panfrost/midgard: Reduce fmax(a, 0.0) to fmov.pos
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137
1138 /* XXX: Use fmov, not imov, since imov was causing major
1139 * issues with texture precision? XXX research */
1140 ALU_CASE(imov, imov);
1141
1142 ALU_CASE(feq32, feq);
1143 ALU_CASE(fne32, fne);
1144 ALU_CASE(flt32, flt);
1145 ALU_CASE(ieq32, ieq);
1146 ALU_CASE(ine32, ine);
1147 ALU_CASE(ilt32, ilt);
1148 ALU_CASE(ult32, ult);
1149
1150 /* We don't have a native b2f32 instruction. Instead, like many
1151 * GPUs, we exploit booleans as 0/~0 for false/true, and
1152 * correspondingly AND
1153 * by 1.0 to do the type conversion. For the moment, prime us
1154 * to emit:
1155 *
1156 * iand [whatever], #0
1157 *
1158 * At the end of emit_alu (as MIR), we'll fix-up the constant
1159 */
1160
1161 ALU_CASE(b2f32, iand);
1162 ALU_CASE(b2i32, iand);
1163
1164 /* Likewise, we don't have a dedicated f2b32 instruction, but
1165 * we can do a "not equal to 0.0" test. */
1166
1167 ALU_CASE(f2b32, fne);
1168 ALU_CASE(i2b32, ine);
1169
1170 ALU_CASE(frcp, frcp);
1171 ALU_CASE(frsq, frsqrt);
1172 ALU_CASE(fsqrt, fsqrt);
1173 ALU_CASE(fexp2, fexp2);
1174 ALU_CASE(flog2, flog2);
1175
1176 ALU_CASE(f2i32, f2i);
1177 ALU_CASE(f2u32, f2u);
1178 ALU_CASE(i2f32, i2f);
1179 ALU_CASE(u2f32, u2f);
1180
1181 ALU_CASE(fsin, fsin);
1182 ALU_CASE(fcos, fcos);
1183
1184 ALU_CASE(iand, iand);
1185 ALU_CASE(ior, ior);
1186 ALU_CASE(ixor, ixor);
1187 ALU_CASE(inot, inot);
1188 ALU_CASE(ishl, ishl);
1189 ALU_CASE(ishr, iasr);
1190 ALU_CASE(ushr, ilsr);
1191
1192 ALU_CASE(b32all_fequal2, fball_eq);
1193 ALU_CASE(b32all_fequal3, fball_eq);
1194 ALU_CASE(b32all_fequal4, fball_eq);
1195
1196 ALU_CASE(b32any_fnequal2, fbany_neq);
1197 ALU_CASE(b32any_fnequal3, fbany_neq);
1198 ALU_CASE(b32any_fnequal4, fbany_neq);
1199
1200 ALU_CASE(b32all_iequal2, iball_eq);
1201 ALU_CASE(b32all_iequal3, iball_eq);
1202 ALU_CASE(b32all_iequal4, iball_eq);
1203
1204 ALU_CASE(b32any_inequal2, ibany_neq);
1205 ALU_CASE(b32any_inequal3, ibany_neq);
1206 ALU_CASE(b32any_inequal4, ibany_neq);
1207
1208 /* For greater-or-equal, we lower to less-or-equal and flip the
1209 * arguments */
1210
1211 case nir_op_fge:
1212 case nir_op_fge32:
1213 case nir_op_ige32:
1214 case nir_op_uge32: {
1215 op =
1216 instr->op == nir_op_fge ? midgard_alu_op_fle :
1217 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1218 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1219 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1220 0;
1221
1222 /* Swap via temporary */
1223 nir_alu_src temp = instr->src[1];
1224 instr->src[1] = instr->src[0];
1225 instr->src[0] = temp;
1226
1227 break;
1228 }
1229
1230 case nir_op_b32csel: {
1231 op = midgard_alu_op_fcsel;
1232
1233 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1234 nr_inputs = 2;
1235
1236 /* Figure out which component the condition is in */
1237
1238 unsigned comp = instr->src[0].swizzle[0];
1239
1240 /* Make sure NIR isn't throwing a mixed condition at us */
1241
1242 for (unsigned c = 1; c < nr_components; ++c)
1243 assert(instr->src[0].swizzle[c] == comp);
1244
1245 /* Emit the condition into r31.w */
1246 emit_condition(ctx, &instr->src[0].src, false, comp);
1247
1248 /* The condition is the first argument; move the other
1249 * arguments up one to be a binary instruction for
1250 * Midgard */
1251
1252 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1253 break;
1254 }
1255
1256 default:
1257 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1258 assert(0);
1259 return;
1260 }
1261
1262 /* Midgard can perform certain modifiers on output ofa n ALU op */
1263 midgard_outmod outmod =
1264 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1265
1266 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1267
1268 if (instr->op == nir_op_fmax) {
1269 if (nir_is_fzero_constant(instr->src[0].src)) {
1270 op = midgard_alu_op_fmov;
1271 nr_inputs = 1;
1272 outmod = midgard_outmod_pos;
1273 instr->src[0] = instr->src[1];
1274 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1275 op = midgard_alu_op_fmov;
1276 nr_inputs = 1;
1277 outmod = midgard_outmod_pos;
1278 }
1279 }
1280
1281 /* Fetch unit, quirks, etc information */
1282 unsigned opcode_props = alu_opcode_props[op].props;
1283 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1284
1285 /* src0 will always exist afaik, but src1 will not for 1-argument
1286 * instructions. The latter can only be fetched if the instruction
1287 * needs it, or else we may segfault. */
1288
1289 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1290 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1291
1292 /* Rather than use the instruction generation helpers, we do it
1293 * ourselves here to avoid the mess */
1294
1295 midgard_instruction ins = {
1296 .type = TAG_ALU_4,
1297 .ssa_args = {
1298 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1299 .src1 = quirk_flipped_r24 ? src0 : src1,
1300 .dest = dest,
1301 }
1302 };
1303
1304 nir_alu_src *nirmods[2] = { NULL };
1305
1306 if (nr_inputs == 2) {
1307 nirmods[0] = &instr->src[0];
1308 nirmods[1] = &instr->src[1];
1309 } else if (nr_inputs == 1) {
1310 nirmods[quirk_flipped_r24] = &instr->src[0];
1311 } else {
1312 assert(0);
1313 }
1314
1315 bool is_int = midgard_is_integer_op(op);
1316
1317 midgard_vector_alu alu = {
1318 .op = op,
1319 .reg_mode = midgard_reg_mode_full,
1320 .dest_override = midgard_dest_override_none,
1321 .outmod = outmod,
1322
1323 /* Writemask only valid for non-SSA NIR */
1324 .mask = expand_writemask((1 << nr_components) - 1),
1325
1326 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1327 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1328 };
1329
1330 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1331
1332 if (!is_ssa)
1333 alu.mask &= expand_writemask(instr->dest.write_mask);
1334
1335 ins.alu = alu;
1336
1337 /* Late fixup for emulated instructions */
1338
1339 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1340 /* Presently, our second argument is an inline #0 constant.
