panfrost/midgard: Skip liveness analysis for instructions without dest
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 static bool
111 midgard_is_branch_unit(unsigned unit)
112 {
113 return (unit == ALU_ENAB_BRANCH) || (unit == ALU_ENAB_BR_COMPACT);
114 }
115
116 /* Generic in-memory data type repesenting a single logical instruction, rather
117 * than a single instruction group. This is the preferred form for code gen.
118 * Multiple midgard_insturctions will later be combined during scheduling,
119 * though this is not represented in this structure. Its format bridges
120 * the low-level binary representation with the higher level semantic meaning.
121 *
122 * Notably, it allows registers to be specified as block local SSA, for code
123 * emitted before the register allocation pass.
124 */
125
126 typedef struct midgard_instruction {
127 /* Must be first for casting */
128 struct list_head link;
129
130 unsigned type; /* ALU, load/store, texture */
131
132 /* If the register allocator has not run yet... */
133 ssa_args ssa_args;
134
135 /* Special fields for an ALU instruction */
136 midgard_reg_info registers;
137
138 /* I.e. (1 << alu_bit) */
139 int unit;
140
141 bool has_constants;
142 float constants[4];
143 uint16_t inline_constant;
144 bool has_blend_constant;
145
146 bool compact_branch;
147 bool writeout;
148 bool prepacked_branch;
149
150 union {
151 midgard_load_store_word load_store;
152 midgard_vector_alu alu;
153 midgard_texture_word texture;
154 midgard_branch_extended branch_extended;
155 uint16_t br_compact;
156
157 /* General branch, rather than packed br_compact. Higher level
158 * than the other components */
159 midgard_branch branch;
160 };
161 } midgard_instruction;
162
163 typedef struct midgard_block {
164 /* Link to next block. Must be first for mir_get_block */
165 struct list_head link;
166
167 /* List of midgard_instructions emitted for the current block */
168 struct list_head instructions;
169
170 bool is_scheduled;
171
172 /* List of midgard_bundles emitted (after the scheduler has run) */
173 struct util_dynarray bundles;
174
175 /* Number of quadwords _actually_ emitted, as determined after scheduling */
176 unsigned quadword_count;
177
178 /* Successors: always one forward (the block after us), maybe
179 * one backwards (for a backward branch). No need for a second
180 * forward, since graph traversal would get there eventually
181 * anyway */
182 struct midgard_block *successors[2];
183 unsigned nr_successors;
184
185 /* The successors pointer form a graph, and in the case of
186 * complex control flow, this graph has a cycles. To aid
187 * traversal during liveness analysis, we have a visited?
188 * boolean for passes to use as they see fit, provided they
189 * clean up later */
190 bool visited;
191 } midgard_block;
192
193 static void
194 midgard_block_add_successor(midgard_block *block, midgard_block *successor)
195 {
196 block->successors[block->nr_successors++] = successor;
197 assert(block->nr_successors <= ARRAY_SIZE(block->successors));
198 }
199
200 /* Helpers to generate midgard_instruction's using macro magic, since every
201 * driver seems to do it that way */
202
203 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
204 #define SWIZZLE_XYZW SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W)
205
206 #define M_LOAD_STORE(name, rname, uname) \
207 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
208 midgard_instruction i = { \
209 .type = TAG_LOAD_STORE_4, \
210 .ssa_args = { \
211 .rname = ssa, \
212 .uname = -1, \
213 .src1 = -1 \
214 }, \
215 .load_store = { \
216 .op = midgard_op_##name, \
217 .mask = 0xF, \
218 .swizzle = SWIZZLE_XYZW, \
219 .address = address \
220 } \
221 }; \
222 \
223 return i; \
224 }
225
226 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
227 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
228
229 const midgard_vector_alu_src blank_alu_src = {
230 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
231 };
232
233 const midgard_vector_alu_src blank_alu_src_xxxx = {
234 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
235 };
236
237 const midgard_scalar_alu_src blank_scalar_alu_src = {
238 .full = true
239 };
240
241 /* Used for encoding the unused source of 1-op instructions */
242 const midgard_vector_alu_src zero_alu_src = { 0 };
243
244 /* Coerce structs to integer */
245
246 static unsigned
247 vector_alu_srco_unsigned(midgard_vector_alu_src src)
248 {
249 unsigned u;
250 memcpy(&u, &src, sizeof(src));
251 return u;
252 }
253
254 static midgard_vector_alu_src
255 vector_alu_from_unsigned(unsigned u)
256 {
257 midgard_vector_alu_src s;
258 memcpy(&s, &u, sizeof(s));
259 return s;
260 }
261
262 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
263 * the corresponding Midgard source */
264
265 static midgard_vector_alu_src
266 vector_alu_modifiers(nir_alu_src *src, bool is_int)
267 {
268 if (!src) return blank_alu_src;
269
270 midgard_vector_alu_src alu_src = {
271 .rep_low = 0,
272 .rep_high = 0,
273 .half = 0, /* TODO */
274 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
275 };
276
277 if (is_int) {
278 /* TODO: sign-extend/zero-extend */
279 alu_src.mod = midgard_int_normal;
280
281 /* These should have been lowered away */
282 assert(!(src->abs || src->negate));
283 } else {
284 alu_src.mod = (src->abs << 0) | (src->negate << 1);
285 }
286
287 return alu_src;
288 }
289
290 static bool
291 mir_nontrivial_mod(midgard_vector_alu_src src, bool is_int, unsigned mask)
292 {
293 /* abs or neg */
294 if (!is_int && src.mod) return true;
295
296 /* swizzle */
297 for (unsigned c = 0; c < 4; ++c) {
298 if (!(mask & (1 << c))) continue;
299 if (((src.swizzle >> (2*c)) & 3) != c) return true;
300 }
301
302 return false;
303 }
304
305 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
306
307 static midgard_instruction
308 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
309 {
310 midgard_instruction ins = {
311 .type = TAG_ALU_4,
312 .ssa_args = {
313 .src0 = SSA_UNUSED_1,
314 .src1 = src,
315 .dest = dest,
316 },
317 .alu = {
318 .op = midgard_alu_op_fmov,
319 .reg_mode = midgard_reg_mode_full,
320 .dest_override = midgard_dest_override_none,
321 .mask = 0xFF,
322 .src1 = vector_alu_srco_unsigned(zero_alu_src),
323 .src2 = vector_alu_srco_unsigned(mod)
324 },
325 };
326
327 return ins;
328 }
329
330 /* load/store instructions have both 32-bit and 16-bit variants, depending on
331 * whether we are using vectors composed of highp or mediump. At the moment, we
332 * don't support half-floats -- this requires changes in other parts of the
333 * compiler -- therefore the 16-bit versions are commented out. */
334
335 //M_LOAD(load_attr_16);
336 M_LOAD(load_attr_32);
337 //M_LOAD(load_vary_16);
338 M_LOAD(load_vary_32);
339 //M_LOAD(load_uniform_16);
340 M_LOAD(load_uniform_32);
341 M_LOAD(load_color_buffer_8);
342 //M_STORE(store_vary_16);
343 M_STORE(store_vary_32);
344 M_STORE(store_cubemap_coords);
345
346 static midgard_instruction
347 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
348 {
349 midgard_branch_cond branch = {
350 .op = op,
351 .dest_tag = tag,
352 .offset = offset,
353 .cond = cond
354 };
355
356 uint16_t compact;
357 memcpy(&compact, &branch, sizeof(branch));
358
359 midgard_instruction ins = {
360 .type = TAG_ALU_4,
361 .unit = ALU_ENAB_BR_COMPACT,
362 .prepacked_branch = true,
363 .compact_branch = true,
364 .br_compact = compact
365 };
366
367 if (op == midgard_jmp_writeout_op_writeout)
368 ins.writeout = true;
369
370 return ins;
371 }
372
373 static midgard_instruction
374 v_branch(bool conditional, bool invert)
375 {
376 midgard_instruction ins = {
377 .type = TAG_ALU_4,
378 .unit = ALU_ENAB_BRANCH,
379 .compact_branch = true,
380 .branch = {
381 .conditional = conditional,
382 .invert_conditional = invert
383 }
384 };
385
386 return ins;
387 }
388
389 static midgard_branch_extended
390 midgard_create_branch_extended( midgard_condition cond,
391 midgard_jmp_writeout_op op,
392 unsigned dest_tag,
393 signed quadword_offset)
394 {
395 /* For unclear reasons, the condition code is repeated 8 times */
396 uint16_t duplicated_cond =
397 (cond << 14) |
398 (cond << 12) |
399 (cond << 10) |
400 (cond << 8) |
401 (cond << 6) |
402 (cond << 4) |
403 (cond << 2) |
404 (cond << 0);
405
406 midgard_branch_extended branch = {
407 .op = op,
408 .dest_tag = dest_tag,
409 .offset = quadword_offset,
410 .cond = duplicated_cond
411 };
412
413 return branch;
414 }
415
416 typedef struct midgard_bundle {
417 /* Tag for the overall bundle */
418 int tag;
419
420 /* Instructions contained by the bundle */
421 int instruction_count;
422 midgard_instruction instructions[5];
423
424 /* Bundle-wide ALU configuration */
425 int padding;
426 int control;
427 bool has_embedded_constants;
428 float constants[4];
429 bool has_blend_constant;
430
431 uint16_t register_words[8];
432 int register_words_count;
433
434 uint64_t body_words[8];
435 size_t body_size[8];
436 int body_words_count;
437 } midgard_bundle;
438
439 typedef struct compiler_context {
440 nir_shader *nir;
441 gl_shader_stage stage;
442
443 /* Is internally a blend shader? Depends on stage == FRAGMENT */
444 bool is_blend;
445
446 /* Tracking for blend constant patching */
447 int blend_constant_number;
448 int blend_constant_offset;
449
450 /* Current NIR function */
451 nir_function *func;
452
453 /* Unordered list of midgard_blocks */
454 int block_count;
455 struct list_head blocks;
456
457 midgard_block *initial_block;
458 midgard_block *previous_source_block;
459 midgard_block *final_block;
460
461 /* List of midgard_instructions emitted for the current block */
462 midgard_block *current_block;
463
464 /* The current "depth" of the loop, for disambiguating breaks/continues
465 * when using nested loops */
466 int current_loop_depth;
467
468 /* Constants which have been loaded, for later inlining */
469 struct hash_table_u64 *ssa_constants;
470
471 /* SSA indices to be outputted to corresponding varying offset */
472 struct hash_table_u64 *ssa_varyings;
473
474 /* SSA values / registers which have been aliased. Naively, these
475 * demand a fmov output; instead, we alias them in a later pass to
476 * avoid the wasted op.
477 *
478 * A note on encoding: to avoid dynamic memory management here, rather
479 * than ampping to a pointer, we map to the source index; the key
480 * itself is just the destination index. */
481
482 struct hash_table_u64 *ssa_to_alias;
483 struct set *leftover_ssa_to_alias;
484
485 /* Actual SSA-to-register for RA */
486 struct hash_table_u64 *ssa_to_register;
487
488 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
489 struct hash_table_u64 *hash_to_temp;
490 int temp_count;
491 int max_hash;
492
493 /* Just the count of the max register used. Higher count => higher
494 * register pressure */
495 int work_registers;
496
497 /* Used for cont/last hinting. Increase when a tex op is added.
