panfrost/midgard: Respect component of bcsel condition
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
180
181 #define M_LOAD_STORE(name, rname, uname) \
182 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
183 midgard_instruction i = { \
184 .type = TAG_LOAD_STORE_4, \
185 .ssa_args = { \
186 .rname = ssa, \
187 .uname = -1, \
188 .src1 = -1 \
189 }, \
190 .load_store = { \
191 .op = midgard_op_##name, \
192 .mask = 0xF, \
193 .swizzle = SWIZZLE_XYZW, \
194 .address = address \
195 } \
196 }; \
197 \
198 return i; \
199 }
200
201 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
202 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
203
204 const midgard_vector_alu_src blank_alu_src = {
205 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
206 };
207
208 const midgard_vector_alu_src blank_alu_src_xxxx = {
209 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
210 };
211
212 const midgard_scalar_alu_src blank_scalar_alu_src = {
213 .full = true
214 };
215
216 /* Used for encoding the unused source of 1-op instructions */
217 const midgard_vector_alu_src zero_alu_src = { 0 };
218
219 /* Coerce structs to integer */
220
221 static unsigned
222 vector_alu_srco_unsigned(midgard_vector_alu_src src)
223 {
224 unsigned u;
225 memcpy(&u, &src, sizeof(src));
226 return u;
227 }
228
229 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
230 * the corresponding Midgard source */
231
232 static midgard_vector_alu_src
233 vector_alu_modifiers(nir_alu_src *src)
234 {
235 if (!src) return blank_alu_src;
236
237 midgard_vector_alu_src alu_src = {
238 .abs = src->abs,
239 .negate = src->negate,
240 .rep_low = 0,
241 .rep_high = 0,
242 .half = 0, /* TODO */
243 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
244 };
245
246 return alu_src;
247 }
248
249 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
250
251 static midgard_instruction
252 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
253 {
254 midgard_instruction ins = {
255 .type = TAG_ALU_4,
256 .ssa_args = {
257 .src0 = SSA_UNUSED_1,
258 .src1 = src,
259 .dest = dest,
260 },
261 .alu = {
262 .op = midgard_alu_op_fmov,
263 .reg_mode = midgard_reg_mode_full,
264 .dest_override = midgard_dest_override_none,
265 .mask = 0xFF,
266 .src1 = vector_alu_srco_unsigned(zero_alu_src),
267 .src2 = vector_alu_srco_unsigned(mod)
268 },
269 };
270
271 return ins;
272 }
273
274 /* load/store instructions have both 32-bit and 16-bit variants, depending on
275 * whether we are using vectors composed of highp or mediump. At the moment, we
276 * don't support half-floats -- this requires changes in other parts of the
277 * compiler -- therefore the 16-bit versions are commented out. */
278
279 //M_LOAD(load_attr_16);
280 M_LOAD(load_attr_32);
281 //M_LOAD(load_vary_16);
282 M_LOAD(load_vary_32);
283 //M_LOAD(load_uniform_16);
284 M_LOAD(load_uniform_32);
285 M_LOAD(load_color_buffer_8);
286 //M_STORE(store_vary_16);
287 M_STORE(store_vary_32);
288 M_STORE(store_cubemap_coords);
289
290 static midgard_instruction
291 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
292 {
293 midgard_branch_cond branch = {
294 .op = op,
295 .dest_tag = tag,
296 .offset = offset,
297 .cond = cond
298 };
299
300 uint16_t compact;
301 memcpy(&compact, &branch, sizeof(branch));
302
303 midgard_instruction ins = {
304 .type = TAG_ALU_4,
305 .unit = ALU_ENAB_BR_COMPACT,
306 .prepacked_branch = true,
307 .compact_branch = true,
308 .br_compact = compact
309 };
310
311 if (op == midgard_jmp_writeout_op_writeout)
312 ins.writeout = true;
313
314 return ins;
315 }
316
317 static midgard_instruction
318 v_branch(bool conditional, bool invert)
319 {
320 midgard_instruction ins = {
321 .type = TAG_ALU_4,
322 .unit = ALU_ENAB_BRANCH,
323 .compact_branch = true,
324 .branch = {
325 .conditional = conditional,
326 .invert_conditional = invert
327 }
328 };
329
330 return ins;
331 }
332
333 static midgard_branch_extended
334 midgard_create_branch_extended( midgard_condition cond,
335 midgard_jmp_writeout_op op,
336 unsigned dest_tag,
337 signed quadword_offset)
338 {
339 /* For unclear reasons, the condition code is repeated 8 times */
340 uint16_t duplicated_cond =
341 (cond << 14) |
342 (cond << 12) |
343 (cond << 10) |
344 (cond << 8) |
345 (cond << 6) |
346 (cond << 4) |
347 (cond << 2) |
348 (cond << 0);
349
350 midgard_branch_extended branch = {
351 .op = op,
352 .dest_tag = dest_tag,
353 .offset = quadword_offset,
354 .cond = duplicated_cond
355 };
356
357 return branch;
358 }
359
360 typedef struct midgard_bundle {
361 /* Tag for the overall bundle */
362 int tag;
363
364 /* Instructions contained by the bundle */
365 int instruction_count;
366 midgard_instruction instructions[5];
367
368 /* Bundle-wide ALU configuration */
369 int padding;
370 int control;
371 bool has_embedded_constants;
372 float constants[4];
373 bool has_blend_constant;
374
375 uint16_t register_words[8];
376 int register_words_count;
377
378 uint64_t body_words[8];
379 size_t body_size[8];
380 int body_words_count;
381 } midgard_bundle;
382
383 typedef struct compiler_context {
384 nir_shader *nir;
385 gl_shader_stage stage;
386
387 /* Is internally a blend shader? Depends on stage == FRAGMENT */
388 bool is_blend;
389
390 /* Tracking for blend constant patching */
391 int blend_constant_number;
392 int blend_constant_offset;
393
394 /* Current NIR function */
395 nir_function *func;
396
397 /* Unordered list of midgard_blocks */
398 int block_count;
399 struct list_head blocks;
400
401 midgard_block *initial_block;
402 midgard_block *previous_source_block;
403 midgard_block *final_block;
404
405 /* List of midgard_instructions emitted for the current block */
406 midgard_block *current_block;
407
408 /* The index corresponding to the current loop, e.g. for breaks/contineus */
409 int current_loop;
410
411 /* Constants which have been loaded, for later inlining */
412 struct hash_table_u64 *ssa_constants;
413
414 /* SSA indices to be outputted to corresponding varying offset */
415 struct hash_table_u64 *ssa_varyings;
416
417 /* SSA values / registers which have been aliased. Naively, these
418 * demand a fmov output; instead, we alias them in a later pass to
419 * avoid the wasted op.
420 *
421 * A note on encoding: to avoid dynamic memory management here, rather
422 * than ampping to a pointer, we map to the source index; the key
423 * itself is just the destination index. */
424
425 struct hash_table_u64 *ssa_to_alias;
426 struct set *leftover_ssa_to_alias;
427
428 /* Actual SSA-to-register for RA */
429 struct hash_table_u64 *ssa_to_register;
430
431 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
432 struct hash_table_u64 *hash_to_temp;
433 int temp_count;
434 int max_hash;
435
436 /* Just the count of the max register used. Higher count => higher
437 * register pressure */
438 int work_registers;
439
440 /* Used for cont/last hinting. Increase when a tex op is added.
441 * Decrease when a tex op is removed. */
442 int texture_op_count;
443
444 /* Mapping of texture register -> SSA index for unaliasing */
445 int texture_index[2];
446
447 /* If any path hits a discard instruction */
448 bool can_discard;
449
450 /* The number of uniforms allowable for the fast path */
451 int uniform_cutoff;
452
453 /* Count of instructions emitted from NIR overall, across all blocks */
454 int instruction_count;
455
456 /* Alpha ref value passed in */
457 float alpha_ref;
458
459 /* The index corresponding to the fragment output */
460 unsigned fragment_output;
461
462 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
463 unsigned sysvals[MAX_SYSVAL_COUNT];
464 unsigned sysval_count;
465 struct hash_table_u64 *sysval_to_id;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type, bool bindless)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static int
670 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
671 {
672 switch (instr->intrinsic) {
673 case nir_intrinsic_load_viewport_scale:
674 return PAN_SYSVAL_VIEWPORT_SCALE;
675 case nir_intrinsic_load_viewport_offset:
676 return PAN_SYSVAL_VIEWPORT_OFFSET;
677 default:
678 return -1;
679 }
680 }
681
682 static void
683 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
684 {
685 int sysval = -1;
686
687 if (instr->type == nir_instr_type_intrinsic) {
688 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
689 sysval = midgard_nir_sysval_for_intrinsic(intr);
690 }
691
692 if (sysval < 0)
693 return;
694
695 /* We have a sysval load; check if it's already been assigned */
696
697 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
698 return;
699
700 /* It hasn't -- so assign it now! */
701
702 unsigned id = ctx->sysval_count++;
703 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
704 ctx->sysvals[id] = sysval;
705 }
706
707 static void
708 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
709 {
710 ctx->sysval_count = 0;
711
712 nir_foreach_function(function, shader) {
713 if (!function->impl) continue;
714
715 nir_foreach_block(block, function->impl) {
716 nir_foreach_instr_safe(instr, block) {
717 midgard_nir_assign_sysval_body(ctx, instr);
718 }
719 }
720 }
721 }
722
723 static bool
724 midgard_nir_lower_fdot2(nir_shader *shader)
725 {
726 bool progress = false;
727
728 nir_foreach_function(function, shader) {
729 if (!function->impl) continue;
730
731 nir_builder _b;
732 nir_builder *b = &_b;
733 nir_builder_init(b, function->impl);
734
735 nir_foreach_block(block, function->impl) {
736 nir_foreach_instr_safe(instr, block) {
737 if (instr->type != nir_instr_type_alu) continue;
738
739 nir_alu_instr *alu = nir_instr_as_alu(instr);
740 midgard_nir_lower_fdot2_body(b, alu);
741
742 progress |= true;
743 }
744 }
745
746 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
747
748 }
749
750 return progress;
751 }
752
753 static void
754 optimise_nir(nir_shader *nir)
755 {
756 bool progress;
757
758 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
759 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
760
761 nir_lower_tex_options lower_tex_options = {
762 .lower_rect = true
763 };
764
765 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
766
767 do {
768 progress = false;
769
770 NIR_PASS(progress, nir, nir_lower_var_copies);
771 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
772
773 NIR_PASS(progress, nir, nir_copy_prop);
774 NIR_PASS(progress, nir, nir_opt_dce);
775 NIR_PASS(progress, nir, nir_opt_dead_cf);
776 NIR_PASS(progress, nir, nir_opt_cse);
777 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
778 NIR_PASS(progress, nir, nir_opt_algebraic);
779 NIR_PASS(progress, nir, nir_opt_constant_folding);
780 NIR_PASS(progress, nir, nir_opt_undef);
781 NIR_PASS(progress, nir, nir_opt_loop_unroll,
782 nir_var_shader_in |
783 nir_var_shader_out |
784 nir_var_function_temp);
785
786 /* TODO: Enable vectorize when merged upstream */
787 // NIR_PASS(progress, nir, nir_opt_vectorize);
788 } while (progress);
789
790 /* Must be run at the end to prevent creation of fsin/fcos ops */
791 NIR_PASS(progress, nir, midgard_nir_scale_trig);
792
793 do {
794 progress = false;
795
796 NIR_PASS(progress, nir, nir_opt_dce);
797 NIR_PASS(progress, nir, nir_opt_algebraic);
798 NIR_PASS(progress, nir, nir_opt_constant_folding);
799 NIR_PASS(progress, nir, nir_copy_prop);
800 } while (progress);
801
802 NIR_PASS(progress, nir, nir_opt_algebraic_late);
803 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
804
805 /* Lower mods for float ops only. Integer ops don't support modifiers
806 * (saturate doesn't make sense on integers, neg/abs require dedicated
807 * instructions) */
808
809 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
810 NIR_PASS(progress, nir, nir_copy_prop);
811 NIR_PASS(progress, nir, nir_opt_dce);
812
813 /* We implement booleans as 32-bit 0/~0 */
814 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
815
816 /* Take us out of SSA */
817 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
818 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
819
820 /* We are a vector architecture; write combine where possible */
821 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