1341 * Switch over to an embedded 1.0 constant (that can't fit
1342 * inline, since we're 32-bit, not 16-bit like the inline
1343 * constants) */
1344
1345 ins.ssa_args.inline_constant = false;
1346 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1347 ins.has_constants = true;
1348
1349 if (instr->op == nir_op_b2f32) {
1350 ins.constants[0] = 1.0f;
1351 } else {
1352 /* Type pun it into place */
1353 uint32_t one = 0x1;
1354 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1355 }
1356
1357 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1358 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1359 ins.ssa_args.inline_constant = false;
1360 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1361 ins.has_constants = true;
1362 ins.constants[0] = 0.0f;
1363 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1364 }
1365
1366 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1367 /* To avoid duplicating the lookup tables (probably), true LUT
1368 * instructions can only operate as if they were scalars. Lower
1369 * them here by changing the component. */
1370
1371 uint8_t original_swizzle[4];
1372 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1373
1374 for (int i = 0; i < nr_components; ++i) {
1375 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1376
1377 for (int j = 0; j < 4; ++j)
1378 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1379
1380 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1381 emit_mir_instruction(ctx, ins);
1382 }
1383 } else {
1384 emit_mir_instruction(ctx, ins);
1385 }
1386 }
1387
1388 #undef ALU_CASE
1389
1390 static void
1391 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1392 {
1393 /* TODO: half-floats */
1394
1395 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1396 /* Fast path: For the first 16 uniforms, direct accesses are
1397 * 0-cycle, since they're just a register fetch in the usual
1398 * case. So, we alias the registers while we're still in
1399 * SSA-space */
1400
1401 int reg_slot = 23 - offset;
1402 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1403 } else {
1404 /* Otherwise, read from the 'special' UBO to access
1405 * higher-indexed uniforms, at a performance cost. More
1406 * generally, we're emitting a UBO read instruction. */
1407
1408 midgard_instruction ins = m_load_uniform_32(dest, offset);
1409
1410 /* TODO: Don't split */
1411 ins.load_store.varying_parameters = (offset & 7) << 7;
1412 ins.load_store.address = offset >> 3;
1413
1414 if (indirect_offset) {
1415 emit_indirect_offset(ctx, indirect_offset);
1416 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1417 } else {
1418 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1419 }
1420
1421 emit_mir_instruction(ctx, ins);
1422 }
1423 }
1424
1425 static void
1426 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1427 {
1428 /* First, pull out the destination */
1429 unsigned dest = nir_dest_index(ctx, &instr->dest);
1430
1431 /* Now, figure out which uniform this is */
1432 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1433 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1434
1435 /* Sysvals are prefix uniforms */
1436 unsigned uniform = ((uintptr_t) val) - 1;
1437
1438 /* Emit the read itself -- this is never indirect */
1439 emit_uniform_read(ctx, dest, uniform, NULL);
1440 }
1441
1442 static void
1443 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1444 {
1445 unsigned offset, reg;
1446
1447 switch (instr->intrinsic) {
1448 case nir_intrinsic_discard_if:
1449 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1450
1451 /* fallthrough */
1452
1453 case nir_intrinsic_discard: {
1454 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1455 struct midgard_instruction discard = v_branch(conditional, false);
1456 discard.branch.target_type = TARGET_DISCARD;
1457 emit_mir_instruction(ctx, discard);
1458
1459 ctx->can_discard = true;
1460 break;
1461 }
1462
1463 case nir_intrinsic_load_uniform:
1464 case nir_intrinsic_load_input:
1465 offset = nir_intrinsic_base(instr);
1466
1467 bool direct = nir_src_is_const(instr->src[0]);
1468
1469 if (direct) {
1470 offset += nir_src_as_uint(instr->src[0]);
1471 }
1472
1473 reg = nir_dest_index(ctx, &instr->dest);
1474
1475 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1476 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1477 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1478 /* XXX: Half-floats? */
1479 /* TODO: swizzle, mask */
1480
1481 midgard_instruction ins = m_load_vary_32(reg, offset);
1482
1483 midgard_varying_parameter p = {
1484 .is_varying = 1,
1485 .interpolation = midgard_interp_default,
1486 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1487 };
1488
1489 unsigned u;
1490 memcpy(&u, &p, sizeof(p));
1491 ins.load_store.varying_parameters = u;
1492
1493 if (direct) {
1494 /* We have the offset totally ready */
1495 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1496 } else {
1497 /* We have it partially ready, but we need to
1498 * add in the dynamic index, moved to r27.w */
1499 emit_indirect_offset(ctx, &instr->src[0]);
1500 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1501 }
1502
1503 emit_mir_instruction(ctx, ins);
1504 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1505 /* Constant encoded as a pinned constant */
1506
1507 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1508 ins.has_constants = true;
1509 ins.has_blend_constant = true;
1510 emit_mir_instruction(ctx, ins);
1511 } else if (ctx->is_blend) {
1512 /* For blend shaders, a load might be
1513 * translated various ways depending on what
1514 * we're loading. Figure out how this is used */
1515
1516 nir_variable *out = NULL;
1517
1518 nir_foreach_variable(var, &ctx->nir->inputs) {
1519 int drvloc = var->data.driver_location;
1520
1521 if (nir_intrinsic_base(instr) == drvloc) {
1522 out = var;
1523 break;
1524 }
1525 }
1526
1527 assert(out);
1528
1529 if (out->data.location == VARYING_SLOT_COL0) {
1530 /* Source color preloaded to r0 */
1531
1532 midgard_pin_output(ctx, reg, 0);
1533 } else if (out->data.location == VARYING_SLOT_COL1) {
1534 /* Destination color must be read from framebuffer */
1535
1536 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1537 ins.load_store.swizzle = 0; /* xxxx */
1538
1539 /* Read each component sequentially */
1540
1541 for (int c = 0; c < 4; ++c) {
1542 ins.load_store.mask = (1 << c);
1543 ins.load_store.unknown = c;
1544 emit_mir_instruction(ctx, ins);
1545 }
1546
1547 /* vadd.u2f hr2, zext(hr2), #0 */
1548
1549 midgard_vector_alu_src alu_src = blank_alu_src;
1550 alu_src.mod = midgard_int_zero_extend;
1551 alu_src.half = true;
1552
1553 midgard_instruction u2f = {
1554 .type = TAG_ALU_4,
1555 .ssa_args = {
1556 .src0 = reg,
1557 .src1 = SSA_UNUSED_0,
1558 .dest = reg,
1559 .inline_constant = true
1560 },
1561 .alu = {
1562 .op = midgard_alu_op_u2f,
1563 .reg_mode = midgard_reg_mode_half,
1564 .dest_override = midgard_dest_override_none,
1565 .mask = 0xF,
1566 .src1 = vector_alu_srco_unsigned(alu_src),
1567 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1568 }
1569 };
1570
1571 emit_mir_instruction(ctx, u2f);
1572
1573 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1574
1575 alu_src.mod = 0;
1576
1577 midgard_instruction fmul = {
1578 .type = TAG_ALU_4,
1579 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1580 .ssa_args = {
1581 .src0 = reg,
1582 .dest = reg,
1583 .src1 = SSA_UNUSED_0,
1584 .inline_constant = true
1585 },
1586 .alu = {
1587 .op = midgard_alu_op_fmul,
1588 .reg_mode = midgard_reg_mode_full,
1589 .dest_override = midgard_dest_override_none,
1590 .outmod = midgard_outmod_sat,
1591 .mask = 0xFF,
1592 .src1 = vector_alu_srco_unsigned(alu_src),
1593 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1594 }
1595 };
1596
1597 emit_mir_instruction(ctx, fmul);
1598 } else {
1599 DBG("Unknown input in blend shader\n");
1600 assert(0);
1601 }
1602 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1603 midgard_instruction ins = m_load_attr_32(reg, offset);
1604 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1605 ins.load_store.mask = (1 << instr->num_components) - 1;
1606 emit_mir_instruction(ctx, ins);
1607 } else {
1608 DBG("Unknown load\n");
1609 assert(0);
1610 }
1611
1612 break;
1613
1614 case nir_intrinsic_store_output:
1615 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1616
1617 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1618
1619 reg = nir_src_index(ctx, &instr->src[0]);
1620
1621 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1622 /* gl_FragColor is not emitted with load/store
1623 * instructions. Instead, it gets plonked into
1624 * r0 at the end of the shader and we do the
1625 * framebuffer writeout dance. TODO: Defer
1626 * writes */
1627
1628 midgard_pin_output(ctx, reg, 0);
1629
1630 /* Save the index we're writing to for later reference
1631 * in the epilogue */
1632
1633 ctx->fragment_output = reg;
1634 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1635 /* Varyings are written into one of two special
1636 * varying register, r26 or r27. The register itself is selected as the register
1637 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1638 *
1639 * Normally emitting fmov's is frowned upon,
1640 * but due to unique constraints of
1641 * REGISTER_VARYING, fmov emission + a
1642 * dedicated cleanup pass is the only way to
1643 * guarantee correctness when considering some
1644 * (common) edge cases XXX: FIXME */
1645
1646 /* If this varying corresponds to a constant (why?!),
1647 * emit that now since it won't get picked up by
1648 * hoisting (since there is no corresponding move
1649 * emitted otherwise) */
1650
1651 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1652
1653 if (constant_value) {
1654 /* Special case: emit the varying write
1655 * directly to r26 (looks funny in asm but it's
1656 * fine) and emit the store _now_. Possibly
1657 * slightly slower, but this is a really stupid
1658 * special case anyway (why on earth would you
1659 * have a constant varying? Your own fault for
1660 * slightly worse perf :P) */
1661
1662 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1663 attach_constants(ctx, &ins, constant_value, reg + 1);
1664 emit_mir_instruction(ctx, ins);
1665
1666 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1667 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1668 emit_mir_instruction(ctx, st);
1669 } else {
1670 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1671
1672 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1673 }
1674 } else {
1675 DBG("Unknown store\n");
1676 assert(0);
1677 }
1678
1679 break;
1680
1681 case nir_intrinsic_load_alpha_ref_float:
1682 assert(instr->dest.is_ssa);
1683
1684 float ref_value = ctx->alpha_ref;
1685
1686 float *v = ralloc_array(NULL, float, 4);
1687 memcpy(v, &ref_value, sizeof(float));
1688 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1689 break;
1690
1691 case nir_intrinsic_load_viewport_scale:
1692 case nir_intrinsic_load_viewport_offset:
1693 emit_sysval_read(ctx, instr);
1694 break;
1695
1696 default:
1697 printf ("Unhandled intrinsic\n");
1698 assert(0);
1699 break;
1700 }
1701 }
1702
1703 static unsigned
1704 midgard_tex_format(enum glsl_sampler_dim dim)
1705 {
1706 switch (dim) {
1707 case GLSL_SAMPLER_DIM_2D:
1708 case GLSL_SAMPLER_DIM_EXTERNAL:
1709 return TEXTURE_2D;
1710
1711 case GLSL_SAMPLER_DIM_3D:
1712 return TEXTURE_3D;
1713
1714 case GLSL_SAMPLER_DIM_CUBE:
1715 return TEXTURE_CUBE;
1716
1717 default:
1718 DBG("Unknown sampler dim type\n");
1719 assert(0);
1720 return 0;
1721 }
1722 }
1723
1724 static void
1725 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1726 {
1727 /* TODO */
1728 //assert (!instr->sampler);
1729 //assert (!instr->texture_array_size);
1730 assert (instr->op == nir_texop_tex);
1731
1732 /* Allocate registers via a round robin scheme to alternate between the two registers */
1733 int reg = ctx->texture_op_count & 1;
1734 int in_reg = reg, out_reg = reg;
1735
1736 /* Make room for the reg */
1737
1738 if (ctx->texture_index[reg] > -1)
1739 unalias_ssa(ctx, ctx->texture_index[reg]);
1740
1741 int texture_index = instr->texture_index;
1742 int sampler_index = texture_index;
1743
1744 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1745 switch (instr->src[i].src_type) {
1746 case nir_tex_src_coord: {
1747 int index = nir_src_index(ctx, &instr->src[i].src);
1748
1749 midgard_vector_alu_src alu_src = blank_alu_src;
1750
1751 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1752
1753 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1754 /* For cubemaps, we need to load coords into
1755 * special r27, and then use a special ld/st op
1756 * to copy into the texture register */
1757
1758 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1759
1760 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1761 emit_mir_instruction(ctx, move);
1762
1763 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1764 st.load_store.unknown = 0x24; /* XXX: What is this? */
1765 st.load_store.mask = 0x3; /* xy? */
1766 st.load_store.swizzle = alu_src.swizzle;
1767 emit_mir_instruction(ctx, st);
1768
1769 } else {
1770 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1771
1772 midgard_instruction ins = v_fmov(index, alu_src, reg);
1773 emit_mir_instruction(ctx, ins);
1774 }
1775
1776 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1777
1778 break;
1779 }
1780
1781 default: {
1782 DBG("Unknown source type\n");
1783 //assert(0);
1784 break;
1785 }
1786 }
1787 }
1788
1789 /* No helper to build texture words -- we do it all here */
1790 midgard_instruction ins = {
1791 .type = TAG_TEXTURE_4,
1792 .texture = {
1793 .op = TEXTURE_OP_NORMAL,
1794 .format = midgard_tex_format(instr->sampler_dim),
1795 .texture_handle = texture_index,
1796 .sampler_handle = sampler_index,
1797
1798 /* TODO: Don't force xyzw */
1799 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1800 .mask = 0xF,
1801
1802 /* TODO: half */
1803 //.in_reg_full = 1,
1804 .out_full = 1,
1805
1806 .filter = 1,
1807
1808 /* Always 1 */
1809 .unknown7 = 1,
1810
1811 /* Assume we can continue; hint it out later */
1812 .cont = 1,
1813 }
1814 };
1815
1816 /* Set registers to read and write from the same place */
1817 ins.texture.in_reg_select = in_reg;
1818 ins.texture.out_reg_select = out_reg;
1819
1820 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1821 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1822 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1823 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1824 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1825 } else {
1826 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1827 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1828 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1829 }
1830
1831 emit_mir_instruction(ctx, ins);
1832
1833 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1834
1835 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1836 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1837 ctx->texture_index[reg] = o_index;
1838
1839 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1840 emit_mir_instruction(ctx, ins2);
1841
1842 /* Used for .cont and .last hinting */
1843 ctx->texture_op_count++;
1844 }
1845
1846 static void
1847 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1848 {
1849 switch (instr->type) {
1850 case nir_jump_break: {
1851 /* Emit a branch out of the loop */
1852 struct midgard_instruction br = v_branch(false, false);
1853 br.branch.target_type = TARGET_BREAK;
1854 br.branch.target_break = ctx->current_loop_depth;
1855 emit_mir_instruction(ctx, br);
1856
1857 DBG("break..\n");
1858 break;
1859 }
1860
1861 default:
1862 DBG("Unknown jump type %d\n", instr->type);
1863 break;
1864 }
1865 }
1866
1867 static void
1868 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1869 {
1870 switch (instr->type) {
1871 case nir_instr_type_load_const:
1872 emit_load_const(ctx, nir_instr_as_load_const(instr));
1873 break;
1874
1875 case nir_instr_type_intrinsic:
1876 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1877 break;
1878
1879 case nir_instr_type_alu:
1880 emit_alu(ctx, nir_instr_as_alu(instr));
1881 break;
1882
1883 case nir_instr_type_tex:
1884 emit_tex(ctx, nir_instr_as_tex(instr));
1885 break;
1886
1887 case nir_instr_type_jump:
1888 emit_jump(ctx, nir_instr_as_jump(instr));
1889 break;
1890
1891 case nir_instr_type_ssa_undef:
1892 /* Spurious */
1893 break;
1894
1895 default:
1896 DBG("Unhandled instruction type\n");
1897 break;
1898 }
1899 }
1900
1901 /* Determine the actual hardware from the index based on the RA results or special values */
1902
1903 static int
1904 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1905 {
1906 if (reg >= SSA_FIXED_MINIMUM)
1907 return SSA_REG_FROM_FIXED(reg);
1908
1909 if (reg >= 0) {
1910 assert(reg < maxreg);
1911 int r = ra_get_node_reg(g, reg);
1912 ctx->work_registers = MAX2(ctx->work_registers, r);
1913 return r;
1914 }
1915
1916 switch (reg) {
1917 /* fmov style unused */
1918 case SSA_UNUSED_0:
1919 return REGISTER_UNUSED;
1920
1921 /* lut style unused */
1922 case SSA_UNUSED_1:
1923 return REGISTER_UNUSED;
1924
1925 default:
1926 DBG("Unknown SSA register alias %d\n", reg);
1927 assert(0);
1928 return 31;
1929 }
1930 }
1931
1932 static unsigned int
1933 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1934 {
1935 /* Choose the first available register to minimise reported register pressure */
1936
1937 for (int i = 0; i < 16; ++i) {
1938 if (BITSET_TEST(regs, i)) {
1939 return i;
1940 }
1941 }
1942
1943 assert(0);
1944 return 0;
1945 }
1946
1947 static bool
1948 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1949 {
1950 if (ins->ssa_args.src0 == src) return true;
1951 if (ins->ssa_args.src1 == src) return true;
1952
1953 return false;
1954 }
1955
1956 /* Determine if a variable is live in the successors of a block */
1957 static bool
1958 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1959 {
1960 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1961 midgard_block *succ = bl->successors[i];
1962
1963 /* If we already visited, the value we're seeking
1964 * isn't down this path (or we would have short
1965 * circuited */
1966
1967 if (succ->visited) continue;
1968
1969 /* Otherwise (it's visited *now*), check the block */
1970
1971 succ->visited = true;
1972
1973 mir_foreach_instr_in_block(succ, ins) {
1974 if (midgard_is_live_in_instr(ins, src))
1975 return true;
1976 }
1977
1978 /* ...and also, check *its* successors */
1979 if (is_live_after_successors(ctx, succ, src))
1980 return true;
1981
1982 }
1983
1984 /* Welp. We're really not live. */
1985
1986 return false;
1987 }
1988
1989 static bool
1990 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1991 {
1992 /* Check the rest of the block for liveness */
1993
1994 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1995 if (midgard_is_live_in_instr(ins, src))
1996 return true;
1997 }
1998
1999 /* Check the rest of the blocks for liveness recursively */
2000
2001 bool succ = is_live_after_successors(ctx, block, src);
2002
2003 mir_foreach_block(ctx, block) {
2004 block->visited = false;
2005 }
2006
2007 return succ;
2008 }
2009
2010 static void
2011 allocate_registers(compiler_context *ctx)
2012 {
2013 /* First, initialize the RA */
2014 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2015
2016 /* Create a primary (general purpose) class, as well as special purpose
2017 * pipeline register classes */
2018
2019 int primary_class = ra_alloc_reg_class(regs);
2020 int varying_class = ra_alloc_reg_class(regs);
2021
2022 /* Add the full set of work registers */
2023 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2024 for (int i = 0; i < work_count; ++i)
2025 ra_class_add_reg(regs, primary_class, i);
2026
2027 /* Add special registers */
2028 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2029 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2030
2031 /* We're done setting up */
2032 ra_set_finalize(regs, NULL);
2033
2034 /* Transform the MIR into squeezed index form */
2035 mir_foreach_block(ctx, block) {
2036 mir_foreach_instr_in_block(block, ins) {
2037 if (ins->compact_branch) continue;
2038
2039 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2040 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2041 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2042 }
2043 if (midgard_debug & MIDGARD_DBG_SHADERS)
2044 print_mir_block(block);
2045 }
2046
2047 /* Let's actually do register allocation */
2048 int nodes = ctx->temp_count;
2049 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2050
2051 /* Set everything to the work register class, unless it has somewhere
2052 * special to go */
2053
2054 mir_foreach_block(ctx, block) {
2055 mir_foreach_instr_in_block(block, ins) {
2056 if (ins->compact_branch) continue;
2057
2058 if (ins->ssa_args.dest < 0) continue;
2059
2060 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2061
2062 int class = primary_class;
2063
2064 ra_set_node_class(g, ins->ssa_args.dest, class);
2065 }
2066 }
2067
2068 for (int index = 0; index <= ctx->max_hash; ++index) {
2069 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2070
2071 if (temp) {
2072 unsigned reg = temp - 1;
2073 int t = find_or_allocate_temp(ctx, index);
2074 ra_set_node_reg(g, t, reg);
2075 }
2076 }
2077
2078 /* Determine liveness */
2079
2080 int *live_start = malloc(nodes * sizeof(int));
2081 int *live_end = malloc(nodes * sizeof(int));
2082
2083 /* Initialize as non-existent */
2084
2085 for (int i = 0; i < nodes; ++i) {
2086 live_start[i] = live_end[i] = -1;
2087 }
2088
2089 int d = 0;
2090
2091 mir_foreach_block(ctx, block) {
2092 mir_foreach_instr_in_block(block, ins) {
2093 if (ins->compact_branch) continue;
2094
2095 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2096 /* If this destination is not yet live, it is now since we just wrote it */
2097
2098 int dest = ins->ssa_args.dest;
2099
2100 if (live_start[dest] == -1)
2101 live_start[dest] = d;
2102 }
2103
2104 /* Since we just used a source, the source might be
2105 * dead now. Scan the rest of the block for
2106 * invocations, and if there are none, the source dies
2107 * */
2108
2109 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2110
2111 for (int src = 0; src < 2; ++src) {
2112 int s = sources[src];
2113
2114 if (s < 0) continue;
2115
2116 if (s >= SSA_FIXED_MINIMUM) continue;
2117
2118 if (!is_live_after(ctx, block, ins, s)) {
2119 live_end[s] = d;
2120 }
2121 }
2122
2123 ++d;
2124 }
2125 }
2126
2127 /* If a node still hasn't been killed, kill it now */
2128
2129 for (int i = 0; i < nodes; ++i) {
2130 /* live_start == -1 most likely indicates a pinned output */
2131
2132 if (live_end[i] == -1)
2133 live_end[i] = d;
2134 }
2135
2136 /* Setup interference between nodes that are live at the same time */
2137
