panfrost/midgard: Lower f2b32 to fne
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "main/mtypes.h"
34 #include "compiler/glsl/glsl_to_nir.h"
35 #include "compiler/nir_types.h"
36 #include "main/imports.h"
37 #include "compiler/nir/nir_builder.h"
38 #include "util/half_float.h"
39 #include "util/register_allocate.h"
40 #include "util/u_debug.h"
41 #include "util/u_dynarray.h"
42 #include "util/list.h"
43 #include "main/mtypes.h"
44
45 #include "midgard.h"
46 #include "midgard_nir.h"
47 #include "midgard_compile.h"
48 #include "helpers.h"
49
50 #include "disassemble.h"
51
52 static const struct debug_named_value debug_options[] = {
53 {"msgs", MIDGARD_DBG_MSGS, "Print debug messages"},
54 {"shaders", MIDGARD_DBG_SHADERS, "Dump shaders in NIR and MIR"},
55 DEBUG_NAMED_VALUE_END
56 };
57
58 DEBUG_GET_ONCE_FLAGS_OPTION(midgard_debug, "MIDGARD_MESA_DEBUG", debug_options, 0)
59
60 int midgard_debug = 0;
61
62 #define DBG(fmt, ...) \
63 do { if (midgard_debug & MIDGARD_DBG_MSGS) \
64 fprintf(stderr, "%s:%d: "fmt, \
65 __FUNCTION__, __LINE__, ##__VA_ARGS__); } while (0)
66
67 /* Instruction arguments represented as block-local SSA indices, rather than
68 * registers. Negative values mean unused. */
69
70 typedef struct {
71 int src0;
72 int src1;
73 int dest;
74
75 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
76 * in. Only valid for ALU ops. */
77 bool inline_constant;
78 } ssa_args;
79
80 /* Forward declare so midgard_branch can reference */
81 struct midgard_block;
82
83 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
84 * the hardware), hence why that must be zero. TARGET_DISCARD signals this
85 * instruction is actually a discard op. */
86
87 #define TARGET_GOTO 0
88 #define TARGET_BREAK 1
89 #define TARGET_CONTINUE 2
90 #define TARGET_DISCARD 3
91
92 typedef struct midgard_branch {
93 /* If conditional, the condition is specified in r31.w */
94 bool conditional;
95
96 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
97 bool invert_conditional;
98
99 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
100 unsigned target_type;
101
102 /* The actual target */
103 union {
104 int target_block;
105 int target_break;
106 int target_continue;
107 };
108 } midgard_branch;
109
110 /* Generic in-memory data type repesenting a single logical instruction, rather
111 * than a single instruction group. This is the preferred form for code gen.
112 * Multiple midgard_insturctions will later be combined during scheduling,
113 * though this is not represented in this structure. Its format bridges
114 * the low-level binary representation with the higher level semantic meaning.
115 *
116 * Notably, it allows registers to be specified as block local SSA, for code
117 * emitted before the register allocation pass.
118 */
119
120 typedef struct midgard_instruction {
121 /* Must be first for casting */
122 struct list_head link;
123
124 unsigned type; /* ALU, load/store, texture */
125
126 /* If the register allocator has not run yet... */
127 ssa_args ssa_args;
128
129 /* Special fields for an ALU instruction */
130 midgard_reg_info registers;
131
132 /* I.e. (1 << alu_bit) */
133 int unit;
134
135 bool has_constants;
136 float constants[4];
137 uint16_t inline_constant;
138 bool has_blend_constant;
139
140 bool compact_branch;
141 bool writeout;
142 bool prepacked_branch;
143
144 union {
145 midgard_load_store_word load_store;
146 midgard_vector_alu alu;
147 midgard_texture_word texture;
148 midgard_branch_extended branch_extended;
149 uint16_t br_compact;
150
151 /* General branch, rather than packed br_compact. Higher level
152 * than the other components */
153 midgard_branch branch;
154 };
155 } midgard_instruction;
156
157 typedef struct midgard_block {
158 /* Link to next block. Must be first for mir_get_block */
159 struct list_head link;
160
161 /* List of midgard_instructions emitted for the current block */
162 struct list_head instructions;
163
164 bool is_scheduled;
165
166 /* List of midgard_bundles emitted (after the scheduler has run) */
167 struct util_dynarray bundles;
168
169 /* Number of quadwords _actually_ emitted, as determined after scheduling */
170 unsigned quadword_count;
171
172 struct midgard_block *next_fallthrough;
173 } midgard_block;
174
175 /* Helpers to generate midgard_instruction's using macro magic, since every
176 * driver seems to do it that way */
177
178 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
179
180 #define M_LOAD_STORE(name, rname, uname) \
181 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
182 midgard_instruction i = { \
183 .type = TAG_LOAD_STORE_4, \
184 .ssa_args = { \
185 .rname = ssa, \
186 .uname = -1, \
187 .src1 = -1 \
188 }, \
189 .load_store = { \
190 .op = midgard_op_##name, \
191 .mask = 0xF, \
192 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
193 .address = address \
194 } \
195 }; \
196 \
197 return i; \
198 }
199
200 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
201 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
202
203 const midgard_vector_alu_src blank_alu_src = {
204 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
205 };
206
207 const midgard_vector_alu_src blank_alu_src_xxxx = {
208 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
209 };
210
211 const midgard_scalar_alu_src blank_scalar_alu_src = {
212 .full = true
213 };
214
215 /* Used for encoding the unused source of 1-op instructions */
216 const midgard_vector_alu_src zero_alu_src = { 0 };
217
218 /* Coerce structs to integer */
219
220 static unsigned
221 vector_alu_srco_unsigned(midgard_vector_alu_src src)
222 {
223 unsigned u;
224 memcpy(&u, &src, sizeof(src));
225 return u;
226 }
227
228 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
229 * the corresponding Midgard source */
230
231 static midgard_vector_alu_src
232 vector_alu_modifiers(nir_alu_src *src)
233 {
234 if (!src) return blank_alu_src;
235
236 midgard_vector_alu_src alu_src = {
237 .abs = src->abs,
238 .negate = src->negate,
239 .rep_low = 0,
240 .rep_high = 0,
241 .half = 0, /* TODO */
242 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
243 };
244
245 return alu_src;
246 }
247
248 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
249
250 static midgard_instruction
251 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
252 {
253 midgard_instruction ins = {
254 .type = TAG_ALU_4,
255 .ssa_args = {
256 .src0 = SSA_UNUSED_1,
257 .src1 = src,
258 .dest = dest,
259 },
260 .alu = {
261 .op = midgard_alu_op_fmov,
262 .reg_mode = midgard_reg_mode_full,
263 .dest_override = midgard_dest_override_none,
264 .mask = 0xFF,
265 .src1 = vector_alu_srco_unsigned(zero_alu_src),
266 .src2 = vector_alu_srco_unsigned(mod)
267 },
268 };
269
270 return ins;
271 }
272
273 /* load/store instructions have both 32-bit and 16-bit variants, depending on
274 * whether we are using vectors composed of highp or mediump. At the moment, we
275 * don't support half-floats -- this requires changes in other parts of the
276 * compiler -- therefore the 16-bit versions are commented out. */
277
278 //M_LOAD(load_attr_16);
279 M_LOAD(load_attr_32);
280 //M_LOAD(load_vary_16);
281 M_LOAD(load_vary_32);
282 //M_LOAD(load_uniform_16);
283 M_LOAD(load_uniform_32);
284 M_LOAD(load_color_buffer_8);
285 //M_STORE(store_vary_16);
286 M_STORE(store_vary_32);
287
288 static midgard_instruction
289 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
290 {
291 midgard_branch_cond branch = {
292 .op = op,
293 .dest_tag = tag,
294 .offset = offset,
295 .cond = cond
296 };
297
298 uint16_t compact;