822 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
823
824 NIR_PASS(progress, nir, nir_opt_dce);
825 }
826
827 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
828 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
829 * r0. See the comments in compiler_context */
830
831 static void
832 alias_ssa(compiler_context *ctx, int dest, int src)
833 {
834 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
835 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
836 }
837
838 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
839
840 static void
841 unalias_ssa(compiler_context *ctx, int dest)
842 {
843 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
844 /* TODO: Remove from leftover or no? */
845 }
846
847 static void
848 midgard_pin_output(compiler_context *ctx, int index, int reg)
849 {
850 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
851 }
852
853 static bool
854 midgard_is_pinned(compiler_context *ctx, int index)
855 {
856 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
857 }
858
859 /* Do not actually emit a load; instead, cache the constant for inlining */
860
861 static void
862 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
863 {
864 nir_ssa_def def = instr->def;
865
866 float *v = ralloc_array(NULL, float, 4);
867 nir_const_load_to_arr(v, instr, f32);
868 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
869 }
870
871 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
872 * do the inverse) */
873
874 static unsigned
875 expand_writemask(unsigned mask)
876 {
877 unsigned o = 0;
878
879 for (int i = 0; i < 4; ++i)
880 if (mask & (1 << i))
881 o |= (3 << (2 * i));
882
883 return o;
884 }
885
886 static unsigned
887 squeeze_writemask(unsigned mask)
888 {
889 unsigned o = 0;
890
891 for (int i = 0; i < 4; ++i)
892 if (mask & (3 << (2 * i)))
893 o |= (1 << i);
894
895 return o;
896
897 }
898
899 /* Determines effective writemask, taking quirks and expansion into account */
900 static unsigned
901 effective_writemask(midgard_vector_alu *alu)
902 {
903 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
904 * sense) */
905
906 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
907
908 /* If there is a fixed channel count, construct the appropriate mask */
909
910 if (channel_count)
911 return (1 << channel_count) - 1;
912
913 /* Otherwise, just squeeze the existing mask */
914 return squeeze_writemask(alu->mask);
915 }
916
917 static unsigned
918 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
919 {
920 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
921 return hash;
922
923 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
924
925 if (temp)
926 return temp - 1;
927
928 /* If no temp is find, allocate one */
929 temp = ctx->temp_count++;
930 ctx->max_hash = MAX2(ctx->max_hash, hash);
931
932 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
933
934 return temp;
935 }
936
937 static unsigned
938 nir_src_index(compiler_context *ctx, nir_src *src)
939 {
940 if (src->is_ssa)
941 return src->ssa->index;
942 else
943 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
944 }
945
946 static unsigned
947 nir_dest_index(compiler_context *ctx, nir_dest *dst)
948 {
949 if (dst->is_ssa)
950 return dst->ssa.index;
951 else
952 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
953 }
954
955 static unsigned
956 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
957 {
958 return nir_src_index(ctx, &src->src);
959 }
960
961 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
962 * a conditional test) into that register */
963
964 static void
965 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
966 {
967 int condition = nir_src_index(ctx, src);
968
969 /* Source to swizzle the desired component into w */
970
971 const midgard_vector_alu_src alu_src = {
972 .swizzle = SWIZZLE(component, component, component, component),
973 };
974
975 /* There is no boolean move instruction. Instead, we simulate a move by
976 * ANDing the condition with itself to get it into r31.w */
977
978 midgard_instruction ins = {
979 .type = TAG_ALU_4,
980 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
981 .ssa_args = {
982 .src0 = condition,
983 .src1 = condition,
984 .dest = SSA_FIXED_REGISTER(31),
985 },
986 .alu = {
987 .op = midgard_alu_op_iand,
988 .reg_mode = midgard_reg_mode_full,
989 .dest_override = midgard_dest_override_none,
990 .mask = (0x3 << 6), /* w */
991 .src1 = vector_alu_srco_unsigned(alu_src),
992 .src2 = vector_alu_srco_unsigned(alu_src)
993 },
994 };
995
996 emit_mir_instruction(ctx, ins);
997 }
998
999 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1000 * pinning to eliminate this move in all known cases */
1001
1002 static void
1003 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1004 {
1005 int offset = nir_src_index(ctx, src);
1006
1007 midgard_instruction ins = {
1008 .type = TAG_ALU_4,
1009 .ssa_args = {
1010 .src0 = SSA_UNUSED_1,
1011 .src1 = offset,
1012 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1013 },
1014 .alu = {
1015 .op = midgard_alu_op_imov,
1016 .reg_mode = midgard_reg_mode_full,
1017 .dest_override = midgard_dest_override_none,
1018 .mask = (0x3 << 6), /* w */
1019 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1020 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1021 },
1022 };
1023
1024 emit_mir_instruction(ctx, ins);
1025 }
1026
1027 #define ALU_CASE(nir, _op) \
1028 case nir_op_##nir: \
1029 op = midgard_alu_op_##_op; \
1030 break;
1031
1032 static void
1033 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1034 {
1035 bool is_ssa = instr->dest.dest.is_ssa;
1036
1037 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1038 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1039 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1040
1041 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1042 * supported. A few do not and are commented for now. Also, there are a
1043 * number of NIR ops which Midgard does not support and need to be
1044 * lowered, also TODO. This switch block emits the opcode and calling
1045 * convention of the Midgard instruction; actual packing is done in
1046 * emit_alu below */
1047
1048 unsigned op;
1049
1050 switch (instr->op) {
1051 ALU_CASE(fadd, fadd);
1052 ALU_CASE(fmul, fmul);
1053 ALU_CASE(fmin, fmin);
1054 ALU_CASE(fmax, fmax);
1055 ALU_CASE(imin, imin);
1056 ALU_CASE(imax, imax);
1057 ALU_CASE(umin, umin);
1058 ALU_CASE(umax, umax);
1059 ALU_CASE(fmov, fmov);
1060 ALU_CASE(ffloor, ffloor);
1061 ALU_CASE(fround_even, froundeven);
1062 ALU_CASE(ftrunc, ftrunc);
1063 ALU_CASE(fceil, fceil);
1064 ALU_CASE(fdot3, fdot3);
1065 ALU_CASE(fdot4, fdot4);
1066 ALU_CASE(iadd, iadd);
1067 ALU_CASE(isub, isub);
1068 ALU_CASE(imul, imul);
1069 ALU_CASE(iabs, iabs);
1070
1071 /* XXX: Use fmov, not imov, since imov was causing major
1072 * issues with texture precision? XXX research */
1073 ALU_CASE(imov, fmov);
1074
1075 ALU_CASE(feq32, feq);
1076 ALU_CASE(fne32, fne);
1077 ALU_CASE(flt32, flt);
1078 ALU_CASE(ieq32, ieq);
1079 ALU_CASE(ine32, ine);
1080 ALU_CASE(ilt32, ilt);
1081 ALU_CASE(ult32, ult);
1082
1083 /* We don't have a native b2f32 instruction. Instead, like many
1084 * GPUs, we exploit booleans as 0/~0 for false/true, and
1085 * correspondingly AND
1086 * by 1.0 to do the type conversion. For the moment, prime us
1087 * to emit:
1088 *
1089 * iand [whatever], #0
1090 *
1091 * At the end of emit_alu (as MIR), we'll fix-up the constant
1092 */
1093
1094 ALU_CASE(b2f32, iand);
1095 ALU_CASE(b2i32, iand);
1096
1097 /* Likewise, we don't have a dedicated f2b32 instruction, but
1098 * we can do a "not equal to 0.0" test. */
1099
1100 ALU_CASE(f2b32, fne);
1101 ALU_CASE(i2b32, ine);
1102
1103 ALU_CASE(frcp, frcp);
1104 ALU_CASE(frsq, frsqrt);
1105 ALU_CASE(fsqrt, fsqrt);
1106 ALU_CASE(fexp2, fexp2);
1107 ALU_CASE(flog2, flog2);
1108
1109 ALU_CASE(f2i32, f2i);
1110 ALU_CASE(f2u32, f2u);
1111 ALU_CASE(i2f32, i2f);
1112 ALU_CASE(u2f32, u2f);
1113
1114 ALU_CASE(fsin, fsin);
1115 ALU_CASE(fcos, fcos);
1116
1117 ALU_CASE(iand, iand);
1118 ALU_CASE(ior, ior);
1119 ALU_CASE(ixor, ixor);
1120 ALU_CASE(inot, inot);
1121 ALU_CASE(ishl, ishl);
1122 ALU_CASE(ishr, iasr);
1123 ALU_CASE(ushr, ilsr);
1124
1125 ALU_CASE(b32all_fequal2, fball_eq);
1126 ALU_CASE(b32all_fequal3, fball_eq);
1127 ALU_CASE(b32all_fequal4, fball_eq);
1128
1129 ALU_CASE(b32any_fnequal2, fbany_neq);
1130 ALU_CASE(b32any_fnequal3, fbany_neq);
1131 ALU_CASE(b32any_fnequal4, fbany_neq);
1132
1133 ALU_CASE(b32all_iequal2, iball_eq);
1134 ALU_CASE(b32all_iequal3, iball_eq);
1135 ALU_CASE(b32all_iequal4, iball_eq);
1136
1137 ALU_CASE(b32any_inequal2, ibany_neq);
1138 ALU_CASE(b32any_inequal3, ibany_neq);
1139 ALU_CASE(b32any_inequal4, ibany_neq);
1140
1141 /* For greater-or-equal, we lower to less-or-equal and flip the
1142 * arguments */
1143
1144 case nir_op_fge:
1145 case nir_op_fge32:
1146 case nir_op_ige32:
1147 case nir_op_uge32: {
1148 op =
1149 instr->op == nir_op_fge ? midgard_alu_op_fle :
1150 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1151 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1152 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1153 0;
1154
1155 /* Swap via temporary */
1156 nir_alu_src temp = instr->src[1];
1157 instr->src[1] = instr->src[0];
1158 instr->src[0] = temp;
1159
1160 break;
1161 }
1162
1163 case nir_op_b32csel: {
1164 op = midgard_alu_op_fcsel;
1165
1166 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1167 nr_inputs = 2;
1168
1169 /* Figure out which component the condition is in */
1170
1171 unsigned comp = instr->src[0].swizzle[0];
1172
1173 /* Make sure NIR isn't throwing a mixed condition at us */
1174
1175 for (unsigned c = 1; c < nr_components; ++c)
1176 assert(instr->src[0].swizzle[c] == comp);
1177
1178 /* Emit the condition into r31.w */
1179 emit_condition(ctx, &instr->src[0].src, false, comp);
1180
1181 /* The condition is the first argument; move the other
1182 * arguments up one to be a binary instruction for
1183 * Midgard */
1184
1185 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1186 break;
1187 }
1188
1189 default:
1190 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1191 assert(0);
1192 return;
1193 }
1194
1195 /* Fetch unit, quirks, etc information */
1196 unsigned opcode_props = alu_opcode_props[op];
1197 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1198
1199 /* Initialise fields common between scalar/vector instructions */
1200 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1201
1202 /* src0 will always exist afaik, but src1 will not for 1-argument
1203 * instructions. The latter can only be fetched if the instruction
1204 * needs it, or else we may segfault. */
1205
1206 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1207 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1208
1209 /* Rather than use the instruction generation helpers, we do it
1210 * ourselves here to avoid the mess */
1211
1212 midgard_instruction ins = {
1213 .type = TAG_ALU_4,
1214 .ssa_args = {
1215 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1216 .src1 = quirk_flipped_r24 ? src0 : src1,
1217 .dest = dest,
1218 }
1219 };
1220
1221 nir_alu_src *nirmods[2] = { NULL };
1222
1223 if (nr_inputs == 2) {
1224 nirmods[0] = &instr->src[0];
1225 nirmods[1] = &instr->src[1];
1226 } else if (nr_inputs == 1) {
1227 nirmods[quirk_flipped_r24] = &instr->src[0];
1228 } else {
1229 assert(0);
1230 }
1231
1232 midgard_vector_alu alu = {
1233 .op = op,
1234 .reg_mode = midgard_reg_mode_full,
1235 .dest_override = midgard_dest_override_none,
1236 .outmod = outmod,
1237
1238 /* Writemask only valid for non-SSA NIR */
1239 .mask = expand_writemask((1 << nr_components) - 1),
1240
1241 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1242 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1243 };
1244
1245 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1246
1247 if (!is_ssa)
1248 alu.mask &= expand_writemask(instr->dest.write_mask);
1249
1250 ins.alu = alu;
1251
1252 /* Late fixup for emulated instructions */
1253
1254 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1255 /* Presently, our second argument is an inline #0 constant.