498 * Decrease when a tex op is removed. */
499 int texture_op_count;
500
501 /* Mapping of texture register -> SSA index for unaliasing */
502 int texture_index[2];
503
504 /* If any path hits a discard instruction */
505 bool can_discard;
506
507 /* The number of uniforms allowable for the fast path */
508 int uniform_cutoff;
509
510 /* Count of instructions emitted from NIR overall, across all blocks */
511 int instruction_count;
512
513 /* Alpha ref value passed in */
514 float alpha_ref;
515
516 /* The index corresponding to the fragment output */
517 unsigned fragment_output;
518
519 /* The mapping of sysvals to uniforms, the count, and the off-by-one inverse */
520 unsigned sysvals[MAX_SYSVAL_COUNT];
521 unsigned sysval_count;
522 struct hash_table_u64 *sysval_to_id;
523 } compiler_context;
524
525 /* Append instruction to end of current block */
526
527 static midgard_instruction *
528 mir_upload_ins(struct midgard_instruction ins)
529 {
530 midgard_instruction *heap = malloc(sizeof(ins));
531 memcpy(heap, &ins, sizeof(ins));
532 return heap;
533 }
534
535 static void
536 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
537 {
538 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
539 }
540
541 static void
542 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
543 {
544 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
545 }
546
547 static void
548 mir_remove_instruction(struct midgard_instruction *ins)
549 {
550 list_del(&ins->link);
551 }
552
553 static midgard_instruction*
554 mir_prev_op(struct midgard_instruction *ins)
555 {
556 return list_last_entry(&(ins->link), midgard_instruction, link);
557 }
558
559 static midgard_instruction*
560 mir_next_op(struct midgard_instruction *ins)
561 {
562 return list_first_entry(&(ins->link), midgard_instruction, link);
563 }
564
565 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
566 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
567
568 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
569 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
570 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
571 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
572 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
573 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
574 #define mir_foreach_instr_in_block_from_rev(block, v, from) list_for_each_entry_from_rev(struct midgard_instruction, v, from, &block->instructions, link)
575
576
577 static midgard_instruction *
578 mir_last_in_block(struct midgard_block *block)
579 {
580 return list_last_entry(&block->instructions, struct midgard_instruction, link);
581 }
582
583 static midgard_block *
584 mir_get_block(compiler_context *ctx, int idx)
585 {
586 struct list_head *lst = &ctx->blocks;
587
588 while ((idx--) + 1)
589 lst = lst->next;
590
591 return (struct midgard_block *) lst;
592 }
593
594 /* Pretty printer for internal Midgard IR */
595
596 static void
597 print_mir_source(int source)
598 {
599 if (source >= SSA_FIXED_MINIMUM) {
600 /* Specific register */
601 int reg = SSA_REG_FROM_FIXED(source);
602
603 /* TODO: Moving threshold */
604 if (reg > 16 && reg < 24)
605 printf("u%d", 23 - reg);
606 else
607 printf("r%d", reg);
608 } else {
609 printf("%d", source);
610 }
611 }
612
613 static void
614 print_mir_instruction(midgard_instruction *ins)
615 {
616 printf("\t");
617
618 switch (ins->type) {
619 case TAG_ALU_4: {
620 midgard_alu_op op = ins->alu.op;
621 const char *name = alu_opcode_props[op].name;
622
623 if (ins->unit)
624 printf("%d.", ins->unit);
625
626 printf("%s", name ? name : "??");
627 break;
628 }
629
630 case TAG_LOAD_STORE_4: {
631 midgard_load_store_op op = ins->load_store.op;
632 const char *name = load_store_opcode_names[op];
633
634 assert(name);
635 printf("%s", name);
636 break;
637 }
638
639 case TAG_TEXTURE_4: {
640 printf("texture");
641 break;
642 }
643
644 default:
645 assert(0);
646 }
647
648 ssa_args *args = &ins->ssa_args;
649
650 printf(" %d, ", args->dest);
651
652 print_mir_source(args->src0);
653 printf(", ");
654
655 if (args->inline_constant)
656 printf("#%d", ins->inline_constant);
657 else
658 print_mir_source(args->src1);
659
660 if (ins->has_constants)
661 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
662
663 printf("\n");
664 }
665
666 static void
667 print_mir_block(midgard_block *block)
668 {
669 printf("{\n");
670
671 mir_foreach_instr_in_block(block, ins) {
672 print_mir_instruction(ins);
673 }
674
675 printf("}\n");
676 }
677
678 static void
679 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
680 {
681 ins->has_constants = true;
682 memcpy(&ins->constants, constants, 16);
683
684 /* If this is the special blend constant, mark this instruction */
685
686 if (ctx->is_blend && ctx->blend_constant_number == name)
687 ins->has_blend_constant = true;
688 }
689
690 static int
691 glsl_type_size(const struct glsl_type *type, bool bindless)
692 {
693 return glsl_count_attribute_slots(type, false);
694 }
695
696 /* Lower fdot2 to a vector multiplication followed by channel addition */
697 static void
698 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
699 {
700 if (alu->op != nir_op_fdot2)
701 return;
702
703 b->cursor = nir_before_instr(&alu->instr);
704
705 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
706 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
707
708 nir_ssa_def *product = nir_fmul(b, src0, src1);
709
710 nir_ssa_def *sum = nir_fadd(b,
711 nir_channel(b, product, 0),
712 nir_channel(b, product, 1));
713
714 /* Replace the fdot2 with this sum */
715 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
716 }
717
718 static int
719 midgard_nir_sysval_for_intrinsic(nir_intrinsic_instr *instr)
720 {
721 switch (instr->intrinsic) {
722 case nir_intrinsic_load_viewport_scale:
723 return PAN_SYSVAL_VIEWPORT_SCALE;
724 case nir_intrinsic_load_viewport_offset:
725 return PAN_SYSVAL_VIEWPORT_OFFSET;
726 default:
727 return -1;
728 }
729 }
730
731 static void
732 midgard_nir_assign_sysval_body(compiler_context *ctx, nir_instr *instr)
733 {
734 int sysval = -1;
735
736 if (instr->type == nir_instr_type_intrinsic) {
737 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
738 sysval = midgard_nir_sysval_for_intrinsic(intr);
739 }
740
741 if (sysval < 0)
742 return;
743
744 /* We have a sysval load; check if it's already been assigned */
745
746 if (_mesa_hash_table_u64_search(ctx->sysval_to_id, sysval))
747 return;
748
749 /* It hasn't -- so assign it now! */
750
751 unsigned id = ctx->sysval_count++;
752 _mesa_hash_table_u64_insert(ctx->sysval_to_id, sysval, (void *) ((uintptr_t) id + 1));
753 ctx->sysvals[id] = sysval;
754 }
755
756 static void
757 midgard_nir_assign_sysvals(compiler_context *ctx, nir_shader *shader)
758 {
759 ctx->sysval_count = 0;
760
761 nir_foreach_function(function, shader) {
762 if (!function->impl) continue;
763
764 nir_foreach_block(block, function->impl) {
765 nir_foreach_instr_safe(instr, block) {
766 midgard_nir_assign_sysval_body(ctx, instr);
767 }
768 }
769 }
770 }
771
772 static bool
773 midgard_nir_lower_fdot2(nir_shader *shader)
774 {
775 bool progress = false;
776
777 nir_foreach_function(function, shader) {
778 if (!function->impl) continue;
779
780 nir_builder _b;
781 nir_builder *b = &_b;
782 nir_builder_init(b, function->impl);
783
784 nir_foreach_block(block, function->impl) {
785 nir_foreach_instr_safe(instr, block) {
786 if (instr->type != nir_instr_type_alu) continue;
787
788 nir_alu_instr *alu = nir_instr_as_alu(instr);
789 midgard_nir_lower_fdot2_body(b, alu);
790
791 progress |= true;
792 }
793 }
794
795 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
796
797 }
798
799 return progress;
800 }
801
802 static void
803 optimise_nir(nir_shader *nir)
804 {
805 bool progress;
806
807 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
808 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
809
810 nir_lower_tex_options lower_tex_options = {
811 .lower_rect = true
812 };
813
814 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
815
816 do {
817 progress = false;
818
819 NIR_PASS(progress, nir, nir_lower_var_copies);
820 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
821
822 NIR_PASS(progress, nir, nir_copy_prop);
823 NIR_PASS(progress, nir, nir_opt_dce);
824 NIR_PASS(progress, nir, nir_opt_dead_cf);
825 NIR_PASS(progress, nir, nir_opt_cse);
826 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
827 NIR_PASS(progress, nir, nir_opt_algebraic);
828 NIR_PASS(progress, nir, nir_opt_constant_folding);
829 NIR_PASS(progress, nir, nir_opt_undef);
830 NIR_PASS(progress, nir, nir_opt_loop_unroll,
831 nir_var_shader_in |
832 nir_var_shader_out |
833 nir_var_function_temp);
834
835 /* TODO: Enable vectorize when merged upstream */
836 // NIR_PASS(progress, nir, nir_opt_vectorize);
837 } while (progress);
838
839 /* Must be run at the end to prevent creation of fsin/fcos ops */
840 NIR_PASS(progress, nir, midgard_nir_scale_trig);
841
842 do {
843 progress = false;
844
845 NIR_PASS(progress, nir, nir_opt_dce);
846 NIR_PASS(progress, nir, nir_opt_algebraic);
847 NIR_PASS(progress, nir, nir_opt_constant_folding);
848 NIR_PASS(progress, nir, nir_copy_prop);
849 } while (progress);
850
851 NIR_PASS(progress, nir, nir_opt_algebraic_late);
852 NIR_PASS(progress, nir, midgard_nir_lower_algebraic_late);
853
854 /* Lower mods for float ops only. Integer ops don't support modifiers
855 * (saturate doesn't make sense on integers, neg/abs require dedicated
856 * instructions) */
857
858 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_float_source_mods);
859 NIR_PASS(progress, nir, nir_copy_prop);
860 NIR_PASS(progress, nir, nir_opt_dce);
861
862 /* We implement booleans as 32-bit 0/~0 */
863 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
864
865 /* Take us out of SSA */
866 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
867 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
868
869 /* We are a vector architecture; write combine where possible */
870 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
871 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
872
873 NIR_PASS(progress, nir, nir_opt_dce);
874 }
875
876 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
877 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
878 * r0. See the comments in compiler_context */
879
880 static void
881 alias_ssa(compiler_context *ctx, int dest, int src)
882 {
883 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
884 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
885 }
886
887 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
888
889 static void
890 unalias_ssa(compiler_context *ctx, int dest)
891 {
892 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
893 /* TODO: Remove from leftover or no? */
894 }
895
896 static void
897 midgard_pin_output(compiler_context *ctx, int index, int reg)
898 {
899 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
900 }
901
902 static bool
903 midgard_is_pinned(compiler_context *ctx, int index)
904 {
905 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
906 }
907
908 /* Do not actually emit a load; instead, cache the constant for inlining */
909
910 static void
911 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
912 {
913 nir_ssa_def def = instr->def;
914
915 float *v = ralloc_array(NULL, float, 4);
916 nir_const_load_to_arr(v, instr, f32);
917 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
918 }
919
920 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
921 * do the inverse) */
922
923 static unsigned
924 expand_writemask(unsigned mask)
925 {
926 unsigned o = 0;
927
928 for (int i = 0; i < 4; ++i)
929 if (mask & (1 << i))
930 o |= (3 << (2 * i));
931
932 return o;
933 }
934
935 static unsigned
936 squeeze_writemask(unsigned mask)
937 {
938 unsigned o = 0;
939
940 for (int i = 0; i < 4; ++i)
941 if (mask & (3 << (2 * i)))
942 o |= (1 << i);
943
944 return o;
945
946 }
947
948 /* Determines effective writemask, taking quirks and expansion into account */
949 static unsigned
950 effective_writemask(midgard_vector_alu *alu)
951 {
952 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
953 * sense) */
954
955 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op].props);
956
957 /* If there is a fixed channel count, construct the appropriate mask */
958
959 if (channel_count)
960 return (1 << channel_count) - 1;
961
962 /* Otherwise, just squeeze the existing mask */
963 return squeeze_writemask(alu->mask);
964 }
965
966 static unsigned
967 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
968 {
969 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
970 return hash;
971
972 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
973
974 if (temp)
975 return temp - 1;
976
977 /* If no temp is find, allocate one */
978 temp = ctx->temp_count++;
979 ctx->max_hash = MAX2(ctx->max_hash, hash);
980
981 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
982
983 return temp;
984 }
985
986 static unsigned
987 nir_src_index(compiler_context *ctx, nir_src *src)
988 {
989 if (src->is_ssa)
990 return src->ssa->index;
991 else {
992 assert(!src->reg.indirect);
993 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
994 }
995 }
996
997 static unsigned
998 nir_dest_index(compiler_context *ctx, nir_dest *dst)
999 {
1000 if (dst->is_ssa)
1001 return dst->ssa.index;
1002 else {
1003 assert(!dst->reg.indirect);
1004 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
1005 }
1006 }
1007
1008 static unsigned
1009 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
1010 {
1011 return nir_src_index(ctx, &src->src);
1012 }
1013
1014 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
1015 * a conditional test) into that register */
1016
1017 static void
1018 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch, unsigned component)
1019 {
1020 int condition = nir_src_index(ctx, src);
1021
1022 /* Source to swizzle the desired component into w */
1023
1024 const midgard_vector_alu_src alu_src = {
1025 .swizzle = SWIZZLE(component, component, component, component),
1026 };
1027
1028 /* There is no boolean move instruction. Instead, we simulate a move by
1029 * ANDing the condition with itself to get it into r31.w */
1030
1031 midgard_instruction ins = {
1032 .type = TAG_ALU_4,
1033 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
1034 .ssa_args = {
1035 .src0 = condition,
1036 .src1 = condition,
1037 .dest = SSA_FIXED_REGISTER(31),
1038 },
1039 .alu = {
1040 .op = midgard_alu_op_iand,
1041 .reg_mode = midgard_reg_mode_full,
1042 .dest_override = midgard_dest_override_none,
1043 .mask = (0x3 << 6), /* w */
1044 .src1 = vector_alu_srco_unsigned(alu_src),