299 memcpy(&compact, &branch, sizeof(branch));
300
301 midgard_instruction ins = {
302 .type = TAG_ALU_4,
303 .unit = ALU_ENAB_BR_COMPACT,
304 .prepacked_branch = true,
305 .compact_branch = true,
306 .br_compact = compact
307 };
308
309 if (op == midgard_jmp_writeout_op_writeout)
310 ins.writeout = true;
311
312 return ins;
313 }
314
315 static midgard_instruction
316 v_branch(bool conditional, bool invert)
317 {
318 midgard_instruction ins = {
319 .type = TAG_ALU_4,
320 .unit = ALU_ENAB_BRANCH,
321 .compact_branch = true,
322 .branch = {
323 .conditional = conditional,
324 .invert_conditional = invert
325 }
326 };
327
328 return ins;
329 }
330
331 static midgard_branch_extended
332 midgard_create_branch_extended( midgard_condition cond,
333 midgard_jmp_writeout_op op,
334 unsigned dest_tag,
335 signed quadword_offset)
336 {
337 /* For unclear reasons, the condition code is repeated 8 times */
338 uint16_t duplicated_cond =
339 (cond << 14) |
340 (cond << 12) |
341 (cond << 10) |
342 (cond << 8) |
343 (cond << 6) |
344 (cond << 4) |
345 (cond << 2) |
346 (cond << 0);
347
348 midgard_branch_extended branch = {
349 .op = op,
350 .dest_tag = dest_tag,
351 .offset = quadword_offset,
352 .cond = duplicated_cond
353 };
354
355 return branch;
356 }
357
358 typedef struct midgard_bundle {
359 /* Tag for the overall bundle */
360 int tag;
361
362 /* Instructions contained by the bundle */
363 int instruction_count;
364 midgard_instruction instructions[5];
365
366 /* Bundle-wide ALU configuration */
367 int padding;
368 int control;
369 bool has_embedded_constants;
370 float constants[4];
371 bool has_blend_constant;
372
373 uint16_t register_words[8];
374 int register_words_count;
375
376 uint64_t body_words[8];
377 size_t body_size[8];
378 int body_words_count;
379 } midgard_bundle;
380
381 typedef struct compiler_context {
382 nir_shader *nir;
383 gl_shader_stage stage;
384
385 /* Is internally a blend shader? Depends on stage == FRAGMENT */
386 bool is_blend;
387
388 /* Tracking for blend constant patching */
389 int blend_constant_number;
390 int blend_constant_offset;
391
392 /* Current NIR function */
393 nir_function *func;
394
395 /* Unordered list of midgard_blocks */
396 int block_count;
397 struct list_head blocks;
398
399 midgard_block *initial_block;
400 midgard_block *previous_source_block;
401 midgard_block *final_block;
402
403 /* List of midgard_instructions emitted for the current block */
404 midgard_block *current_block;
405
406 /* The index corresponding to the current loop, e.g. for breaks/contineus */
407 int current_loop;
408
409 /* Constants which have been loaded, for later inlining */
410 struct hash_table_u64 *ssa_constants;
411
412 /* SSA indices to be outputted to corresponding varying offset */
413 struct hash_table_u64 *ssa_varyings;
414
415 /* SSA values / registers which have been aliased. Naively, these
416 * demand a fmov output; instead, we alias them in a later pass to
417 * avoid the wasted op.
418 *
419 * A note on encoding: to avoid dynamic memory management here, rather
420 * than ampping to a pointer, we map to the source index; the key
421 * itself is just the destination index. */
422
423 struct hash_table_u64 *ssa_to_alias;
424 struct set *leftover_ssa_to_alias;
425
426 /* Actual SSA-to-register for RA */
427 struct hash_table_u64 *ssa_to_register;
428
429 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
430 struct hash_table_u64 *hash_to_temp;
431 int temp_count;
432 int max_hash;
433
434 /* Uniform IDs for mdg */
435 struct hash_table_u64 *uniform_nir_to_mdg;
436 int uniform_count;
437
438 /* Just the count of the max register used. Higher count => higher
439 * register pressure */
440 int work_registers;
441
442 /* Used for cont/last hinting. Increase when a tex op is added.
443 * Decrease when a tex op is removed. */
444 int texture_op_count;
445
446 /* Mapping of texture register -> SSA index for unaliasing */
447 int texture_index[2];
448
449 /* Count of special uniforms (viewport, etc) in vec4 units */
450 int special_uniforms;
451
452 /* If any path hits a discard instruction */
453 bool can_discard;
454
455 /* The number of uniforms allowable for the fast path */
456 int uniform_cutoff;
457
458 /* Count of instructions emitted from NIR overall, across all blocks */
459 int instruction_count;
460
461 /* Alpha ref value passed in */
462 float alpha_ref;
463
464 /* The index corresponding to the fragment output */
465 unsigned fragment_output;
466 } compiler_context;
467
468 /* Append instruction to end of current block */
469
470 static midgard_instruction *
471 mir_upload_ins(struct midgard_instruction ins)
472 {
473 midgard_instruction *heap = malloc(sizeof(ins));
474 memcpy(heap, &ins, sizeof(ins));
475 return heap;
476 }
477
478 static void
479 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
480 {
481 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
482 }
483
484 static void
485 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
486 {
487 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
488 }
489
490 static void
491 mir_remove_instruction(struct midgard_instruction *ins)
492 {
493 list_del(&ins->link);
494 }
495
496 static midgard_instruction*
497 mir_prev_op(struct midgard_instruction *ins)
498 {
499 return list_last_entry(&(ins->link), midgard_instruction, link);
500 }
501
502 static midgard_instruction*
503 mir_next_op(struct midgard_instruction *ins)
504 {
505 return list_first_entry(&(ins->link), midgard_instruction, link);
506 }
507
508 static midgard_block *
509 mir_next_block(struct midgard_block *blk)
510 {
511 return list_first_entry(&(blk->link), midgard_block, link);
512 }
513
514
515 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
516 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
517
518 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
519 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
520 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
521 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
522 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
523 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
524
525
526 static midgard_instruction *
527 mir_last_in_block(struct midgard_block *block)
528 {
529 return list_last_entry(&block->instructions, struct midgard_instruction, link);
530 }
531
532 static midgard_block *
533 mir_get_block(compiler_context *ctx, int idx)
534 {
535 struct list_head *lst = &ctx->blocks;
536
537 while ((idx--) + 1)
538 lst = lst->next;
539
540 return (struct midgard_block *) lst;
541 }
542
543 /* Pretty printer for internal Midgard IR */
544
545 static void
546 print_mir_source(int source)
547 {
548 if (source >= SSA_FIXED_MINIMUM) {
549 /* Specific register */
550 int reg = SSA_REG_FROM_FIXED(source);
551
552 /* TODO: Moving threshold */
553 if (reg > 16 && reg < 24)
554 printf("u%d", 23 - reg);
555 else
556 printf("r%d", reg);
557 } else {
558 printf("%d", source);
559 }
560 }
561
562 static void
563 print_mir_instruction(midgard_instruction *ins)
564 {
565 printf("\t");
566
567 switch (ins->type) {
568 case TAG_ALU_4: {
569 midgard_alu_op op = ins->alu.op;
570 const char *name = alu_opcode_names[op];
571
572 if (ins->unit)
573 printf("%d.", ins->unit);
574
575 printf("%s", name ? name : "??");
576 break;
577 }
578
579 case TAG_LOAD_STORE_4: {
580 midgard_load_store_op op = ins->load_store.op;
581 const char *name = load_store_opcode_names[op];
582
583 assert(name);
584 printf("%s", name);
585 break;
586 }
587
588 case TAG_TEXTURE_4: {
589 printf("texture");
590 break;
591 }
592
593 default:
594 assert(0);
595 }
596
597 ssa_args *args = &ins->ssa_args;
598
599 printf(" %d, ", args->dest);
600
601 print_mir_source(args->src0);
602 printf(", ");
603
604 if (args->inline_constant)
605 printf("#%d", ins->inline_constant);
606 else
607 print_mir_source(args->src1);
608
609 if (ins->has_constants)
610 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
611
612 printf("\n");
613 }
614
615 static void
616 print_mir_block(midgard_block *block)
617 {
618 printf("{\n");
619
620 mir_foreach_instr_in_block(block, ins) {
621 print_mir_instruction(ins);
622 }
623
624 printf("}\n");
625 }
626
627
628
629 static void
630 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
631 {
632 ins->has_constants = true;
633 memcpy(&ins->constants, constants, 16);
634
635 /* If this is the special blend constant, mark this instruction */
636
637 if (ctx->is_blend && ctx->blend_constant_number == name)
638 ins->has_blend_constant = true;
639 }
640
641 static int
642 glsl_type_size(const struct glsl_type *type)
643 {
644 return glsl_count_attribute_slots(type, false);
645 }
646
647 /* Lower fdot2 to a vector multiplication followed by channel addition */
648 static void
649 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
650 {
651 if (alu->op != nir_op_fdot2)
652 return;
653
654 b->cursor = nir_before_instr(&alu->instr);
655
656 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
657 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
658
659 nir_ssa_def *product = nir_fmul(b, src0, src1);
660
661 nir_ssa_def *sum = nir_fadd(b,
662 nir_channel(b, product, 0),
663 nir_channel(b, product, 1));
664
665 /* Replace the fdot2 with this sum */
666 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
667 }
668
669 static bool
670 midgard_nir_lower_fdot2(nir_shader *shader)
671 {
672 bool progress = false;
673
674 nir_foreach_function(function, shader) {
675 if (!function->impl) continue;
676
677 nir_builder _b;
678 nir_builder *b = &_b;
679 nir_builder_init(b, function->impl);
680
681 nir_foreach_block(block, function->impl) {
682 nir_foreach_instr_safe(instr, block) {
683 if (instr->type != nir_instr_type_alu) continue;
684
685 nir_alu_instr *alu = nir_instr_as_alu(instr);
686 midgard_nir_lower_fdot2_body(b, alu);
687
688 progress |= true;
689 }
690 }
691
692 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
693
694 }
695
696 return progress;
697 }
698
699 static void
700 optimise_nir(nir_shader *nir)
701 {
702 bool progress;
703
704 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
705 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
706
707 nir_lower_tex_options lower_tex_options = {
708 .lower_rect = true
709 };
710
711 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
712
713 do {
714 progress = false;
715
716 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
717 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
718 NIR_PASS(progress, nir, nir_lower_var_copies);
719 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
720
721 NIR_PASS(progress, nir, nir_copy_prop);
722 NIR_PASS(progress, nir, nir_opt_dce);
723 NIR_PASS(progress, nir, nir_opt_dead_cf);
724 NIR_PASS(progress, nir, nir_opt_cse);
725 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
726 NIR_PASS(progress, nir, nir_opt_algebraic);
727 NIR_PASS(progress, nir, nir_opt_constant_folding);
728 NIR_PASS(progress, nir, nir_opt_undef);
729 NIR_PASS(progress, nir, nir_opt_loop_unroll,
730 nir_var_shader_in |
731 nir_var_shader_out |
732 nir_var_function_temp);
733
734 /* TODO: Enable vectorize when merged upstream */
735 // NIR_PASS(progress, nir, nir_opt_vectorize);
736 } while (progress);
737
738 /* Must be run at the end to prevent creation of fsin/fcos ops */
739 NIR_PASS(progress, nir, midgard_nir_scale_trig);
740
741 do {
742 progress = false;
743
744 NIR_PASS(progress, nir, nir_opt_dce);
745 NIR_PASS(progress, nir, nir_opt_algebraic);
746 NIR_PASS(progress, nir, nir_opt_constant_folding);
747 NIR_PASS(progress, nir, nir_copy_prop);
748 } while (progress);
749
750 NIR_PASS(progress, nir, nir_opt_algebraic_late);
751
752 /* Lower mods */
753 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
754 NIR_PASS(progress, nir, nir_copy_prop);
755 NIR_PASS(progress, nir, nir_opt_dce);
756
757 /* We implement booleans as 32-bit 0/~0 */
758 NIR_PASS(progress, nir, nir_lower_bool_to_int32);
759
760 /* Take us out of SSA */
761 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
762 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
763
764 /* We are a vector architecture; write combine where possible */
765 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
766 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
767
768 NIR_PASS(progress, nir, nir_opt_dce);
769 }
770
771 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
772 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
773 * r0. See the comments in compiler_context */
774
775 static void
776 alias_ssa(compiler_context *ctx, int dest, int src)
777 {
778 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
779 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
780 }
781
782 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
783
784 static void
785 unalias_ssa(compiler_context *ctx, int dest)
786 {
787 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
788 /* TODO: Remove from leftover or no? */
789 }
790
791 static void
792 midgard_pin_output(compiler_context *ctx, int index, int reg)
793 {
794 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
795 }
796
797 static bool
798 midgard_is_pinned(compiler_context *ctx, int index)
799 {
800 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
801 }
802
803 /* Do not actually emit a load; instead, cache the constant for inlining */
804
805 static void
806 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
807 {
808 nir_ssa_def def = instr->def;
809
810 float *v = ralloc_array(NULL, float, 4);
811 memcpy(v, &instr->value.f32, 4 * sizeof(float));
812 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
813 }
814
815 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
816 * do the inverse) */
817
818 static unsigned
819 expand_writemask(unsigned mask)
820 {
821 unsigned o = 0;
822
823 for (int i = 0; i < 4; ++i)
824 if (mask & (1 << i))
825 o |= (3 << (2 * i));
826
827 return o;
828 }
829
830 static unsigned
831 squeeze_writemask(unsigned mask)
832 {
833 unsigned o = 0;
834
835 for (int i = 0; i < 4; ++i)
836 if (mask & (3 << (2 * i)))
837 o |= (1 << i);
838
839 return o;
840
841 }
842
843 /* Determines effective writemask, taking quirks and expansion into account */
844 static unsigned
845 effective_writemask(midgard_vector_alu *alu)
846 {
847 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
848 * sense) */
849
850 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
851
852 /* If there is a fixed channel count, construct the appropriate mask */
853
854 if (channel_count)
855 return (1 << channel_count) - 1;
856
857 /* Otherwise, just squeeze the existing mask */
858 return squeeze_writemask(alu->mask);
859 }
860
861 static unsigned
862 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
863 {
864 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
865 return hash;
866
867 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
868
869 if (temp)
870 return temp - 1;
871
872 /* If no temp is find, allocate one */
873 temp = ctx->temp_count++;
874 ctx->max_hash = MAX2(ctx->max_hash, hash);
875
876 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
877
878 return temp;
879 }
880
881 static unsigned