1256 * Switch over to an embedded 1.0 constant (that can't fit
1257 * inline, since we're 32-bit, not 16-bit like the inline
1258 * constants) */
1259
1260 ins.ssa_args.inline_constant = false;
1261 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1262 ins.has_constants = true;
1263
1264 if (instr->op == nir_op_b2f32) {
1265 ins.constants[0] = 1.0f;
1266 } else {
1267 /* Type pun it into place */
1268 uint32_t one = 0x1;
1269 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1270 }
1271
1272 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1273 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1274 ins.ssa_args.inline_constant = false;
1275 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1276 ins.has_constants = true;
1277 ins.constants[0] = 0.0f;
1278 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1279 }
1280
1281 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1282 /* To avoid duplicating the lookup tables (probably), true LUT
1283 * instructions can only operate as if they were scalars. Lower
1284 * them here by changing the component. */
1285
1286 uint8_t original_swizzle[4];
1287 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1288
1289 for (int i = 0; i < nr_components; ++i) {
1290 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1291
1292 for (int j = 0; j < 4; ++j)
1293 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1294
1295 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1296 emit_mir_instruction(ctx, ins);
1297 }
1298 } else {
1299 emit_mir_instruction(ctx, ins);
1300 }
1301 }
1302
1303 #undef ALU_CASE
1304
1305 static void
1306 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1307 {
1308 /* TODO: half-floats */
1309
1310 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1311 /* Fast path: For the first 16 uniforms, direct accesses are
1312 * 0-cycle, since they're just a register fetch in the usual
1313 * case. So, we alias the registers while we're still in
1314 * SSA-space */
1315
1316 int reg_slot = 23 - offset;
1317 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1318 } else {
1319 /* Otherwise, read from the 'special' UBO to access
1320 * higher-indexed uniforms, at a performance cost. More
1321 * generally, we're emitting a UBO read instruction. */
1322
1323 midgard_instruction ins = m_load_uniform_32(dest, offset);
1324
1325 /* TODO: Don't split */
1326 ins.load_store.varying_parameters = (offset & 7) << 7;
1327 ins.load_store.address = offset >> 3;
1328
1329 if (indirect_offset) {
1330 emit_indirect_offset(ctx, indirect_offset);
1331 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1332 } else {
1333 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1334 }
1335
1336 emit_mir_instruction(ctx, ins);
1337 }
1338 }
1339
1340 static void
1341 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1342 {
1343 /* First, pull out the destination */
1344 unsigned dest = nir_dest_index(ctx, &instr->dest);
1345
1346 /* Now, figure out which uniform this is */
1347 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1348 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1349
1350 /* Sysvals are prefix uniforms */
1351 unsigned uniform = ((uintptr_t) val) - 1;
1352
1353 /* Emit the read itself -- this is never indirect */
1354 emit_uniform_read(ctx, dest, uniform, NULL);
1355 }
1356
1357 static void
1358 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1359 {
1360 unsigned offset, reg;
1361
1362 switch (instr->intrinsic) {
1363 case nir_intrinsic_discard_if:
1364 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1365
1366 /* fallthrough */
1367
1368 case nir_intrinsic_discard: {
1369 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1370 struct midgard_instruction discard = v_branch(conditional, false);
1371 discard.branch.target_type = TARGET_DISCARD;
1372 emit_mir_instruction(ctx, discard);
1373
1374 ctx->can_discard = true;
1375 break;
1376 }
1377
1378 case nir_intrinsic_load_uniform:
1379 case nir_intrinsic_load_input:
1380 offset = nir_intrinsic_base(instr);
1381
1382 bool direct = nir_src_is_const(instr->src[0]);
1383
1384 if (direct) {
1385 offset += nir_src_as_uint(instr->src[0]);
1386 }
1387
1388 reg = nir_dest_index(ctx, &instr->dest);
1389
1390 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1391 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1392 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1393 /* XXX: Half-floats? */
1394 /* TODO: swizzle, mask */
1395
1396 midgard_instruction ins = m_load_vary_32(reg, offset);
1397
1398 midgard_varying_parameter p = {
1399 .is_varying = 1,
1400 .interpolation = midgard_interp_default,
1401 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1402 };
1403
1404 unsigned u;
1405 memcpy(&u, &p, sizeof(p));
1406 ins.load_store.varying_parameters = u;
1407
1408 if (direct) {
1409 /* We have the offset totally ready */
1410 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1411 } else {
1412 /* We have it partially ready, but we need to
1413 * add in the dynamic index, moved to r27.w */
1414 emit_indirect_offset(ctx, &instr->src[0]);
1415 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1416 }
1417
1418 emit_mir_instruction(ctx, ins);
1419 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1420 /* Constant encoded as a pinned constant */
1421
1422 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1423 ins.has_constants = true;
1424 ins.has_blend_constant = true;
1425 emit_mir_instruction(ctx, ins);
1426 } else if (ctx->is_blend) {
1427 /* For blend shaders, a load might be
1428 * translated various ways depending on what
1429 * we're loading. Figure out how this is used */
1430
1431 nir_variable *out = NULL;
1432
1433 nir_foreach_variable(var, &ctx->nir->inputs) {
1434 int drvloc = var->data.driver_location;
1435
1436 if (nir_intrinsic_base(instr) == drvloc) {
1437 out = var;
1438 break;
1439 }
1440 }
1441
1442 assert(out);
1443
1444 if (out->data.location == VARYING_SLOT_COL0) {
1445 /* Source color preloaded to r0 */
1446
1447 midgard_pin_output(ctx, reg, 0);
1448 } else if (out->data.location == VARYING_SLOT_COL1) {
1449 /* Destination color must be read from framebuffer */
1450
1451 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1452 ins.load_store.swizzle = 0; /* xxxx */
1453
1454 /* Read each component sequentially */
1455
1456 for (int c = 0; c < 4; ++c) {
1457 ins.load_store.mask = (1 << c);
1458 ins.load_store.unknown = c;
1459 emit_mir_instruction(ctx, ins);
1460 }
1461
1462 /* vadd.u2f hr2, abs(hr2), #0 */
1463
1464 midgard_vector_alu_src alu_src = blank_alu_src;
1465 alu_src.abs = true;
1466 alu_src.half = true;
1467
1468 midgard_instruction u2f = {
1469 .type = TAG_ALU_4,
1470 .ssa_args = {
1471 .src0 = reg,
1472 .src1 = SSA_UNUSED_0,
1473 .dest = reg,
1474 .inline_constant = true
1475 },
1476 .alu = {
1477 .op = midgard_alu_op_u2f,
1478 .reg_mode = midgard_reg_mode_half,
1479 .dest_override = midgard_dest_override_none,
1480 .mask = 0xF,
1481 .src1 = vector_alu_srco_unsigned(alu_src),
1482 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1483 }
1484 };
1485
1486 emit_mir_instruction(ctx, u2f);
1487
1488 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1489
1490 alu_src.abs = false;
1491
1492 midgard_instruction fmul = {
1493 .type = TAG_ALU_4,
1494 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1495 .ssa_args = {
1496 .src0 = reg,
1497 .dest = reg,
1498 .src1 = SSA_UNUSED_0,
1499 .inline_constant = true
1500 },
1501 .alu = {
1502 .op = midgard_alu_op_fmul,
1503 .reg_mode = midgard_reg_mode_full,
1504 .dest_override = midgard_dest_override_none,
1505 .outmod = midgard_outmod_sat,
1506 .mask = 0xFF,
1507 .src1 = vector_alu_srco_unsigned(alu_src),
1508 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1509 }
1510 };
1511
1512 emit_mir_instruction(ctx, fmul);
1513 } else {
1514 DBG("Unknown input in blend shader\n");
1515 assert(0);
1516 }
1517 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1518 midgard_instruction ins = m_load_attr_32(reg, offset);
1519 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1520 ins.load_store.mask = (1 << instr->num_components) - 1;
1521 emit_mir_instruction(ctx, ins);
1522 } else {
1523 DBG("Unknown load\n");
1524 assert(0);
1525 }
1526
1527 break;
1528
1529 case nir_intrinsic_store_output:
1530 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1531
1532 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1533
1534 reg = nir_src_index(ctx, &instr->src[0]);
1535
1536 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1537 /* gl_FragColor is not emitted with load/store
1538 * instructions. Instead, it gets plonked into
1539 * r0 at the end of the shader and we do the
1540 * framebuffer writeout dance. TODO: Defer
1541 * writes */
1542
1543 midgard_pin_output(ctx, reg, 0);
1544
1545 /* Save the index we're writing to for later reference
1546 * in the epilogue */
1547
1548 ctx->fragment_output = reg;
1549 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1550 /* Varyings are written into one of two special
1551 * varying register, r26 or r27. The register itself is selected as the register
1552 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1553 *
1554 * Normally emitting fmov's is frowned upon,
1555 * but due to unique constraints of
1556 * REGISTER_VARYING, fmov emission + a
1557 * dedicated cleanup pass is the only way to
1558 * guarantee correctness when considering some
1559 * (common) edge cases XXX: FIXME */
1560
1561 /* If this varying corresponds to a constant (why?!),
1562 * emit that now since it won't get picked up by
1563 * hoisting (since there is no corresponding move
1564 * emitted otherwise) */
1565
1566 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1567
1568 if (constant_value) {
1569 /* Special case: emit the varying write
1570 * directly to r26 (looks funny in asm but it's
1571 * fine) and emit the store _now_. Possibly
1572 * slightly slower, but this is a really stupid
1573 * special case anyway (why on earth would you
1574 * have a constant varying? Your own fault for
1575 * slightly worse perf :P) */
1576
1577 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1578 attach_constants(ctx, &ins, constant_value, reg + 1);
1579 emit_mir_instruction(ctx, ins);
1580
1581 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1582 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1583 emit_mir_instruction(ctx, st);
1584 } else {
1585 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1586
1587 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1588 }
1589 } else {
1590 DBG("Unknown store\n");
1591 assert(0);
1592 }
1593
1594 break;
1595
1596 case nir_intrinsic_load_alpha_ref_float:
1597 assert(instr->dest.is_ssa);
1598
1599 float ref_value = ctx->alpha_ref;
1600
1601 float *v = ralloc_array(NULL, float, 4);
1602 memcpy(v, &ref_value, sizeof(float));
1603 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1604 break;
1605
1606 case nir_intrinsic_load_viewport_scale:
1607 case nir_intrinsic_load_viewport_offset:
1608 emit_sysval_read(ctx, instr);
1609 break;
1610
1611 default:
1612 printf ("Unhandled intrinsic\n");
1613 assert(0);
1614 break;
1615 }
1616 }
1617
1618 static unsigned
1619 midgard_tex_format(enum glsl_sampler_dim dim)
1620 {
1621 switch (dim) {
1622 case GLSL_SAMPLER_DIM_2D:
1623 case GLSL_SAMPLER_DIM_EXTERNAL:
1624 return TEXTURE_2D;
1625
1626 case GLSL_SAMPLER_DIM_3D:
1627 return TEXTURE_3D;
1628
1629 case GLSL_SAMPLER_DIM_CUBE:
1630 return TEXTURE_CUBE;
1631
1632 default:
1633 DBG("Unknown sampler dim type\n");
1634 assert(0);
1635 return 0;
1636 }
1637 }
1638
1639 static void
1640 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1641 {
1642 /* TODO */
1643 //assert (!instr->sampler);
1644 //assert (!instr->texture_array_size);
1645 assert (instr->op == nir_texop_tex);
1646
1647 /* Allocate registers via a round robin scheme to alternate between the two registers */
1648 int reg = ctx->texture_op_count & 1;
1649 int in_reg = reg, out_reg = reg;
1650
1651 /* Make room for the reg */
1652
1653 if (ctx->texture_index[reg] > -1)
1654 unalias_ssa(ctx, ctx->texture_index[reg]);
1655
1656 int texture_index = instr->texture_index;
1657 int sampler_index = texture_index;
1658
1659 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1660 switch (instr->src[i].src_type) {