2138 for (int i = 0; i < nodes; ++i) {
2139 for (int j = i + 1; j < nodes; ++j) {
2140 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2141 ra_add_node_interference(g, i, j);
2142 }
2143 }
2144
2145 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2146
2147 if (!ra_allocate(g)) {
2148 DBG("Error allocating registers\n");
2149 assert(0);
2150 }
2151
2152 /* Cleanup */
2153 free(live_start);
2154 free(live_end);
2155
2156 mir_foreach_block(ctx, block) {
2157 mir_foreach_instr_in_block(block, ins) {
2158 if (ins->compact_branch) continue;
2159
2160 ssa_args args = ins->ssa_args;
2161
2162 switch (ins->type) {
2163 case TAG_ALU_4:
2164 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2165
2166 ins->registers.src2_imm = args.inline_constant;
2167
2168 if (args.inline_constant) {
2169 /* Encode inline 16-bit constant as a vector by default */
2170
2171 ins->registers.src2_reg = ins->inline_constant >> 11;
2172
2173 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2174
2175 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2176 ins->alu.src2 = imm << 2;
2177 } else {
2178 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2179 }
2180
2181 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2182
2183 break;
2184
2185 case TAG_LOAD_STORE_4: {
2186 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2187 /* TODO: use ssa_args for store_vary */
2188 ins->load_store.reg = 0;
2189 } else {
2190 bool has_dest = args.dest >= 0;
2191 int ssa_arg = has_dest ? args.dest : args.src0;
2192
2193 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2194 }
2195
2196 break;
2197 }
2198
2199 default:
2200 break;
2201 }
2202 }
2203 }
2204 }
2205
2206 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2207 * use scalar ALU instructions, for functional or performance reasons. To do
2208 * this, we just demote vector ALU payloads to scalar. */
2209
2210 static int
2211 component_from_mask(unsigned mask)
2212 {
2213 for (int c = 0; c < 4; ++c) {
2214 if (mask & (3 << (2 * c)))
2215 return c;
2216 }
2217
2218 assert(0);
2219 return 0;
2220 }
2221
2222 static bool
2223 is_single_component_mask(unsigned mask)
2224 {
2225 int components = 0;
2226
2227 for (int c = 0; c < 4; ++c)
2228 if (mask & (3 << (2 * c)))
2229 components++;
2230
2231 return components == 1;
2232 }
2233
2234 /* Create a mask of accessed components from a swizzle to figure out vector
2235 * dependencies */
2236
2237 static unsigned
2238 swizzle_to_access_mask(unsigned swizzle)
2239 {
2240 unsigned component_mask = 0;
2241
2242 for (int i = 0; i < 4; ++i) {
2243 unsigned c = (swizzle >> (2 * i)) & 3;
2244 component_mask |= (1 << c);
2245 }
2246
2247 return component_mask;
2248 }
2249
2250 static unsigned
2251 vector_to_scalar_source(unsigned u, bool is_int)
2252 {
2253 midgard_vector_alu_src v;
2254 memcpy(&v, &u, sizeof(v));
2255
2256 /* TODO: Integers */
2257
2258 midgard_scalar_alu_src s = {
2259 .full = !v.half,
2260 .component = (v.swizzle & 3) << 1
2261 };
2262
2263 if (is_int) {
2264 /* TODO */
2265 } else {
2266 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2267 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2268 }
2269
2270 unsigned o;
2271 memcpy(&o, &s, sizeof(s));
2272
2273 return o & ((1 << 6) - 1);
2274 }
2275
2276 static midgard_scalar_alu
2277 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2278 {
2279 bool is_int = midgard_is_integer_op(v.op);
2280
2281 /* The output component is from the mask */
2282 midgard_scalar_alu s = {
2283 .op = v.op,
2284 .src1 = vector_to_scalar_source(v.src1, is_int),
2285 .src2 = vector_to_scalar_source(v.src2, is_int),
2286 .unknown = 0,
2287 .outmod = v.outmod,
2288 .output_full = 1, /* TODO: Half */
2289 .output_component = component_from_mask(v.mask) << 1,
2290 };
2291
2292 /* Inline constant is passed along rather than trying to extract it
2293 * from v */
2294
2295 if (ins->ssa_args.inline_constant) {
2296 uint16_t imm = 0;
2297 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2298 imm |= (lower_11 >> 9) & 3;
2299 imm |= (lower_11 >> 6) & 4;
2300 imm |= (lower_11 >> 2) & 0x38;
2301 imm |= (lower_11 & 63) << 6;
2302
2303 s.src2 = imm;
2304 }
2305
2306 return s;
2307 }
2308
2309 /* Midgard prefetches instruction types, so during emission we need to
2310 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2311 * if this is the second to last and the last is an ALU, then it's also 1... */
2312
2313 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2314 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2315
2316 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2317 bytes_emitted += sizeof(type)
2318
2319 static void
2320 emit_binary_vector_instruction(midgard_instruction *ains,
2321 uint16_t *register_words, int *register_words_count,
2322 uint64_t *body_words, size_t *body_size, int *body_words_count,
2323 size_t *bytes_emitted)
2324 {
2325 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2326 *bytes_emitted += sizeof(midgard_reg_info);
2327
2328 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2329 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2330 *bytes_emitted += sizeof(midgard_vector_alu);
2331 }
2332
2333 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2334 * mind that we are a vector architecture and we can write to different
2335 * components simultaneously */
2336
2337 static bool
2338 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2339 {
2340 /* Each instruction reads some registers and writes to a register. See
2341 * where the first writes */
2342
2343 /* Figure out where exactly we wrote to */
2344 int source = first->ssa_args.dest;
2345 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2346
2347 /* As long as the second doesn't read from the first, we're okay */
2348 if (second->ssa_args.src0 == source) {
2349 if (first->type == TAG_ALU_4) {
2350 /* Figure out which components we just read from */
2351
2352 int q = second->alu.src1;
2353 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2354
2355 /* Check if there are components in common, and fail if so */
2356 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2357 return false;
2358 } else
2359 return false;
2360
2361 }
2362
2363 if (second->ssa_args.src1 == source)
2364 return false;
2365
2366 /* Otherwise, it's safe in that regard. Another data hazard is both
2367 * writing to the same place, of course */
2368
2369 if (second->ssa_args.dest == source) {
2370 /* ...but only if the components overlap */
2371 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2372
2373 if (dest_mask & source_mask)
2374 return false;
2375 }
2376
2377 /* ...That's it */
2378 return true;
2379 }
2380
2381 static bool
2382 midgard_has_hazard(
2383 midgard_instruction **segment, unsigned segment_size,
2384 midgard_instruction *ains)
2385 {
2386 for (int s = 0; s < segment_size; ++s)
2387 if (!can_run_concurrent_ssa(segment[s], ains))
2388 return true;
2389
2390 return false;
2391
2392
2393 }
2394
2395 /* Schedules, but does not emit, a single basic block. After scheduling, the
2396 * final tag and size of the block are known, which are necessary for branching
2397 * */
2398
2399 static midgard_bundle
2400 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2401 {
2402 int instructions_emitted = 0, instructions_consumed = -1;
2403 midgard_bundle bundle = { 0 };
2404
2405 uint8_t tag = ins->type;
2406
2407 /* Default to the instruction's tag */
2408 bundle.tag = tag;
2409
2410 switch (ins->type) {
2411 case TAG_ALU_4: {
2412 uint32_t control = 0;
2413 size_t bytes_emitted = sizeof(control);
2414
2415 /* TODO: Constant combining */
2416 int index = 0, last_unit = 0;
2417
2418 /* Previous instructions, for the purpose of parallelism */
2419 midgard_instruction *segment[4] = {0};
2420 int segment_size = 0;
2421
2422 instructions_emitted = -1;
2423 midgard_instruction *pins = ins;
2424
2425 for (;;) {
2426 midgard_instruction *ains = pins;
2427
2428 /* Advance instruction pointer */
2429 if (index) {
2430 ains = mir_next_op(pins);
2431 pins = ains;
2432 }
2433
2434 /* Out-of-work condition */
2435 if ((struct list_head *) ains == &block->instructions)
2436 break;
2437
2438 /* Ensure that the chain can continue */
2439 if (ains->type != TAG_ALU_4) break;
2440
2441 /* According to the presentation "The ARM
2442 * Mali-T880 Mobile GPU" from HotChips 27,
2443 * there are two pipeline stages. Branching
2444 * position determined experimentally. Lines
2445 * are executed in parallel:
2446 *
2447 * [ VMUL ] [ SADD ]
2448 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2449 *
2450 * Verify that there are no ordering dependencies here.
2451 *
2452 * TODO: Allow for parallelism!!!
2453 */
2454
2455 /* Pick a unit for it if it doesn't force a particular unit */
2456
2457 int unit = ains->unit;
2458
2459 if (!unit) {
2460 int op = ains->alu.op;
2461 int units = alu_opcode_props[op].props;
2462
2463 /* TODO: Promotion of scalars to vectors */
2464 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2465
2466 if (!vector)
2467 assert(units & UNITS_SCALAR);
2468
2469 if (vector) {
2470 if (last_unit >= UNIT_VADD) {
2471 if (units & UNIT_VLUT)
2472 unit = UNIT_VLUT;
2473 else
2474 break;
2475 } else {
2476 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2477 unit = UNIT_VMUL;
2478 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2479 unit = UNIT_VADD;
2480 else if (units & UNIT_VLUT)
2481 unit = UNIT_VLUT;
2482 else
2483 break;
2484 }
2485 } else {
2486 if (last_unit >= UNIT_VADD) {
2487 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2488 unit = UNIT_SMUL;
2489 else if (units & UNIT_VLUT)
2490 unit = UNIT_VLUT;
2491 else
2492 break;
2493 } else {
2494 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2495 unit = UNIT_SADD;
2496 else if (units & UNIT_SMUL)
2497 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2498 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2499 unit = UNIT_VADD;
2500 else
2501 break;
2502 }
2503 }
2504
2505 assert(unit & units);
2506 }
2507
2508 /* Late unit check, this time for encoding (not parallelism) */
2509 if (unit <= last_unit) break;
2510
2511 /* Clear the segment */
2512 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2513 segment_size = 0;
2514
2515 if (midgard_has_hazard(segment, segment_size, ains))
2516 break;
2517
2518 /* We're good to go -- emit the instruction */
2519 ains->unit = unit;
2520
2521 segment[segment_size++] = ains;
2522
2523 /* Only one set of embedded constants per
2524 * bundle possible; if we have more, we must
2525 * break the chain early, unfortunately */
2526
2527 if (ains->has_constants) {
2528 if (bundle.has_embedded_constants) {
2529 /* ...but if there are already
2530 * constants but these are the
2531 * *same* constants, we let it
2532 * through */
2533
2534 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2535 break;
2536 } else {
2537 bundle.has_embedded_constants = true;
2538 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2539
2540 /* If this is a blend shader special constant, track it for patching */
2541 if (ains->has_blend_constant)
2542 bundle.has_blend_constant = true;
2543 }
2544 }
2545
2546 if (ains->unit & UNITS_ANY_VECTOR) {
2547 emit_binary_vector_instruction(ains, bundle.register_words,
2548 &bundle.register_words_count, bundle.body_words,
2549 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2550 } else if (ains->compact_branch) {
2551 /* All of r0 has to be written out
2552 * along with the branch writeout.