882 nir_src_index(compiler_context *ctx, nir_src *src)
883 {
884 if (src->is_ssa)
885 return src->ssa->index;
886 else
887 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
888 }
889
890 static unsigned
891 nir_dest_index(compiler_context *ctx, nir_dest *dst)
892 {
893 if (dst->is_ssa)
894 return dst->ssa.index;
895 else
896 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
897 }
898
899 static unsigned
900 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
901 {
902 return nir_src_index(ctx, &src->src);
903 }
904
905 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
906 * a conditional test) into that register */
907
908 static void
909 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
910 {
911 /* XXX: Force component correct */
912 int condition = nir_src_index(ctx, src);
913
914 /* There is no boolean move instruction. Instead, we simulate a move by
915 * ANDing the condition with itself to get it into r31.w */
916
917 midgard_instruction ins = {
918 .type = TAG_ALU_4,
919 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
920 .ssa_args = {
921 .src0 = condition,
922 .src1 = condition,
923 .dest = SSA_FIXED_REGISTER(31),
924 },
925 .alu = {
926 .op = midgard_alu_op_iand,
927 .reg_mode = midgard_reg_mode_full,
928 .dest_override = midgard_dest_override_none,
929 .mask = (0x3 << 6), /* w */
930 .src1 = vector_alu_srco_unsigned(blank_alu_src_xxxx),
931 .src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx)
932 },
933 };
934
935 emit_mir_instruction(ctx, ins);
936 }
937
938 #define ALU_CASE(nir, _op) \
939 case nir_op_##nir: \
940 op = midgard_alu_op_##_op; \
941 break;
942
943 static void
944 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
945 {
946 bool is_ssa = instr->dest.dest.is_ssa;
947
948 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
949 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
950 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
951
952 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
953 * supported. A few do not and are commented for now. Also, there are a
954 * number of NIR ops which Midgard does not support and need to be
955 * lowered, also TODO. This switch block emits the opcode and calling
956 * convention of the Midgard instruction; actual packing is done in
957 * emit_alu below */
958
959 unsigned op;
960
961 switch (instr->op) {
962 ALU_CASE(fadd, fadd);
963 ALU_CASE(fmul, fmul);
964 ALU_CASE(fmin, fmin);
965 ALU_CASE(fmax, fmax);
966 ALU_CASE(imin, imin);
967 ALU_CASE(imax, imax);
968 ALU_CASE(fmov, fmov);
969 ALU_CASE(ffloor, ffloor);
970 ALU_CASE(fround_even, froundeven);
971 ALU_CASE(ftrunc, ftrunc);
972 ALU_CASE(fceil, fceil);
973 ALU_CASE(fdot3, fdot3);
974 ALU_CASE(fdot4, fdot4);
975 ALU_CASE(iadd, iadd);
976 ALU_CASE(isub, isub);
977 ALU_CASE(imul, imul);
978
979 /* XXX: Use fmov, not imov, since imov was causing major
980 * issues with texture precision? XXX research */
981 ALU_CASE(imov, fmov);
982
983 ALU_CASE(feq32, feq);
984 ALU_CASE(fne32, fne);
985 ALU_CASE(flt32, flt);
986 ALU_CASE(ieq32, ieq);
987 ALU_CASE(ine32, ine);
988 ALU_CASE(ilt32, ilt);
989
990 /* Likewise, we don't have a dedicated f2b32 instruction, but
991 * we can do a "not equal to 0.0" test. Since an inline
992 * constant vec4(0.0) is the default, we don't need to do any
993 * special lowering */
994
995 ALU_CASE(f2b32, fne);
996
997 ALU_CASE(frcp, frcp);
998 ALU_CASE(frsq, frsqrt);
999 ALU_CASE(fsqrt, fsqrt);
1000 ALU_CASE(fpow, fpow);
1001 ALU_CASE(fexp2, fexp2);
1002 ALU_CASE(flog2, flog2);
1003
1004 ALU_CASE(f2i32, f2i);
1005 ALU_CASE(f2u32, f2u);
1006 ALU_CASE(i2f32, i2f);
1007 ALU_CASE(u2f32, u2f);
1008
1009 ALU_CASE(fsin, fsin);
1010 ALU_CASE(fcos, fcos);
1011
1012 ALU_CASE(iand, iand);
1013 ALU_CASE(ior, ior);
1014 ALU_CASE(ixor, ixor);
1015 ALU_CASE(inot, inot);
1016 ALU_CASE(ishl, ishl);
1017 ALU_CASE(ishr, iasr);
1018 ALU_CASE(ushr, ilsr);
1019
1020 ALU_CASE(b32all_fequal2, fball_eq);
1021 ALU_CASE(b32all_fequal3, fball_eq);
1022 ALU_CASE(b32all_fequal4, fball_eq);
1023
1024 ALU_CASE(b32any_fnequal2, fbany_neq);
1025 ALU_CASE(b32any_fnequal3, fbany_neq);
1026 ALU_CASE(b32any_fnequal4, fbany_neq);
1027
1028 ALU_CASE(b32all_iequal2, iball_eq);
1029 ALU_CASE(b32all_iequal3, iball_eq);
1030 ALU_CASE(b32all_iequal4, iball_eq);
1031
1032 ALU_CASE(b32any_inequal2, ibany_neq);
1033 ALU_CASE(b32any_inequal3, ibany_neq);
1034 ALU_CASE(b32any_inequal4, ibany_neq);
1035
1036 /* For greater-or-equal, we use less-or-equal and flip the
1037 * arguments */
1038
1039 case nir_op_ige32: {
1040 op = midgard_alu_op_ile;
1041
1042 /* Swap via temporary */
1043 nir_alu_src temp = instr->src[1];
1044 instr->src[1] = instr->src[0];
1045 instr->src[0] = temp;
1046
1047 break;
1048 }
1049
1050 case nir_op_b32csel: {
1051 op = midgard_alu_op_fcsel;
1052
1053 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
1054 nr_inputs = 2;
1055
1056 emit_condition(ctx, &instr->src[0].src, false);
1057
1058 /* The condition is the first argument; move the other
1059 * arguments up one to be a binary instruction for
1060 * Midgard */
1061
1062 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
1063 break;
1064 }
1065
1066 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
1067 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1068 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1069 *
1070 * iand [whatever], #0
1071 *
1072 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1073
1074 case nir_op_b2f32: {
1075 op = midgard_alu_op_iand;
1076 break;
1077 }
1078
1079 default:
1080 DBG("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1081 assert(0);
1082 return;
1083 }
1084
1085 /* Fetch unit, quirks, etc information */
1086 unsigned opcode_props = alu_opcode_props[op];
1087 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1088
1089 /* Initialise fields common between scalar/vector instructions */
1090 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1091
1092 /* src0 will always exist afaik, but src1 will not for 1-argument
1093 * instructions. The latter can only be fetched if the instruction
1094 * needs it, or else we may segfault. */
1095
1096 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1097 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1098
1099 /* Rather than use the instruction generation helpers, we do it
1100 * ourselves here to avoid the mess */
1101
1102 midgard_instruction ins = {
1103 .type = TAG_ALU_4,
1104 .ssa_args = {
1105 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1106 .src1 = quirk_flipped_r24 ? src0 : src1,
1107 .dest = dest,
1108 }
1109 };
1110
1111 nir_alu_src *nirmods[2] = { NULL };
1112
1113 if (nr_inputs == 2) {
1114 nirmods[0] = &instr->src[0];
1115 nirmods[1] = &instr->src[1];
1116 } else if (nr_inputs == 1) {
1117 nirmods[quirk_flipped_r24] = &instr->src[0];
1118 } else {
1119 assert(0);
1120 }
1121
1122 midgard_vector_alu alu = {
1123 .op = op,
1124 .reg_mode = midgard_reg_mode_full,
1125 .dest_override = midgard_dest_override_none,
1126 .outmod = outmod,
1127
1128 /* Writemask only valid for non-SSA NIR */
1129 .mask = expand_writemask((1 << nr_components) - 1),
1130
1131 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1132 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1133 };
1134
1135 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1136
1137 if (!is_ssa)
1138 alu.mask &= expand_writemask(instr->dest.write_mask);
1139
1140 ins.alu = alu;
1141
1142 /* Late fixup for emulated instructions */
1143
1144 if (instr->op == nir_op_b2f32) {
1145 /* Presently, our second argument is an inline #0 constant.