1661 case nir_tex_src_coord: {
1662 int index = nir_src_index(ctx, &instr->src[i].src);
1663
1664 midgard_vector_alu_src alu_src = blank_alu_src;
1665
1666 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1667
1668 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1669 /* For cubemaps, we need to load coords into
1670 * special r27, and then use a special ld/st op
1671 * to copy into the texture register */
1672
1673 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1674
1675 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1676 emit_mir_instruction(ctx, move);
1677
1678 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1679 st.load_store.unknown = 0x24; /* XXX: What is this? */
1680 st.load_store.mask = 0x3; /* xy? */
1681 st.load_store.swizzle = alu_src.swizzle;
1682 emit_mir_instruction(ctx, st);
1683
1684 } else {
1685 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1686
1687 midgard_instruction ins = v_fmov(index, alu_src, reg);
1688 emit_mir_instruction(ctx, ins);
1689 }
1690
1691 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1692
1693 break;
1694 }
1695
1696 default: {
1697 DBG("Unknown source type\n");
1698 //assert(0);
1699 break;
1700 }
1701 }
1702 }
1703
1704 /* No helper to build texture words -- we do it all here */
1705 midgard_instruction ins = {
1706 .type = TAG_TEXTURE_4,
1707 .texture = {
1708 .op = TEXTURE_OP_NORMAL,
1709 .format = midgard_tex_format(instr->sampler_dim),
1710 .texture_handle = texture_index,
1711 .sampler_handle = sampler_index,
1712
1713 /* TODO: Don't force xyzw */
1714 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1715 .mask = 0xF,
1716
1717 /* TODO: half */
1718 //.in_reg_full = 1,
1719 .out_full = 1,
1720
1721 .filter = 1,
1722
1723 /* Always 1 */
1724 .unknown7 = 1,
1725
1726 /* Assume we can continue; hint it out later */
1727 .cont = 1,
1728 }
1729 };
1730
1731 /* Set registers to read and write from the same place */
1732 ins.texture.in_reg_select = in_reg;
1733 ins.texture.out_reg_select = out_reg;
1734
1735 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1736 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1737 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1738 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1739 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1740 } else {
1741 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1742 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1743 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1744 }
1745
1746 emit_mir_instruction(ctx, ins);
1747
1748 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1749
1750 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1751 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1752 ctx->texture_index[reg] = o_index;
1753
1754 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1755 emit_mir_instruction(ctx, ins2);
1756
1757 /* Used for .cont and .last hinting */
1758 ctx->texture_op_count++;
1759 }
1760
1761 static void
1762 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1763 {
1764 switch (instr->type) {
1765 case nir_jump_break: {
1766 /* Emit a branch out of the loop */
1767 struct midgard_instruction br = v_branch(false, false);
1768 br.branch.target_type = TARGET_BREAK;
1769 br.branch.target_break = ctx->current_loop;
1770 emit_mir_instruction(ctx, br);
1771
1772 DBG("break..\n");
1773 break;
1774 }
1775
1776 default:
1777 DBG("Unknown jump type %d\n", instr->type);
1778 break;
1779 }
1780 }
1781
1782 static void
1783 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1784 {
1785 switch (instr->type) {
1786 case nir_instr_type_load_const:
1787 emit_load_const(ctx, nir_instr_as_load_const(instr));
1788 break;
1789
1790 case nir_instr_type_intrinsic:
1791 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1792 break;
1793
1794 case nir_instr_type_alu:
1795 emit_alu(ctx, nir_instr_as_alu(instr));
1796 break;
1797
1798 case nir_instr_type_tex:
1799 emit_tex(ctx, nir_instr_as_tex(instr));
1800 break;
1801
1802 case nir_instr_type_jump:
1803 emit_jump(ctx, nir_instr_as_jump(instr));
1804 break;
1805
1806 case nir_instr_type_ssa_undef:
1807 /* Spurious */
1808 break;
1809
1810 default:
1811 DBG("Unhandled instruction type\n");
1812 break;
1813 }
1814 }
1815
1816 /* Determine the actual hardware from the index based on the RA results or special values */
1817
1818 static int
1819 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1820 {
1821 if (reg >= SSA_FIXED_MINIMUM)
1822 return SSA_REG_FROM_FIXED(reg);
1823
1824 if (reg >= 0) {
1825 assert(reg < maxreg);
1826 int r = ra_get_node_reg(g, reg);
1827 ctx->work_registers = MAX2(ctx->work_registers, r);
1828 return r;
1829 }
1830
1831 switch (reg) {
1832 /* fmov style unused */
1833 case SSA_UNUSED_0:
1834 return REGISTER_UNUSED;
1835
1836 /* lut style unused */
1837 case SSA_UNUSED_1:
1838 return REGISTER_UNUSED;
1839
1840 default:
1841 DBG("Unknown SSA register alias %d\n", reg);
1842 assert(0);
1843 return 31;
1844 }
1845 }
1846
1847 static unsigned int
1848 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1849 {
1850 /* Choose the first available register to minimise reported register pressure */
1851
1852 for (int i = 0; i < 16; ++i) {
1853 if (BITSET_TEST(regs, i)) {
1854 return i;
1855 }
1856 }
1857
1858 assert(0);
1859 return 0;
1860 }
1861
1862 static bool
1863 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1864 {
1865 if (ins->ssa_args.src0 == src) return true;
1866 if (ins->ssa_args.src1 == src) return true;
1867
1868 return false;
1869 }
1870
1871 static bool
1872 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1873 {
1874 /* Check the rest of the block for liveness */
1875 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1876 if (midgard_is_live_in_instr(ins, src))
1877 return true;
1878 }
1879
1880 /* Check the rest of the blocks for liveness */
1881 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1882 mir_foreach_instr_in_block(b, ins) {
1883 if (midgard_is_live_in_instr(ins, src))
1884 return true;
1885 }
1886 }
1887
1888 /* TODO: How does control flow interact in complex shaders? */
1889
1890 return false;
1891 }
1892
1893 static void
1894 allocate_registers(compiler_context *ctx)
1895 {
1896 /* First, initialize the RA */
1897 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1898
1899 /* Create a primary (general purpose) class, as well as special purpose
1900 * pipeline register classes */
1901
1902 int primary_class = ra_alloc_reg_class(regs);
1903 int varying_class = ra_alloc_reg_class(regs);
1904
1905 /* Add the full set of work registers */
1906 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1907 for (int i = 0; i < work_count; ++i)
1908 ra_class_add_reg(regs, primary_class, i);
1909
1910 /* Add special registers */
1911 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1912 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1913
1914 /* We're done setting up */
1915 ra_set_finalize(regs, NULL);
1916
1917 /* Transform the MIR into squeezed index form */
1918 mir_foreach_block(ctx, block) {
1919 mir_foreach_instr_in_block(block, ins) {
1920 if (ins->compact_branch) continue;
1921
1922 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1923 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1924 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1925 }
1926 if (midgard_debug & MIDGARD_DBG_SHADERS)
1927 print_mir_block(block);
1928 }
1929
1930 /* Let's actually do register allocation */
1931 int nodes = ctx->temp_count;
1932 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1933
1934 /* Set everything to the work register class, unless it has somewhere
1935 * special to go */
1936
1937 mir_foreach_block(ctx, block) {
1938 mir_foreach_instr_in_block(block, ins) {
1939 if (ins->compact_branch) continue;
1940
1941 if (ins->ssa_args.dest < 0) continue;
1942
1943 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1944
1945 int class = primary_class;
1946
1947 ra_set_node_class(g, ins->ssa_args.dest, class);
1948 }
1949 }
1950
1951 for (int index = 0; index <= ctx->max_hash; ++index) {
1952 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1953
1954 if (temp) {
1955 unsigned reg = temp - 1;
1956 int t = find_or_allocate_temp(ctx, index);
1957 ra_set_node_reg(g, t, reg);
1958 }
1959 }
1960
1961 /* Determine liveness */
1962
1963 int *live_start = malloc(nodes * sizeof(int));
1964 int *live_end = malloc(nodes * sizeof(int));
1965
1966 /* Initialize as non-existent */
1967
1968 for (int i = 0; i < nodes; ++i) {
1969 live_start[i] = live_end[i] = -1;
1970 }
1971
1972 int d = 0;
1973
1974 mir_foreach_block(ctx, block) {
1975 mir_foreach_instr_in_block(block, ins) {
1976 if (ins->compact_branch) continue;
1977
1978 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1979 /* If this destination is not yet live, it is now since we just wrote it */
1980
1981 int dest = ins->ssa_args.dest;
1982
1983 if (live_start[dest] == -1)
1984 live_start[dest] = d;
1985 }
1986
1987 /* Since we just used a source, the source might be
1988 * dead now. Scan the rest of the block for
1989 * invocations, and if there are none, the source dies
1990 * */
1991
1992 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1993
1994 for (int src = 0; src < 2; ++src) {
1995 int s = sources[src];
1996
1997 if (s < 0) continue;
1998
1999 if (s >= SSA_FIXED_MINIMUM) continue;
2000
2001 if (!is_live_after(ctx, block, ins, s)) {
2002 live_end[s] = d;
2003 }
2004 }
2005
2006 ++d;
2007 }
2008 }
2009
2010 /* If a node still hasn't been killed, kill it now */
2011
2012 for (int i = 0; i < nodes; ++i) {
2013 /* live_start == -1 most likely indicates a pinned output */
2014
2015 if (live_end[i] == -1)
2016 live_end[i] = d;
2017 }
2018
2019 /* Setup interference between nodes that are live at the same time */
2020
2021 for (int i = 0; i < nodes; ++i) {
2022 for (int j = i + 1; j < nodes; ++j) {
2023 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2024 ra_add_node_interference(g, i, j);
2025 }
2026 }
2027
2028 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2029
2030 if (!ra_allocate(g)) {
2031 DBG("Error allocating registers\n");
2032 assert(0);
2033 }
2034
2035 /* Cleanup */
2036 free(live_start);
2037 free(live_end);
2038
2039 mir_foreach_block(ctx, block) {
2040 mir_foreach_instr_in_block(block, ins) {
2041 if (ins->compact_branch) continue;
2042
2043 ssa_args args = ins->ssa_args;
2044
2045 switch (ins->type) {
2046 case TAG_ALU_4:
2047 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2048
2049 ins->registers.src2_imm = args.inline_constant;
2050
2051 if (args.inline_constant) {
2052 /* Encode inline 16-bit constant as a vector by default */
2053
2054 ins->registers.src2_reg = ins->inline_constant >> 11;
2055
2056 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2057
2058 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2059 ins->alu.src2 = imm << 2;
2060 } else {
2061 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2062 }
2063
2064 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2065
2066 break;
2067
2068 case TAG_LOAD_STORE_4: {
2069 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2070 /* TODO: use ssa_args for store_vary */
2071 ins->load_store.reg = 0;
2072 } else {
2073 bool has_dest = args.dest >= 0;
2074 int ssa_arg = has_dest ? args.dest : args.src0;
2075
2076 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2077 }
2078
2079 break;
2080 }
2081
2082 default:
2083 break;
2084 }
2085 }
2086 }
2087 }
2088
2089 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2090 * use scalar ALU instructions, for functional or performance reasons. To do
2091 * this, we just demote vector ALU payloads to scalar. */
2092
2093 static int
2094 component_from_mask(unsigned mask)
2095 {
2096 for (int c = 0; c < 4; ++c) {
2097 if (mask & (3 << (2 * c)))
2098 return c;
2099 }
2100
2101 assert(0);
2102 return 0;
2103 }
2104
2105 static bool
2106 is_single_component_mask(unsigned mask)
2107 {
2108 int components = 0;
2109
2110 for (int c = 0; c < 4; ++c)
2111 if (mask & (3 << (2 * c)))
2112 components++;
2113
2114 return components == 1;
2115 }
2116
2117 /* Create a mask of accessed components from a swizzle to figure out vector
2118 * dependencies */
2119
2120 static unsigned
2121 swizzle_to_access_mask(unsigned swizzle)
2122 {