2553 * (slow!) */
2554
2555 if (ains->writeout) {
2556 if (index == 0) {
2557 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2558 ins.unit = UNIT_VMUL;
2559
2560 control |= ins.unit;
2561
2562 emit_binary_vector_instruction(&ins, bundle.register_words,
2563 &bundle.register_words_count, bundle.body_words,
2564 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2565 } else {
2566 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2567 bool written_late = false;
2568 bool components[4] = { 0 };
2569 uint16_t register_dep_mask = 0;
2570 uint16_t written_mask = 0;
2571
2572 midgard_instruction *qins = ins;
2573 for (int t = 0; t < index; ++t) {
2574 if (qins->registers.out_reg != 0) {
2575 /* Mark down writes */
2576
2577 written_mask |= (1 << qins->registers.out_reg);
2578 } else {
2579 /* Mark down the register dependencies for errata check */
2580
2581 if (qins->registers.src1_reg < 16)
2582 register_dep_mask |= (1 << qins->registers.src1_reg);
2583
2584 if (qins->registers.src2_reg < 16)
2585 register_dep_mask |= (1 << qins->registers.src2_reg);
2586
2587 int mask = qins->alu.mask;
2588
2589 for (int c = 0; c < 4; ++c)
2590 if (mask & (0x3 << (2 * c)))
2591 components[c] = true;
2592
2593 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2594
2595 if (qins->unit == UNIT_VLUT)
2596 written_late = true;
2597 }
2598
2599 /* Advance instruction pointer */
2600 qins = mir_next_op(qins);
2601 }
2602
2603
2604 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2605 if (register_dep_mask & written_mask) {
2606 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2607 break;
2608 }
2609
2610 if (written_late)
2611 break;
2612
2613 /* If even a single component is not written, break it up (conservative check). */
2614 bool breakup = false;
2615
2616 for (int c = 0; c < 4; ++c)
2617 if (!components[c])
2618 breakup = true;
2619
2620 if (breakup)
2621 break;
2622
2623 /* Otherwise, we're free to proceed */
2624 }
2625 }
2626
2627 if (ains->unit == ALU_ENAB_BRANCH) {
2628 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2629 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2630 bytes_emitted += sizeof(midgard_branch_extended);
2631 } else {
2632 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2633 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2634 bytes_emitted += sizeof(ains->br_compact);
2635 }
2636 } else {
2637 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2638 bytes_emitted += sizeof(midgard_reg_info);
2639
2640 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2641 bundle.body_words_count++;
2642 bytes_emitted += sizeof(midgard_scalar_alu);
2643 }
2644
2645 /* Defer marking until after writing to allow for break */
2646 control |= ains->unit;
2647 last_unit = ains->unit;
2648 ++instructions_emitted;
2649 ++index;
2650 }
2651
2652 /* Bubble up the number of instructions for skipping */
2653 instructions_consumed = index - 1;
2654
2655 int padding = 0;
2656
2657 /* Pad ALU op to nearest word */
2658
2659 if (bytes_emitted & 15) {
2660 padding = 16 - (bytes_emitted & 15);
2661 bytes_emitted += padding;
2662 }
2663
2664 /* Constants must always be quadwords */
2665 if (bundle.has_embedded_constants)
2666 bytes_emitted += 16;
2667
2668 /* Size ALU instruction for tag */
2669 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2670 bundle.padding = padding;
2671 bundle.control = bundle.tag | control;
2672
2673 break;
2674 }
2675
2676 case TAG_LOAD_STORE_4: {
2677 /* Load store instructions have two words at once. If
2678 * we only have one queued up, we need to NOP pad.
2679 * Otherwise, we store both in succession to save space
2680 * and cycles -- letting them go in parallel -- skip
2681 * the next. The usefulness of this optimisation is
2682 * greatly dependent on the quality of the instruction
2683 * scheduler.
2684 */
2685
2686 midgard_instruction *next_op = mir_next_op(ins);
2687
2688 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2689 /* As the two operate concurrently, make sure
2690 * they are not dependent */
2691
2692 if (can_run_concurrent_ssa(ins, next_op) || true) {
2693 /* Skip ahead, since it's redundant with the pair */
2694 instructions_consumed = 1 + (instructions_emitted++);
2695 }
2696 }
2697
2698 break;
2699 }
2700
2701 default:
2702 /* Texture ops default to single-op-per-bundle scheduling */
2703 break;
2704 }
2705
2706 /* Copy the instructions into the bundle */
2707 bundle.instruction_count = instructions_emitted + 1;
2708
2709 int used_idx = 0;
2710
2711 midgard_instruction *uins = ins;
2712 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2713 bundle.instructions[used_idx++] = *uins;
2714 uins = mir_next_op(uins);
2715 }
2716
2717 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2718
2719 return bundle;
2720 }
2721
2722 static int
2723 quadword_size(int tag)
2724 {
2725 switch (tag) {
2726 case TAG_ALU_4:
2727 return 1;
2728
2729 case TAG_ALU_8:
2730 return 2;
2731
2732 case TAG_ALU_12:
2733 return 3;
2734
2735 case TAG_ALU_16:
2736 return 4;
2737
2738 case TAG_LOAD_STORE_4:
2739 return 1;
2740
2741 case TAG_TEXTURE_4:
2742 return 1;
2743
2744 default:
2745 assert(0);
2746 return 0;
2747 }
2748 }
2749
2750 /* Schedule a single block by iterating its instruction to create bundles.
2751 * While we go, tally about the bundle sizes to compute the block size. */
2752
2753 static void
2754 schedule_block(compiler_context *ctx, midgard_block *block)
2755 {
2756 util_dynarray_init(&block->bundles, NULL);
2757
2758 block->quadword_count = 0;
2759
2760 mir_foreach_instr_in_block(block, ins) {
2761 int skip;
2762 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2763 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2764
2765 if (bundle.has_blend_constant) {
2766 /* TODO: Multiblock? */
2767 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2768 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2769 }
2770
2771 while(skip--)
2772 ins = mir_next_op(ins);
2773
2774 block->quadword_count += quadword_size(bundle.tag);
2775 }
2776
2777 block->is_scheduled = true;
2778 }
2779
2780 static void
2781 schedule_program(compiler_context *ctx)
2782 {
2783 allocate_registers(ctx);
2784
2785 mir_foreach_block(ctx, block) {
2786 schedule_block(ctx, block);
2787 }
2788 }
2789
2790 /* After everything is scheduled, emit whole bundles at a time */
2791
2792 static void
2793 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2794 {
2795 int lookahead = next_tag << 4;
2796
2797 switch (bundle->tag) {
2798 case TAG_ALU_4:
2799 case TAG_ALU_8:
2800 case TAG_ALU_12:
2801 case TAG_ALU_16: {
2802 /* Actually emit each component */
2803 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2804
2805 for (int i = 0; i < bundle->register_words_count; ++i)
2806 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2807
2808 /* Emit body words based on the instructions bundled */
2809 for (int i = 0; i < bundle->instruction_count; ++i) {
2810 midgard_instruction *ins = &bundle->instructions[i];
2811
2812 if (ins->unit & UNITS_ANY_VECTOR) {
2813 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2814 } else if (ins->compact_branch) {
2815 /* Dummy move, XXX DRY */
2816 if ((i == 0) && ins->writeout) {
2817 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2818 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2819 }
2820
2821 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2822 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2823 } else {
2824 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2825 }
2826 } else {
2827 /* Scalar */
2828 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2829 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2830 }
2831 }
2832
2833 /* Emit padding (all zero) */
2834 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2835
2836 /* Tack on constants */
2837
2838 if (bundle->has_embedded_constants) {
2839 util_dynarray_append(emission, float, bundle->constants[0]);
2840 util_dynarray_append(emission, float, bundle->constants[1]);
2841 util_dynarray_append(emission, float, bundle->constants[2]);
2842 util_dynarray_append(emission, float, bundle->constants[3]);
2843 }
2844
2845 break;
2846 }
2847
2848 case TAG_LOAD_STORE_4: {
2849 /* One or two composing instructions */
2850
2851 uint64_t current64, next64 = LDST_NOP;
2852
2853 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2854
2855 if (bundle->instruction_count == 2)
2856 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2857
2858 midgard_load_store instruction = {
2859 .type = bundle->tag,
2860 .next_type = next_tag,
2861 .word1 = current64,
2862 .word2 = next64
2863 };
2864
2865 util_dynarray_append(emission, midgard_load_store, instruction);
2866
2867 break;
2868 }
2869
2870 case TAG_TEXTURE_4: {
2871 /* Texture instructions are easy, since there is no
2872 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2873
2874 midgard_instruction *ins = &bundle->instructions[0];
2875
2876 ins->texture.type = TAG_TEXTURE_4;
2877 ins->texture.next_type = next_tag;
2878
2879 ctx->texture_op_count--;
2880
2881 if (!ctx->texture_op_count) {
2882 ins->texture.cont = 0;
2883 ins->texture.last = 1;
2884 }
2885
2886 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2887 break;
2888 }
2889
2890 default:
2891 DBG("Unknown midgard instruction type\n");
2892 assert(0);
2893 break;
2894 }
2895 }
2896
2897
2898 /* ALU instructions can inline or embed constants, which decreases register
2899 * pressure and saves space. */
2900
2901 #define CONDITIONAL_ATTACH(src) { \
2902 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2903 \
2904 if (entry) { \
2905 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2906 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2907 } \
2908 }
2909
2910 static void
2911 inline_alu_constants(compiler_context *ctx)
2912 {
2913 mir_foreach_instr(ctx, alu) {
2914 /* Other instructions cannot inline constants */
2915 if (alu->type != TAG_ALU_4) continue;
2916
2917 /* If there is already a constant here, we can do nothing */
2918 if (alu->has_constants) continue;
2919
2920 /* It makes no sense to inline constants on a branch */
2921 if (alu->compact_branch || alu->prepacked_branch) continue;
2922
2923 CONDITIONAL_ATTACH(src0);
2924
2925 if (!alu->has_constants) {
2926 CONDITIONAL_ATTACH(src1)
2927 } else if (!alu->inline_constant) {
2928 /* Corner case: _two_ vec4 constants, for instance with a
2929 * csel. For this case, we can only use a constant
2930 * register for one, we'll have to emit a move for the
2931 * other. Note, if both arguments are constants, then
2932 * necessarily neither argument depends on the value of
2933 * any particular register. As the destination register
2934 * will be wiped, that means we can spill the constant
2935 * to the destination register.