1146 * Switch over to an embedded 1.0 constant (that can't fit
1147 * inline, since we're 32-bit, not 16-bit like the inline
1148 * constants) */
1149
1150 ins.ssa_args.inline_constant = false;
1151 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1152 ins.has_constants = true;
1153 ins.constants[0] = 1.0;
1154
1155 ins.alu.src2 = vector_alu_srco_unsigned(blank_alu_src_xxxx);
1156 }
1157
1158 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1159 /* To avoid duplicating the lookup tables (probably), true LUT
1160 * instructions can only operate as if they were scalars. Lower
1161 * them here by changing the component. */
1162
1163 uint8_t original_swizzle[4];
1164 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1165
1166 for (int i = 0; i < nr_components; ++i) {
1167 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1168
1169 for (int j = 0; j < 4; ++j)
1170 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1171
1172 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1173 emit_mir_instruction(ctx, ins);
1174 }
1175 } else {
1176 emit_mir_instruction(ctx, ins);
1177 }
1178 }
1179
1180 #undef ALU_CASE
1181
1182 static void
1183 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1184 {
1185 nir_const_value *const_offset;
1186 unsigned offset, reg;
1187
1188 switch (instr->intrinsic) {
1189 case nir_intrinsic_discard_if:
1190 emit_condition(ctx, &instr->src[0], true);
1191
1192 /* fallthrough */
1193
1194 case nir_intrinsic_discard: {
1195 bool conditional = instr->intrinsic == nir_intrinsic_discard_if;
1196 struct midgard_instruction discard = v_branch(conditional, false);
1197 discard.branch.target_type = TARGET_DISCARD;
1198 emit_mir_instruction(ctx, discard);
1199
1200 ctx->can_discard = true;
1201 break;
1202 }
1203
1204 case nir_intrinsic_load_uniform:
1205 case nir_intrinsic_load_input:
1206 const_offset = nir_src_as_const_value(instr->src[0]);
1207 assert (const_offset && "no indirect inputs");
1208
1209 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1210
1211 reg = nir_dest_index(ctx, &instr->dest);
1212
1213 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1214 /* TODO: half-floats */
1215
1216 int uniform_offset = 0;
1217
1218 if (offset >= SPECIAL_UNIFORM_BASE) {
1219 /* XXX: Resolve which uniform */
1220 uniform_offset = 0;
1221 } else {
1222 /* Offset away from the special
1223 * uniform block */
1224
1225 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1226
1227 /* XXX */
1228 if (!entry) {
1229 DBG("WARNING: Unknown uniform %d\n", offset);
1230 break;
1231 }
1232
1233 uniform_offset = (uintptr_t) (entry) - 1;
1234 uniform_offset += ctx->special_uniforms;
1235 }
1236
1237 if (uniform_offset < ctx->uniform_cutoff) {
1238 /* Fast path: For the first 16 uniform,
1239 * accesses are 0-cycle, since they're
1240 * just a register fetch in the usual
1241 * case. So, we alias the registers
1242 * while we're still in SSA-space */
1243
1244 int reg_slot = 23 - uniform_offset;
1245 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1246 } else {
1247 /* Otherwise, read from the 'special'
1248 * UBO to access higher-indexed
1249 * uniforms, at a performance cost */
1250
1251 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1252
1253 /* TODO: Don't split */
1254 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1255 ins.load_store.address = uniform_offset >> 3;
1256
1257 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1258 emit_mir_instruction(ctx, ins);
1259 }
1260 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1261 /* XXX: Half-floats? */
1262 /* TODO: swizzle, mask */
1263
1264 midgard_instruction ins = m_load_vary_32(reg, offset);
1265
1266 midgard_varying_parameter p = {
1267 .is_varying = 1,
1268 .interpolation = midgard_interp_default,
1269 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1270 };
1271
1272 unsigned u;
1273 memcpy(&u, &p, sizeof(p));
1274 ins.load_store.varying_parameters = u;
1275
1276 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1277 emit_mir_instruction(ctx, ins);
1278 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1279 /* Constant encoded as a pinned constant */
1280
1281 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1282 ins.has_constants = true;
1283 ins.has_blend_constant = true;
1284 emit_mir_instruction(ctx, ins);
1285 } else if (ctx->is_blend) {
1286 /* For blend shaders, a load might be
1287 * translated various ways depending on what
1288 * we're loading. Figure out how this is used */
1289
1290 nir_variable *out = NULL;
1291
1292 nir_foreach_variable(var, &ctx->nir->inputs) {
1293 int drvloc = var->data.driver_location;
1294
1295 if (nir_intrinsic_base(instr) == drvloc) {
1296 out = var;
1297 break;
1298 }
1299 }
1300
1301 assert(out);
1302
1303 if (out->data.location == VARYING_SLOT_COL0) {
1304 /* Source color preloaded to r0 */
1305
1306 midgard_pin_output(ctx, reg, 0);
1307 } else if (out->data.location == VARYING_SLOT_COL1) {
1308 /* Destination color must be read from framebuffer */
1309
1310 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1311 ins.load_store.swizzle = 0; /* xxxx */
1312
1313 /* Read each component sequentially */
1314
1315 for (int c = 0; c < 4; ++c) {
1316 ins.load_store.mask = (1 << c);
1317 ins.load_store.unknown = c;
1318 emit_mir_instruction(ctx, ins);
1319 }
1320
1321 /* vadd.u2f hr2, abs(hr2), #0 */
1322
1323 midgard_vector_alu_src alu_src = blank_alu_src;
1324 alu_src.abs = true;
1325 alu_src.half = true;
1326
1327 midgard_instruction u2f = {
1328 .type = TAG_ALU_4,
1329 .ssa_args = {
1330 .src0 = reg,
1331 .src1 = SSA_UNUSED_0,
1332 .dest = reg,
1333 .inline_constant = true
1334 },
1335 .alu = {
1336 .op = midgard_alu_op_u2f,
1337 .reg_mode = midgard_reg_mode_half,
1338 .dest_override = midgard_dest_override_none,
1339 .mask = 0xF,
1340 .src1 = vector_alu_srco_unsigned(alu_src),
1341 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1342 }
1343 };
1344
1345 emit_mir_instruction(ctx, u2f);
1346
1347 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1348
1349 alu_src.abs = false;
1350
1351 midgard_instruction fmul = {
1352 .type = TAG_ALU_4,
1353 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1354 .ssa_args = {
1355 .src0 = reg,
1356 .dest = reg,
1357 .src1 = SSA_UNUSED_0,
1358 .inline_constant = true
1359 },
1360 .alu = {
1361 .op = midgard_alu_op_fmul,
1362 .reg_mode = midgard_reg_mode_full,
1363 .dest_override = midgard_dest_override_none,
1364 .outmod = midgard_outmod_sat,
1365 .mask = 0xFF,
1366 .src1 = vector_alu_srco_unsigned(alu_src),
1367 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1368 }
1369 };
1370
1371 emit_mir_instruction(ctx, fmul);
1372 } else {
1373 DBG("Unknown input in blend shader\n");
1374 assert(0);
1375 }
1376 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1377 midgard_instruction ins = m_load_attr_32(reg, offset);
1378 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1379 ins.load_store.mask = (1 << instr->num_components) - 1;
1380 emit_mir_instruction(ctx, ins);
1381 } else {
1382 DBG("Unknown load\n");
1383 assert(0);
1384 }
1385
1386 break;
1387
1388 case nir_intrinsic_store_output:
1389 const_offset = nir_src_as_const_value(instr->src[1]);
1390 assert(const_offset && "no indirect outputs");
