURE_4;
2551 ins->texture.next_type = next_tag;
2552
2553 ctx->texture_op_count--;
2554
2555 if (!ctx->texture_op_count) {
2556 ins->texture.cont = 0;
2557 ins->texture.last = 1;
2558 }
2559
2560 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2561 break;
2562 }
2563
2564 default:
2565 printf("Unknown midgard instruction type\n");
2566 assert(0);
2567 break;
2568 }
2569 }
2570
2571
2572 /* ALU instructions can inline or embed constants, which decreases register
2573 * pressure and saves space. */
2574
2575 #define CONDITIONAL_ATTACH(src) { \
2576 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2577 \
2578 if (entry) { \
2579 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2580 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2581 } \
2582 }
2583
2584 static void
2585 inline_alu_constants(compiler_context *ctx)
2586 {
2587 mir_foreach_instr(ctx, alu) {
2588 /* Other instructions cannot inline constants */
2589 if (alu->type != TAG_ALU_4) continue;
2590
2591 /* If there is already a constant here, we can do nothing */
2592 if (alu->has_constants) continue;
2593
2594 CONDITIONAL_ATTACH(src0);
2595
2596 if (!alu->has_constants) {
2597 CONDITIONAL_ATTACH(src1)
2598 } else if (!alu->inline_constant) {
2599 /* Corner case: _two_ vec4 constants, for instance with a
2600 * csel. For this case, we can only use a constant
2601 * register for one, we'll have to emit a move for the
2602 * other. Note, if both arguments are constants, then
2603 * necessarily neither argument depends on the value of
2604 * any particular register. As the destination register
2605 * will be wiped, that means we can spill the constant
2606 * to the destination register.
2607 */
2608
2609 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2610 unsigned scratch = alu->ssa_args.dest;
2611
2612 if (entry) {
2613 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2614 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2615
2616 /* Force a break XXX Defer r31 writes */
2617 ins.unit = UNIT_VLUT;
2618
2619 /* Set the source */
2620 alu->ssa_args.src1 = scratch;
2621
2622 /* Inject us -before- the last instruction which set r31 */
2623 mir_insert_instruction_before(mir_prev_op(alu), ins);
2624 }
2625 }
2626 }
2627 }
2628
2629 /* Midgard supports two types of constants, embedded constants (128-bit) and
2630 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2631 * constants can be demoted to inline constants, for space savings and
2632 * sometimes a performance boost */
2633
2634 static void
2635 embedded_to_inline_constant(compiler_context *ctx)
2636 {
2637 mir_foreach_instr(ctx, ins) {
2638 if (!ins->has_constants) continue;
2639
2640 if (ins->ssa_args.inline_constant) continue;
2641
2642 /* Blend constants must not be inlined by definition */
2643 if (ins->has_blend_constant) continue;
2644
2645 /* src1 cannot be an inline constant due to encoding
2646 * restrictions. So, if possible we try to flip the arguments
2647 * in that case */
2648
2649 int op = ins->alu.op;
2650
2651 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2652 /* Flip based on op. Fallthrough intentional */
2653
2654 switch (op) {
2655 /* These ops require an operational change to flip their arguments TODO */
2656 case midgard_alu_op_flt:
2657 case midgard_alu_op_fle:
2658 case midgard_alu_op_ilt:
2659 case midgard_alu_op_ile:
2660 case midgard_alu_op_fcsel:
2661 case midgard_alu_op_icsel:
2662 case midgard_alu_op_isub:
2663 printf("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2664 break;
2665