2936 */
2937
2938 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2939 unsigned scratch = alu->ssa_args.dest;
2940
2941 if (entry) {
2942 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2943 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2944
2945 /* Force a break XXX Defer r31 writes */
2946 ins.unit = UNIT_VLUT;
2947
2948 /* Set the source */
2949 alu->ssa_args.src1 = scratch;
2950
2951 /* Inject us -before- the last instruction which set r31 */
2952 mir_insert_instruction_before(mir_prev_op(alu), ins);
2953 }
2954 }
2955 }
2956 }
2957
2958 /* Midgard supports two types of constants, embedded constants (128-bit) and
2959 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2960 * constants can be demoted to inline constants, for space savings and
2961 * sometimes a performance boost */
2962
2963 static void
2964 embedded_to_inline_constant(compiler_context *ctx)
2965 {
2966 mir_foreach_instr(ctx, ins) {
2967 if (!ins->has_constants) continue;
2968
2969 if (ins->ssa_args.inline_constant) continue;
2970
2971 /* Blend constants must not be inlined by definition */
2972 if (ins->has_blend_constant) continue;
2973
2974 /* src1 cannot be an inline constant due to encoding
2975 * restrictions. So, if possible we try to flip the arguments
2976 * in that case */
2977
2978 int op = ins->alu.op;
2979
2980 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2981 switch (op) {
2982 /* These ops require an operational change to flip
2983 * their arguments TODO */
2984 case midgard_alu_op_flt:
2985 case midgard_alu_op_fle:
2986 case midgard_alu_op_ilt:
2987 case midgard_alu_op_ile:
2988 case midgard_alu_op_fcsel:
2989 case midgard_alu_op_icsel:
2990 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
2991 default:
2992 break;
2993 }
2994
2995 if (alu_opcode_props[op].props & OP_COMMUTES) {
2996 /* Flip the SSA numbers */
2997 ins->ssa_args.src0 = ins->ssa_args.src1;
2998 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2999
3000 /* And flip the modifiers */
3001
3002 unsigned src_temp;
3003
3004 src_temp = ins->alu.src2;
3005 ins->alu.src2 = ins->alu.src1;
3006 ins->alu.src1 = src_temp;
3007 }
3008 }
3009
3010 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3011 /* Extract the source information */
3012
3013 midgard_vector_alu_src *src;
3014 int q = ins->alu.src2;
3015 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3016 src = m;
3017
3018 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3019 int component = src->swizzle & 3;
3020
3021 /* Scale constant appropriately, if we can legally */
3022 uint16_t scaled_constant = 0;
3023
3024 /* XXX: Check legality */
3025 if (midgard_is_integer_op(op)) {
3026 /* TODO: Inline integer */
3027 continue;
3028
3029 unsigned int *iconstants = (unsigned int *) ins->constants;
3030 scaled_constant = (uint16_t) iconstants[component];
3031
3032 /* Constant overflow after resize */
3033 if (scaled_constant != iconstants[component])
3034 continue;
3035 } else {
3036 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
3037 }
3038
3039 /* We don't know how to handle these with a constant */
3040
3041 if (src->mod || src->half || src->rep_low || src->rep_high) {
3042 DBG("Bailing inline constant...\n");
3043 continue;
3044 }
3045
3046 /* Make sure that the constant is not itself a
3047 * vector by checking if all accessed values
3048 * (by the swizzle) are the same. */
3049
3050 uint32_t *cons = (uint32_t *) ins->constants;
3051 uint32_t value = cons[component];
3052
3053 bool is_vector = false;
3054 unsigned mask = effective_writemask(&ins->alu);
3055
3056 for (int c = 1; c < 4; ++c) {
3057 /* We only care if this component is actually used */
3058 if (!(mask & (1 << c)))
3059 continue;
3060
3061 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3062
3063 if (test != value) {
3064 is_vector = true;
3065 break;
3066 }
3067 }
3068
3069 if (is_vector)
3070 continue;
3071
3072 /* Get rid of the embedded constant */
3073 ins->has_constants = false;
3074 ins->ssa_args.src1 = SSA_UNUSED_0;
3075 ins->ssa_args.inline_constant = true;
3076 ins->inline_constant = scaled_constant;
3077 }
3078 }
3079 }
3080
3081 /* Map normal SSA sources to other SSA sources / fixed registers (like
3082 * uniforms) */
3083
3084 static void
3085 map_ssa_to_alias(compiler_context *ctx, int *ref)
3086 {
3087 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3088
3089 if (alias) {
3090 /* Remove entry in leftovers to avoid a redunant fmov */
3091
3092 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3093
3094 if (leftover)
3095 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3096
3097 /* Assign the alias map */
3098 *ref = alias - 1;
3099 return;
3100 }
3101 }
3102
3103 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3104 * texture pipeline */
3105
3106 static bool
3107 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3108 {
3109 bool progress = false;
3110
3111 mir_foreach_instr_in_block_safe(block, ins) {
3112 if (ins->type != TAG_ALU_4) continue;
3113 if (ins->compact_branch) continue;
3114
3115 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3116 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3117 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3118
3119 mir_remove_instruction(ins);
3120 progress = true;
3121 }
3122
3123 return progress;
3124 }
3125
3126 static bool
3127 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3128 {
3129 bool progress = false;
3130
3131 mir_foreach_instr_in_block_safe(block, ins) {
3132 if (ins->type != TAG_ALU_4) continue;
3133 if (!OP_IS_MOVE(ins->alu.op)) continue;
3134
3135 unsigned from = ins->ssa_args.src1;
3136 unsigned to = ins->ssa_args.dest;
3137
3138 /* We only work on pure SSA */
3139
3140 if (to >= SSA_FIXED_MINIMUM) continue;
3141 if (from >= SSA_FIXED_MINIMUM) continue;
3142
3143 /* Also, if the move has side effects, we're helpless */
3144
3145 midgard_vector_alu_src src =
3146 vector_alu_from_unsigned(ins->alu.src2);
3147 unsigned mask = squeeze_writemask(ins->alu.mask);
3148 bool is_int = midgard_is_integer_op(ins->alu.op);
3149
3150 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3151
3152 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3153 if (v->ssa_args.src0 == to) {
3154 v->ssa_args.src0 = from;
3155 progress = true;
3156 }
3157
3158 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3159 v->ssa_args.src1 = from;
3160 progress = true;
3161 }
3162 }
3163 }
3164
3165 return progress;
3166 }
3167
3168 /* The following passes reorder MIR instructions to enable better scheduling */
3169
3170 static void
3171 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3172 {
3173 mir_foreach_instr_in_block_safe(block, ins) {
3174 if (ins->type != TAG_LOAD_STORE_4) continue;
3175
3176 /* We've found a load/store op. Check if next is also load/store. */
3177 midgard_instruction *next_op = mir_next_op(ins);
3178 if (&next_op->link != &block->instructions) {
3179 if (next_op->type == TAG_LOAD_STORE_4) {
3180 /* If so, we're done since we're a pair */
3181 ins = mir_next_op(ins);
3182 continue;
3183 }
3184
3185 /* Maximum search distance to pair, to avoid register pressure disasters */
3186 int search_distance = 8;
3187
3188 /* Otherwise, we have an orphaned load/store -- search for another load */
3189 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3190 /* Terminate search if necessary */
3191 if (!(search_distance--)) break;
3192
3193 if (c->type != TAG_LOAD_STORE_4) continue;
3194
3195 /* Stores cannot be reordered, since they have
3196 * dependencies. For the same reason, indirect
3197 * loads cannot be reordered as their index is
3198 * loaded in r27.w */
3199
3200 if (OP_IS_STORE(c->load_store.op)) continue;
3201
3202 /* It appears the 0x800 bit is set whenever a
3203 * load is direct, unset when it is indirect.