1045 .src2 = vector_alu_srco_unsigned(alu_src)
1046 },
1047 };
1048
1049 emit_mir_instruction(ctx, ins);
1050 }
1051
1052 /* Likewise, indirect offsets are put in r27.w. TODO: Allow componentwise
1053 * pinning to eliminate this move in all known cases */
1054
1055 static void
1056 emit_indirect_offset(compiler_context *ctx, nir_src *src)
1057 {
1058 int offset = nir_src_index(ctx, src);
1059
1060 midgard_instruction ins = {
1061 .type = TAG_ALU_4,
1062 .ssa_args = {
1063 .src0 = SSA_UNUSED_1,
1064 .src1 = offset,
1065 .dest = SSA_FIXED_REGISTER(REGISTER_OFFSET),
1066 },
1067 .alu = {
1068 .op = midgard_alu_op_imov,
1069 .reg_mode = midgard_reg_mode_full,
1070 .dest_override = midgard_dest_override_none,
1071 .mask = (0x3 << 6), /* w */
1072 .src1 = vector_alu_srco_unsigned(zero_alu_src),
1073 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
1074 },
1075 };
1076
1077 emit_mir_instruction(ctx, ins);
1078 }
1079
1080 #define ALU_CASE(nir, _op) \
1081 case nir_op_##nir: \
1082 op = midgard_alu_op_##_op; \
1083 break;
1084
1085 static bool
1086 nir_is_fzero_constant(nir_src src)
1087 {
1088 if (!nir_src_is_const(src))
1089 return false;
1090
1091 for (unsigned c = 0; c < nir_src_num_components(src); ++c) {
1092 if (nir_src_comp_as_float(src, c) != 0.0)
1093 return false;
1094 }
1095
1096 return true;
1097 }
1098
1099 static void
1100 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
1101 {
1102 bool is_ssa = instr->dest.dest.is_ssa;
1103
1104 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
1105 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
1106 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
1107
1108 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
1109 * supported. A few do not and are commented for now. Also, there are a
1110 * number of NIR ops which Midgard does not support and need to be
1111 * lowered, also TODO. This switch block emits the opcode and calling
1112 * convention of the Midgard instruction; actual packing is done in
1113 * emit_alu below */
1114
1115 unsigned op;
1116
1117 switch (instr->op) {
1118 ALU_CASE(fadd, fadd);
1119 ALU_CASE(fmul, fmul);
1120 ALU_CASE(fmin, fmin);
1121 ALU_CASE(fmax, fmax);
1122 ALU_CASE(imin, imin);
1123 ALU_CASE(imax, imax);
1124 ALU_CASE(umin, umin);
1125 ALU_CASE(umax, umax);
1126 ALU_CASE(fmov, fmov);
1127 ALU_CASE(ffloor, ffloor);
1128 ALU_CASE(fround_even, froundeven);
1129 ALU_CASE(ftrunc, ftrunc);
1130 ALU_CASE(fceil, fceil);
1131 ALU_CASE(fdot3, fdot3);
1132 ALU_CASE(fdot4, fdot4);
1133 ALU_CASE(iadd, iadd);
1134 ALU_CASE(isub, isub);
1135 ALU_CASE(imul, imul);
1136 ALU_CASE(iabs, iabs);
1137 ALU_CASE(imov, imov);
1138
1139 ALU_CASE(feq32, feq);
1140 ALU_CASE(fne32, fne);
1141 ALU_CASE(flt32, flt);
1142 ALU_CASE(ieq32, ieq);
1143 ALU_CASE(ine32, ine);
1144 ALU_CASE(ilt32, ilt);
1145 ALU_CASE(ult32, ult);
1146
1147 /* We don't have a native b2f32 instruction. Instead, like many
1148 * GPUs, we exploit booleans as 0/~0 for false/true, and
1149 * correspondingly AND
1150 * by 1.0 to do the type conversion. For the moment, prime us
1151 * to emit:
1152 *
1153 * iand [whatever], #0
1154 *
1155 * At the end of emit_alu (as MIR), we'll fix-up the constant
1156 */
1157
1158 ALU_CASE(b2f32, iand);
1159 ALU_CASE(b2i32, iand);
1160
1161 /* Likewise, we don't have a dedicated f2b32 instruction, but
1162 * we can do a "not equal to 0.0" test. */
1163
1164 ALU_CASE(f2b32, fne);
1165 ALU_CASE(i2b32, ine);
1166
1167 ALU_CASE(frcp, frcp);
1168 ALU_CASE(frsq, frsqrt);
1169 ALU_CASE(fsqrt, fsqrt);
1170 ALU_CASE(fexp2, fexp2);
1171 ALU_CASE(flog2, flog2);
1172
1173 ALU_CASE(f2i32, f2i);
1174 ALU_CASE(f2u32, f2u);
1175 ALU_CASE(i2f32, i2f);
1176 ALU_CASE(u2f32, u2f);
1177
1178 ALU_CASE(fsin, fsin);
1179 ALU_CASE(fcos, fcos);
1180
1181 ALU_CASE(iand, iand);
1182 ALU_CASE(ior, ior);
1183 ALU_CASE(ixor, ixor);
1184 ALU_CASE(inot, inand);
1185 ALU_CASE(ishl, ishl);
1186 ALU_CASE(ishr, iasr);
1187 ALU_CASE(ushr, ilsr);
1188
1189 ALU_CASE(b32all_fequal2, fball_eq);
1190 ALU_CASE(b32all_fequal3, fball_eq);
1191 ALU_CASE(b32all_fequal4, fball_eq);
1192
1193 ALU_CASE(b32any_fnequal2, fbany_neq);
1194 ALU_CASE(b32any_fnequal3, fbany_neq);
1195 ALU_CASE(b32any_fnequal4, fbany_neq);
1196
1197 ALU_CASE(b32all_iequal2, iball_eq);
1198 ALU_CASE(b32all_iequal3, iball_eq);
1199 ALU_CASE(b32all_iequal4, iball_eq);
1200
1201 ALU_CASE(b32any_inequal2, ibany_neq);
1202 ALU_CASE(b32any_inequal3, ibany_neq);
1203 ALU_CASE(b32any_inequal4, ibany_neq);
1204
1205 /* For greater-or-equal, we lower to less-or-equal and flip the
1206 * arguments */
1207
1208 case nir_op_fge:
1209 case nir_op_fge32:
1210 case nir_op_ige32:
1211 case nir_op_uge32: {
1212 op =
1213 instr->op == nir_op_fge ? midgard_alu_op_fle :
1214 instr->op == nir_op_fge32 ? midgard_alu_op_fle :
1215 instr->op == nir_op_ige32 ? midgard_alu_op_ile :
1216 instr->op == nir_op_uge32 ? midgard_alu_op_ule :
1217 0;
1218
1219 /* Swap via temporary */
1220 nir_alu_src temp = instr->src[1];
1221 instr->src[1] = instr->src[0];
1222 instr->src[0] = temp;
1223
1224 break;
1225 }
1226
1227 /* For a few special csel cases not handled by NIR, we can opt to
1228 * bitwise. Otherwise, we emit the condition and do a real csel */
1229
1230 case nir_op_b32csel: {
1231 if (nir_is_fzero_constant(instr->src[2].src)) {
1232 /* (b ? v : 0) = (b & v) */
1233 op = midgard_alu_op_iand;
1234 nr_inputs = 2;
1235 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1236 /* (b ? 0 : v) = (!b ? v : 0) = (~b & v) = (v & ~b) */
1237 op = midgard_alu_op_iandnot;
1238 nr_inputs = 2;
1239 instr->src[1] = instr->src[0];
1240 instr->src[0] = instr->src[2];
1241 } else {
1242 op = midgard_alu_op_fcsel;
1243
1244 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1245 nr_inputs = 2;
1246
1247 /* Figure out which component the condition is in */
1248
1249 unsigned comp = instr->src[0].swizzle[0];
1250
1251 /* Make sure NIR isn't throwing a mixed condition at us */
1252
1253 for (unsigned c = 1; c < nr_components; ++c)
1254 assert(instr->src[0].swizzle[c] == comp);
1255
1256 /* Emit the condition into r31.w */
1257 emit_condition(ctx, &instr->src[0].src, false, comp);
1258
1259 /* The condition is the first argument; move the other
1260 * arguments up one to be a binary instruction for
1261 * Midgard */
1262
1263 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1264 }
1265 break;
1266 }
1267
1268 default:
1269 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1270 assert(0);
1271 return;
1272 }
1273
1274 /* Midgard can perform certain modifiers on output ofa n ALU op */
1275 midgard_outmod outmod =
1276 instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1277
1278 /* fmax(a, 0.0) can turn into a .pos modifier as an optimization */
1279
1280 if (instr->op == nir_op_fmax) {
1281 if (nir_is_fzero_constant(instr->src[0].src)) {
1282 op = midgard_alu_op_fmov;
1283 nr_inputs = 1;
1284 outmod = midgard_outmod_pos;
1285 instr->src[0] = instr->src[1];
1286 } else if (nir_is_fzero_constant(instr->src[1].src)) {
1287 op = midgard_alu_op_fmov;
1288 nr_inputs = 1;
1289 outmod = midgard_outmod_pos;
1290 }
1291 }
1292
1293 /* Fetch unit, quirks, etc information */
1294 unsigned opcode_props = alu_opcode_props[op].props;
1295 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1296
1297 /* src0 will always exist afaik, but src1 will not for 1-argument
1298 * instructions. The latter can only be fetched if the instruction
1299 * needs it, or else we may segfault. */
1300
1301 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1302 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1303
1304 /* Rather than use the instruction generation helpers, we do it
1305 * ourselves here to avoid the mess */
1306
1307 midgard_instruction ins = {
1308 .type = TAG_ALU_4,
1309 .ssa_args = {
1310 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1311 .src1 = quirk_flipped_r24 ? src0 : src1,
1312 .dest = dest,
1313 }
1314 };
1315
1316 nir_alu_src *nirmods[2] = { NULL };
1317
1318 if (nr_inputs == 2) {
1319 nirmods[0] = &instr->src[0];
1320 nirmods[1] = &instr->src[1];
1321 } else if (nr_inputs == 1) {
1322 nirmods[quirk_flipped_r24] = &instr->src[0];
1323 } else {
1324 assert(0);
1325 }
1326
1327 bool is_int = midgard_is_integer_op(op);
1328
1329 midgard_vector_alu alu = {
1330 .op = op,
1331 .reg_mode = midgard_reg_mode_full,
1332 .dest_override = midgard_dest_override_none,
1333 .outmod = outmod,
1334
1335 /* Writemask only valid for non-SSA NIR */
1336 .mask = expand_writemask((1 << nr_components) - 1),
1337
1338 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int)),
1339 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1], is_int)),
1340 };
1341
1342 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1343
1344 if (!is_ssa)
1345 alu.mask &= expand_writemask(instr->dest.write_mask);
1346
1347 ins.alu = alu;
1348
1349 /* Late fixup for emulated instructions */
1350
1351 if (instr->op == nir_op_b2f32 || instr->op == nir_op_b2i32) {
1352 /* Presently, our second argument is an inline #0 constant.
1353 * Switch over to an embedded 1.0 constant (that can't fit
1354 * inline, since we're 32-bit, not 16-bit like the inline
1355 * constants) */
1356
1357 ins.ssa_args.inline_constant = false;
1358 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1359 ins.has_constants = true;
1360
1361 if (instr->op == nir_op_b2f32) {
1362 ins.constants[0] = 1.0f;
1363 } else {
1364 /* Type pun it into place */
1365 uint32_t one = 0x1;
1366 memcpy(&ins.constants[0], &one, sizeof(uint32_t));
1367 }
1368
1369 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1370 } else if (instr->op == nir_op_f2b32 || instr->op == nir_op_i2b32) {
1371 ins.ssa_args.inline_constant = false;
1372 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1373 ins.has_constants = true;
1374 ins.constants[0] = 0.0f;
1375 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1376 } else if (instr->op == nir_op_inot) {
1377 /* ~b = ~(b & b), so duplicate the source */
1378 ins.ssa_args.src1 = ins.ssa_args.src0;
1379 ins.alu.src2 = ins.alu.src1;
1380 }
1381
1382 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1383 /* To avoid duplicating the lookup tables (probably), true LUT
1384 * instructions can only operate as if they were scalars. Lower
1385 * them here by changing the component. */
1386
1387 uint8_t original_swizzle[4];
1388 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1389
1390 for (int i = 0; i < nr_components; ++i) {
1391 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1392
1393 for (int j = 0; j < 4; ++j)
1394 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1395
1396 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0], is_int));
1397 emit_mir_instruction(ctx, ins);
1398 }
1399 } else {
1400 emit_mir_instruction(ctx, ins);
1401 }
1402 }
1403
1404 #undef ALU_CASE
1405
1406 static void
1407 emit_uniform_read(compiler_context *ctx, unsigned dest, unsigned offset, nir_src *indirect_offset)
1408 {
1409 /* TODO: half-floats */
1410
1411 if (!indirect_offset && offset < ctx->uniform_cutoff) {
1412 /* Fast path: For the first 16 uniforms, direct accesses are
1413 * 0-cycle, since they're just a register fetch in the usual
1414 * case. So, we alias the registers while we're still in
1415 * SSA-space */
1416
1417 int reg_slot = 23 - offset;
1418 alias_ssa(ctx, dest, SSA_FIXED_REGISTER(reg_slot));
1419 } else {
1420 /* Otherwise, read from the 'special' UBO to access
1421 * higher-indexed uniforms, at a performance cost. More
1422 * generally, we're emitting a UBO read instruction. */
1423
1424 midgard_instruction ins = m_load_uniform_32(dest, offset);
1425
1426 /* TODO: Don't split */
1427 ins.load_store.varying_parameters = (offset & 7) << 7;
1428 ins.load_store.address = offset >> 3;
1429
1430 if (indirect_offset) {
1431 emit_indirect_offset(ctx, indirect_offset);
1432 ins.load_store.unknown = 0x8700; /* xxx: what is this? */
1433 } else {
1434 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1435 }
1436
1437 emit_mir_instruction(ctx, ins);
1438 }
1439 }
1440
1441 static void
1442 emit_sysval_read(compiler_context *ctx, nir_intrinsic_instr *instr)
1443 {
1444 /* First, pull out the destination */
1445 unsigned dest = nir_dest_index(ctx, &instr->dest);
1446
1447 /* Now, figure out which uniform this is */
1448 int sysval = midgard_nir_sysval_for_intrinsic(instr);
1449 void *val = _mesa_hash_table_u64_search(ctx->sysval_to_id, sysval);
1450
1451 /* Sysvals are prefix uniforms */
1452 unsigned uniform = ((uintptr_t) val) - 1;
1453
1454 /* Emit the read itself -- this is never indirect */
1455 emit_uniform_read(ctx, dest, uniform, NULL);
1456 }
1457
1458 static void
1459 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1460 {
1461 unsigned offset, reg;
1462
1463 switch (instr->intrinsic) {
1464 case nir_intrinsic_discard_if:
1465 emit_condition(ctx, &instr->src[0], true, COMPONENT_X);
1466
1467 /* fallthrough */
1468
1469 case nir_intrinsic_discard: {
1470 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1471 struct midgard_instruction discard = v_branch(conditional, false);
1472 discard.branch.target_type = TARGET_DISCARD;
1473 emit_mir_instruction(ctx, discard);
1474
1475 ctx->can_discard = true;
1476 break;
1477 }
1478
1479 case nir_intrinsic_load_uniform:
1480 case nir_intrinsic_load_input:
1481 offset = nir_intrinsic_base(instr);
1482
1483 bool direct = nir_src_is_const(instr->src[0]);
1484
1485 if (direct) {
1486 offset += nir_src_as_uint(instr->src[0]);
1487 }
1488
1489 reg = nir_dest_index(ctx, &instr->dest);
1490
1491 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1492 emit_uniform_read(ctx, reg, ctx->sysval_count + offset, !direct ? &instr->src[0] : NULL);
1493 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1494 /* XXX: Half-floats? */
1495 /* TODO: swizzle, mask */
1496
1497 midgard_instruction ins = m_load_vary_32(reg, offset);
1498
1499 midgard_varying_parameter p = {
1500 .is_varying = 1,
1501 .interpolation = midgard_interp_default,
1502 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1503 };
1504
1505 unsigned u;
1506 memcpy(&u, &p, sizeof(p));
1507 ins.load_store.varying_parameters = u;
1508
1509 if (direct) {
1510 /* We have the offset totally ready */
1511 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1512 } else {
1513 /* We have it partially ready, but we need to
1514 * add in the dynamic index, moved to r27.w */
1515 emit_indirect_offset(ctx, &instr->src[0]);
1516 ins.load_store.unknown = 0x79e; /* xxx: what is this? */
1517 }
1518
1519 emit_mir_instruction(ctx, ins);
1520 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1521 /* Constant encoded as a pinned constant */
1522