2666 /* These ops are commutative and Just Flip */
2667 case midgard_alu_op_fne:
2668 case midgard_alu_op_fadd:
2669 case midgard_alu_op_fmul:
2670 case midgard_alu_op_fmin:
2671 case midgard_alu_op_fmax:
2672 case midgard_alu_op_iadd:
2673 case midgard_alu_op_imul:
2674 case midgard_alu_op_feq:
2675 case midgard_alu_op_ieq:
2676 case midgard_alu_op_ine:
2677 case midgard_alu_op_iand:
2678 case midgard_alu_op_ior:
2679 case midgard_alu_op_ixor:
2680 /* Flip the SSA numbers */
2681 ins->ssa_args.src0 = ins->ssa_args.src1;
2682 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2683
2684 /* And flip the modifiers */
2685
2686 unsigned src_temp;
2687
2688 src_temp = ins->alu.src2;
2689 ins->alu.src2 = ins->alu.src1;
2690 ins->alu.src1 = src_temp;
2691
2692 default:
2693 break;
2694 }
2695 }
2696
2697 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2698 /* Extract the source information */
2699
2700 midgard_vector_alu_src *src;
2701 int q = ins->alu.src2;
2702 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2703 src = m;
2704
2705 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2706 int component = src->swizzle & 3;
2707
2708 /* Scale constant appropriately, if we can legally */
2709 uint16_t scaled_constant = 0;
2710
2711 /* XXX: Check legality */
2712 if (midgard_is_integer_op(op)) {
2713 /* TODO: Inline integer */
2714 continue;
2715
2716 unsigned int *iconstants = (unsigned int *) ins->constants;
2717 scaled_constant = (uint16_t) iconstants[component];
2718
2719 /* Constant overflow after resize */
2720 if (scaled_constant != iconstants[component])
2721 continue;
2722 } else {
2723 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2724 }
2725
2726 /* We don't know how to handle these with a constant */
2727
2728 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2729 printf("Bailing inline constant...\n");
2730 continue;
2731 }
2732
2733 /* Make sure that the constant is not itself a
2734 * vector by checking if all accessed values
2735 * (by the swizzle) are the same. */
2736
2737 uint32_t *cons = (uint32_t *) ins->constants;
2738 uint32_t value = cons[component];
2739
2740 bool is_vector = false;
2741 unsigned mask = effective_writemask(&ins->alu);
2742
2743 for (int c = 1; c < 4; ++c) {
2744 /* We only care if this component is actually used */
2745 if (!(mask & (1 << c)))
2746 continue;
2747
2748 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2749
2750 if (test != value) {
2751 is_vector = true;
2752 break;
2753 }
2754 }
2755
2756 if (is_vector)
2757 continue;
2758
2759 /* Get rid of the embedded constant */
2760 ins->has_constants = false;
2761 ins->ssa_args.src1 = SSA_UNUSED_0;
2762 ins->ssa_args.inline_constant = true;
2763 ins->inline_constant = scaled_constant;
2764 }
2765 }
2766 }
2767
2768 /* Map normal SSA sources to other SSA sources / fixed registers (like
2769 * uniforms) */
2770
2771 static void
2772 map_ssa_to_alias(compiler_context *ctx, int *ref)
2773 {
2774 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2775
2776 if (alias) {
2777 /* Remove entry in leftovers to avoid a redunant fmov */
2778
2779 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2780
2781 if (leftover)
2782 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2783
2784 /* Assign the alias map */
2785 *ref = alias - 1;
2786 return;
2787 }
2788 }
2789
2790 #define AS_SRC(to, u) \
2791 int q##to = ins->alu.src2; \
2792 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2793
2794 /* Removing unused moves is necessary to clean up the texture pipeline results.