3204 * Skip indirect loads. */
3205
3206 if (!(c->load_store.unknown & 0x800)) continue;
3207
3208 /* We found one! Move it up to pair and remove it from the old location */
3209
3210 mir_insert_instruction_before(ins, *c);
3211 mir_remove_instruction(c);
3212
3213 break;
3214 }
3215 }
3216 }
3217 }
3218
3219 /* Emit varying stores late */
3220
3221 static void
3222 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3223 /* Iterate in reverse to get the final write, rather than the first */
3224
3225 mir_foreach_instr_in_block_safe_rev(block, ins) {
3226 /* Check if what we just wrote needs a store */
3227 int idx = ins->ssa_args.dest;
3228 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3229
3230 if (!varying) continue;
3231
3232 varying -= 1;
3233
3234 /* We need to store to the appropriate varying, so emit the
3235 * move/store */
3236
3237 /* TODO: Integrate with special purpose RA (and scheduler?) */
3238 bool high_varying_register = false;
3239
3240 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3241
3242 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3243 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3244
3245 mir_insert_instruction_before(mir_next_op(ins), st);
3246 mir_insert_instruction_before(mir_next_op(ins), mov);
3247
3248 /* We no longer need to store this varying */
3249 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3250 }
3251 }
3252
3253 /* If there are leftovers after the below pass, emit actual fmov
3254 * instructions for the slow-but-correct path */
3255
3256 static void
3257 emit_leftover_move(compiler_context *ctx)
3258 {
3259 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3260 int base = ((uintptr_t) leftover->key) - 1;
3261 int mapped = base;
3262
3263 map_ssa_to_alias(ctx, &mapped);
3264 EMIT(fmov, mapped, blank_alu_src, base);
3265 }
3266 }
3267
3268 static void
3269 actualise_ssa_to_alias(compiler_context *ctx)
3270 {
3271 mir_foreach_instr(ctx, ins) {
3272 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3273 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3274 }
3275
3276 emit_leftover_move(ctx);
3277 }
3278
3279 static void
3280 emit_fragment_epilogue(compiler_context *ctx)
3281 {
3282 /* Special case: writing out constants requires us to include the move
3283 * explicitly now, so shove it into r0 */
3284
3285 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3286
3287 if (constant_value) {
3288 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3289 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3290 emit_mir_instruction(ctx, ins);
3291 }
3292
3293 /* Perform the actual fragment writeout. We have two writeout/branch
3294 * instructions, forming a loop until writeout is successful as per the
3295 * docs. TODO: gl_FragDepth */
3296
3297 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3298 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3299 }
3300
3301 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3302 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3303 * with the int8 analogue to the fragment epilogue */
3304
3305 static void
3306 emit_blend_epilogue(compiler_context *ctx)
3307 {
3308 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3309
3310 midgard_instruction scale = {
3311 .type = TAG_ALU_4,
3312 .unit = UNIT_VMUL,
3313 .inline_constant = _mesa_float_to_half(255.0),
3314 .ssa_args = {
3315 .src0 = SSA_FIXED_REGISTER(0),
3316 .src1 = SSA_UNUSED_0,
3317 .dest = SSA_FIXED_REGISTER(24),
3318 .inline_constant = true
3319 },
3320 .alu = {
3321 .op = midgard_alu_op_fmul,
3322 .reg_mode = midgard_reg_mode_full,
3323 .dest_override = midgard_dest_override_lower,
3324 .mask = 0xFF,
3325 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3326 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3327 }
3328 };
3329
3330 emit_mir_instruction(ctx, scale);
3331
3332 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3333
3334 midgard_vector_alu_src alu_src = blank_alu_src;
3335 alu_src.half = true;
3336
3337 midgard_instruction f2u8 = {
3338 .type = TAG_ALU_4,
3339 .ssa_args = {
3340 .src0 = SSA_FIXED_REGISTER(24),
3341 .src1 = SSA_UNUSED_0,
3342 .dest = SSA_FIXED_REGISTER(0),
3343 .inline_constant = true
3344 },
3345 .alu = {
3346 .op = midgard_alu_op_f2u8,
3347 .reg_mode = midgard_reg_mode_half,
3348 .dest_override = midgard_dest_override_lower,
3349 .outmod = midgard_outmod_pos,
3350 .mask = 0xF,
3351 .src1 = vector_alu_srco_unsigned(alu_src),
3352 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3353 }
3354 };
3355
3356 emit_mir_instruction(ctx, f2u8);
3357
3358 /* vmul.imov.quarter r0, r0, r0 */
3359
3360 midgard_instruction imov_8 = {
3361 .type = TAG_ALU_4,
3362 .ssa_args = {
3363 .src0 = SSA_UNUSED_1,
3364 .src1 = SSA_FIXED_REGISTER(0),
3365 .dest = SSA_FIXED_REGISTER(0),
3366 },
3367 .alu = {
3368 .op = midgard_alu_op_imov,
3369 .reg_mode = midgard_reg_mode_quarter,
3370 .dest_override = midgard_dest_override_none,
3371 .mask = 0xFF,
3372 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3373 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3374 }
3375 };
3376
3377 /* Emit branch epilogue with the 8-bit move as the source */
3378
3379 emit_mir_instruction(ctx, imov_8);
3380 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3381
3382 emit_mir_instruction(ctx, imov_8);
3383 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3384 }
3385
3386 static midgard_block *
3387 emit_block(compiler_context *ctx, nir_block *block)
3388 {
3389 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3390 list_addtail(&this_block->link, &ctx->blocks);
3391
3392 this_block->is_scheduled = false;
3393 ++ctx->block_count;
3394
3395 ctx->texture_index[0] = -1;
3396 ctx->texture_index[1] = -1;
3397
3398 /* Add us as a successor to the block we are following */
3399 if (ctx->current_block)
3400 midgard_block_add_successor(ctx->current_block, this_block);
3401
3402 /* Set up current block */
3403 list_inithead(&this_block->instructions);
3404 ctx->current_block = this_block;
3405
3406 nir_foreach_instr(instr, block) {
3407 emit_instr(ctx, instr);
3408 ++ctx->instruction_count;
3409 }
3410
3411 inline_alu_constants(ctx);
3412 embedded_to_inline_constant(ctx);
3413
3414 /* Perform heavylifting for aliasing */
3415 actualise_ssa_to_alias(ctx);
3416
3417 midgard_emit_store(ctx, this_block);
3418 midgard_pair_load_store(ctx, this_block);
3419
3420 /* Append fragment shader epilogue (value writeout) */
3421 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3422 if (block == nir_impl_last_block(ctx->func->impl)) {
3423 if (ctx->is_blend)
3424 emit_blend_epilogue(ctx);
3425 else
3426 emit_fragment_epilogue(ctx);
3427 }
3428 }
3429
3430 if (block == nir_start_block(ctx->func->impl))
3431 ctx->initial_block = this_block;
3432
3433 if (block == nir_impl_last_block(ctx->func->impl))
3434 ctx->final_block = this_block;
3435
3436 /* Allow the next control flow to access us retroactively, for
3437 * branching etc */
3438 ctx->current_block = this_block;
3439
3440 /* Document the fallthrough chain */
3441 ctx->previous_source_block = this_block;
3442
3443 return this_block;
3444 }
3445
3446 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3447
3448 static void
3449 emit_if(struct compiler_context *ctx, nir_if *nif)
3450 {
3451 /* Conditional branches expect the condition in r31.w; emit a move for
3452 * that in the _previous_ block (which is the current block). */
3453 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3454
3455 /* Speculatively emit the branch, but we can't fill it in until later */
3456 EMIT(branch, true, true);
3457 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3458
3459 /* Emit the two subblocks */
3460 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3461
3462 /* Emit a jump from the end of the then block to the end of the else */
3463 EMIT(branch, false, false);
3464 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3465
3466 /* Emit second block, and check if it's empty */
3467
3468 int else_idx = ctx->block_count;
3469 int count_in = ctx->instruction_count;
3470 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3471 int after_else_idx = ctx->block_count;
3472
3473 /* Now that we have the subblocks emitted, fix up the branches */
3474
3475 assert(then_block);
3476 assert(else_block);
3477
3478 if (ctx->instruction_count == count_in) {
3479 /* The else block is empty, so don't emit an exit jump */
3480 mir_remove_instruction(then_exit);
3481 then_branch->branch.target_block = after_else_idx;
3482 } else {
3483 then_branch->branch.target_block = else_idx;
3484 then_exit->branch.target_block = after_else_idx;
3485 }
3486 }
3487
3488 static void
3489 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3490 {
3491 /* Remember where we are */
3492 midgard_block *start_block = ctx->current_block;
3493
3494 /* Allocate a loop number, growing the current inner loop depth */
3495 int loop_idx = ++ctx->current_loop_depth;
3496
3497 /* Get index from before the body so we can loop back later */
3498 int start_idx = ctx->block_count;
3499
3500 /* Emit the body itself */
3501 emit_cf_list(ctx, &nloop->body);
3502
3503 /* Branch back to loop back */
3504 struct midgard_instruction br_back = v_branch(false, false);
3505 br_back.branch.target_block = start_idx;
3506 emit_mir_instruction(ctx, br_back);
3507
3508 /* Mark down that branch in the graph. Note that we're really branching
3509 * to the block *after* we started in. TODO: Why doesn't the branch
3510 * itself have an off-by-one then...? */
3511 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3512
3513 /* Find the index of the block about to follow us (note: we don't add
3514 * one; blocks are 0-indexed so we get a fencepost problem) */
3515 int break_block_idx = ctx->block_count;
3516
3517 /* Fix up the break statements we emitted to point to the right place,
3518 * now that we can allocate a block number for them */
3519
3520 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3521 mir_foreach_instr_in_block(block, ins) {
3522 if (ins->type != TAG_ALU_4) continue;
3523 if (!ins->compact_branch) continue;
3524 if (ins->prepacked_branch) continue;
3525
3526 /* We found a branch -- check the type to see if we need to do anything */
3527 if (ins->branch.target_type != TARGET_BREAK) continue;
3528
3529 /* It's a break! Check if it's our break */
3530 if (ins->branch.target_break != loop_idx) continue;
3531
3532 /* Okay, cool, we're breaking out of this loop.