1523 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1524 ins.has_constants = true;
1525 ins.has_blend_constant = true;
1526 emit_mir_instruction(ctx, ins);
1527 } else if (ctx->is_blend) {
1528 /* For blend shaders, a load might be
1529 * translated various ways depending on what
1530 * we're loading. Figure out how this is used */
1531
1532 nir_variable *out = NULL;
1533
1534 nir_foreach_variable(var, &ctx->nir->inputs) {
1535 int drvloc = var->data.driver_location;
1536
1537 if (nir_intrinsic_base(instr) == drvloc) {
1538 out = var;
1539 break;
1540 }
1541 }
1542
1543 assert(out);
1544
1545 if (out->data.location == VARYING_SLOT_COL0) {
1546 /* Source color preloaded to r0 */
1547
1548 midgard_pin_output(ctx, reg, 0);
1549 } else if (out->data.location == VARYING_SLOT_COL1) {
1550 /* Destination color must be read from framebuffer */
1551
1552 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1553 ins.load_store.swizzle = 0; /* xxxx */
1554
1555 /* Read each component sequentially */
1556
1557 for (int c = 0; c < 4; ++c) {
1558 ins.load_store.mask = (1 << c);
1559 ins.load_store.unknown = c;
1560 emit_mir_instruction(ctx, ins);
1561 }
1562
1563 /* vadd.u2f hr2, zext(hr2), #0 */
1564
1565 midgard_vector_alu_src alu_src = blank_alu_src;
1566 alu_src.mod = midgard_int_zero_extend;
1567 alu_src.half = true;
1568
1569 midgard_instruction u2f = {
1570 .type = TAG_ALU_4,
1571 .ssa_args = {
1572 .src0 = reg,
1573 .src1 = SSA_UNUSED_0,
1574 .dest = reg,
1575 .inline_constant = true
1576 },
1577 .alu = {
1578 .op = midgard_alu_op_u2f,
1579 .reg_mode = midgard_reg_mode_half,
1580 .dest_override = midgard_dest_override_none,
1581 .mask = 0xF,
1582 .src1 = vector_alu_srco_unsigned(alu_src),
1583 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1584 }
1585 };
1586
1587 emit_mir_instruction(ctx, u2f);
1588
1589 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1590
1591 alu_src.mod = 0;
1592
1593 midgard_instruction fmul = {
1594 .type = TAG_ALU_4,
1595 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1596 .ssa_args = {
1597 .src0 = reg,
1598 .dest = reg,
1599 .src1 = SSA_UNUSED_0,
1600 .inline_constant = true
1601 },
1602 .alu = {
1603 .op = midgard_alu_op_fmul,
1604 .reg_mode = midgard_reg_mode_full,
1605 .dest_override = midgard_dest_override_none,
1606 .outmod = midgard_outmod_sat,
1607 .mask = 0xFF,
1608 .src1 = vector_alu_srco_unsigned(alu_src),
1609 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1610 }
1611 };
1612
1613 emit_mir_instruction(ctx, fmul);
1614 } else {
1615 DBG("Unknown input in blend shader\n");
1616 assert(0);
1617 }
1618 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1619 midgard_instruction ins = m_load_attr_32(reg, offset);
1620 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1621 ins.load_store.mask = (1 << instr->num_components) - 1;
1622 emit_mir_instruction(ctx, ins);
1623 } else {
1624 DBG("Unknown load\n");
1625 assert(0);
1626 }
1627
1628 break;
1629
1630 case nir_intrinsic_store_output:
1631 assert(nir_src_is_const(instr->src[1]) && "no indirect outputs");
1632
1633 offset = nir_intrinsic_base(instr) + nir_src_as_uint(instr->src[1]);
1634
1635 reg = nir_src_index(ctx, &instr->src[0]);
1636
1637 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1638 /* gl_FragColor is not emitted with load/store
1639 * instructions. Instead, it gets plonked into
1640 * r0 at the end of the shader and we do the
1641 * framebuffer writeout dance. TODO: Defer
1642 * writes */
1643
1644 midgard_pin_output(ctx, reg, 0);
1645
1646 /* Save the index we're writing to for later reference
1647 * in the epilogue */
1648
1649 ctx->fragment_output = reg;
1650 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1651 /* Varyings are written into one of two special
1652 * varying register, r26 or r27. The register itself is selected as the register
1653 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1654 *
1655 * Normally emitting fmov's is frowned upon,
1656 * but due to unique constraints of
1657 * REGISTER_VARYING, fmov emission + a
1658 * dedicated cleanup pass is the only way to
1659 * guarantee correctness when considering some
1660 * (common) edge cases XXX: FIXME */
1661
1662 /* If this varying corresponds to a constant (why?!),
1663 * emit that now since it won't get picked up by
1664 * hoisting (since there is no corresponding move
1665 * emitted otherwise) */
1666
1667 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1668
1669 if (constant_value) {
1670 /* Special case: emit the varying write
1671 * directly to r26 (looks funny in asm but it's
1672 * fine) and emit the store _now_. Possibly
1673 * slightly slower, but this is a really stupid
1674 * special case anyway (why on earth would you
1675 * have a constant varying? Your own fault for
1676 * slightly worse perf :P) */
1677
1678 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1679 attach_constants(ctx, &ins, constant_value, reg + 1);
1680 emit_mir_instruction(ctx, ins);
1681
1682 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1683 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1684 emit_mir_instruction(ctx, st);
1685 } else {
1686 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1687
1688 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1689 }
1690 } else {
1691 DBG("Unknown store\n");
1692 assert(0);
1693 }
1694
1695 break;
1696
1697 case nir_intrinsic_load_alpha_ref_float:
1698 assert(instr->dest.is_ssa);
1699
1700 float ref_value = ctx->alpha_ref;
1701
1702 float *v = ralloc_array(NULL, float, 4);
1703 memcpy(v, &ref_value, sizeof(float));
1704 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1705 break;
1706
1707 case nir_intrinsic_load_viewport_scale:
1708 case nir_intrinsic_load_viewport_offset:
1709 emit_sysval_read(ctx, instr);
1710 break;
1711
1712 default:
1713 printf ("Unhandled intrinsic\n");
1714 assert(0);
1715 break;
1716 }
1717 }
1718
1719 static unsigned
1720 midgard_tex_format(enum glsl_sampler_dim dim)
1721 {
1722 switch (dim) {
1723 case GLSL_SAMPLER_DIM_2D:
1724 case GLSL_SAMPLER_DIM_EXTERNAL:
1725 return TEXTURE_2D;
1726
1727 case GLSL_SAMPLER_DIM_3D:
1728 return TEXTURE_3D;
1729
1730 case GLSL_SAMPLER_DIM_CUBE:
1731 return TEXTURE_CUBE;
1732
1733 default:
1734 DBG("Unknown sampler dim type\n");
1735 assert(0);
1736 return 0;
1737 }
1738 }
1739
1740 static void
1741 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1742 {
1743 /* TODO */
1744 //assert (!instr->sampler);
1745 //assert (!instr->texture_array_size);
1746 assert (instr->op == nir_texop_tex);
1747
1748 /* Allocate registers via a round robin scheme to alternate between the two registers */
1749 int reg = ctx->texture_op_count & 1;
1750 int in_reg = reg, out_reg = reg;
1751
1752 /* Make room for the reg */
1753
1754 if (ctx->texture_index[reg] > -1)
1755 unalias_ssa(ctx, ctx->texture_index[reg]);
1756
1757 int texture_index = instr->texture_index;
1758 int sampler_index = texture_index;
1759
1760 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1761 switch (instr->src[i].src_type) {
1762 case nir_tex_src_coord: {
1763 int index = nir_src_index(ctx, &instr->src[i].src);
1764
1765 midgard_vector_alu_src alu_src = blank_alu_src;
1766
1767 int reg = SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg);
1768
1769 if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
1770 /* For cubemaps, we need to load coords into
1771 * special r27, and then use a special ld/st op
1772 * to copy into the texture register */
1773
1774 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_X);
1775
1776 midgard_instruction move = v_fmov(index, alu_src, SSA_FIXED_REGISTER(27));
1777 emit_mir_instruction(ctx, move);
1778
1779 midgard_instruction st = m_store_cubemap_coords(reg, 0);
1780 st.load_store.unknown = 0x24; /* XXX: What is this? */
1781 st.load_store.mask = 0x3; /* xy? */
1782 st.load_store.swizzle = alu_src.swizzle;
1783 emit_mir_instruction(ctx, st);
1784
1785 } else {
1786 alu_src.swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_X, COMPONENT_X);
1787
1788 midgard_instruction ins = v_fmov(index, alu_src, reg);
1789 emit_mir_instruction(ctx, ins);
1790 }
1791
1792 break;
1793 }
1794
1795 default: {
1796 DBG("Unknown source type\n");
1797 //assert(0);
1798 break;
1799 }
1800 }
1801 }
1802
1803 /* No helper to build texture words -- we do it all here */
1804 midgard_instruction ins = {
1805 .type = TAG_TEXTURE_4,
1806 .texture = {
1807 .op = TEXTURE_OP_NORMAL,
1808 .format = midgard_tex_format(instr->sampler_dim),
1809 .texture_handle = texture_index,
1810 .sampler_handle = sampler_index,
1811
1812 /* TODO: Don't force xyzw */
1813 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1814 .mask = 0xF,
1815
1816 /* TODO: half */
1817 //.in_reg_full = 1,
1818 .out_full = 1,
1819
1820 .filter = 1,
1821
1822 /* Always 1 */
1823 .unknown7 = 1,
1824
1825 /* Assume we can continue; hint it out later */
1826 .cont = 1,
1827 }
1828 };
1829
1830 /* Set registers to read and write from the same place */
1831 ins.texture.in_reg_select = in_reg;
1832 ins.texture.out_reg_select = out_reg;
1833
1834 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1835 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1836 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1837 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1838 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1839 } else {
1840 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1841 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1842 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1843 }
1844
1845 emit_mir_instruction(ctx, ins);
1846
1847 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1848
1849 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1850 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1851 ctx->texture_index[reg] = o_index;
1852
1853 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1854 emit_mir_instruction(ctx, ins2);
1855
1856 /* Used for .cont and .last hinting */
1857 ctx->texture_op_count++;
1858 }
1859
1860 static void
1861 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1862 {
1863 switch (instr->type) {
1864 case nir_jump_break: {
1865 /* Emit a branch out of the loop */
1866 struct midgard_instruction br = v_branch(false, false);
1867 br.branch.target_type = TARGET_BREAK;
1868 br.branch.target_break = ctx->current_loop_depth;
1869 emit_mir_instruction(ctx, br);
1870
1871 DBG("break..\n");
1872 break;
1873 }
1874
1875 default:
1876 DBG("Unknown jump type %d\n", instr->type);
1877 break;
1878 }
1879 }
1880
1881 static void
1882 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1883 {
1884 switch (instr->type) {
1885 case nir_instr_type_load_const:
1886 emit_load_const(ctx, nir_instr_as_load_const(instr));
1887 break;
1888
1889 case nir_instr_type_intrinsic:
1890 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1891 break;
1892
1893 case nir_instr_type_alu:
1894 emit_alu(ctx, nir_instr_as_alu(instr));
1895 break;
1896
1897 case nir_instr_type_tex:
1898 emit_tex(ctx, nir_instr_as_tex(instr));
1899 break;
1900
1901 case nir_instr_type_jump:
1902 emit_jump(ctx, nir_instr_as_jump(instr));
1903 break;
1904
1905 case nir_instr_type_ssa_undef:
1906 /* Spurious */
1907 break;
1908
1909 default:
1910 DBG("Unhandled instruction type\n");
1911 break;
1912 }
1913 }
1914
1915 /* Determine the actual hardware from the index based on the RA results or special values */
1916
1917 static int
1918 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1919 {
1920 if (reg >= SSA_FIXED_MINIMUM)
1921 return SSA_REG_FROM_FIXED(reg);
1922
1923 if (reg >= 0) {
1924 assert(reg < maxreg);
1925 int r = ra_get_node_reg(g, reg);
1926 ctx->work_registers = MAX2(ctx->work_registers, r);
1927 return r;
1928 }
1929
1930 switch (reg) {
1931 /* fmov style unused */
1932 case SSA_UNUSED_0:
1933 return REGISTER_UNUSED;
1934
1935 /* lut style unused */
1936 case SSA_UNUSED_1:
1937 return REGISTER_UNUSED;
1938
1939 default:
1940 DBG("Unknown SSA register alias %d\n", reg);
1941 assert(0);
1942 return 31;
1943 }
1944 }
1945
1946 static unsigned int
1947 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1948 {
1949 /* Choose the first available register to minimise reported register pressure */
1950
1951 for (int i = 0; i < 16; ++i) {
1952 if (BITSET_TEST(regs, i)) {
1953 return i;
1954 }
1955 }
1956
1957 assert(0);
1958 return 0;
1959 }
1960
1961 static bool
1962 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1963 {
1964 if (ins->ssa_args.src0 == src) return true;
1965 if (ins->ssa_args.src1 == src) return true;
1966
1967 return false;
1968 }
1969
1970 /* Determine if a variable is live in the successors of a block */
1971 static bool
1972 is_live_after_successors(compiler_context *ctx, midgard_block *bl, int src)
1973 {
1974 for (unsigned i = 0; i < bl->nr_successors; ++i) {
1975 midgard_block *succ = bl->successors[i];
1976
1977 /* If we already visited, the value we're seeking
1978 * isn't down this path (or we would have short
1979 * circuited */
1980
1981 if (succ->visited) continue;
1982
1983 /* Otherwise (it's visited *now*), check the block */
1984
1985 succ->visited = true;
1986
1987 mir_foreach_instr_in_block(succ, ins) {
1988 if (midgard_is_live_in_instr(ins, src))
1989 return true;
1990 }
1991
1992 /* ...and also, check *its* successors */
1993 if (is_live_after_successors(ctx, succ, src))
1994 return true;
1995
1996 }
1997
1998 /* Welp. We're really not live. */
1999
2000 return false;
2001 }
2002
2003 static bool
2004 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
2005 {
2006 /* Check the rest of the block for liveness */
2007
2008 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
2009 if (midgard_is_live_in_instr(ins, src))
2010 return true;
2011 }
2012
2013 /* Check the rest of the blocks for liveness recursively */
2014
2015 bool succ = is_live_after_successors(ctx, block, src);
2016
2017 mir_foreach_block(ctx, block) {
2018 block->visited = false;
2019 }
2020
2021 return succ;
2022 }
2023
2024 static void
2025 allocate_registers(compiler_context *ctx)
2026 {
2027 /* First, initialize the RA */
2028 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
2029
2030 /* Create a primary (general purpose) class, as well as special purpose
2031 * pipeline register classes */
2032
2033 int primary_class = ra_alloc_reg_class(regs);
2034 int varying_class = ra_alloc_reg_class(regs);
2035
2036 /* Add the full set of work registers */
2037 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
2038 for (int i = 0; i < work_count; ++i)
2039 ra_class_add_reg(regs, primary_class, i);
2040
2041 /* Add special registers */
2042 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
2043 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