2795 *
2796 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2797
2798 static void
2799 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2800 {
2801 mir_foreach_instr_in_block_safe(block, ins) {
2802 if (ins->type != TAG_ALU_4) continue;
2803
2804 if (ins->alu.op != midgard_alu_op_fmov) continue;
2805
2806 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2807
2808 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2809
2810 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2811
2812 mir_remove_instruction(ins);
2813 }
2814 }
2815
2816 /* The following passes reorder MIR instructions to enable better scheduling */
2817
2818 static void
2819 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2820 {
2821 mir_foreach_instr_in_block_safe(block, ins) {
2822 if (ins->type != TAG_LOAD_STORE_4) continue;
2823
2824 /* We've found a load/store op. Check if next is also load/store. */
2825 midgard_instruction *next_op = mir_next_op(ins);
2826 if (&next_op->link != &block->instructions) {
2827 if (next_op->type == TAG_LOAD_STORE_4) {
2828 /* If so, we're done since we're a pair */
2829 ins = mir_next_op(ins);
2830 continue;
2831 }
2832
2833 /* Maximum search distance to pair, to avoid register pressure disasters */
2834 int search_distance = 8;
2835
2836 /* Otherwise, we have an orphaned load/store -- search for another load */
2837 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2838 /* Terminate search if necessary */
2839 if (!(search_distance--)) break;
2840
2841 if (c->type != TAG_LOAD_STORE_4) continue;
2842
2843 if (OP_IS_STORE(c->load_store.op)) continue;
2844
2845 /* We found one! Move it up to pair and remove it from the old location */
2846
2847 mir_insert_instruction_before(ins, *c);
2848 mir_remove_instruction(c);
2849
2850 break;
2851 }
2852 }
2853 }
2854 }
2855
2856 /* Emit varying stores late */
2857
2858 static void
2859 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2860 /* Iterate in reverse to get the final write, rather than the first */
2861
2862 mir_foreach_instr_in_block_safe_rev(block, ins) {
2863 /* Check if what we just wrote needs a store */
2864 int idx = ins->ssa_args.dest;
2865 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2866
2867 if (!varying) continue;
2868
2869 varying -= 1;
2870
2871 /* We need to store to the appropriate varying, so emit the
2872 * move/store */
2873
2874 /* TODO: Integrate with special purpose RA (and scheduler?) */
2875 bool high_varying_register = false;
2876
2877 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2878
2879 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2880 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2881
2882 mir_insert_instruction_before(mir_next_op(ins), st);
2883 mir_insert_instruction_before(mir_next_op(ins), mov);
2884
2885 /* We no longer need to store this varying */
2886 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2887 }
2888 }
2889
2890 /* If there are leftovers after the below pass, emit actual fmov
2891 * instructions for the slow-but-correct path */
2892
2893 static void
2894 emit_leftover_move(compiler_context *ctx)
2895 {
2896 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2897 int base = ((uintptr_t) leftover->key) - 1;
2898 int mapped = base;
2899
2900 map_ssa_to_alias(ctx, &mapped);
2901 EMIT(fmov, mapped, blank_alu_src, base);
2902 }
2903 }
2904
2905 static void
2906 actualise_ssa_to_alias(compiler_context *ctx)
2907 {
2908 mir_foreach_instr(ctx, ins) {
2909 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2910 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2911 }
2912
2913 emit_leftover_move(ctx);
2914 }
2915
2916 /* Vertex shaders do not write gl_Position as is; instead, they write a
2917 * transformed screen space position as a varying. See section 12.5 "Coordinate
2918 * Transformation" of the ES 3.2 full specification for details.
2919 *
2920 * This transformation occurs early on, as NIR and prior to optimisation, in
2921 * order to take advantage of NIR optimisation passes of the transform itself.
2922 * */
2923
2924 static void
2925 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2926 {
2927 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2928
2929 /* Get viewport from the uniforms */
2930 nir_intrinsic_instr *load;
2931 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2932 load->num_components = 4;
2933 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2934 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2935 nir_builder_instr_insert(b, &load->instr);
2936
2937 /* Formatted as <width, height, centerx, centery> */