2123 unsigned component_mask = 0;
2124
2125 for (int i = 0; i < 4; ++i) {
2126 unsigned c = (swizzle >> (2 * i)) & 3;
2127 component_mask |= (1 << c);
2128 }
2129
2130 return component_mask;
2131 }
2132
2133 static unsigned
2134 vector_to_scalar_source(unsigned u)
2135 {
2136 midgard_vector_alu_src v;
2137 memcpy(&v, &u, sizeof(v));
2138
2139 midgard_scalar_alu_src s = {
2140 .abs = v.abs,
2141 .negate = v.negate,
2142 .full = !v.half,
2143 .component = (v.swizzle & 3) << 1
2144 };
2145
2146 unsigned o;
2147 memcpy(&o, &s, sizeof(s));
2148
2149 return o & ((1 << 6) - 1);
2150 }
2151
2152 static midgard_scalar_alu
2153 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2154 {
2155 /* The output component is from the mask */
2156 midgard_scalar_alu s = {
2157 .op = v.op,
2158 .src1 = vector_to_scalar_source(v.src1),
2159 .src2 = vector_to_scalar_source(v.src2),
2160 .unknown = 0,
2161 .outmod = v.outmod,
2162 .output_full = 1, /* TODO: Half */
2163 .output_component = component_from_mask(v.mask) << 1,
2164 };
2165
2166 /* Inline constant is passed along rather than trying to extract it
2167 * from v */
2168
2169 if (ins->ssa_args.inline_constant) {
2170 uint16_t imm = 0;
2171 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2172 imm |= (lower_11 >> 9) & 3;
2173 imm |= (lower_11 >> 6) & 4;
2174 imm |= (lower_11 >> 2) & 0x38;
2175 imm |= (lower_11 & 63) << 6;
2176
2177 s.src2 = imm;
2178 }
2179
2180 return s;
2181 }
2182
2183 /* Midgard prefetches instruction types, so during emission we need to
2184 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2185 * if this is the second to last and the last is an ALU, then it's also 1... */
2186
2187 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2188 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2189
2190 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2191 bytes_emitted += sizeof(type)
2192
2193 static void
2194 emit_binary_vector_instruction(midgard_instruction *ains,
2195 uint16_t *register_words, int *register_words_count,
2196 uint64_t *body_words, size_t *body_size, int *body_words_count,
2197 size_t *bytes_emitted)
2198 {
2199 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2200 *bytes_emitted += sizeof(midgard_reg_info);
2201
2202 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2203 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2204 *bytes_emitted += sizeof(midgard_vector_alu);
2205 }
2206
2207 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2208 * mind that we are a vector architecture and we can write to different
2209 * components simultaneously */
2210
2211 static bool
2212 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2213 {
2214 /* Each instruction reads some registers and writes to a register. See
2215 * where the first writes */
2216
2217 /* Figure out where exactly we wrote to */
2218 int source = first->ssa_args.dest;
2219 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2220
2221 /* As long as the second doesn't read from the first, we're okay */
2222 if (second->ssa_args.src0 == source) {
2223 if (first->type == TAG_ALU_4) {
2224 /* Figure out which components we just read from */
2225
2226 int q = second->alu.src1;
2227 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2228
2229 /* Check if there are components in common, and fail if so */
2230 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2231 return false;
2232 } else
2233 return false;
2234
2235 }
2236
2237 if (second->ssa_args.src1 == source)
2238 return false;
2239
2240 /* Otherwise, it's safe in that regard. Another data hazard is both
2241 * writing to the same place, of course */
2242
2243 if (second->ssa_args.dest == source) {
2244 /* ...but only if the components overlap */
2245 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2246
2247 if (dest_mask & source_mask)
2248 return false;
2249 }
2250
2251 /* ...That's it */
2252 return true;
2253 }
2254
2255 static bool
2256 midgard_has_hazard(
2257 midgard_instruction **segment, unsigned segment_size,
2258 midgard_instruction *ains)
2259 {
2260 for (int s = 0; s < segment_size; ++s)
2261 if (!can_run_concurrent_ssa(segment[s], ains))
2262 return true;
2263
2264 return false;
2265
2266
2267 }
2268
2269 /* Schedules, but does not emit, a single basic block. After scheduling, the
2270 * final tag and size of the block are known, which are necessary for branching
2271 * */
2272
2273 static midgard_bundle
2274 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2275 {
2276 int instructions_emitted = 0, instructions_consumed = -1;
2277 midgard_bundle bundle = { 0 };
2278
2279 uint8_t tag = ins->type;
2280
2281 /* Default to the instruction's tag */
2282 bundle.tag = tag;
2283
2284 switch (ins->type) {
2285 case TAG_ALU_4: {
2286 uint32_t control = 0;
2287 size_t bytes_emitted = sizeof(control);
2288
2289 /* TODO: Constant combining */
2290 int index = 0, last_unit = 0;
2291
2292 /* Previous instructions, for the purpose of parallelism */
2293 midgard_instruction *segment[4] = {0};
2294 int segment_size = 0;
2295
2296 instructions_emitted = -1;
2297 midgard_instruction *pins = ins;
2298
2299 for (;;) {
2300 midgard_instruction *ains = pins;
2301
2302 /* Advance instruction pointer */
2303 if (index) {
2304 ains = mir_next_op(pins);
2305 pins = ains;
2306 }
2307
2308 /* Out-of-work condition */
2309 if ((struct list_head *) ains == &block->instructions)
2310 break;
2311
2312 /* Ensure that the chain can continue */
2313 if (ains->type != TAG_ALU_4) break;
2314
2315 /* According to the presentation "The ARM
2316 * Mali-T880 Mobile GPU" from HotChips 27,
2317 * there are two pipeline stages. Branching
2318 * position determined experimentally. Lines
2319 * are executed in parallel:
2320 *
2321 * [ VMUL ] [ SADD ]
2322 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2323 *
2324 * Verify that there are no ordering dependencies here.
2325 *
2326 * TODO: Allow for parallelism!!!
2327 */
2328
2329 /* Pick a unit for it if it doesn't force a particular unit */
2330
2331 int unit = ains->unit;
2332
2333 if (!unit) {
2334 int op = ains->alu.op;
2335 int units = alu_opcode_props[op];
2336
2337 /* TODO: Promotion of scalars to vectors */
2338 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2339
2340 if (!vector)
2341 assert(units & UNITS_SCALAR);
2342
2343 if (vector) {
2344 if (last_unit >= UNIT_VADD) {
2345 if (units & UNIT_VLUT)
2346 unit = UNIT_VLUT;
2347 else
2348 break;
2349 } else {
2350 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2351 unit = UNIT_VMUL;
2352 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2353 unit = UNIT_VADD;
2354 else if (units & UNIT_VLUT)
2355 unit = UNIT_VLUT;
2356 else
2357 break;
2358 }
2359 } else {
2360 if (last_unit >= UNIT_VADD) {
2361 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2362 unit = UNIT_SMUL;
2363 else if (units & UNIT_VLUT)
2364 unit = UNIT_VLUT;
2365 else
2366 break;
2367 } else {
2368 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2369 unit = UNIT_SADD;
2370 else if (units & UNIT_SMUL)
2371 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2372 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2373 unit = UNIT_VADD;
2374 else
2375 break;
2376 }
2377 }
2378
2379 assert(unit & units);
2380 }
2381
2382 /* Late unit check, this time for encoding (not parallelism) */
2383 if (unit <= last_unit) break;
2384
2385 /* Clear the segment */
2386 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2387 segment_size = 0;
2388
2389 if (midgard_has_hazard(segment, segment_size, ains))
2390 break;
2391
2392 /* We're good to go -- emit the instruction */
2393 ains->unit = unit;
2394
2395 segment[segment_size++] = ains;
2396
2397 /* Only one set of embedded constants per
2398 * bundle possible; if we have more, we must
2399 * break the chain early, unfortunately */
2400
2401 if (ains->has_constants) {
2402 if (bundle.has_embedded_constants) {
2403 /* ...but if there are already
2404 * constants but these are the
2405 * *same* constants, we let it
2406 * through */
2407
2408 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2409 break;
2410 } else {
2411 bundle.has_embedded_constants = true;
2412 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2413
2414 /* If this is a blend shader special constant, track it for patching */
2415 if (ains->has_blend_constant)
2416 bundle.has_blend_constant = true;
2417 }
2418 }
2419
2420 if (ains->unit & UNITS_ANY_VECTOR) {
2421 emit_binary_vector_instruction(ains, bundle.register_words,
2422 &bundle.register_words_count, bundle.body_words,
2423 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2424 } else if (ains->compact_branch) {
2425 /* All of r0 has to be written out
2426 * along with the branch writeout.
2427 * (slow!) */
2428
2429 if (ains->writeout) {
2430 if (index == 0) {
2431 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2432 ins.unit = UNIT_VMUL;
2433
2434 control |= ins.unit;
2435
2436 emit_binary_vector_instruction(&ins, bundle.register_words,
2437 &bundle.register_words_count, bundle.body_words,
2438 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2439 } else {
2440 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2441 bool written_late = false;
2442 bool components[4] = { 0 };
2443 uint16_t register_dep_mask = 0;
2444 uint16_t written_mask = 0;
2445
2446 midgard_instruction *qins = ins;
2447 for (int t = 0; t < index; ++t) {
2448 if (qins->registers.out_reg != 0) {
2449 /* Mark down writes */
2450
2451 written_mask |= (1 << qins->registers.out_reg);
2452 } else {
2453 /* Mark down the register dependencies for errata check */
2454
2455 if (qins->registers.src1_reg < 16)
2456 register_dep_mask |= (1 << qins->registers.src1_reg);
2457
2458 if (qins->registers.src2_reg < 16)
2459 register_dep_mask |= (1 << qins->registers.src2_reg);
2460
2461 int mask = qins->alu.mask;
2462
2463 for (int c = 0; c < 4; ++c)
2464 if (mask & (0x3 << (2 * c)))
2465 components[c] = true;
2466
2467 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2468
2469 if (qins->unit == UNIT_VLUT)
2470 written_late = true;
2471 }
2472
2473 /* Advance instruction pointer */
2474 qins = mir_next_op(qins);
2475 }
2476
2477
2478 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2479 if (register_dep_mask & written_mask) {
2480 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2481 break;
2482 }
2483
2484 if (written_late)
2485 break;
2486
2487 /* If even a single component is not written, break it up (conservative check). */
2488 bool breakup = false;
2489
2490 for (int c = 0; c < 4; ++c)
2491 if (!components[c])
2492 breakup = true;
2493
2494 if (breakup)
2495 break;
2496
2497 /* Otherwise, we're free to proceed */
2498 }
2499 }
2500
2501 if (ains->unit == ALU_ENAB_BRANCH) {
2502 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2503 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2504 bytes_emitted += sizeof(midgard_branch_extended);
2505 } else {
2506 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2507 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2508 bytes_emitted += sizeof(ains->br_compact);
2509 }
2510 } else {
2511 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2512 bytes_emitted += sizeof(midgard_reg_info);
2513
2514 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2515 bundle.body_words_count++;
2516 bytes_emitted += sizeof(midgard_scalar_alu);
2517 }
2518
2519 /* Defer marking until after writing to allow for break */
2520 control |= ains->unit;
2521 last_unit = ains->unit;
2522 ++instructions_emitted;
2523 ++index;
2524 }
2525
2526 /* Bubble up the number of instructions for skipping */
2527 instructions_consumed = index - 1;
2528
2529 int padding = 0;
2530
2531 /* Pad ALU op to nearest word */
2532
2533 if (bytes_emitted & 15) {
2534 padding = 16 - (bytes_emitted & 15);
2535 bytes_emitted += padding;
2536 }
2537
2538 /* Constants must always be quadwords */
2539 if (bundle.has_embedded_constants)
2540 bytes_emitted += 16;
2541
2542 /* Size ALU instruction for tag */
2543 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2544 bundle.padding = padding;
2545 bundle.control = bundle.tag | control;
2546
2547 break;
2548 }
2549
2550 case TAG_LOAD_STORE_4: {
2551 /* Load store instructions have two words at once. If
2552 * we only have one queued up, we need to NOP pad.