2044
2045 /* We're done setting up */
2046 ra_set_finalize(regs, NULL);
2047
2048 /* Transform the MIR into squeezed index form */
2049 mir_foreach_block(ctx, block) {
2050 mir_foreach_instr_in_block(block, ins) {
2051 if (ins->compact_branch) continue;
2052
2053 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
2054 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
2055 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
2056 }
2057 if (midgard_debug & MIDGARD_DBG_SHADERS)
2058 print_mir_block(block);
2059 }
2060
2061 if (!ctx->temp_count)
2062 return;
2063
2064 /* Let's actually do register allocation */
2065 int nodes = ctx->temp_count;
2066 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
2067
2068 /* Set everything to the work register class, unless it has somewhere
2069 * special to go */
2070
2071 mir_foreach_block(ctx, block) {
2072 mir_foreach_instr_in_block(block, ins) {
2073 if (ins->compact_branch) continue;
2074
2075 if (ins->ssa_args.dest < 0) continue;
2076
2077 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2078
2079 int class = primary_class;
2080
2081 ra_set_node_class(g, ins->ssa_args.dest, class);
2082 }
2083 }
2084
2085 for (int index = 0; index <= ctx->max_hash; ++index) {
2086 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
2087
2088 if (temp) {
2089 unsigned reg = temp - 1;
2090 int t = find_or_allocate_temp(ctx, index);
2091 ra_set_node_reg(g, t, reg);
2092 }
2093 }
2094
2095 /* Determine liveness */
2096
2097 int *live_start = malloc(nodes * sizeof(int));
2098 int *live_end = malloc(nodes * sizeof(int));
2099
2100 /* Initialize as non-existent */
2101
2102 for (int i = 0; i < nodes; ++i) {
2103 live_start[i] = live_end[i] = -1;
2104 }
2105
2106 int d = 0;
2107
2108 mir_foreach_block(ctx, block) {
2109 mir_foreach_instr_in_block(block, ins) {
2110 if (ins->compact_branch) continue;
2111
2112 /* Dest is < 0 for store_vary instructions, which break
2113 * the usual SSA conventions. Liveness analysis doesn't
2114 * make sense on these instructions, so skip them to
2115 * avoid memory corruption */
2116
2117 if (ins->ssa_args.dest < 0) continue;
2118
2119 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
2120 /* If this destination is not yet live, it is now since we just wrote it */
2121
2122 int dest = ins->ssa_args.dest;
2123
2124 if (live_start[dest] == -1)
2125 live_start[dest] = d;
2126 }
2127
2128 /* Since we just used a source, the source might be
2129 * dead now. Scan the rest of the block for
2130 * invocations, and if there are none, the source dies
2131 * */
2132
2133 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
2134
2135 for (int src = 0; src < 2; ++src) {
2136 int s = sources[src];
2137
2138 if (s < 0) continue;
2139
2140 if (s >= SSA_FIXED_MINIMUM) continue;
2141
2142 if (!is_live_after(ctx, block, ins, s)) {
2143 live_end[s] = d;
2144 }
2145 }
2146
2147 ++d;
2148 }
2149 }
2150
2151 /* If a node still hasn't been killed, kill it now */
2152
2153 for (int i = 0; i < nodes; ++i) {
2154 /* live_start == -1 most likely indicates a pinned output */
2155
2156 if (live_end[i] == -1)
2157 live_end[i] = d;
2158 }
2159
2160 /* Setup interference between nodes that are live at the same time */
2161
2162 for (int i = 0; i < nodes; ++i) {
2163 for (int j = i + 1; j < nodes; ++j) {
2164 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
2165 ra_add_node_interference(g, i, j);
2166 }
2167 }
2168
2169 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
2170
2171 if (!ra_allocate(g)) {
2172 DBG("Error allocating registers\n");
2173 assert(0);
2174 }
2175
2176 /* Cleanup */
2177 free(live_start);
2178 free(live_end);
2179
2180 mir_foreach_block(ctx, block) {
2181 mir_foreach_instr_in_block(block, ins) {
2182 if (ins->compact_branch) continue;
2183
2184 ssa_args args = ins->ssa_args;
2185
2186 switch (ins->type) {
2187 case TAG_ALU_4:
2188 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
2189
2190 ins->registers.src2_imm = args.inline_constant;
2191
2192 if (args.inline_constant) {
2193 /* Encode inline 16-bit constant as a vector by default */
2194
2195 ins->registers.src2_reg = ins->inline_constant >> 11;
2196
2197 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2198
2199 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
2200 ins->alu.src2 = imm << 2;
2201 } else {
2202 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
2203 }
2204
2205 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
2206
2207 break;
2208
2209 case TAG_LOAD_STORE_4: {
2210 if (OP_IS_STORE_VARY(ins->load_store.op)) {
2211 /* TODO: use ssa_args for store_vary */
2212 ins->load_store.reg = 0;
2213 } else {
2214 bool has_dest = args.dest >= 0;
2215 int ssa_arg = has_dest ? args.dest : args.src0;
2216
2217 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
2218 }
2219
2220 break;
2221 }
2222
2223 default:
2224 break;
2225 }
2226 }
2227 }
2228 }
2229
2230 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
2231 * use scalar ALU instructions, for functional or performance reasons. To do
2232 * this, we just demote vector ALU payloads to scalar. */
2233
2234 static int
2235 component_from_mask(unsigned mask)
2236 {
2237 for (int c = 0; c < 4; ++c) {
2238 if (mask & (3 << (2 * c)))
2239 return c;
2240 }
2241
2242 assert(0);
2243 return 0;
2244 }
2245
2246 static bool
2247 is_single_component_mask(unsigned mask)
2248 {
2249 int components = 0;
2250
2251 for (int c = 0; c < 4; ++c)
2252 if (mask & (3 << (2 * c)))
2253 components++;
2254
2255 return components == 1;
2256 }
2257
2258 /* Create a mask of accessed components from a swizzle to figure out vector
2259 * dependencies */
2260
2261 static unsigned
2262 swizzle_to_access_mask(unsigned swizzle)
2263 {
2264 unsigned component_mask = 0;
2265
2266 for (int i = 0; i < 4; ++i) {
2267 unsigned c = (swizzle >> (2 * i)) & 3;
2268 component_mask |= (1 << c);
2269 }
2270
2271 return component_mask;
2272 }
2273
2274 static unsigned
2275 vector_to_scalar_source(unsigned u, bool is_int)
2276 {
2277 midgard_vector_alu_src v;
2278 memcpy(&v, &u, sizeof(v));
2279
2280 /* TODO: Integers */
2281
2282 midgard_scalar_alu_src s = {
2283 .full = !v.half,
2284 .component = (v.swizzle & 3) << 1
2285 };
2286
2287 if (is_int) {
2288 /* TODO */
2289 } else {
2290 s.abs = v.mod & MIDGARD_FLOAT_MOD_ABS;
2291 s.negate = v.mod & MIDGARD_FLOAT_MOD_NEG;
2292 }
2293
2294 unsigned o;
2295 memcpy(&o, &s, sizeof(s));
2296
2297 return o & ((1 << 6) - 1);
2298 }
2299
2300 static midgard_scalar_alu
2301 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
2302 {
2303 bool is_int = midgard_is_integer_op(v.op);
2304
2305 /* The output component is from the mask */
2306 midgard_scalar_alu s = {
2307 .op = v.op,
2308 .src1 = vector_to_scalar_source(v.src1, is_int),
2309 .src2 = vector_to_scalar_source(v.src2, is_int),
2310 .unknown = 0,
2311 .outmod = v.outmod,
2312 .output_full = 1, /* TODO: Half */
2313 .output_component = component_from_mask(v.mask) << 1,
2314 };
2315
2316 /* Inline constant is passed along rather than trying to extract it
2317 * from v */
2318
2319 if (ins->ssa_args.inline_constant) {
2320 uint16_t imm = 0;
2321 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2322 imm |= (lower_11 >> 9) & 3;
2323 imm |= (lower_11 >> 6) & 4;
2324 imm |= (lower_11 >> 2) & 0x38;
2325 imm |= (lower_11 & 63) << 6;
2326
2327 s.src2 = imm;
2328 }
2329
2330 return s;
2331 }
2332
2333 /* Midgard prefetches instruction types, so during emission we need to
2334 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2335 * if this is the second to last and the last is an ALU, then it's also 1... */
2336
2337 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2338 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2339
2340 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2341 bytes_emitted += sizeof(type)
2342
2343 static void
2344 emit_binary_vector_instruction(midgard_instruction *ains,
2345 uint16_t *register_words, int *register_words_count,
2346 uint64_t *body_words, size_t *body_size, int *body_words_count,
2347 size_t *bytes_emitted)
2348 {
2349 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2350 *bytes_emitted += sizeof(midgard_reg_info);
2351
2352 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2353 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2354 *bytes_emitted += sizeof(midgard_vector_alu);
2355 }
2356
2357 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2358 * mind that we are a vector architecture and we can write to different
2359 * components simultaneously */
2360
2361 static bool
2362 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2363 {
2364 /* Each instruction reads some registers and writes to a register. See
2365 * where the first writes */
2366
2367 /* Figure out where exactly we wrote to */
2368 int source = first->ssa_args.dest;
2369 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2370
2371 /* As long as the second doesn't read from the first, we're okay */
2372 if (second->ssa_args.src0 == source) {
2373 if (first->type == TAG_ALU_4) {
2374 /* Figure out which components we just read from */
2375
2376 int q = second->alu.src1;
2377 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2378
2379 /* Check if there are components in common, and fail if so */
2380 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2381 return false;
2382 } else
2383 return false;
2384
2385 }
2386
2387 if (second->ssa_args.src1 == source)
2388 return false;
2389
2390 /* Otherwise, it's safe in that regard. Another data hazard is both
2391 * writing to the same place, of course */
2392
2393 if (second->ssa_args.dest == source) {
2394 /* ...but only if the components overlap */
2395 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2396
2397 if (dest_mask & source_mask)
2398 return false;
2399 }
2400
2401 /* ...That's it */
2402 return true;
2403 }
2404
2405 static bool
2406 midgard_has_hazard(
2407 midgard_instruction **segment, unsigned segment_size,
2408 midgard_instruction *ains)
2409 {
2410 for (int s = 0; s < segment_size; ++s)
2411 if (!can_run_concurrent_ssa(segment[s], ains))
2412 return true;
2413
2414 return false;
2415
2416
2417 }
2418
2419 /* Schedules, but does not emit, a single basic block. After scheduling, the
2420 * final tag and size of the block are known, which are necessary for branching
2421 * */
2422
2423 static midgard_bundle
2424 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2425 {
2426 int instructions_emitted = 0, instructions_consumed = -1;
2427 midgard_bundle bundle = { 0 };
2428
2429 uint8_t tag = ins->type;
2430
2431 /* Default to the instruction's tag */
2432 bundle.tag = tag;
2433
2434 switch (ins->type) {
2435 case TAG_ALU_4: {
2436 uint32_t control = 0;
2437 size_t bytes_emitted = sizeof(control);
2438
2439 /* TODO: Constant combining */
2440 int index = 0, last_unit = 0;
2441
2442 /* Previous instructions, for the purpose of parallelism */
2443 midgard_instruction *segment[4] = {0};
2444 int segment_size = 0;
2445
2446 instructions_emitted = -1;
2447 midgard_instruction *pins = ins;
2448
2449 for (;;) {
2450 midgard_instruction *ains = pins;
2451
2452 /* Advance instruction pointer */
2453 if (index) {
2454 ains = mir_next_op(pins);
2455 pins = ains;
2456 }
2457
2458 /* Out-of-work condition */
2459 if ((struct list_head *) ains == &block->instructions)
2460 break;
2461
2462 /* Ensure that the chain can continue */
2463 if (ains->type != TAG_ALU_4) break;
2464
2465 /* According to the presentation "The ARM
2466 * Mali-T880 Mobile GPU" from HotChips 27,
2467 * there are two pipeline stages. Branching
2468 * position determined experimentally. Lines
2469 * are executed in parallel:
2470 *
2471 * [ VMUL ] [ SADD ]
2472 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2473 *
2474 * Verify that there are no ordering dependencies here.
2475 *
2476 * TODO: Allow for parallelism!!!
2477 */
2478
2479 /* Pick a unit for it if it doesn't force a particular unit */
2480
2481 int unit = ains->unit;
2482
2483 if (!unit) {
2484 int op = ains->alu.op;
2485 int units = alu_opcode_props[op].props;
2486
2487 /* TODO: Promotion of scalars to vectors */
2488 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2489
2490 if (!vector)
2491 assert(units & UNITS_SCALAR);
2492
2493 if (vector) {
2494 if (last_unit >= UNIT_VADD) {
2495 if (units & UNIT_VLUT)
2496 unit = UNIT_VLUT;
2497 else
2498 break;
2499 } else {
2500 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2501 unit = UNIT_VMUL;
2502 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2503 unit = UNIT_VADD;
2504 else if (units & UNIT_VLUT)
2505 unit = UNIT_VLUT;
2506 else
2507 break;
2508 }
2509 } else {
2510 if (last_unit >= UNIT_VADD) {
2511 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2512 unit = UNIT_SMUL;
2513 else if (units & UNIT_VLUT)
2514 unit = UNIT_VLUT;
2515 else
2516 break;
2517 } else {
2518 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2519 unit = UNIT_SADD;
2520 else if (units & UNIT_SMUL)
2521 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2522 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2523 unit = UNIT_VADD;
2524 else
2525 break;
2526 }
2527 }
2528
2529 assert(unit & units);
2530 }
2531
2532 /* Late unit check, this time for encoding (not parallelism) */
2533 if (unit <= last_unit) break;
2534
2535 /* Clear the segment */
2536 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2537 segment_size = 0;
2538
2539 if (midgard_has_hazard(segment, segment_size, ains))
2540 break;
2541
2542 /* We're good to go -- emit the instruction */
2543 ains->unit = unit;
2544
2545 segment[segment_size++] = ains;
2546
2547 /* Only one set of embedded constants per
2548 * bundle possible; if we have more, we must
2549 * break the chain early, unfortunately */
2550
2551 if (ains->has_constants) {
2552 if (bundle.has_embedded_constants) {
2553 /* ...but if there are already
2554 * constants but these are the
2555 * *same* constants, we let it
2556 * through */
2557
2558 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2559 break;
2560 } else {
2561 bundle.has_embedded_constants = true;
2562 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2563
2564 /* If this is a blend shader special constant, track it for patching */
2565 if (ains->has_blend_constant)
2566 bundle.has_blend_constant = true;
2567 }
2568 }
2569
2570 if (ains->unit & UNITS_ANY_VECTOR) {
2571 emit_binary_vector_instruction(ains, bundle.register_words,
2572 &bundle.register_words_count, bundle.body_words,
2573 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2574 } else if (ains->compact_branch) {
2575 /* All of r0 has to be written out
2576 * along with the branch writeout.