2938 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2939 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2940 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2941 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2942
2943 /* XXX: From uniforms? */
2944 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2945 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2946
2947 /* World space to normalised device coordinates */
2948
2949 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2950 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2951
2952 /* Normalised device coordinates to screen space */
2953
2954 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2955 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2956
2957 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2958 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2959 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2960
2961 /* gl_Position will be written out in screenspace xyz, with w set to
2962 * the reciprocal we computed earlier. The transformed w component is
2963 * then used for perspective-correct varying interpolation. The
2964 * transformed w component must preserve its original sign; this is
2965 * used in depth clipping computations */
2966
2967 nir_ssa_def *screen_space = nir_vec4(b,
2968 nir_channel(b, viewport_xy, 0),
2969 nir_channel(b, viewport_xy, 1),
2970 screen_depth,
2971 w_recip);
2972
2973 /* Finally, write out the transformed values to the varying */
2974
2975 nir_intrinsic_instr *store;
2976 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2977 store->num_components = 4;
2978 nir_intrinsic_set_base(store, 0);
2979 nir_intrinsic_set_write_mask(store, 0xf);
2980 store->src[0].ssa = screen_space;
2981 store->src[0].is_ssa = true;
2982 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2983 nir_builder_instr_insert(b, &store->instr);
2984 }
2985
2986 static void
2987 transform_position_writes(nir_shader *shader)
2988 {
2989 nir_foreach_function(func, shader) {
2990 nir_foreach_block(block, func->impl) {
2991 nir_foreach_instr_safe(instr, block) {
2992 if (instr->type != nir_instr_type_intrinsic) continue;
2993
2994 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
2995 nir_variable *out = NULL;
2996
2997 switch (intr->intrinsic) {
2998 case nir_intrinsic_store_output:
2999 /* already had i/o lowered.. lookup the matching output var: */
3000 nir_foreach_variable(var, &shader->outputs) {
3001 int drvloc = var->data.driver_location;
3002
3003 if (nir_intrinsic_base(intr) == drvloc) {
3004 out = var;
3005 break;
3006 }
3007 }
3008
3009 break;
3010
3011 default:
3012 break;
3013 }
3014
3015 if (!out) continue;
3016
3017 if (out->data.mode != nir_var_shader_out)
3018 continue;
3019
3020 if (out->data.location != VARYING_SLOT_POS)
3021 continue;
3022
3023 nir_builder b;
3024 nir_builder_init(&b, func->impl);
3025 b.cursor = nir_before_instr(instr);
3026
3027 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3028 nir_instr_remove(instr);
3029 }
3030 }
3031 }
3032 }
3033
3034 static void
3035 emit_fragment_epilogue(compiler_context *ctx)
3036 {
3037 /* Special case: writing out constants requires us to include the move
3038 * explicitly now, so shove it into r0 */
3039
3040 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3041
3042 if (constant_value) {
3043 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3044 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3045 emit_mir_instruction(ctx, ins);
3046 }
3047
3048 /* Perform the actual fragment writeout. We have two writeout/branch
3049 * instructions, forming a loop until writeout is successful as per the
3050 * docs. TODO: gl_FragDepth */
3051
3052 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3053 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3054 }
3055
3056 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3057 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3058 * with the int8 analogue to the fragment epilogue */
3059
3060 static void
3061 emit_blend_epilogue(compiler_context *ctx)
3062 {
3063 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3064
3065 midgard_instruction scale = {
3066 .type = TAG_ALU_4,
3067 .unit = UNIT_VMUL,
3068 .inline_constant = _mesa_float_to_half(255.0),
3069 .ssa_args = {
3070 .src0 = SSA_FIXED_REGISTER(0),
3071 .src1 = SSA_UNUSED_0,
3072 .dest = SSA_FIXED_REGISTER(24),
3073 .inline_constant = true
3074 },
3075 .alu = {
3076 .op = midgard_alu_op_fmul,
3077 .reg_mode = midgard_reg_mode_full,
3078 .dest_override = midgard_dest_override_lower,
3079 .mask = 0xFF,