3533 * Rewrite from a break to a goto */
3534
3535 ins->branch.target_type = TARGET_GOTO;
3536 ins->branch.target_block = break_block_idx;
3537 }
3538 }
3539
3540 /* Now that we've finished emitting the loop, free up the depth again
3541 * so we play nice with recursion amid nested loops */
3542 --ctx->current_loop_depth;
3543 }
3544
3545 static midgard_block *
3546 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3547 {
3548 midgard_block *start_block = NULL;
3549
3550 foreach_list_typed(nir_cf_node, node, node, list) {
3551 switch (node->type) {
3552 case nir_cf_node_block: {
3553 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3554
3555 if (!start_block)
3556 start_block = block;
3557
3558 break;
3559 }
3560
3561 case nir_cf_node_if:
3562 emit_if(ctx, nir_cf_node_as_if(node));
3563 break;
3564
3565 case nir_cf_node_loop:
3566 emit_loop(ctx, nir_cf_node_as_loop(node));
3567 break;
3568
3569 case nir_cf_node_function:
3570 assert(0);
3571 break;
3572 }
3573 }
3574
3575 return start_block;
3576 }
3577
3578 /* Due to lookahead, we need to report the first tag executed in the command
3579 * stream and in branch targets. An initial block might be empty, so iterate
3580 * until we find one that 'works' */
3581
3582 static unsigned
3583 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3584 {
3585 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3586
3587 unsigned first_tag = 0;
3588
3589 do {
3590 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3591
3592 if (initial_bundle) {
3593 first_tag = initial_bundle->tag;
3594 break;
3595 }
3596
3597 /* Initial block is empty, try the next block */
3598 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3599 } while(initial_block != NULL);
3600
3601 assert(first_tag);
3602 return first_tag;
3603 }
3604
3605 int
3606 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3607 {
3608 struct util_dynarray *compiled = &program->compiled;
3609
3610 midgard_debug = debug_get_option_midgard_debug();
3611
3612 compiler_context ictx = {
3613 .nir = nir,
3614 .stage = nir->info.stage,
3615
3616 .is_blend = is_blend,
3617 .blend_constant_offset = -1,
3618
3619 .alpha_ref = program->alpha_ref
3620 };
3621
3622 compiler_context *ctx = &ictx;
3623
3624 /* TODO: Decide this at runtime */
3625 ctx->uniform_cutoff = 8;
3626
3627 /* Assign var locations early, so the epilogue can use them if necessary */
3628
3629 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3630 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3631 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3632
3633 /* Initialize at a global (not block) level hash tables */
3634
3635 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3636 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3637 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3638 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3639 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3640 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3641 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3642
3643 /* Record the varying mapping for the command stream's bookkeeping */
3644
3645 struct exec_list *varyings =
3646 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3647
3648 nir_foreach_variable(var, varyings) {
3649 unsigned loc = var->data.driver_location;
3650 unsigned sz = glsl_type_size(var->type, FALSE);
3651
3652 for (int c = 0; c < sz; ++c) {
3653 program->varyings[loc + c] = var->data.location;
3654 }
3655 }
3656
3657 /* Lower gl_Position pre-optimisation */
3658
3659 if (ctx->stage == MESA_SHADER_VERTEX)
3660 NIR_PASS_V(nir, nir_lower_viewport_transform);
3661
3662 NIR_PASS_V(nir, nir_lower_var_copies);
3663 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3664 NIR_PASS_V(nir, nir_split_var_copies);
3665 NIR_PASS_V(nir, nir_lower_var_copies);
3666 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3667 NIR_PASS_V(nir, nir_lower_var_copies);
3668 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3669
3670 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3671
3672 /* Optimisation passes */
3673
3674 optimise_nir(nir);
3675
3676 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3677 nir_print_shader(nir, stdout);
3678 }
3679
3680 /* Assign sysvals and counts, now that we're sure
3681 * (post-optimisation) */
3682
3683 midgard_nir_assign_sysvals(ctx, nir);
3684
3685 program->uniform_count = nir->num_uniforms;
3686 program->sysval_count = ctx->sysval_count;
3687 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3688
3689 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3690 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3691
3692 nir_foreach_function(func, nir) {
3693 if (!func->impl)
3694 continue;
3695
3696 list_inithead(&ctx->blocks);
3697 ctx->block_count = 0;
3698 ctx->func = func;
3699
3700 emit_cf_list(ctx, &func->impl->body);
3701 emit_block(ctx, func->impl->end_block);
3702
3703 break; /* TODO: Multi-function shaders */
3704 }
3705
3706 util_dynarray_init(compiled, NULL);
3707
3708 /* MIR-level optimizations */
3709
3710 bool progress = false;
3711
3712 do {
3713 progress = false;
3714
3715 mir_foreach_block(ctx, block) {
3716 progress |= midgard_opt_copy_prop(ctx, block);
3717 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3718 }
3719 } while (progress);
3720
3721 /* Schedule! */
3722 schedule_program(ctx);
3723
3724 /* Now that all the bundles are scheduled and we can calculate block
3725 * sizes, emit actual branch instructions rather than placeholders */
3726
3727 int br_block_idx = 0;
3728
3729 mir_foreach_block(ctx, block) {
3730 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3731 for (int c = 0; c < bundle->instruction_count; ++c) {
3732 midgard_instruction *ins = &bundle->instructions[c];
3733
3734 if (!midgard_is_branch_unit(ins->unit)) continue;
3735
3736 if (ins->prepacked_branch) continue;
3737
3738 /* Parse some basic branch info */
3739 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3740 bool is_conditional = ins->branch.conditional;
3741 bool is_inverted = ins->branch.invert_conditional;
3742 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3743
3744 /* Determine the block we're jumping to */
3745 int target_number = ins->branch.target_block;
3746
3747 /* Report the destination tag. Discards don't need this */
3748 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3749
3750 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3751 int quadword_offset = 0;
3752
3753 if (is_discard) {
3754 /* Jump to the end of the shader. We
3755 * need to include not only the
3756 * following blocks, but also the
3757 * contents of our current block (since
3758 * discard can come in the middle of
3759 * the block) */
3760
3761 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3762
3763 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3764 quadword_offset += quadword_size(bun->tag);
3765 }
3766
3767 mir_foreach_block_from(ctx, blk, b) {
3768 quadword_offset += b->quadword_count;
3769 }
3770
3771 } else if (target_number > br_block_idx) {
3772 /* Jump forward */
3773
3774 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3775 midgard_block *blk = mir_get_block(ctx, idx);
3776 assert(blk);
3777
3778 quadword_offset += blk->quadword_count;
3779 }
3780 } else {
3781 /* Jump backwards */
3782
3783 for (int idx = br_block_idx; idx >= target_number; --idx) {
3784 midgard_block *blk = mir_get_block(ctx, idx);
3785 assert(blk);
3786
3787 quadword_offset -= blk->quadword_count;
3788 }
3789 }
3790
3791 /* Unconditional extended branches (far jumps)
3792 * have issues, so we always use a conditional
3793 * branch, setting the condition to always for
3794 * unconditional. For compact unconditional
3795 * branches, cond isn't used so it doesn't
3796 * matter what we pick. */
3797
3798 midgard_condition cond =
3799 !is_conditional ? midgard_condition_always :
3800 is_inverted ? midgard_condition_false :
3801 midgard_condition_true;
3802
3803 midgard_jmp_writeout_op op =
3804 is_discard ? midgard_jmp_writeout_op_discard :
3805 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3806 midgard_jmp_writeout_op_branch_cond;
3807
3808 if (!is_compact) {
3809 midgard_branch_extended branch =
3810 midgard_create_branch_extended(
3811 cond, op,
3812 dest_tag,
3813 quadword_offset);
3814
3815 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3816 } else if (is_conditional || is_discard) {
3817 midgard_branch_cond branch = {
3818 .op = op,
3819 .dest_tag = dest_tag,
3820 .offset = quadword_offset,
3821 .cond = cond
3822 };
3823
3824 assert(branch.offset == quadword_offset);
3825
3826 memcpy(&ins->br_compact, &branch, sizeof(branch));
3827 } else {
3828 assert(op == midgard_jmp_writeout_op_branch_uncond);
3829
3830 midgard_branch_uncond branch = {
3831 .op = op,
3832 .dest_tag = dest_tag,
3833 .offset = quadword_offset,
3834 .unknown = 1
3835 };
3836
3837 assert(branch.offset == quadword_offset);
3838
3839 memcpy(&ins->br_compact, &branch, sizeof(branch));
3840 }
3841 }
3842 }
3843
3844 ++br_block_idx;
3845 }
3846
3847 /* Emit flat binary from the instruction arrays. Iterate each block in
3848 * sequence. Save instruction boundaries such that lookahead tags can
3849 * be assigned easily */
3850
3851 /* Cache _all_ bundles in source order for lookahead across failed branches */
3852
3853 int bundle_count = 0;
3854 mir_foreach_block(ctx, block) {
3855 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3856 }
3857 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3858 int bundle_idx = 0;
3859 mir_foreach_block(ctx, block) {
3860 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3861 source_order_bundles[bundle_idx++] = bundle;
3862 }
3863 }
3864
3865 int current_bundle = 0;
3866
3867 mir_foreach_block(ctx, block) {
3868 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3869 int lookahead = 1;
3870
3871 if (current_bundle + 1 < bundle_count) {
3872 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3873
3874 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3875 lookahead = 1;
3876 } else {
3877 lookahead = next;
3878 }
3879 }
3880
3881 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3882 ++current_bundle;
3883 }
3884
3885 /* TODO: Free deeper */
3886 //util_dynarray_fini(&block->instructions);
3887 }
3888
3889 free(source_order_bundles);
3890
3891 /* Report the very first tag executed */
3892 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3893
3894 /* Deal with off-by-one related to the fencepost problem */
3895 program->work_register_count = ctx->work_registers + 1;
3896
3897 program->can_discard = ctx->can_discard;
3898 program->uniform_cutoff = ctx->uniform_cutoff;
3899
3900 program->blend_patch_offset = ctx->blend_constant_offset;
3901
3902 if (midgard_debug & MIDGARD_DBG_SHADERS)
3903 disassemble_midgard(program->compiled.data, program->compiled.size);
3904
3905 return 0;
3906 }