2577 * (slow!) */
2578
2579 if (ains->writeout) {
2580 if (index == 0) {
2581 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2582 ins.unit = UNIT_VMUL;
2583
2584 control |= ins.unit;
2585
2586 emit_binary_vector_instruction(&ins, bundle.register_words,
2587 &bundle.register_words_count, bundle.body_words,
2588 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2589 } else {
2590 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2591 bool written_late = false;
2592 bool components[4] = { 0 };
2593 uint16_t register_dep_mask = 0;
2594 uint16_t written_mask = 0;
2595
2596 midgard_instruction *qins = ins;
2597 for (int t = 0; t < index; ++t) {
2598 if (qins->registers.out_reg != 0) {
2599 /* Mark down writes */
2600
2601 written_mask |= (1 << qins->registers.out_reg);
2602 } else {
2603 /* Mark down the register dependencies for errata check */
2604
2605 if (qins->registers.src1_reg < 16)
2606 register_dep_mask |= (1 << qins->registers.src1_reg);
2607
2608 if (qins->registers.src2_reg < 16)
2609 register_dep_mask |= (1 << qins->registers.src2_reg);
2610
2611 int mask = qins->alu.mask;
2612
2613 for (int c = 0; c < 4; ++c)
2614 if (mask & (0x3 << (2 * c)))
2615 components[c] = true;
2616
2617 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2618
2619 if (qins->unit == UNIT_VLUT)
2620 written_late = true;
2621 }
2622
2623 /* Advance instruction pointer */
2624 qins = mir_next_op(qins);
2625 }
2626
2627
2628 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2629 if (register_dep_mask & written_mask) {
2630 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2631 break;
2632 }
2633
2634 if (written_late)
2635 break;
2636
2637 /* If even a single component is not written, break it up (conservative check). */
2638 bool breakup = false;
2639
2640 for (int c = 0; c < 4; ++c)
2641 if (!components[c])
2642 breakup = true;
2643
2644 if (breakup)
2645 break;
2646
2647 /* Otherwise, we're free to proceed */
2648 }
2649 }
2650
2651 if (ains->unit == ALU_ENAB_BRANCH) {
2652 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2653 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2654 bytes_emitted += sizeof(midgard_branch_extended);
2655 } else {
2656 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2657 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2658 bytes_emitted += sizeof(ains->br_compact);
2659 }
2660 } else {
2661 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2662 bytes_emitted += sizeof(midgard_reg_info);
2663
2664 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2665 bundle.body_words_count++;
2666 bytes_emitted += sizeof(midgard_scalar_alu);
2667 }
2668
2669 /* Defer marking until after writing to allow for break */
2670 control |= ains->unit;
2671 last_unit = ains->unit;
2672 ++instructions_emitted;
2673 ++index;
2674 }
2675
2676 /* Bubble up the number of instructions for skipping */
2677 instructions_consumed = index - 1;
2678
2679 int padding = 0;
2680
2681 /* Pad ALU op to nearest word */
2682
2683 if (bytes_emitted & 15) {
2684 padding = 16 - (bytes_emitted & 15);
2685 bytes_emitted += padding;
2686 }
2687
2688 /* Constants must always be quadwords */
2689 if (bundle.has_embedded_constants)
2690 bytes_emitted += 16;
2691
2692 /* Size ALU instruction for tag */
2693 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2694 bundle.padding = padding;
2695 bundle.control = bundle.tag | control;
2696
2697 break;
2698 }
2699
2700 case TAG_LOAD_STORE_4: {
2701 /* Load store instructions have two words at once. If
2702 * we only have one queued up, we need to NOP pad.
2703 * Otherwise, we store both in succession to save space
2704 * and cycles -- letting them go in parallel -- skip
2705 * the next. The usefulness of this optimisation is
2706 * greatly dependent on the quality of the instruction
2707 * scheduler.
2708 */
2709
2710 midgard_instruction *next_op = mir_next_op(ins);
2711
2712 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2713 /* As the two operate concurrently, make sure
2714 * they are not dependent */
2715
2716 if (can_run_concurrent_ssa(ins, next_op) || true) {
2717 /* Skip ahead, since it's redundant with the pair */
2718 instructions_consumed = 1 + (instructions_emitted++);
2719 }
2720 }
2721
2722 break;
2723 }
2724
2725 default:
2726 /* Texture ops default to single-op-per-bundle scheduling */
2727 break;
2728 }
2729
2730 /* Copy the instructions into the bundle */
2731 bundle.instruction_count = instructions_emitted + 1;
2732
2733 int used_idx = 0;
2734
2735 midgard_instruction *uins = ins;
2736 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2737 bundle.instructions[used_idx++] = *uins;
2738 uins = mir_next_op(uins);
2739 }
2740
2741 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2742
2743 return bundle;
2744 }
2745
2746 static int
2747 quadword_size(int tag)
2748 {
2749 switch (tag) {
2750 case TAG_ALU_4:
2751 return 1;
2752
2753 case TAG_ALU_8:
2754 return 2;
2755
2756 case TAG_ALU_12:
2757 return 3;
2758
2759 case TAG_ALU_16:
2760 return 4;
2761
2762 case TAG_LOAD_STORE_4:
2763 return 1;
2764
2765 case TAG_TEXTURE_4:
2766 return 1;
2767
2768 default:
2769 assert(0);
2770 return 0;
2771 }
2772 }
2773
2774 /* Schedule a single block by iterating its instruction to create bundles.
2775 * While we go, tally about the bundle sizes to compute the block size. */
2776
2777 static void
2778 schedule_block(compiler_context *ctx, midgard_block *block)
2779 {
2780 util_dynarray_init(&block->bundles, NULL);
2781
2782 block->quadword_count = 0;
2783
2784 mir_foreach_instr_in_block(block, ins) {
2785 int skip;
2786 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2787 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2788
2789 if (bundle.has_blend_constant) {
2790 /* TODO: Multiblock? */
2791 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2792 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2793 }
2794
2795 while(skip--)
2796 ins = mir_next_op(ins);
2797
2798 block->quadword_count += quadword_size(bundle.tag);
2799 }
2800
2801 block->is_scheduled = true;
2802 }
2803
2804 static void
2805 schedule_program(compiler_context *ctx)
2806 {
2807 allocate_registers(ctx);
2808
2809 mir_foreach_block(ctx, block) {
2810 schedule_block(ctx, block);
2811 }
2812 }
2813
2814 /* After everything is scheduled, emit whole bundles at a time */
2815
2816 static void
2817 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2818 {
2819 int lookahead = next_tag << 4;
2820
2821 switch (bundle->tag) {
2822 case TAG_ALU_4:
2823 case TAG_ALU_8:
2824 case TAG_ALU_12:
2825 case TAG_ALU_16: {
2826 /* Actually emit each component */
2827 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2828
2829 for (int i = 0; i < bundle->register_words_count; ++i)
2830 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2831
2832 /* Emit body words based on the instructions bundled */
2833 for (int i = 0; i < bundle->instruction_count; ++i) {
2834 midgard_instruction *ins = &bundle->instructions[i];
2835
2836 if (ins->unit & UNITS_ANY_VECTOR) {
2837 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2838 } else if (ins->compact_branch) {
2839 /* Dummy move, XXX DRY */
2840 if ((i == 0) && ins->writeout) {
2841 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2842 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2843 }
2844
2845 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2846 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2847 } else {
2848 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2849 }
2850 } else {
2851 /* Scalar */
2852 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2853 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2854 }
2855 }
2856
2857 /* Emit padding (all zero) */
2858 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2859
2860 /* Tack on constants */
2861
2862 if (bundle->has_embedded_constants) {
2863 util_dynarray_append(emission, float, bundle->constants[0]);
2864 util_dynarray_append(emission, float, bundle->constants[1]);
2865 util_dynarray_append(emission, float, bundle->constants[2]);
2866 util_dynarray_append(emission, float, bundle->constants[3]);
2867 }
2868
2869 break;
2870 }
2871
2872 case TAG_LOAD_STORE_4: {
2873 /* One or two composing instructions */
2874
2875 uint64_t current64, next64 = LDST_NOP;
2876
2877 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2878
2879 if (bundle->instruction_count == 2)
2880 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2881
2882 midgard_load_store instruction = {
2883 .type = bundle->tag,
2884 .next_type = next_tag,
2885 .word1 = current64,
2886 .word2 = next64
2887 };
2888
2889 util_dynarray_append(emission, midgard_load_store, instruction);
2890
2891 break;
2892 }
2893
2894 case TAG_TEXTURE_4: {
2895 /* Texture instructions are easy, since there is no
2896 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2897
2898 midgard_instruction *ins = &bundle->instructions[0];
2899
2900 ins->texture.type = TAG_TEXTURE_4;
2901 ins->texture.next_type = next_tag;
2902
2903 ctx->texture_op_count--;
2904
2905 if (!ctx->texture_op_count) {
2906 ins->texture.cont = 0;
2907 ins->texture.last = 1;
2908 }
2909
2910 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2911 break;
2912 }
2913
2914 default:
2915 DBG("Unknown midgard instruction type\n");
2916 assert(0);
2917 break;
2918 }
2919 }
2920
2921
2922 /* ALU instructions can inline or embed constants, which decreases register
2923 * pressure and saves space. */
2924
2925 #define CONDITIONAL_ATTACH(src) { \
2926 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2927 \
2928 if (entry) { \
2929 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2930 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2931 } \
2932 }
2933
2934 static void
2935 inline_alu_constants(compiler_context *ctx)
2936 {
2937 mir_foreach_instr(ctx, alu) {
2938 /* Other instructions cannot inline constants */
2939 if (alu->type != TAG_ALU_4) continue;
2940
2941 /* If there is already a constant here, we can do nothing */
2942 if (alu->has_constants) continue;
2943
2944 /* It makes no sense to inline constants on a branch */
2945 if (alu->compact_branch || alu->prepacked_branch) continue;
2946
2947 CONDITIONAL_ATTACH(src0);
2948
2949 if (!alu->has_constants) {
2950 CONDITIONAL_ATTACH(src1)
2951 } else if (!alu->inline_constant) {
2952 /* Corner case: _two_ vec4 constants, for instance with a
2953 * csel. For this case, we can only use a constant
2954 * register for one, we'll have to emit a move for the
2955 * other. Note, if both arguments are constants, then
2956 * necessarily neither argument depends on the value of
2957 * any particular register. As the destination register
2958 * will be wiped, that means we can spill the constant
2959 * to the destination register.
2960 */
2961
2962 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2963 unsigned scratch = alu->ssa_args.dest;
2964
2965 if (entry) {
2966 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2967 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2968
2969 /* Force a break XXX Defer r31 writes */
2970 ins.unit = UNIT_VLUT;
2971
2972 /* Set the source */
2973 alu->ssa_args.src1 = scratch;
2974
2975 /* Inject us -before- the last instruction which set r31 */
2976 mir_insert_instruction_before(mir_prev_op(alu), ins);
2977 }
2978 }
2979 }
2980 }
2981
2982 /* Midgard supports two types of constants, embedded constants (128-bit) and
2983 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2984 * constants can be demoted to inline constants, for space savings and
2985 * sometimes a performance boost */
2986
2987 static void
2988 embedded_to_inline_constant(compiler_context *ctx)
2989 {
2990 mir_foreach_instr(ctx, ins) {
2991 if (!ins->has_constants) continue;
2992
2993 if (ins->ssa_args.inline_constant) continue;
2994
2995 /* Blend constants must not be inlined by definition */
2996 if (ins->has_blend_constant) continue;
2997
2998 /* src1 cannot be an inline constant due to encoding
2999 * restrictions. So, if possible we try to flip the arguments
3000 * in that case */
3001
3002 int op = ins->alu.op;
3003
3004 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3005 switch (op) {
3006 /* These ops require an operational change to flip
3007 * their arguments TODO */
3008 case midgard_alu_op_flt:
3009 case midgard_alu_op_fle:
3010 case midgard_alu_op_ilt:
3011 case midgard_alu_op_ile:
3012 case midgard_alu_op_fcsel:
3013 case midgard_alu_op_icsel:
3014 DBG("Missed non-commutative flip (%s)\n", alu_opcode_props[op].name);
3015 default:
3016 break;
3017 }
3018
3019 if (alu_opcode_props[op].props & OP_COMMUTES) {
3020 /* Flip the SSA numbers */
3021 ins->ssa_args.src0 = ins->ssa_args.src1;
3022 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
3023
3024 /* And flip the modifiers */
3025
3026 unsigned src_temp;
3027
3028 src_temp = ins->alu.src2;
3029 ins->alu.src2 = ins->alu.src1;
3030 ins->alu.src1 = src_temp;
3031 }
3032 }
3033
3034 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
3035 /* Extract the source information */
3036
3037 midgard_vector_alu_src *src;
3038 int q = ins->alu.src2;
3039 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
3040 src = m;
3041
3042 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
3043 int component = src->swizzle & 3;
3044
3045 /* Scale constant appropriately, if we can legally */
3046 uint16_t scaled_constant = 0;
3047
3048 /* XXX: Check legality */
3049 if (midgard_is_integer_op(op)) {
3050 /* TODO: Inline integer */
3051 continue;
3052
3053 unsigned int *iconstants = (unsigned int *) ins->constants;
3054 scaled_constant = (uint16_t) iconstants[component];
3055
3056 /* Constant overflow after resize */
3057 if (scaled_constant != iconstants[component])
3058 continue;
3059 } else {
3060 float original = (float) ins->constants[component];
3061 scaled_constant = _mesa_float_to_half(original);
3062
3063 /* Check for loss of precision. If this is
3064 * mediump, we don't care, but for a highp
3065 * shader, we need to pay attention. NIR
3066 * doesn't yet tell us which mode we're in!