3080 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3081 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3082 }
3083 };
3084
3085 emit_mir_instruction(ctx, scale);
3086
3087 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3088
3089 midgard_vector_alu_src alu_src = blank_alu_src;
3090 alu_src.half = true;
3091
3092 midgard_instruction f2u8 = {
3093 .type = TAG_ALU_4,
3094 .ssa_args = {
3095 .src0 = SSA_FIXED_REGISTER(24),
3096 .src1 = SSA_UNUSED_0,
3097 .dest = SSA_FIXED_REGISTER(0),
3098 .inline_constant = true
3099 },
3100 .alu = {
3101 .op = midgard_alu_op_f2u8,
3102 .reg_mode = midgard_reg_mode_half,
3103 .dest_override = midgard_dest_override_lower,
3104 .outmod = midgard_outmod_pos,
3105 .mask = 0xF,
3106 .src1 = vector_alu_srco_unsigned(alu_src),
3107 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3108 }
3109 };
3110
3111 emit_mir_instruction(ctx, f2u8);
3112
3113 /* vmul.imov.quarter r0, r0, r0 */
3114
3115 midgard_instruction imov_8 = {
3116 .type = TAG_ALU_4,
3117 .ssa_args = {
3118 .src0 = SSA_UNUSED_1,
3119 .src1 = SSA_FIXED_REGISTER(0),
3120 .dest = SSA_FIXED_REGISTER(0),
3121 },
3122 .alu = {
3123 .op = midgard_alu_op_imov,
3124 .reg_mode = midgard_reg_mode_quarter,
3125 .dest_override = midgard_dest_override_none,
3126 .mask = 0xFF,
3127 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3128 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3129 }
3130 };
3131
3132 /* Emit branch epilogue with the 8-bit move as the source */
3133
3134 emit_mir_instruction(ctx, imov_8);
3135 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3136
3137 emit_mir_instruction(ctx, imov_8);
3138 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3139 }
3140
3141 static midgard_block *
3142 emit_block(compiler_context *ctx, nir_block *block)
3143 {
3144 midgard_block *this_block = malloc(sizeof(midgard_block));
3145 list_addtail(&this_block->link, &ctx->blocks);
3146
3147 this_block->is_scheduled = false;
3148 ++ctx->block_count;
3149
3150 ctx->texture_index[0] = -1;
3151 ctx->texture_index[1] = -1;
3152
3153 /* Set up current block */
3154 list_inithead(&this_block->instructions);
3155 ctx->current_block = this_block;
3156
3157 nir_foreach_instr(instr, block) {
3158 emit_instr(ctx, instr);
3159 ++ctx->instruction_count;
3160 }
3161
3162 inline_alu_constants(ctx);
3163 embedded_to_inline_constant(ctx);
3164
3165 /* Perform heavylifting for aliasing */
3166 actualise_ssa_to_alias(ctx);
3167
3168 midgard_emit_store(ctx, this_block);
3169 midgard_eliminate_orphan_moves(ctx, this_block);
3170 midgard_pair_load_store(ctx, this_block);
3171
3172 /* Append fragment shader epilogue (value writeout) */
3173 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3174 if (block == nir_impl_last_block(ctx->func->impl)) {
3175 if (ctx->is_blend)
3176 emit_blend_epilogue(ctx);
3177 else
3178 emit_fragment_epilogue(ctx);
3179 }
3180 }
3181
3182 /* Fallthrough save */
3183 this_block->next_fallthrough = ctx->previous_source_block;
3184
3185 if (block == nir_start_block(ctx->func->impl))
3186 ctx->initial_block = this_block;
3187
3188 if (block == nir_impl_last_block(ctx->func->impl))
3189 ctx->final_block = this_block;
3190
3191 /* Allow the next control flow to access us retroactively, for
3192 * branching etc */
3193 ctx->current_block = this_block;
3194
3195 /* Document the fallthrough chain */
3196 ctx->previous_source_block = this_block;
3197
3198 return this_block;
3199 }
3200
3201 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3202
3203 static void
3204 emit_if(struct compiler_context *ctx, nir_if *nif)
3205 {
3206 /* Conditional branches expect the condition in r31.w; emit a move for
3207 * that in the _previous_ block (which is the current block). */
3208 emit_condition(ctx, &nif->condition, true);
3209
3210 /* Speculatively emit the branch, but we can't fill it in until later */
3211 EMIT(branch, true, true);
3212 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3213
3214 /* Emit the two subblocks */
3215 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3216
3217 /* Emit a jump from the end of the then block to the end of the else */
3218 EMIT(branch, false, false);
3219 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3220
3221 /* Emit second block, and check if it's empty */
3222
3223 int else_idx = ctx->block_count;
3224 int count_in = ctx->instruction_count;
3225 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3226 int after_else_idx = ctx->block_count;
3227
3228 /* Now that we have the subblocks emitted, fix up the branches */
3229
3230 assert(then_block);
3231 assert(else_block);
3232
3233 if (ctx->instruction_count == count_in) {