1391
1392 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1393
1394 reg = nir_src_index(ctx, &instr->src[0]);
1395
1396 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1397 /* gl_FragColor is not emitted with load/store
1398 * instructions. Instead, it gets plonked into
1399 * r0 at the end of the shader and we do the
1400 * framebuffer writeout dance. TODO: Defer
1401 * writes */
1402
1403 midgard_pin_output(ctx, reg, 0);
1404
1405 /* Save the index we're writing to for later reference
1406 * in the epilogue */
1407
1408 ctx->fragment_output = reg;
1409 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1410 /* Varyings are written into one of two special
1411 * varying register, r26 or r27. The register itself is selected as the register
1412 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1413 *
1414 * Normally emitting fmov's is frowned upon,
1415 * but due to unique constraints of
1416 * REGISTER_VARYING, fmov emission + a
1417 * dedicated cleanup pass is the only way to
1418 * guarantee correctness when considering some
1419 * (common) edge cases XXX: FIXME */
1420
1421 /* If this varying corresponds to a constant (why?!),
1422 * emit that now since it won't get picked up by
1423 * hoisting (since there is no corresponding move
1424 * emitted otherwise) */
1425
1426 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1427
1428 if (constant_value) {
1429 /* Special case: emit the varying write
1430 * directly to r26 (looks funny in asm but it's
1431 * fine) and emit the store _now_. Possibly
1432 * slightly slower, but this is a really stupid
1433 * special case anyway (why on earth would you
1434 * have a constant varying? Your own fault for
1435 * slightly worse perf :P) */
1436
1437 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1438 attach_constants(ctx, &ins, constant_value, reg + 1);
1439 emit_mir_instruction(ctx, ins);
1440
1441 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1442 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1443 emit_mir_instruction(ctx, st);
1444 } else {
1445 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1446
1447 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1448 }
1449 } else {
1450 DBG("Unknown store\n");
1451 assert(0);
1452 }
1453
1454 break;
1455
1456 case nir_intrinsic_load_alpha_ref_float:
1457 assert(instr->dest.is_ssa);
1458
1459 float ref_value = ctx->alpha_ref;
1460
1461 float *v = ralloc_array(NULL, float, 4);
1462 memcpy(v, &ref_value, sizeof(float));
1463 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1464 break;
1465
1466
1467 default:
1468 printf ("Unhandled intrinsic\n");
1469 assert(0);
1470 break;
1471 }
1472 }
1473
1474 static unsigned
1475 midgard_tex_format(enum glsl_sampler_dim dim)
1476 {
1477 switch (dim) {
1478 case GLSL_SAMPLER_DIM_2D:
1479 case GLSL_SAMPLER_DIM_EXTERNAL:
1480 return TEXTURE_2D;
1481
1482 case GLSL_SAMPLER_DIM_3D:
1483 return TEXTURE_3D;
1484
1485 case GLSL_SAMPLER_DIM_CUBE:
1486 return TEXTURE_CUBE;
1487
1488 default:
1489 DBG("Unknown sampler dim type\n");
1490 assert(0);
1491 return 0;
1492 }
1493 }
1494
1495 static void
1496 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1497 {
1498 /* TODO */
1499 //assert (!instr->sampler);
1500 //assert (!instr->texture_array_size);
1501 assert (instr->op == nir_texop_tex);
1502
1503 /* Allocate registers via a round robin scheme to alternate between the two registers */
1504 int reg = ctx->texture_op_count & 1;
1505 int in_reg = reg, out_reg = reg;
1506
1507 /* Make room for the reg */
1508
1509 if (ctx->texture_index[reg] > -1)
1510 unalias_ssa(ctx, ctx->texture_index[reg]);
1511
1512 int texture_index = instr->texture_index;
1513 int sampler_index = texture_index;
1514
1515 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1516 switch (instr->src[i].src_type) {
1517 case nir_tex_src_coord: {
1518 int index = nir_src_index(ctx, &instr->src[i].src);
1519
1520 midgard_vector_alu_src alu_src = blank_alu_src;
1521 alu_src.swizzle = (COMPONENT_Y << 2);
1522
1523 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1524 emit_mir_instruction(ctx, ins);
1525
1526 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1527
1528 break;
1529 }
1530
1531 default: {
1532 DBG("Unknown source type\n");
1533 //assert(0);
1534 break;
1535 }
1536 }
1537 }
1538
1539 /* No helper to build texture words -- we do it all here */
1540 midgard_instruction ins = {
1541 .type = TAG_TEXTURE_4,
1542 .texture = {
1543 .op = TEXTURE_OP_NORMAL,
1544 .format = midgard_tex_format(instr->sampler_dim),
1545 .texture_handle = texture_index,
1546 .sampler_handle = sampler_index,
1547
1548 /* TODO: Don't force xyzw */
1549 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1550 .mask = 0xF,
1551
1552 /* TODO: half */
1553 //.in_reg_full = 1,
1554 .out_full = 1,
1555
1556 .filter = 1,
1557
1558 /* Always 1 */
1559 .unknown7 = 1,
1560
1561 /* Assume we can continue; hint it out later */
1562 .cont = 1,
1563 }
1564 };
1565
1566 /* Set registers to read and write from the same place */
1567 ins.texture.in_reg_select = in_reg;
1568 ins.texture.out_reg_select = out_reg;
1569
1570 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1571 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1572 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1573 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1574 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1575 } else {
1576 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1577 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1578 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1579 }
1580
1581 emit_mir_instruction(ctx, ins);
1582
1583 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1584
1585 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1586 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1587 ctx->texture_index[reg] = o_index;
1588
1589 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1590 emit_mir_instruction(ctx, ins2);
1591
1592 /* Used for .cont and .last hinting */
1593 ctx->texture_op_count++;
1594 }
1595
1596 static void
1597 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1598 {
1599 switch (instr->type) {
1600 case nir_jump_break: {
1601 /* Emit a branch out of the loop */
1602 struct midgard_instruction br = v_branch(false, false);
1603 br.branch.target_type = TARGET_BREAK;
1604 br.branch.target_break = ctx->current_loop;
1605 emit_mir_instruction(ctx, br);
1606
1607 DBG("break..\n");
1608 break;
1609 }
1610
1611 default:
1612 DBG("Unknown jump type %d\n", instr->type);
1613 break;
1614 }
1615 }
1616
1617 static void
1618 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1619 {
1620 switch (instr->type) {
1621 case nir_instr_type_load_const:
1622 emit_load_const(ctx, nir_instr_as_load_const(instr));
1623 break;
1624
1625 case nir_instr_type_intrinsic:
1626 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1627 break;
1628
1629 case nir_instr_type_alu:
1630 emit_alu(ctx, nir_instr_as_alu(instr));
1631 break;
1632
1633 case nir_instr_type_tex:
1634 emit_tex(ctx, nir_instr_as_tex(instr));
1635 break;
1636
1637 case nir_instr_type_jump:
1638 emit_jump(ctx, nir_instr_as_jump(instr));
1639 break;
1640
1641 case nir_instr_type_ssa_undef:
1642 /* Spurious */
1643 break;
1644
1645 default:
1646 DBG("Unhandled instruction type\n");
1647 break;
1648 }
1649 }
1650
1651 /* Determine the actual hardware from the index based on the RA results or special values */
1652
1653 static int
1654 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1655 {
1656 if (reg >= SSA_FIXED_MINIMUM)
1657 return SSA_REG_FROM_FIXED(reg);
1658
1659 if (reg >= 0) {
1660 assert(reg < maxreg);
1661 int r = ra_get_node_reg(g, reg);
1662 ctx->work_registers = MAX2(ctx->work_registers, r);
1663 return r;
1664 }
1665
1666 switch (reg) {
1667 /* fmov style unused */
1668 case SSA_UNUSED_0:
1669 return REGISTER_UNUSED;
1670
1671 /* lut style unused */
1672 case SSA_UNUSED_1:
1673 return REGISTER_UNUSED;
1674
1675 default:
1676 DBG("Unknown SSA register alias %d\n", reg);
1677 assert(0);
1678 return 31;
1679 }
1680 }
1681
1682 static unsigned int
1683 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1684 {
1685 /* Choose the first available register to minimise reported register pressure */
1686
1687 for (int i = 0; i < 16; ++i) {
1688 if (BITSET_TEST(regs, i)) {
1689 return i;
1690 }
1691 }
1692
1693 assert(0);
1694 return 0;
1695 }
1696
1697 static bool
1698 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1699 {
1700 if (ins->ssa_args.src0 == src) return true;
1701 if (ins->ssa_args.src1 == src) return true;
1702
1703 return false;
1704 }
1705
1706 static bool
1707 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1708 {
1709 /* Check the rest of the block for liveness */
1710 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1711 if (midgard_is_live_in_instr(ins, src))
1712 return true;
1713 }
1714
1715 /* Check the rest of the blocks for liveness */
1716 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1717 mir_foreach_instr_in_block(b, ins) {
1718 if (midgard_is_live_in_instr(ins, src))
1719 return true;
1720 }
1721 }
1722
1723 /* TODO: How does control flow interact in complex shaders? */
1724
1725 return false;
1726 }
1727
1728 static void
1729 allocate_registers(compiler_context *ctx)
1730 {
1731 /* First, initialize the RA */
1732 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1733
1734 /* Create a primary (general purpose) class, as well as special purpose
1735 * pipeline register classes */
1736
1737 int primary_class = ra_alloc_reg_class(regs);
1738 int varying_class = ra_alloc_reg_class(regs);
1739
1740 /* Add the full set of work registers */
1741 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1742 for (int i = 0; i < work_count; ++i)
1743 ra_class_add_reg(regs, primary_class, i);
1744
1745 /* Add special registers */
1746 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1747 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1748
1749 /* We're done setting up */
1750 ra_set_finalize(regs, NULL);
1751
1752 /* Transform the MIR into squeezed index form */
1753 mir_foreach_block(ctx, block) {
1754 mir_foreach_instr_in_block(block, ins) {
1755 if (ins->compact_branch) continue;
1756
1757 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1758 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1759 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1760 }
1761 if (midgard_debug & MIDGARD_DBG_SHADERS)
1762 print_mir_block(block);
1763 }
1764
1765 /* Let's actually do register allocation */
1766 int nodes = ctx->temp_count;
1767 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1768
1769 /* Set everything to the work register class, unless it has somewhere
1770 * special to go */
1771
1772 mir_foreach_block(ctx, block) {
1773 mir_foreach_instr_in_block(block, ins) {
1774 if (ins->compact_branch) continue;
1775
1776 if (ins->ssa_args.dest < 0) continue;
1777
1778 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1779
1780 int class = primary_class;
1781
1782 ra_set_node_class(g, ins->ssa_args.dest, class);
1783 }
1784 }
1785
1786 for (int index = 0; index <= ctx->max_hash; ++index) {
1787 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1788
1789 if (temp) {
1790 unsigned reg = temp - 1;
1791 int t = find_or_allocate_temp(ctx, index);
1792 ra_set_node_reg(g, t, reg);
1793 }
1794 }
1795
1796 /* Determine liveness */
1797
1798 int *live_start = malloc(nodes * sizeof(int));
1799 int *live_end = malloc(nodes * sizeof(int));
1800
1801 /* Initialize as non-existent */
1802
1803 for (int i = 0; i < nodes; ++i) {
1804 live_start[i] = live_end[i] = -1;
1805 }
1806
1807 int d = 0;
1808
1809 mir_foreach_block(ctx, block) {
1810 mir_foreach_instr_in_block(block, ins) {
1811 if (ins->compact_branch) continue;
1812
1813 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1814 /* If this destination is not yet live, it is now since we just wrote it */
1815
1816 int dest = ins->ssa_args.dest;
1817
1818 if (live_start[dest] == -1)
1819 live_start[dest] = d;
1820 }
1821
1822 /* Since we just used a source, the source might be
1823 * dead now. Scan the rest of the block for
1824 * invocations, and if there are none, the source dies
1825 * */
1826
1827 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1828
1829 for (int src = 0; src < 2; ++src) {
1830 int s = sources[src];
1831
1832 if (s < 0) continue;
1833
1834 if (s >= SSA_FIXED_MINIMUM) continue;
1835
1836 if (!is_live_after(ctx, block, ins, s)) {
1837 live_end[s] = d;
1838 }
1839 }
1840
1841 ++d;
1842 }
1843 }
1844
1845 /* If a node still hasn't been killed, kill it now */
1846
1847 for (int i = 0; i < nodes; ++i) {
1848 /* live_start == -1 most likely indicates a pinned output */
1849
1850 if (live_end[i] == -1)
1851 live_end[i] = d;
1852 }
1853
1854 /* Setup interference between nodes that are live at the same time */
1855
1856 for (int i = 0; i < nodes; ++i) {
1857 for (int j = i + 1; j < nodes; ++j) {
1858 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1859 ra_add_node_interference(g, i, j);
1860 }
1861 }
1862
1863 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1864
1865 if (!ra_allocate(g)) {
1866 DBG("Error allocating registers\n");
1867 assert(0);
1868 }
1869
1870 /* Cleanup */
1871 free(live_start);
1872 free(live_end);
1873
1874 mir_foreach_block(ctx, block) {
1875 mir_foreach_instr_in_block(block, ins) {
1876 if (ins->compact_branch) continue;
1877
1878 ssa_args args = ins->ssa_args;
1879
1880 switch (ins->type) {
1881 case TAG_ALU_4:
1882 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1883
1884 ins->registers.src2_imm = args.inline_constant;
1885
1886 if (args.inline_constant) {
1887 /* Encode inline 16-bit constant as a vector by default */
1888
1889 ins->registers.src2_reg = ins->inline_constant >> 11;
1890
1891 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1892
1893 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1894 ins->alu.src2 = imm << 2;
1895 } else {
1896 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1897 }
1898
1899 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1900
1901 break;
1902
1903 case TAG_LOAD_STORE_4: {
1904 if (OP_IS_STORE(ins->load_store.op)) {
1905 /* TODO: use ssa_args for store_vary */
1906 ins->load_store.reg = 0;
1907 } else {
1908 bool has_dest = args.dest >= 0;
1909 int ssa_arg = has_dest ? args.dest : args.src0;
1910
1911 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1912 }