3067 * Practically this prevents most constants
3068 * from being inlined, sadly. */
3069
3070 float fp32 = _mesa_half_to_float(scaled_constant);
3071
3072 if (fp32 != original)
3073 continue;
3074 }
3075
3076 /* We don't know how to handle these with a constant */
3077
3078 if (src->mod || src->half || src->rep_low || src->rep_high) {
3079 DBG("Bailing inline constant...\n");
3080 continue;
3081 }
3082
3083 /* Make sure that the constant is not itself a
3084 * vector by checking if all accessed values
3085 * (by the swizzle) are the same. */
3086
3087 uint32_t *cons = (uint32_t *) ins->constants;
3088 uint32_t value = cons[component];
3089
3090 bool is_vector = false;
3091 unsigned mask = effective_writemask(&ins->alu);
3092
3093 for (int c = 1; c < 4; ++c) {
3094 /* We only care if this component is actually used */
3095 if (!(mask & (1 << c)))
3096 continue;
3097
3098 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
3099
3100 if (test != value) {
3101 is_vector = true;
3102 break;
3103 }
3104 }
3105
3106 if (is_vector)
3107 continue;
3108
3109 /* Get rid of the embedded constant */
3110 ins->has_constants = false;
3111 ins->ssa_args.src1 = SSA_UNUSED_0;
3112 ins->ssa_args.inline_constant = true;
3113 ins->inline_constant = scaled_constant;
3114 }
3115 }
3116 }
3117
3118 /* Map normal SSA sources to other SSA sources / fixed registers (like
3119 * uniforms) */
3120
3121 static void
3122 map_ssa_to_alias(compiler_context *ctx, int *ref)
3123 {
3124 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
3125
3126 if (alias) {
3127 /* Remove entry in leftovers to avoid a redunant fmov */
3128
3129 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
3130
3131 if (leftover)
3132 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
3133
3134 /* Assign the alias map */
3135 *ref = alias - 1;
3136 return;
3137 }
3138 }
3139
3140 /* Basic dead code elimination on the MIR itself, which cleans up e.g. the
3141 * texture pipeline */
3142
3143 static bool
3144 midgard_opt_dead_code_eliminate(compiler_context *ctx, midgard_block *block)
3145 {
3146 bool progress = false;
3147
3148 mir_foreach_instr_in_block_safe(block, ins) {
3149 if (ins->type != TAG_ALU_4) continue;
3150 if (ins->compact_branch) continue;
3151
3152 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
3153 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
3154 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
3155
3156 mir_remove_instruction(ins);
3157 progress = true;
3158 }
3159
3160 return progress;
3161 }
3162
3163 static bool
3164 midgard_opt_copy_prop(compiler_context *ctx, midgard_block *block)
3165 {
3166 bool progress = false;
3167
3168 mir_foreach_instr_in_block_safe(block, ins) {
3169 if (ins->type != TAG_ALU_4) continue;
3170 if (!OP_IS_MOVE(ins->alu.op)) continue;
3171
3172 unsigned from = ins->ssa_args.src1;
3173 unsigned to = ins->ssa_args.dest;
3174
3175 /* We only work on pure SSA */
3176
3177 if (to >= SSA_FIXED_MINIMUM) continue;
3178 if (from >= SSA_FIXED_MINIMUM) continue;
3179 if (to >= ctx->func->impl->ssa_alloc) continue;
3180 if (from >= ctx->func->impl->ssa_alloc) continue;
3181
3182 /* Also, if the move has side effects, we're helpless */
3183
3184 midgard_vector_alu_src src =
3185 vector_alu_from_unsigned(ins->alu.src2);
3186 unsigned mask = squeeze_writemask(ins->alu.mask);
3187 bool is_int = midgard_is_integer_op(ins->alu.op);
3188
3189 if (mir_nontrivial_mod(src, is_int, mask)) continue;
3190 if (ins->alu.outmod != midgard_outmod_none) continue;
3191
3192 mir_foreach_instr_in_block_from(block, v, mir_next_op(ins)) {
3193 if (v->ssa_args.src0 == to) {
3194 v->ssa_args.src0 = from;
3195 progress = true;
3196 }
3197
3198 if (v->ssa_args.src1 == to && !v->ssa_args.inline_constant) {
3199 v->ssa_args.src1 = from;
3200 progress = true;
3201 }
3202 }
3203 }
3204
3205 return progress;
3206 }
3207
3208 static bool
3209 midgard_opt_copy_prop_tex(compiler_context *ctx, midgard_block *block)
3210 {
3211 bool progress = false;
3212
3213 mir_foreach_instr_in_block_safe(block, ins) {
3214 if (ins->type != TAG_ALU_4) continue;
3215 if (!OP_IS_MOVE(ins->alu.op)) continue;
3216
3217 unsigned from = ins->ssa_args.src1;
3218 unsigned to = ins->ssa_args.dest;
3219
3220 /* Make sure it's simple enough for us to handle */
3221
3222 if (from >= SSA_FIXED_MINIMUM) continue;
3223 if (from >= ctx->func->impl->ssa_alloc) continue;
3224 if (to < SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE)) continue;
3225 if (to > SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + 1)) continue;
3226
3227 bool eliminated = false;
3228
3229 mir_foreach_instr_in_block_from_rev(block, v, mir_prev_op(ins)) {
3230 /* The texture registers are not SSA so be careful.
3231 * Conservatively, just stop if we hit a texture op
3232 * (even if it may not write) to where we are */
3233
3234 if (v->type != TAG_ALU_4)
3235 break;
3236
3237 if (v->ssa_args.dest == from) {
3238 /* We don't want to track partial writes ... */
3239 if (v->alu.mask == 0xF) {
3240 v->ssa_args.dest = to;
3241 eliminated = true;
3242 }
3243
3244 break;
3245 }
3246 }
3247
3248 if (eliminated)
3249 mir_remove_instruction(ins);
3250
3251 progress |= eliminated;
3252 }
3253
3254 return progress;
3255 }
3256
3257 /* We don't really understand the imov/fmov split, so always use fmov (but let
3258 * it be imov in the IR so we don't do unsafe floating point "optimizations"
3259 * and break things */
3260
3261 static void
3262 midgard_imov_workaround(compiler_context *ctx, midgard_block *block)
3263 {
3264 mir_foreach_instr_in_block_safe(block, ins) {
3265 if (ins->type != TAG_ALU_4) continue;
3266 if (ins->alu.op != midgard_alu_op_imov) continue;
3267
3268 ins->alu.op = midgard_alu_op_fmov;
3269 ins->alu.outmod = midgard_outmod_none;
3270
3271 /* Remove flags that don't make sense */
3272
3273 midgard_vector_alu_src s =
3274 vector_alu_from_unsigned(ins->alu.src2);
3275
3276 s.mod = 0;
3277
3278 ins->alu.src2 = vector_alu_srco_unsigned(s);
3279 }
3280 }
3281
3282 /* The following passes reorder MIR instructions to enable better scheduling */
3283
3284 static void
3285 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
3286 {
3287 mir_foreach_instr_in_block_safe(block, ins) {
3288 if (ins->type != TAG_LOAD_STORE_4) continue;
3289
3290 /* We've found a load/store op. Check if next is also load/store. */
3291 midgard_instruction *next_op = mir_next_op(ins);
3292 if (&next_op->link != &block->instructions) {
3293 if (next_op->type == TAG_LOAD_STORE_4) {
3294 /* If so, we're done since we're a pair */
3295 ins = mir_next_op(ins);
3296 continue;
3297 }
3298
3299 /* Maximum search distance to pair, to avoid register pressure disasters */
3300 int search_distance = 8;
3301
3302 /* Otherwise, we have an orphaned load/store -- search for another load */
3303 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
3304 /* Terminate search if necessary */
3305 if (!(search_distance--)) break;
3306
3307 if (c->type != TAG_LOAD_STORE_4) continue;
3308
3309 /* Stores cannot be reordered, since they have
3310 * dependencies. For the same reason, indirect
3311 * loads cannot be reordered as their index is
3312 * loaded in r27.w */
3313
3314 if (OP_IS_STORE(c->load_store.op)) continue;
3315
3316 /* It appears the 0x800 bit is set whenever a
3317 * load is direct, unset when it is indirect.
3318 * Skip indirect loads. */
3319
3320 if (!(c->load_store.unknown & 0x800)) continue;
3321
3322 /* We found one! Move it up to pair and remove it from the old location */
3323
3324 mir_insert_instruction_before(ins, *c);
3325 mir_remove_instruction(c);
3326
3327 break;
3328 }
3329 }
3330 }
3331 }
3332
3333 /* Emit varying stores late */
3334
3335 static void
3336 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
3337 /* Iterate in reverse to get the final write, rather than the first */
3338
3339 mir_foreach_instr_in_block_safe_rev(block, ins) {
3340 /* Check if what we just wrote needs a store */
3341 int idx = ins->ssa_args.dest;
3342 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
3343
3344 if (!varying) continue;
3345
3346 varying -= 1;
3347
3348 /* We need to store to the appropriate varying, so emit the
3349 * move/store */
3350
3351 /* TODO: Integrate with special purpose RA (and scheduler?) */
3352 bool high_varying_register = false;
3353
3354 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
3355
3356 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
3357 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
3358
3359 mir_insert_instruction_before(mir_next_op(ins), st);
3360 mir_insert_instruction_before(mir_next_op(ins), mov);
3361
3362 /* We no longer need to store this varying */
3363 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
3364 }
3365 }
3366
3367 /* If there are leftovers after the below pass, emit actual fmov
3368 * instructions for the slow-but-correct path */
3369
3370 static void
3371 emit_leftover_move(compiler_context *ctx)
3372 {
3373 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
3374 int base = ((uintptr_t) leftover->key) - 1;
3375 int mapped = base;
3376
3377 map_ssa_to_alias(ctx, &mapped);
3378 EMIT(fmov, mapped, blank_alu_src, base);
3379 }
3380 }
3381
3382 static void
3383 actualise_ssa_to_alias(compiler_context *ctx)
3384 {
3385 mir_foreach_instr(ctx, ins) {
3386 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
3387 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
3388 }
3389
3390 emit_leftover_move(ctx);
3391 }
3392
3393 static void
3394 emit_fragment_epilogue(compiler_context *ctx)
3395 {
3396 /* Special case: writing out constants requires us to include the move
3397 * explicitly now, so shove it into r0 */
3398
3399 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3400
3401 if (constant_value) {
3402 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3403 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3404 emit_mir_instruction(ctx, ins);
3405 }
3406
3407 /* Perform the actual fragment writeout. We have two writeout/branch
3408 * instructions, forming a loop until writeout is successful as per the
3409 * docs. TODO: gl_FragDepth */
3410
3411 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3412 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3413 }
3414
3415 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3416 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3417 * with the int8 analogue to the fragment epilogue */
3418
3419 static void
3420 emit_blend_epilogue(compiler_context *ctx)
3421 {
3422 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3423
3424 midgard_instruction scale = {
3425 .type = TAG_ALU_4,
3426 .unit = UNIT_VMUL,
3427 .inline_constant = _mesa_float_to_half(255.0),
3428 .ssa_args = {
3429 .src0 = SSA_FIXED_REGISTER(0),
3430 .src1 = SSA_UNUSED_0,
3431 .dest = SSA_FIXED_REGISTER(24),
3432 .inline_constant = true
3433 },
3434 .alu = {
3435 .op = midgard_alu_op_fmul,
3436 .reg_mode = midgard_reg_mode_full,
3437 .dest_override = midgard_dest_override_lower,
3438 .mask = 0xFF,
3439 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3440 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3441 }
3442 };
3443
3444 emit_mir_instruction(ctx, scale);
3445
3446 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3447
3448 midgard_vector_alu_src alu_src = blank_alu_src;
3449 alu_src.half = true;
3450
3451 midgard_instruction f2u8 = {
3452 .type = TAG_ALU_4,
3453 .ssa_args = {
3454 .src0 = SSA_FIXED_REGISTER(24),
3455 .src1 = SSA_UNUSED_0,
3456 .dest = SSA_FIXED_REGISTER(0),
3457 .inline_constant = true
3458 },
3459 .alu = {
3460 .op = midgard_alu_op_f2u8,
3461 .reg_mode = midgard_reg_mode_half,
3462 .dest_override = midgard_dest_override_lower,
3463 .outmod = midgard_outmod_pos,
3464 .mask = 0xF,
3465 .src1 = vector_alu_srco_unsigned(alu_src),
3466 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3467 }
3468 };
3469
3470 emit_mir_instruction(ctx, f2u8);
3471
3472 /* vmul.imov.quarter r0, r0, r0 */
3473
3474 midgard_instruction imov_8 = {
3475 .type = TAG_ALU_4,
3476 .ssa_args = {
3477 .src0 = SSA_UNUSED_1,
3478 .src1 = SSA_FIXED_REGISTER(0),
3479 .dest = SSA_FIXED_REGISTER(0),
3480 },
3481 .alu = {
3482 .op = midgard_alu_op_imov,
3483 .reg_mode = midgard_reg_mode_quarter,
3484 .dest_override = midgard_dest_override_none,
3485 .mask = 0xFF,
3486 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3487 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3488 }
3489 };
3490
3491 /* Emit branch epilogue with the 8-bit move as the source */
3492
3493 emit_mir_instruction(ctx, imov_8);
3494 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3495
3496 emit_mir_instruction(ctx, imov_8);
3497 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3498 }
3499
3500 static midgard_block *
3501 emit_block(compiler_context *ctx, nir_block *block)
3502 {
3503 midgard_block *this_block = calloc(sizeof(midgard_block), 1);
3504 list_addtail(&this_block->link, &ctx->blocks);
3505
3506 this_block->is_scheduled = false;
3507 ++ctx->block_count;
3508
3509 ctx->texture_index[0] = -1;
3510 ctx->texture_index[1] = -1;
3511
3512 /* Add us as a successor to the block we are following */
3513 if (ctx->current_block)
3514 midgard_block_add_successor(ctx->current_block, this_block);
3515
3516 /* Set up current block */
3517 list_inithead(&this_block->instructions);
3518 ctx->current_block = this_block;
3519
3520 nir_foreach_instr(instr, block) {
3521 emit_instr(ctx, instr);
3522 ++ctx->instruction_count;
3523 }
3524
3525 inline_alu_constants(ctx);
3526 embedded_to_inline_constant(ctx);
3527
3528 /* Perform heavylifting for aliasing */
3529 actualise_ssa_to_alias(ctx);
3530
3531 midgard_emit_store(ctx, this_block);
3532 midgard_pair_load_store(ctx, this_block);
3533 midgard_imov_workaround(ctx, this_block);
3534
3535 /* Append fragment shader epilogue (value writeout) */
3536 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3537 if (block == nir_impl_last_block(ctx->func->impl)) {
3538 if (ctx->is_blend)
3539 emit_blend_epilogue(ctx);
3540 else
3541 emit_fragment_epilogue(ctx);
3542 }
3543 }
3544
3545 if (block == nir_start_block(ctx->func->impl))
3546 ctx->initial_block = this_block;
3547
3548 if (block == nir_impl_last_block(ctx->func->impl))
3549 ctx->final_block = this_block;
3550
3551 /* Allow the next control flow to access us retroactively, for
3552 * branching etc */
3553 ctx->current_block = this_block;
3554
3555 /* Document the fallthrough chain */
3556 ctx->previous_source_block = this_block;
3557
3558 return this_block;
3559 }
3560
3561 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3562
3563 static void
3564 emit_if(struct compiler_context *ctx, nir_if *nif)
3565 {
3566 /* Conditional branches expect the condition in r31.w; emit a move for
3567 * that in the _previous_ block (which is the current block). */
3568 emit_condition(ctx, &nif->condition, true, COMPONENT_X);
3569
3570 /* Speculatively emit the branch, but we can't fill it in until later */
3571 EMIT(branch, true, true);
3572 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3573
3574 /* Emit the two subblocks */
3575 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3576
3577 /* Emit a jump from the end of the then block to the end of the else */
3578 EMIT(branch, false, false);
3579 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3580
3581 /* Emit second block, and check if it's empty */
3582
3583 int else_idx = ctx->block_count;
3584 int count_in = ctx->instruction_count;
3585 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3586 int after_else_idx = ctx->block_count;
3587
3588 /* Now that we have the subblocks emitted, fix up the branches */
3589
3590 assert(then_block);
3591 assert(else_block);
3592
3593 if (ctx->instruction_count == count_in) {
3594 /* The else block is empty, so don't emit an exit jump */
3595 mir_remove_instruction(then_exit);
3596 then_branch->branch.target_block = after_else_idx;
3597 } else {
3598 then_branch->branch.target_block = else_idx;
3599 then_exit->branch.target_block = after_else_idx;
3600 }
3601 }
3602
3603 static void
3604 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3605 {
3606 /* Remember where we are */
3607 midgard_block *start_block = ctx->current_block;
3608
3609 /* Allocate a loop number, growing the current inner loop depth */
3610 int loop_idx = ++ctx->current_loop_depth;
3611
3612 /* Get index from before the body so we can loop back later */
3613 int start_idx = ctx->block_count;
3614
3615 /* Emit the body itself */
3616 emit_cf_list(ctx, &nloop->body);
3617
3618 /* Branch back to loop back */
3619 struct midgard_instruction br_back = v_branch(false, false);
3620 br_back.branch.target_block = start_idx;
3621 emit_mir_instruction(ctx, br_back);
3622
3623 /* Mark down that branch in the graph. Note that we're really branching
3624 * to the block *after* we started in. TODO: Why doesn't the branch
3625 * itself have an off-by-one then...? */
3626 midgard_block_add_successor(ctx->current_block, start_block->successors[0]);
3627
3628 /* Find the index of the block about to follow us (note: we don't add
3629 * one; blocks are 0-indexed so we get a fencepost problem) */
3630 int break_block_idx = ctx->block_count;
3631
3632 /* Fix up the break statements we emitted to point to the right place,
3633 * now that we can allocate a block number for them */
3634
3635 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3636 mir_foreach_instr_in_block(block, ins) {
3637 if (ins->type != TAG_ALU_4) continue;
3638 if (!ins->compact_branch) continue;
3639 if (ins->prepacked_branch) continue;
3640
3641 /* We found a branch -- check the type to see if we need to do anything */
3642 if (ins->branch.target_type != TARGET_BREAK) continue;
3643
3644 /* It's a break! Check if it's our break */
3645 if (ins->branch.target_break != loop_idx) continue;
3646
3647 /* Okay, cool, we're breaking out of this loop.