3234 /* The else block is empty, so don't emit an exit jump */
3235 mir_remove_instruction(then_exit);
3236 then_branch->branch.target_block = after_else_idx;
3237 } else {
3238 then_branch->branch.target_block = else_idx;
3239 then_exit->branch.target_block = after_else_idx;
3240 }
3241 }
3242
3243 static void
3244 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3245 {
3246 /* Remember where we are */
3247 midgard_block *start_block = ctx->current_block;
3248
3249 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3250 * single current_loop variable, maybe we need a stack */
3251
3252 int loop_idx = ++ctx->current_loop;
3253
3254 /* Get index from before the body so we can loop back later */
3255 int start_idx = ctx->block_count;
3256
3257 /* Emit the body itself */
3258 emit_cf_list(ctx, &nloop->body);
3259
3260 /* Branch back to loop back */
3261 struct midgard_instruction br_back = v_branch(false, false);
3262 br_back.branch.target_block = start_idx;
3263 emit_mir_instruction(ctx, br_back);
3264
3265 /* Find the index of the block about to follow us (note: we don't add
3266 * one; blocks are 0-indexed so we get a fencepost problem) */
3267 int break_block_idx = ctx->block_count;
3268
3269 /* Fix up the break statements we emitted to point to the right place,
3270 * now that we can allocate a block number for them */
3271
3272 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3273 print_mir_block(block);
3274 mir_foreach_instr_in_block(block, ins) {
3275 if (ins->type != TAG_ALU_4) continue;
3276 if (!ins->compact_branch) continue;
3277 if (ins->prepacked_branch) continue;
3278
3279 /* We found a branch -- check the type to see if we need to do anything */
3280 if (ins->branch.target_type != TARGET_BREAK) continue;
3281
3282 /* It's a break! Check if it's our break */
3283 if (ins->branch.target_break != loop_idx) continue;
3284
3285 /* Okay, cool, we're breaking out of this loop.
3286 * Rewrite from a break to a goto */
3287
3288 ins->branch.target_type = TARGET_GOTO;
3289 ins->branch.target_block = break_block_idx;
3290 }
3291 }
3292 }
3293
3294 static midgard_block *
3295 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3296 {
3297 midgard_block *start_block = NULL;
3298
3299 foreach_list_typed(nir_cf_node, node, node, list) {
3300 switch (node->type) {
3301 case nir_cf_node_block: {
3302 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3303
3304 if (!start_block)
3305 start_block = block;
3306
3307 break;
3308 }
3309
3310 case nir_cf_node_if:
3311 emit_if(ctx, nir_cf_node_as_if(node));
3312 break;
3313
3314 case nir_cf_node_loop:
3315 emit_loop(ctx, nir_cf_node_as_loop(node));
3316 break;
3317
3318 case nir_cf_node_function:
3319 assert(0);
3320 break;
3321 }
3322 }
3323
3324 return start_block;
3325 }
3326
3327 /* Due to lookahead, we need to report the first tag executed in the command
3328 * stream and in branch targets. An initial block might be empty, so iterate
3329 * until we find one that 'works' */
3330
3331 static unsigned
3332 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3333 {
3334 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3335
3336 unsigned first_tag = 0;
3337
3338 do {
3339 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3340
3341 if (initial_bundle) {
3342 first_tag = initial_bundle->tag;
3343 break;
3344 }
3345
3346 /* Initial block is empty, try the next block */
3347 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3348 } while(initial_block != NULL);
3349
3350 assert(first_tag);
3351 return first_tag;
3352 }
3353
3354 int
3355 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3356 {
3357 struct util_dynarray *compiled = &program->compiled;
3358
3359 compiler_context ictx = {
3360 .nir = nir,
3361 .stage = nir->info.stage,
3362
3363 .is_blend = is_blend,
3364 .blend_constant_offset = -1,
3365
3366 .alpha_ref = program->alpha_ref
3367 };
3368
3369 compiler_context *ctx = &ictx;
3370
3371 /* TODO: Decide this at runtime */
3372 ctx->uniform_cutoff = 8;
3373
3374 switch (ctx->stage) {
3375 case MESA_SHADER_VERTEX:
3376 ctx->special_uniforms = 1;
3377 break;
3378
3379 default:
3380 ctx->special_uniforms = 0;
3381 break;
3382 }
3383
3384 /* Append epilogue uniforms if necessary. The cmdstream depends on
3385 * these being at the -end-; see assign_var_locations. */
3386
3387 if (ctx->stage == MESA_SHADER_VERTEX) {
3388 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3389 }
3390
3391 /* Assign var locations early, so the epilogue can use them if necessary */
3392