2553 * Otherwise, we store both in succession to save space
2554 * and cycles -- letting them go in parallel -- skip
2555 * the next. The usefulness of this optimisation is
2556 * greatly dependent on the quality of the instruction
2557 * scheduler.
2558 */
2559
2560 midgard_instruction *next_op = mir_next_op(ins);
2561
2562 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2563 /* As the two operate concurrently, make sure
2564 * they are not dependent */
2565
2566 if (can_run_concurrent_ssa(ins, next_op) || true) {
2567 /* Skip ahead, since it's redundant with the pair */
2568 instructions_consumed = 1 + (instructions_emitted++);
2569 }
2570 }
2571
2572 break;
2573 }
2574
2575 default:
2576 /* Texture ops default to single-op-per-bundle scheduling */
2577 break;
2578 }
2579
2580 /* Copy the instructions into the bundle */
2581 bundle.instruction_count = instructions_emitted + 1;
2582
2583 int used_idx = 0;
2584
2585 midgard_instruction *uins = ins;
2586 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2587 bundle.instructions[used_idx++] = *uins;
2588 uins = mir_next_op(uins);
2589 }
2590
2591 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2592
2593 return bundle;
2594 }
2595
2596 static int
2597 quadword_size(int tag)
2598 {
2599 switch (tag) {
2600 case TAG_ALU_4:
2601 return 1;
2602
2603 case TAG_ALU_8:
2604 return 2;
2605
2606 case TAG_ALU_12:
2607 return 3;
2608
2609 case TAG_ALU_16:
2610 return 4;
2611
2612 case TAG_LOAD_STORE_4:
2613 return 1;
2614
2615 case TAG_TEXTURE_4:
2616 return 1;
2617
2618 default:
2619 assert(0);
2620 return 0;
2621 }
2622 }
2623
2624 /* Schedule a single block by iterating its instruction to create bundles.
2625 * While we go, tally about the bundle sizes to compute the block size. */
2626
2627 static void
2628 schedule_block(compiler_context *ctx, midgard_block *block)
2629 {
2630 util_dynarray_init(&block->bundles, NULL);
2631
2632 block->quadword_count = 0;
2633
2634 mir_foreach_instr_in_block(block, ins) {
2635 int skip;
2636 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2637 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2638
2639 if (bundle.has_blend_constant) {
2640 /* TODO: Multiblock? */
2641 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2642 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2643 }
2644
2645 while(skip--)
2646 ins = mir_next_op(ins);
2647
2648 block->quadword_count += quadword_size(bundle.tag);
2649 }
2650
2651 block->is_scheduled = true;
2652 }
2653
2654 static void
2655 schedule_program(compiler_context *ctx)
2656 {
2657 allocate_registers(ctx);
2658
2659 mir_foreach_block(ctx, block) {
2660 schedule_block(ctx, block);
2661 }
2662 }
2663
2664 /* After everything is scheduled, emit whole bundles at a time */
2665
2666 static void
2667 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2668 {
2669 int lookahead = next_tag << 4;
2670
2671 switch (bundle->tag) {
2672 case TAG_ALU_4:
2673 case TAG_ALU_8:
2674 case TAG_ALU_12:
2675 case TAG_ALU_16: {
2676 /* Actually emit each component */
2677 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2678
2679 for (int i = 0; i < bundle->register_words_count; ++i)
2680 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2681
2682 /* Emit body words based on the instructions bundled */
2683 for (int i = 0; i < bundle->instruction_count; ++i) {
2684 midgard_instruction *ins = &bundle->instructions[i];
2685
2686 if (ins->unit & UNITS_ANY_VECTOR) {
2687 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2688 } else if (ins->compact_branch) {
2689 /* Dummy move, XXX DRY */
2690 if ((i == 0) && ins->writeout) {
2691 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2692 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2693 }
2694
2695 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2696 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2697 } else {
2698 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2699 }
2700 } else {
2701 /* Scalar */
2702 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2703 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2704 }
2705 }
2706
2707 /* Emit padding (all zero) */
2708 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2709
2710 /* Tack on constants */
2711
2712 if (bundle->has_embedded_constants) {
2713 util_dynarray_append(emission, float, bundle->constants[0]);
2714 util_dynarray_append(emission, float, bundle->constants[1]);
2715 util_dynarray_append(emission, float, bundle->constants[2]);
2716 util_dynarray_append(emission, float, bundle->constants[3]);
2717 }
2718
2719 break;
2720 }
2721
2722 case TAG_LOAD_STORE_4: {
2723 /* One or two composing instructions */
2724
2725 uint64_t current64, next64 = LDST_NOP;
2726
2727 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2728
2729 if (bundle->instruction_count == 2)
2730 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2731
2732 midgard_load_store instruction = {
2733 .type = bundle->tag,
2734 .next_type = next_tag,
2735 .word1 = current64,
2736 .word2 = next64
2737 };
2738
2739 util_dynarray_append(emission, midgard_load_store, instruction);
2740
2741 break;
2742 }
2743
2744 case TAG_TEXTURE_4: {
2745 /* Texture instructions are easy, since there is no
2746 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2747
2748 midgard_instruction *ins = &bundle->instructions[0];
2749
2750 ins->texture.type = TAG_TEXTURE_4;
2751 ins->texture.next_type = next_tag;
2752
2753 ctx->texture_op_count--;
2754
2755 if (!ctx->texture_op_count) {
2756 ins->texture.cont = 0;
2757 ins->texture.last = 1;
2758 }
2759
2760 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2761 break;
2762 }
2763
2764 default:
2765 DBG("Unknown midgard instruction type\n");
2766 assert(0);
2767 break;
2768 }
2769 }
2770
2771
2772 /* ALU instructions can inline or embed constants, which decreases register
2773 * pressure and saves space. */
2774
2775 #define CONDITIONAL_ATTACH(src) { \
2776 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2777 \
2778 if (entry) { \
2779 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2780 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2781 } \
2782 }
2783
2784 static void
2785 inline_alu_constants(compiler_context *ctx)
2786 {
2787 mir_foreach_instr(ctx, alu) {
2788 /* Other instructions cannot inline constants */
2789 if (alu->type != TAG_ALU_4) continue;
2790
2791 /* If there is already a constant here, we can do nothing */
2792 if (alu->has_constants) continue;
2793
2794 CONDITIONAL_ATTACH(src0);
2795
2796 if (!alu->has_constants) {
2797 CONDITIONAL_ATTACH(src1)
2798 } else if (!alu->inline_constant) {
2799 /* Corner case: _two_ vec4 constants, for instance with a
2800 * csel. For this case, we can only use a constant
2801 * register for one, we'll have to emit a move for the
2802 * other. Note, if both arguments are constants, then
2803 * necessarily neither argument depends on the value of
2804 * any particular register. As the destination register
2805 * will be wiped, that means we can spill the constant
2806 * to the destination register.
2807 */
2808
2809 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2810 unsigned scratch = alu->ssa_args.dest;
2811
2812 if (entry) {
2813 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2814 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2815
2816 /* Force a break XXX Defer r31 writes */
2817 ins.unit = UNIT_VLUT;
2818
2819 /* Set the source */
2820 alu->ssa_args.src1 = scratch;
2821
2822 /* Inject us -before- the last instruction which set r31 */
2823 mir_insert_instruction_before(mir_prev_op(alu), ins);
2824 }
2825 }
2826 }
2827 }
2828
2829 /* Midgard supports two types of constants, embedded constants (128-bit) and
2830 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2831 * constants can be demoted to inline constants, for space savings and
2832 * sometimes a performance boost */
2833
2834 static void
2835 embedded_to_inline_constant(compiler_context *ctx)
2836 {
2837 mir_foreach_instr(ctx, ins) {
2838 if (!ins->has_constants) continue;
2839
2840 if (ins->ssa_args.inline_constant) continue;
2841
2842 /* Blend constants must not be inlined by definition */
2843 if (ins->has_blend_constant) continue;
2844
2845 /* src1 cannot be an inline constant due to encoding
2846 * restrictions. So, if possible we try to flip the arguments
2847 * in that case */
2848
2849 int op = ins->alu.op;
2850
2851 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2852 /* Flip based on op. Fallthrough intentional */
2853
2854 switch (op) {
2855 /* These ops require an operational change to flip their arguments TODO */
2856 case midgard_alu_op_flt:
2857 case midgard_alu_op_fle:
2858 case midgard_alu_op_ilt:
2859 case midgard_alu_op_ile:
2860 case midgard_alu_op_fcsel:
2861 case midgard_alu_op_icsel:
2862 case midgard_alu_op_isub:
2863 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2864 break;
2865
2866 /* These ops are commutative and Just Flip */
2867 case midgard_alu_op_fne:
2868 case midgard_alu_op_fadd:
2869 case midgard_alu_op_fmul:
2870 case midgard_alu_op_fmin:
2871 case midgard_alu_op_fmax:
2872 case midgard_alu_op_iadd:
2873 case midgard_alu_op_imul:
2874 case midgard_alu_op_feq:
2875 case midgard_alu_op_ieq:
2876 case midgard_alu_op_ine:
2877 case midgard_alu_op_iand:
2878 case midgard_alu_op_ior:
2879 case midgard_alu_op_ixor:
2880 /* Flip the SSA numbers */
2881 ins->ssa_args.src0 = ins->ssa_args.src1;
2882 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2883
2884 /* And flip the modifiers */
2885
2886 unsigned src_temp;
2887
2888 src_temp = ins->alu.src2;
2889 ins->alu.src2 = ins->alu.src1;
2890 ins->alu.src1 = src_temp;
2891
2892 default:
2893 break;
2894 }
2895 }
2896
2897 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2898 /* Extract the source information */
2899
2900 midgard_vector_alu_src *src;
2901 int q = ins->alu.src2;
2902 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2903 src = m;
2904
2905 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2906 int component = src->swizzle & 3;
2907
2908 /* Scale constant appropriately, if we can legally */
2909 uint16_t scaled_constant = 0;
2910
2911 /* XXX: Check legality */
2912 if (midgard_is_integer_op(op)) {
2913 /* TODO: Inline integer */
2914 continue;
2915
2916 unsigned int *iconstants = (unsigned int *) ins->constants;
2917 scaled_constant = (uint16_t) iconstants[component];
2918
2919 /* Constant overflow after resize */
2920 if (scaled_constant != iconstants[component])
2921 continue;
2922 } else {
2923 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2924 }
2925
2926 /* We don't know how to handle these with a constant */
2927
2928 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2929 DBG("Bailing inline constant...\n");
2930 continue;
2931 }
2932
2933 /* Make sure that the constant is not itself a
2934 * vector by checking if all accessed values
2935 * (by the swizzle) are the same. */
2936
2937 uint32_t *cons = (uint32_t *) ins->constants;
2938 uint32_t value = cons[component];
2939
2940 bool is_vector = false;
2941 unsigned mask = effective_writemask(&ins->alu);
2942
2943 for (int c = 1; c < 4; ++c) {
2944 /* We only care if this component is actually used */
2945 if (!(mask & (1 << c)))
2946 continue;
2947
2948 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2949
2950 if (test != value) {
2951 is_vector = true;
2952 break;
2953 }
2954 }
2955
2956 if (is_vector)
2957 continue;
2958
2959 /* Get rid of the embedded constant */
2960 ins->has_constants = false;
2961 ins->ssa_args.src1 = SSA_UNUSED_0;
2962 ins->ssa_args.inline_constant = true;
2963 ins->inline_constant = scaled_constant;
2964 }
2965 }
2966 }
2967
2968 /* Map normal SSA sources to other SSA sources / fixed registers (like
2969 * uniforms) */
2970
2971 static void
2972 map_ssa_to_alias(compiler_context *ctx, int *ref)
2973 {
2974 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2975
2976 if (alias) {
2977 /* Remove entry in leftovers to avoid a redunant fmov */
2978
2979 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2980
2981 if (leftover)
2982 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2983
2984 /* Assign the alias map */
2985 *ref = alias - 1;
2986 return;
2987 }
2988 }
2989
2990 #define AS_SRC(to, u) \
2991 int q##to = ins->alu.src2; \
2992 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2993
2994 /* Removing unused moves is necessary to clean up the texture pipeline results.