3648 * Rewrite from a break to a goto */
3649
3650 ins->branch.target_type = TARGET_GOTO;
3651 ins->branch.target_block = break_block_idx;
3652 }
3653 }
3654
3655 /* Now that we've finished emitting the loop, free up the depth again
3656 * so we play nice with recursion amid nested loops */
3657 --ctx->current_loop_depth;
3658 }
3659
3660 static midgard_block *
3661 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3662 {
3663 midgard_block *start_block = NULL;
3664
3665 foreach_list_typed(nir_cf_node, node, node, list) {
3666 switch (node->type) {
3667 case nir_cf_node_block: {
3668 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3669
3670 if (!start_block)
3671 start_block = block;
3672
3673 break;
3674 }
3675
3676 case nir_cf_node_if:
3677 emit_if(ctx, nir_cf_node_as_if(node));
3678 break;
3679
3680 case nir_cf_node_loop:
3681 emit_loop(ctx, nir_cf_node_as_loop(node));
3682 break;
3683
3684 case nir_cf_node_function:
3685 assert(0);
3686 break;
3687 }
3688 }
3689
3690 return start_block;
3691 }
3692
3693 /* Due to lookahead, we need to report the first tag executed in the command
3694 * stream and in branch targets. An initial block might be empty, so iterate
3695 * until we find one that 'works' */
3696
3697 static unsigned
3698 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3699 {
3700 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3701
3702 unsigned first_tag = 0;
3703
3704 do {
3705 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3706
3707 if (initial_bundle) {
3708 first_tag = initial_bundle->tag;
3709 break;
3710 }
3711
3712 /* Initial block is empty, try the next block */
3713 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3714 } while(initial_block != NULL);
3715
3716 assert(first_tag);
3717 return first_tag;
3718 }
3719
3720 int
3721 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3722 {
3723 struct util_dynarray *compiled = &program->compiled;
3724
3725 midgard_debug = debug_get_option_midgard_debug();
3726
3727 compiler_context ictx = {
3728 .nir = nir,
3729 .stage = nir->info.stage,
3730
3731 .is_blend = is_blend,
3732 .blend_constant_offset = -1,
3733
3734 .alpha_ref = program->alpha_ref
3735 };
3736
3737 compiler_context *ctx = &ictx;
3738
3739 /* TODO: Decide this at runtime */
3740 ctx->uniform_cutoff = 8;
3741
3742 /* Assign var locations early, so the epilogue can use them if necessary */
3743
3744 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3745 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3746 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3747
3748 /* Initialize at a global (not block) level hash tables */
3749
3750 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3751 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3752 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3753 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3754 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3755 ctx->sysval_to_id = _mesa_hash_table_u64_create(NULL);
3756 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3757
3758 /* Record the varying mapping for the command stream's bookkeeping */
3759
3760 struct exec_list *varyings =
3761 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3762
3763 nir_foreach_variable(var, varyings) {
3764 unsigned loc = var->data.driver_location;
3765 unsigned sz = glsl_type_size(var->type, FALSE);
3766
3767 for (int c = 0; c < sz; ++c) {
3768 program->varyings[loc + c] = var->data.location;
3769 }
3770 }
3771
3772 /* Lower gl_Position pre-optimisation */
3773
3774 if (ctx->stage == MESA_SHADER_VERTEX)
3775 NIR_PASS_V(nir, nir_lower_viewport_transform);
3776
3777 NIR_PASS_V(nir, nir_lower_var_copies);
3778 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3779 NIR_PASS_V(nir, nir_split_var_copies);
3780 NIR_PASS_V(nir, nir_lower_var_copies);
3781 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3782 NIR_PASS_V(nir, nir_lower_var_copies);
3783 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3784
3785 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3786
3787 /* Optimisation passes */
3788
3789 optimise_nir(nir);
3790
3791 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3792 nir_print_shader(nir, stdout);
3793 }
3794
3795 /* Assign sysvals and counts, now that we're sure
3796 * (post-optimisation) */
3797
3798 midgard_nir_assign_sysvals(ctx, nir);
3799
3800 program->uniform_count = nir->num_uniforms;
3801 program->sysval_count = ctx->sysval_count;
3802 memcpy(program->sysvals, ctx->sysvals, sizeof(ctx->sysvals[0]) * ctx->sysval_count);
3803
3804 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3805 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3806
3807 nir_foreach_function(func, nir) {
3808 if (!func->impl)
3809 continue;
3810
3811 list_inithead(&ctx->blocks);
3812 ctx->block_count = 0;
3813 ctx->func = func;
3814
3815 emit_cf_list(ctx, &func->impl->body);
3816 emit_block(ctx, func->impl->end_block);
3817
3818 break; /* TODO: Multi-function shaders */
3819 }
3820
3821 util_dynarray_init(compiled, NULL);
3822
3823 /* MIR-level optimizations */
3824
3825 bool progress = false;
3826
3827 do {
3828 progress = false;
3829
3830 mir_foreach_block(ctx, block) {
3831 progress |= midgard_opt_copy_prop(ctx, block);
3832 progress |= midgard_opt_copy_prop_tex(ctx, block);
3833 progress |= midgard_opt_dead_code_eliminate(ctx, block);
3834 }
3835 } while (progress);
3836
3837 /* Schedule! */
3838 schedule_program(ctx);
3839
3840 /* Now that all the bundles are scheduled and we can calculate block
3841 * sizes, emit actual branch instructions rather than placeholders */
3842
3843 int br_block_idx = 0;
3844
3845 mir_foreach_block(ctx, block) {
3846 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3847 for (int c = 0; c < bundle->instruction_count; ++c) {
3848 midgard_instruction *ins = &bundle->instructions[c];
3849
3850 if (!midgard_is_branch_unit(ins->unit)) continue;
3851
3852 if (ins->prepacked_branch) continue;
3853
3854 /* Parse some basic branch info */
3855 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3856 bool is_conditional = ins->branch.conditional;
3857 bool is_inverted = ins->branch.invert_conditional;
3858 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3859
3860 /* Determine the block we're jumping to */
3861 int target_number = ins->branch.target_block;
3862
3863 /* Report the destination tag. Discards don't need this */
3864 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3865
3866 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3867 int quadword_offset = 0;
3868
3869 if (is_discard) {
3870 /* Jump to the end of the shader. We
3871 * need to include not only the
3872 * following blocks, but also the
3873 * contents of our current block (since
3874 * discard can come in the middle of
3875 * the block) */
3876
3877 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3878
3879 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3880 quadword_offset += quadword_size(bun->tag);
3881 }
3882
3883 mir_foreach_block_from(ctx, blk, b) {
3884 quadword_offset += b->quadword_count;
3885 }
3886
3887 } else if (target_number > br_block_idx) {
3888 /* Jump forward */
3889
3890 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3891 midgard_block *blk = mir_get_block(ctx, idx);
3892 assert(blk);
3893
3894 quadword_offset += blk->quadword_count;
3895 }
3896 } else {
3897 /* Jump backwards */
3898
3899 for (int idx = br_block_idx; idx >= target_number; --idx) {
3900 midgard_block *blk = mir_get_block(ctx, idx);
3901 assert(blk);
3902
3903 quadword_offset -= blk->quadword_count;
3904 }
3905 }
3906
3907 /* Unconditional extended branches (far jumps)
3908 * have issues, so we always use a conditional
3909 * branch, setting the condition to always for
3910 * unconditional. For compact unconditional
3911 * branches, cond isn't used so it doesn't
3912 * matter what we pick. */
3913
3914 midgard_condition cond =
3915 !is_conditional ? midgard_condition_always :
3916 is_inverted ? midgard_condition_false :
3917 midgard_condition_true;
3918
3919 midgard_jmp_writeout_op op =
3920 is_discard ? midgard_jmp_writeout_op_discard :
3921 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3922 midgard_jmp_writeout_op_branch_cond;
3923
3924 if (!is_compact) {
3925 midgard_branch_extended branch =
3926 midgard_create_branch_extended(
3927 cond, op,
3928 dest_tag,
3929 quadword_offset);
3930
3931 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3932 } else if (is_conditional || is_discard) {
3933 midgard_branch_cond branch = {
3934 .op = op,
3935 .dest_tag = dest_tag,
3936 .offset = quadword_offset,
3937 .cond = cond
3938 };
3939
3940 assert(branch.offset == quadword_offset);
3941
3942 memcpy(&ins->br_compact, &branch, sizeof(branch));
3943 } else {
3944 assert(op == midgard_jmp_writeout_op_branch_uncond);
3945
3946 midgard_branch_uncond branch = {
3947 .op = op,
3948 .dest_tag = dest_tag,
3949 .offset = quadword_offset,
3950 .unknown = 1
3951 };
3952
3953 assert(branch.offset == quadword_offset);
3954
3955 memcpy(&ins->br_compact, &branch, sizeof(branch));
3956 }
3957 }
3958 }
3959
3960 ++br_block_idx;
3961 }
3962
3963 /* Emit flat binary from the instruction arrays. Iterate each block in
3964 * sequence. Save instruction boundaries such that lookahead tags can
3965 * be assigned easily */
3966
3967 /* Cache _all_ bundles in source order for lookahead across failed branches */
3968
3969 int bundle_count = 0;
3970 mir_foreach_block(ctx, block) {
3971 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3972 }
3973 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3974 int bundle_idx = 0;
3975 mir_foreach_block(ctx, block) {
3976 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3977 source_order_bundles[bundle_idx++] = bundle;
3978 }
3979 }
3980
3981 int current_bundle = 0;
3982
3983 mir_foreach_block(ctx, block) {
3984 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3985 int lookahead = 1;
3986
3987 if (current_bundle + 1 < bundle_count) {
3988 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3989
3990 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3991 lookahead = 1;
3992 } else {
3993 lookahead = next;
3994 }
3995 }
3996
3997 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3998 ++current_bundle;
3999 }
4000
4001 /* TODO: Free deeper */
4002 //util_dynarray_fini(&block->instructions);
4003 }
4004
4005 free(source_order_bundles);
4006
4007 /* Report the very first tag executed */
4008 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
4009
4010 /* Deal with off-by-one related to the fencepost problem */
4011 program->work_register_count = ctx->work_registers + 1;
4012
4013 program->can_discard = ctx->can_discard;
4014 program->uniform_cutoff = ctx->uniform_cutoff;
4015
4016 program->blend_patch_offset = ctx->blend_constant_offset;
4017
4018 if (midgard_debug & MIDGARD_DBG_SHADERS)
4019 disassemble_midgard(program->compiled.data, program->compiled.size);
4020
4021 return 0;
4022 }