3393 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3394 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3395 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3396
3397 /* Initialize at a global (not block) level hash tables */
3398
3399 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3400 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3401 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3402 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3403 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3404 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3405
3406 /* Assign actual uniform location, skipping over samplers */
3407
3408 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3409
3410 nir_foreach_variable(var, &nir->uniforms) {
3411 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3412
3413 unsigned length = glsl_get_aoa_size(var->type);
3414
3415 if (!length) {
3416 length = glsl_get_length(var->type);
3417 }
3418
3419 if (!length) {
3420 length = glsl_get_matrix_columns(var->type);
3421 }
3422
3423 for (int col = 0; col < length; ++col) {
3424 int id = ctx->uniform_count++;
3425 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3426 }
3427 }
3428
3429 if (ctx->stage == MESA_SHADER_VERTEX) {
3430 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3431
3432 /* First, collect the special varyings */
3433 nir_foreach_variable(var, &nir->outputs) {
3434 if (var->data.location == VARYING_SLOT_POS) {
3435 /* Set position first, always. It takes up two
3436 * spots, the latter one is de facto unused (at
3437 * least from the shader's perspective), we
3438 * just need to skip over the spot*/
3439
3440 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3441 ctx->varying_count = MAX2(ctx->varying_count, 2);
3442 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3443 /* Set point size second (third, see above) */
3444 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3445 ctx->varying_count = MAX2(ctx->varying_count, 3);
3446
3447 program->writes_point_size = true;
3448 }
3449 }
3450
3451 /* Now, collect normal varyings */
3452
3453 nir_foreach_variable(var, &nir->outputs) {
3454 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3455
3456 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3457 int id = ctx->varying_count++;
3458 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3459 }
3460 }
3461 }
3462
3463
3464
3465 /* Lower vars -- not I/O -- before epilogue */
3466
3467 NIR_PASS_V(nir, nir_lower_var_copies);
3468 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3469 NIR_PASS_V(nir, nir_split_var_copies);
3470 NIR_PASS_V(nir, nir_lower_var_copies);
3471 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3472 NIR_PASS_V(nir, nir_lower_var_copies);
3473 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3474 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3475
3476 /* Append vertex epilogue before optimisation, so the epilogue itself
3477 * is optimised */
3478
3479 if (ctx->stage == MESA_SHADER_VERTEX)
3480 transform_position_writes(nir);
3481
3482 /* Optimisation passes */
3483
3484 optimise_nir(nir);
3485
3486 nir_print_shader(nir, stdout);
3487
3488 /* Assign counts, now that we're sure (post-optimisation) */
3489 program->uniform_count = nir->num_uniforms;
3490
3491 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3492 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3493
3494
3495 nir_foreach_function(func, nir) {
3496 if (!func->impl)
3497 continue;
3498
3499 list_inithead(&ctx->blocks);
3500 ctx->block_count = 0;
3501 ctx->func = func;
3502
3503 emit_cf_list(ctx, &func->impl->body);
3504 emit_block(ctx, func->impl->end_block);
3505
3506 break; /* TODO: Multi-function shaders */
3507 }
3508
3509 util_dynarray_init(compiled, NULL);
3510
3511 /* Schedule! */
3512 schedule_program(ctx);
3513
3514 /* Now that all the bundles are scheduled and we can calculate block
3515 * sizes, emit actual branch instructions rather than placeholders */
3516
3517 int br_block_idx = 0;
3518
3519 mir_foreach_block(ctx, block) {
3520 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3521 for (int c = 0; c < bundle->instruction_count; ++c) {
3522 midgard_instruction *ins = &bundle->instructions[c];
3523
3524 if (!midgard_is_branch_unit(ins->unit)) continue;
3525
3526 if (ins->prepacked_branch) continue;
3527
3528 /* Parse some basic branch info */
3529 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3530 bool is_conditional = ins->branch.conditional;
3531 bool is_inverted = ins->branch.invert_conditional;
3532 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3533
3534 /* Determine the block we're jumping to */