2995 *
2996 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2997
2998 static void
2999 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
3000 {
3001 mir_foreach_instr_in_block_safe(block, ins) {
3002 if (ins->type != TAG_ALU_4) continue;
3003
3004 if (ins->alu.op != midgard_alu_op_fmov) continue;
3005
3006 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3007
3008 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3009
3010 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3011
3012 mir_remove_instruction(ins);
3013 }
3014 }
3015
3016 /* The following passes reorder MIR instructions to enable better scheduling */
3017
3018 static void
3019 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3020 {
3021 mir_foreach_instr_in_block_safe(block, ins) {
3022 if (ins->type != TAG_LOAD_STORE_4) continue;
3023
3024 /* We've found a load/store op. Check if next is also load/store. */
3025 midgard_instruction *next_op = mir_next_op(ins);
3026 if (&next_op->link != &block->instructions) {
3027 if (next_op->type == TAG_LOAD_STORE_4) {
3028 /* If so, we're done since we're a pair */
3029 ins = mir_next_op(ins);
3030 continue;
3031 }
3032
3033 /* Maximum search distance to pair, to avoid register pressure disasters */
3034 int search_distance = 8;
3035
3036 /* Otherwise, we have an orphaned load/store -- search for another load */
3037 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3038 /* Terminate search if necessary */
3039 if (!(search_distance--)) break;
3040
3041 if (c->type != TAG_LOAD_STORE_4) continue;
3042
3043 /* Stores cannot be reordered, since they have
3044 * dependencies. For the same reason, indirect
3045 * loads cannot be reordered as their index is
3046 * loaded in r27.w */
3047
3048 if (OP_IS_STORE(c->load_store.op)) continue;
3049
3050 /* It appears the 0x800 bit is set whenever a
3051 * load is direct, unset when it is indirect.
3052 * Skip indirect loads. */
3053
3054 if (!(c->load_store.unknown & 0x800)) continue;
3055
3056 /* We found one! Move it up to pair and remove it from the old location */
3057
3058 mir_insert_instruction_before(ins, *c);
3059 mir_remove_instruction(c);
3060
3061 break;
3062 }
3063 }
3064 }
3065 }
3066
3067 /* Emit varying stores late */
3068
3069 static void
3070 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3071 /* Iterate in reverse to get the final write, rather than the first */
3072
3073 mir_foreach_instr_in_block_safe_rev(block, ins) {
3074 /* Check if what we just wrote needs a store */
3075 int idx = ins->ssa_args.dest;
3076 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3077
3078 if (!varying) continue;
3079
3080 varying -= 1;
3081
3082 /* We need to store to the appropriate varying, so emit the
3083 * move/store */
3084
3085 /* TODO: Integrate with special purpose RA (and scheduler?) */
3086 bool high_varying_register = false;
3087
3088 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3089
3090 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3091 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3092
3093 mir_insert_instruction_before(mir_next_op(ins), st);
3094 mir_insert_instruction_before(mir_next_op(ins), mov);
3095
3096 /* We no longer need to store this varying */
3097 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3098 }
3099 }
3100
3101 /* If there are leftovers after the below pass, emit actual fmov
3102 * instructions for the slow-but-correct path */
3103
3104 static void
3105 emit_leftover_move(compiler_context *ctx)
3106 {
3107 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3108 int base = ((uintptr_t) leftover->key) - 1;
3109 int mapped = base;
3110
3111 map_ssa_to_alias(ctx, &mapped);
3112 EMIT(fmov, mapped, blank_alu_src, base);
3113 }
3114 }
3115
3116 static void
3117 actualise_ssa_to_alias(compiler_context *ctx)
3118 {
3119 mir_foreach_instr(ctx, ins) {
3120 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3121 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3122 }
3123
3124 emit_leftover_move(ctx);
3125 }
3126
3127 static void
3128 emit_fragment_epilogue(compiler_context *ctx)
3129 {
3130 /* Special case: writing out constants requires us to include the move
3131 * explicitly now, so shove it into r0 */
3132
3133 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3134
3135 if (constant_value) {
3136 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3137 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3138 emit_mir_instruction(ctx, ins);
3139 }
3140
3141 /* Perform the actual fragment writeout. We have two writeout/branch
3142 * instructions, forming a loop until writeout is successful as per the
3143 * docs. TODO: gl_FragDepth */
3144
3145 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3146 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3147 }
3148
3149 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3150 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3151 * with the int8 analogue to the fragment epilogue */
3152
3153 static void
3154 emit_blend_epilogue(compiler_context *ctx)
3155 {
3156 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3157
3158 midgard_instruction scale = {
3159 .type = TAG_ALU_4,
3160 .unit = UNIT_VMUL,
3161 .inline_constant = _mesa_float_to_half(255.0),
3162 .ssa_args = {
3163 .src0 = SSA_FIXED_REGISTER(0),
3164 .src1 = SSA_UNUSED_0,
3165 .dest = SSA_FIXED_REGISTER(24),
3166 .inline_constant = true
3167 },
3168 .alu = {
3169 .op = midgard_alu_op_fmul,
3170 .reg_mode = midgard_reg_mode_full,
3171 .dest_override = midgard_dest_override_lower,
3172 .mask = 0xFF,
3173 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3174 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3175 }
3176 };
3177
3178 emit_mir_instruction(ctx, scale);
3179
3180 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3181
3182 midgard_vector_alu_src alu_src = blank_alu_src;
3183 alu_src.half = true;
3184
3185 midgard_instruction f2u8 = {
3186 .type = TAG_ALU_4,
3187 .ssa_args = {
3188 .src0 = SSA_FIXED_REGISTER(24),
3189 .src1 = SSA_UNUSED_0,
3190 .dest = SSA_FIXED_REGISTER(0),
3191 .inline_constant = true
3192 },
3193 .alu = {
3194 .op = midgard_alu_op_f2u8,
3195 .reg_mode = midgard_reg_mode_half,
3196 .dest_override = midgard_dest_override_lower,
3197 .outmod = midgard_outmod_pos,
3198 .mask = 0xF,
3199 .src1 = vector_alu_srco_unsigned(alu_src),
3200 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3201 }
3202 };
3203
3204 emit_mir_instruction(ctx, f2u8);
3205
3206 /* vmul.imov.quarter r0, r0, r0 */
3207
3208 midgard_instruction imov_8 = {
3209 .type = TAG_ALU_4,
3210 .ssa_args = {
3211 .src0 = SSA_UNUSED_1,
3212 .src1 = SSA_FIXED_REGISTER(0),
3213 .dest = SSA_FIXED_REGISTER(0),
3214 },
3215 .alu = {
3216 .op = midgard_alu_op_imov,
3217 .reg_mode = midgard_reg_mode_quarter,
3218 .dest_override = midgard_dest_override_none,
3219 .mask = 0xFF,
3220 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3221 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3222 }
3223 };
3224
3225 /* Emit branch epilogue with the 8-bit move as the source */
3226
3227 emit_mir_instruction(ctx, imov_8);
3228 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3229
3230 emit_mir_instruction(ctx, imov_8);
3231 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3232 }
3233
3234 static midgard_block *
3235 emit_block(compiler_context *ctx, nir_block *block)
3236 {
3237 midgard_block *this_block = malloc(sizeof(midgard_block));
3238 list_addtail(&this_block->link, &ctx->blocks);
3239
3240 this_block->is_scheduled = false;
3241 ++ctx->block_count;
3242
3243 ctx->texture_index[0] = -1;
3244 ctx->texture_index[1] = -1;
3245
3246 /* Set up current block */
3247 list_inithead(&this_block->instructions);
3248 ctx->current_block = this_block;
3249
3250 nir_foreach_instr(instr, block) {
3251 emit_instr(ctx, instr);
3252 ++ctx->instruction_count;
3253 }
3254
3255 inline_alu_constants(ctx);
3256 embedded_to_inline_constant(ctx);
3257
3258 /* Perform heavylifting for aliasing */
3259 actualise_ssa_to_alias(ctx);
3260
3261 midgard_emit_store(ctx, this_block);
3262 midgard_eliminate_orphan_moves(ctx, this_block);
3263 midgard_pair_load_store(ctx, this_block);
3264
3265 /* Append fragment shader epilogue (value writeout) */
3266 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3267 if (block == nir_impl_last_block(ctx->func->impl)) {
3268 if (ctx->is_blend)
3269 emit_blend_epilogue(ctx);
3270 else
3271 emit_fragment_epilogue(ctx);
3272 }
3273 }
3274
3275 /* Fallthrough save */
3276 this_block->next_fallthrough = ctx->previous_source_block;
3277
3278 if (block == nir_start_block(ctx->func->impl))
3279 ctx->initial_block = this_block;
3280
3281 if (block == nir_impl_last_block(ctx->func->impl))
3282 ctx->final_block = this_block;
3283
3284 /* Allow the next control flow to access us retroactively, for
3285 * branching etc */
3286 ctx->current_block = this_block;
3287
3288 /* Document the fallthrough chain */
3289 ctx->previous_source_block = this_block;
3290
3291 return this_block;
3292 }
3293
3294 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3295
3296 static void
3297 emit_if(struct compiler_context *ctx, nir_if *nif)
3298 {
3299 /* Conditional branches expect the condition in r31.w; emit a move for
3300 * that in the _previous_ block (which is the current block). */
3301 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3302
3303 /* Speculatively emit the branch, but we can't fill it in until later */
3304 EMIT(branch, true, true);
3305 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3306
3307 /* Emit the two subblocks */
3308 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3309
3310 /* Emit a jump from the end of the then block to the end of the else */
3311 EMIT(branch, false, false);
3312 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3313
3314 /* Emit second block, and check if it's empty */
3315
3316 int else_idx = ctx->block_count;
3317 int count_in = ctx->instruction_count;
3318 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3319 int after_else_idx = ctx->block_count;
3320
3321 /* Now that we have the subblocks emitted, fix up the branches */
3322
3323 assert(then_block);
3324 assert(else_block);
3325
3326 if (ctx->instruction_count == count_in) {
3327 /* The else block is empty, so don't emit an exit jump */
3328 mir_remove_instruction(then_exit);
3329 then_branch->branch.target_block = after_else_idx;
3330 } else {
3331 then_branch->branch.target_block = else_idx;
3332 then_exit->branch.target_block = after_else_idx;
3333 }
3334 }
3335
3336 static void
3337 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3338 {
3339 /* Remember where we are */
3340 midgard_block *start_block = ctx->current_block;
3341
3342 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3343 * single current_loop variable, maybe we need a stack */
3344
3345 int loop_idx = ++ctx->current_loop;
3346
3347 /* Get index from before the body so we can loop back later */
3348 int start_idx = ctx->block_count;
3349
3350 /* Emit the body itself */
3351 emit_cf_list(ctx, &nloop->body);
3352
3353 /* Branch back to loop back */
3354 struct midgard_instruction br_back = v_branch(false, false);
3355 br_back.branch.target_block = start_idx;
3356 emit_mir_instruction(ctx, br_back);
3357
3358 /* Find the index of the block about to follow us (note: we don't add
3359 * one; blocks are 0-indexed so we get a fencepost problem) */
3360 int break_block_idx = ctx->block_count;
3361
3362 /* Fix up the break statements we emitted to point to the right place,
3363 * now that we can allocate a block number for them */
3364
3365 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3366 if (midgard_debug & MIDGARD_DBG_SHADERS)
3367 print_mir_block(block);
3368 mir_foreach_instr_in_block(block, ins) {
3369 if (ins->type != TAG_ALU_4) continue;
3370 if (!ins->compact_branch) continue;
3371 if (ins->prepacked_branch) continue;
3372
3373 /* We found a branch -- check the type to see if we need to do anything */
3374 if (ins->branch.target_type != TARGET_BREAK) continue;
3375
3376 /* It's a break! Check if it's our break */
3377 if (ins->branch.target_break != loop_idx) continue;
3378
3379 /* Okay, cool, we're breaking out of this loop.