3535 int target_number = ins->branch.target_block;
3536
3537 /* Report the destination tag. Discards don't need this */
3538 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3539
3540 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3541 int quadword_offset = 0;
3542
3543 if (is_discard) {
3544 /* Jump to the end of the shader. We
3545 * need to include not only the
3546 * following blocks, but also the
3547 * contents of our current block (since
3548 * discard can come in the middle of
3549 * the block) */
3550
3551 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3552
3553 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3554 quadword_offset += quadword_size(bun->tag);
3555 }
3556
3557 mir_foreach_block_from(ctx, blk, b) {
3558 quadword_offset += b->quadword_count;
3559 }
3560
3561 } else if (target_number > br_block_idx) {
3562 /* Jump forward */
3563
3564 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3565 midgard_block *blk = mir_get_block(ctx, idx);
3566 assert(blk);
3567
3568 quadword_offset += blk->quadword_count;
3569 }
3570 } else {
3571 /* Jump backwards */
3572
3573 for (int idx = br_block_idx; idx >= target_number; --idx) {
3574 midgard_block *blk = mir_get_block(ctx, idx);
3575 assert(blk);
3576
3577 quadword_offset -= blk->quadword_count;
3578 }
3579 }
3580
3581 /* Unconditional extended branches (far jumps)
3582 * have issues, so we always use a conditional
3583 * branch, setting the condition to always for
3584 * unconditional. For compact unconditional
3585 * branches, cond isn't used so it doesn't
3586 * matter what we pick. */
3587
3588 midgard_condition cond =
3589 !is_conditional ? midgard_condition_always :
3590 is_inverted ? midgard_condition_false :
3591 midgard_condition_true;
3592
3593 midgard_jmp_writeout_op op =
3594 is_discard ? midgard_jmp_writeout_op_discard :
3595 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3596 midgard_jmp_writeout_op_branch_cond;
3597
3598 if (!is_compact) {
3599 midgard_branch_extended branch =
3600 midgard_create_branch_extended(
3601 cond, op,
3602 dest_tag,
3603 quadword_offset);
3604
3605 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3606 } else if (is_conditional || is_discard) {
3607 midgard_branch_cond branch = {
3608 .op = op,
3609 .dest_tag = dest_tag,
3610 .offset = quadword_offset,
3611 .cond = cond
3612 };
3613
3614 assert(branch.offset == quadword_offset);
3615
3616 memcpy(&ins->br_compact, &branch, sizeof(branch));
3617 } else {
3618 assert(op == midgard_jmp_writeout_op_branch_uncond);
3619
3620 midgard_branch_uncond branch = {
3621 .op = op,
3622 .dest_tag = dest_tag,
3623 .offset = quadword_offset,
3624 .unknown = 1
3625 };
3626
3627 assert(branch.offset == quadword_offset);
3628
3629 memcpy(&ins->br_compact, &branch, sizeof(branch));
3630 }
3631 }
3632 }
3633
3634 ++br_block_idx;
3635 }
3636
3637 /* Emit flat binary from the instruction arrays. Iterate each block in
3638 * sequence. Save instruction boundaries such that lookahead tags can
3639 * be assigned easily */
3640
3641 /* Cache _all_ bundles in source order for lookahead across failed branches */
3642
3643 int bundle_count = 0;
3644 mir_foreach_block(ctx, block) {
3645 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3646 }
3647 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3648 int bundle_idx = 0;
3649 mir_foreach_block(ctx, block) {
3650 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3651 source_order_bundles[bundle_idx++] = bundle;
3652 }
3653 }
3654
3655 int current_bundle = 0;
3656
3657 mir_foreach_block(ctx, block) {
3658 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3659 int lookahead = 1;
3660
3661 if (current_bundle + 1 < bundle_count) {
3662 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3663
3664 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3665 lookahead = 1;
3666 } else {
3667 lookahead = next;
3668 }
3669 }
3670
3671 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3672 ++current_bundle;
3673 }
3674
3675 /* TODO: Free deeper */
3676 //util_dynarray_fini(&block->instructions);
3677 }
3678
3679 free(source_order_bundles);
3680
3681 /* Report the very first tag executed */
3682 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3683
3684 /* Deal with off-by-one related to the fencepost problem */
3685 program->work_register_count = ctx->work_registers + 1;
3686
3687 program->can_discard = ctx->can_discard;
3688 program->uniform_cutoff = ctx->uniform_cutoff;
3689
3690 program->blend_patch_offset = ctx->blend_constant_offset;
3691
3692 disassemble_midgard(program->compiled.data, program->compiled.size);
3693
3694 return 0;
3695 }