3380 * Rewrite from a break to a goto */
3381
3382 ins->branch.target_type = TARGET_GOTO;
3383 ins->branch.target_block = break_block_idx;
3384 }
3385 }
3386 }
3387
3388 static midgard_block *
3389 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3390 {
3391 midgard_block *start_block = NULL;
3392
3393 foreach_list_typed(nir_cf_node, node, node, list) {
3394 switch (node->type) {
3395 case nir_cf_node_block: {
3396 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3397
3398 if (!start_block)
3399 start_block = block;
3400
3401 break;
3402 }
3403
3404 case nir_cf_node_if:
3405 emit_if(ctx, nir_cf_node_as_if(node));
3406 break;
3407
3408 case nir_cf_node_loop:
3409 emit_loop(ctx, nir_cf_node_as_loop(node));
3410 break;
3411
3412 case nir_cf_node_function:
3413 assert(0);
3414 break;
3415 }
3416 }
3417
3418 return start_block;
3419 }
3420
3421 /* Due to lookahead, we need to report the first tag executed in the command
3422 * stream and in branch targets. An initial block might be empty, so iterate
3423 * until we find one that 'works' */
3424
3425 static unsigned
3426 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3427 {
3428 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3429
3430 unsigned first_tag = 0;
3431
3432 do {
3433 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3434
3435 if (initial_bundle) {
3436 first_tag = initial_bundle->tag;
3437 break;
3438 }
3439
3440 /* Initial block is empty, try the next block */
3441 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3442 } while(initial_block != NULL);
3443
3444 assert(first_tag);
3445 return first_tag;
3446 }
3447
3448 int
3449 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3450 {
3451 struct util_dynarray *compiled = &program->compiled;
3452
3453 midgard_debug = debug_get_option_midgard_debug();
3454
3455 compiler_context ictx = {
3456 .nir = nir,
3457 .stage = nir->info.stage,
3458
3459 .is_blend = is_blend,
3460 .blend_constant_offset = -1,
3461
3462 .alpha_ref = program->alpha_ref
3463 };
3464
3465 compiler_context *ctx = &ictx;
3466
3467 /* TODO: Decide this at runtime */
3468 ctx->uniform_cutoff = 8;
3469
3470 /* Assign var locations early, so the epilogue can use them if necessary */
3471
3472 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3473 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3474 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3475
3476 /* Initialize at a global (not block) level hash tables */
3477
3478 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3479 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3480 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3481 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3482 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3483 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3484 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3485
3486 /* Record the varying mapping for the command stream's bookkeeping */
3487
3488 struct exec_list *varyings =
3489 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3490
3491 nir_foreach_variable(var, varyings) {
3492 unsigned loc = var->data.driver_location;
3493 unsigned sz = glsl_type_size(var->type, FALSE);
3494
3495 for (int c = 0; c < sz; ++c) {
3496 program->varyings[loc + c] = var->data.location;
3497 }
3498 }
3499
3500 /* Lower gl_Position pre-optimisation */
3501
3502 if (ctx->stage == MESA_SHADER_VERTEX)
3503 NIR_PASS_V(nir, nir_lower_viewport_transform);
3504
3505 NIR_PASS_V(nir, nir_lower_var_copies);
3506 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3507 NIR_PASS_V(nir, nir_split_var_copies);
3508 NIR_PASS_V(nir, nir_lower_var_copies);
3509 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3510 NIR_PASS_V(nir, nir_lower_var_copies);
3511 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3512
3513 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3514
3515 /* Optimisation passes */
3516
3517 optimise_nir(nir);
3518
3519 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3520 nir_print_shader(nir, stdout);
3521 }
3522
3523 /* Assign sysvals and counts, now that we're sure
3524 * (post-optimisation) */
3525
3526 midgard_nir_assign_sysvals(ctx, nir);
3527
3528 program->uniform_count = nir->num_uniforms;
3529 program->sysval_count = ctx->sysval_count;
3530 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3531
3532 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3533 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3534
3535 nir_foreach_function(func, nir) {
3536 if (!func->impl)
3537 continue;
3538
3539 list_inithead(&ctx->blocks);
3540 ctx->block_count = 0;
3541 ctx->func = func;
3542
3543 emit_cf_list(ctx, &func->impl->body);
3544 emit_block(ctx, func->impl->end_block);
3545
3546 break; /* TODO: Multi-function shaders */
3547 }
3548
3549 util_dynarray_init(compiled, NULL);
3550
3551 /* Schedule! */
3552 schedule_program(ctx);
3553
3554 /* Now that all the bundles are scheduled and we can calculate block
3555 * sizes, emit actual branch instructions rather than placeholders */
3556
3557 int br_block_idx = 0;
3558
3559 mir_foreach_block(ctx, block) {
3560 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3561 for (int c = 0; c < bundle->instruction_count; ++c) {
3562 midgard_instruction *ins = &bundle->instructions[c];
3563
3564 if (!midgard_is_branch_unit(ins->unit)) continue;
3565
3566 if (ins->prepacked_branch) continue;
3567
3568 /* Parse some basic branch info */
3569 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3570 bool is_conditional = ins->branch.conditional;
3571 bool is_inverted = ins->branch.invert_conditional;
3572 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3573
3574 /* Determine the block we're jumping to */
3575 int target_number = ins->branch.target_block;
3576
3577 /* Report the destination tag. Discards don't need this */
3578 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3579
3580 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3581 int quadword_offset = 0;
3582
3583 if (is_discard) {
3584 /* Jump to the end of the shader. We
3585 * need to include not only the
3586 * following blocks, but also the
3587 * contents of our current block (since
3588 * discard can come in the middle of
3589 * the block) */
3590
3591 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3592
3593 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3594 quadword_offset += quadword_size(bun->tag);
3595 }
3596
3597 mir_foreach_block_from(ctx, blk, b) {
3598 quadword_offset += b->quadword_count;
3599 }
3600
3601 } else if (target_number > br_block_idx) {
3602 /* Jump forward */
3603
3604 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3605 midgard_block *blk = mir_get_block(ctx, idx);
3606 assert(blk);
3607
3608 quadword_offset += blk->quadword_count;
3609 }
3610 } else {
3611 /* Jump backwards */
3612
3613 for (int idx = br_block_idx; idx >= target_number; --idx) {
3614 midgard_block *blk = mir_get_block(ctx, idx);
3615 assert(blk);
3616
3617 quadword_offset -= blk->quadword_count;
3618 }
3619 }
3620
3621 /* Unconditional extended branches (far jumps)
3622 * have issues, so we always use a conditional
3623 * branch, setting the condition to always for
3624 * unconditional. For compact unconditional
3625 * branches, cond isn't used so it doesn't
3626 * matter what we pick. */
3627
3628 midgard_condition cond =
3629 !is_conditional ? midgard_condition_always :
3630 is_inverted ? midgard_condition_false :
3631 midgard_condition_true;
3632
3633 midgard_jmp_writeout_op op =
3634 is_discard ? midgard_jmp_writeout_op_discard :
3635 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3636 midgard_jmp_writeout_op_branch_cond;
3637
3638 if (!is_compact) {
3639 midgard_branch_extended branch =
3640 midgard_create_branch_extended(
3641 cond, op,
3642 dest_tag,
3643 quadword_offset);
3644
3645 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3646 } else if (is_conditional || is_discard) {
3647 midgard_branch_cond branch = {
3648 .op = op,
3649 .dest_tag = dest_tag,
3650 .offset = quadword_offset,
3651 .cond = cond
3652 };
3653
3654 assert(branch.offset == quadword_offset);
3655
3656 memcpy(&ins->br_compact, &branch, sizeof(branch));
3657 } else {
3658 assert(op == midgard_jmp_writeout_op_branch_uncond);
3659
3660 midgard_branch_uncond branch = {
3661 .op = op,
3662 .dest_tag = dest_tag,
3663 .offset = quadword_offset,
3664 .unknown = 1
3665 };
3666
3667 assert(branch.offset == quadword_offset);
3668
3669 memcpy(&ins->br_compact, &branch, sizeof(branch));
3670 }
3671 }
3672 }
3673
3674 ++br_block_idx;
3675 }
3676
3677 /* Emit flat binary from the instruction arrays. Iterate each block in
3678 * sequence. Save instruction boundaries such that lookahead tags can
3679 * be assigned easily */
3680
3681 /* Cache _all_ bundles in source order for lookahead across failed branches */
3682
3683 int bundle_count = 0;
3684 mir_foreach_block(ctx, block) {
3685 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3686 }
3687 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3688 int bundle_idx = 0;
3689 mir_foreach_block(ctx, block) {
3690 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3691 source_order_bundles[bundle_idx++] = bundle;
3692 }
3693 }
3694
3695 int current_bundle = 0;
3696
3697 mir_foreach_block(ctx, block) {
3698 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3699 int lookahead = 1;
3700
3701 if (current_bundle + 1 < bundle_count) {
3702 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3703
3704 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3705 lookahead = 1;
3706 } else {
3707 lookahead = next;
3708 }
3709 }
3710
3711 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3712 ++current_bundle;
3713 }
3714
3715 /* TODO: Free deeper */
3716 //util_dynarray_fini(&block->instructions);
3717 }
3718
3719 free(source_order_bundles);
3720
3721 /* Report the very first tag executed */
3722 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3723
3724 /* Deal with off-by-one related to the fencepost problem */
3725 program->work_register_count = ctx->work_registers + 1;
3726
3727 program->can_discard = ctx->can_discard;
3728 program->uniform_cutoff = ctx->uniform_cutoff;
3729
3730 program->blend_patch_offset = ctx->blend_constant_offset;
3731
3732 if (midgard_debug & MIDGARD_DBG_SHADERS)
3733 disassemble_midgard(program->compiled.data, program->compiled.size);
3734
3735 return 0;
3736 }