1913
1914 break;
1915 }
1916
1917 default:
1918 break;
1919 }
1920 }
1921 }
1922 }
1923
1924 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1925 * use scalar ALU instructions, for functional or performance reasons. To do
1926 * this, we just demote vector ALU payloads to scalar. */
1927
1928 static int
1929 component_from_mask(unsigned mask)
1930 {
1931 for (int c = 0; c < 4; ++c) {
1932 if (mask & (3 << (2 * c)))
1933 return c;
1934 }
1935
1936 assert(0);
1937 return 0;
1938 }
1939
1940 static bool
1941 is_single_component_mask(unsigned mask)
1942 {
1943 int components = 0;
1944
1945 for (int c = 0; c < 4; ++c)
1946 if (mask & (3 << (2 * c)))
1947 components++;
1948
1949 return components == 1;
1950 }
1951
1952 /* Create a mask of accessed components from a swizzle to figure out vector
1953 * dependencies */
1954
1955 static unsigned
1956 swizzle_to_access_mask(unsigned swizzle)
1957 {
1958 unsigned component_mask = 0;
1959
1960 for (int i = 0; i < 4; ++i) {
1961 unsigned c = (swizzle >> (2 * i)) & 3;
1962 component_mask |= (1 << c);
1963 }
1964
1965 return component_mask;
1966 }
1967
1968 static unsigned
1969 vector_to_scalar_source(unsigned u)
1970 {
1971 midgard_vector_alu_src v;
1972 memcpy(&v, &u, sizeof(v));
1973
1974 midgard_scalar_alu_src s = {
1975 .abs = v.abs,
1976 .negate = v.negate,
1977 .full = !v.half,
1978 .component = (v.swizzle & 3) << 1
1979 };
1980
1981 unsigned o;
1982 memcpy(&o, &s, sizeof(s));
1983
1984 return o & ((1 << 6) - 1);
1985 }
1986
1987 static midgard_scalar_alu
1988 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1989 {
1990 /* The output component is from the mask */
1991 midgard_scalar_alu s = {
1992 .op = v.op,
1993 .src1 = vector_to_scalar_source(v.src1),
1994 .src2 = vector_to_scalar_source(v.src2),
1995 .unknown = 0,
1996 .outmod = v.outmod,
1997 .output_full = 1, /* TODO: Half */
1998 .output_component = component_from_mask(v.mask) << 1,
1999 };
2000
2001 /* Inline constant is passed along rather than trying to extract it
2002 * from v */
2003
2004 if (ins->ssa_args.inline_constant) {
2005 uint16_t imm = 0;
2006 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
2007 imm |= (lower_11 >> 9) & 3;
2008 imm |= (lower_11 >> 6) & 4;
2009 imm |= (lower_11 >> 2) & 0x38;
2010 imm |= (lower_11 & 63) << 6;
2011
2012 s.src2 = imm;
2013 }
2014
2015 return s;
2016 }
2017
2018 /* Midgard prefetches instruction types, so during emission we need to
2019 * lookahead too. Unless this is the last instruction, in which we return 1. Or
2020 * if this is the second to last and the last is an ALU, then it's also 1... */
2021
2022 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
2023 tag == TAG_ALU_12 || tag == TAG_ALU_16)
2024
2025 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
2026 bytes_emitted += sizeof(type)
2027
2028 static void
2029 emit_binary_vector_instruction(midgard_instruction *ains,
2030 uint16_t *register_words, int *register_words_count,
2031 uint64_t *body_words, size_t *body_size, int *body_words_count,
2032 size_t *bytes_emitted)
2033 {
2034 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
2035 *bytes_emitted += sizeof(midgard_reg_info);
2036
2037 body_size[*body_words_count] = sizeof(midgard_vector_alu);
2038 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
2039 *bytes_emitted += sizeof(midgard_vector_alu);
2040 }
2041
2042 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
2043 * mind that we are a vector architecture and we can write to different
2044 * components simultaneously */
2045
2046 static bool
2047 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
2048 {
2049 /* Each instruction reads some registers and writes to a register. See
2050 * where the first writes */
2051
2052 /* Figure out where exactly we wrote to */
2053 int source = first->ssa_args.dest;
2054 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
2055
2056 /* As long as the second doesn't read from the first, we're okay */
2057 if (second->ssa_args.src0 == source) {
2058 if (first->type == TAG_ALU_4) {
2059 /* Figure out which components we just read from */
2060
2061 int q = second->alu.src1;
2062 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2063
2064 /* Check if there are components in common, and fail if so */
2065 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2066 return false;
2067 } else
2068 return false;
2069
2070 }
2071
2072 if (second->ssa_args.src1 == source)
2073 return false;
2074
2075 /* Otherwise, it's safe in that regard. Another data hazard is both
2076 * writing to the same place, of course */
2077
2078 if (second->ssa_args.dest == source) {
2079 /* ...but only if the components overlap */
2080 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2081
2082 if (dest_mask & source_mask)
2083 return false;
2084 }
2085
2086 /* ...That's it */
2087 return true;
2088 }
2089
2090 static bool
2091 midgard_has_hazard(
2092 midgard_instruction **segment, unsigned segment_size,
2093 midgard_instruction *ains)
2094 {
2095 for (int s = 0; s < segment_size; ++s)
2096 if (!can_run_concurrent_ssa(segment[s], ains))
2097 return true;
2098
2099 return false;
2100
2101
2102 }
2103
2104 /* Schedules, but does not emit, a single basic block. After scheduling, the
2105 * final tag and size of the block are known, which are necessary for branching
2106 * */
2107
2108 static midgard_bundle
2109 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2110 {
2111 int instructions_emitted = 0, instructions_consumed = -1;
2112 midgard_bundle bundle = { 0 };
2113
2114 uint8_t tag = ins->type;
2115
2116 /* Default to the instruction's tag */
2117 bundle.tag = tag;
2118
2119 switch (ins->type) {
2120 case TAG_ALU_4: {
2121 uint32_t control = 0;
2122 size_t bytes_emitted = sizeof(control);
2123
2124 /* TODO: Constant combining */
2125 int index = 0, last_unit = 0;
2126
2127 /* Previous instructions, for the purpose of parallelism */
2128 midgard_instruction *segment[4] = {0};
2129 int segment_size = 0;
2130
2131 instructions_emitted = -1;
2132 midgard_instruction *pins = ins;
2133
2134 for (;;) {
2135 midgard_instruction *ains = pins;
2136
2137 /* Advance instruction pointer */
2138 if (index) {
2139 ains = mir_next_op(pins);
2140 pins = ains;
2141 }
2142
2143 /* Out-of-work condition */
2144 if ((struct list_head *) ains == &block->instructions)
2145 break;
2146
2147 /* Ensure that the chain can continue */
2148 if (ains->type != TAG_ALU_4) break;
2149
2150 /* According to the presentation "The ARM
2151 * Mali-T880 Mobile GPU" from HotChips 27,
2152 * there are two pipeline stages. Branching
2153 * position determined experimentally. Lines
2154 * are executed in parallel:
2155 *
2156 * [ VMUL ] [ SADD ]
2157 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2158 *
2159 * Verify that there are no ordering dependencies here.
2160 *
2161 * TODO: Allow for parallelism!!!
2162 */
2163
2164 /* Pick a unit for it if it doesn't force a particular unit */
2165
2166 int unit = ains->unit;
2167
2168 if (!unit) {
2169 int op = ains->alu.op;
2170 int units = alu_opcode_props[op];
2171
2172 /* TODO: Promotion of scalars to vectors */
2173 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2174
2175 if (!vector)
2176 assert(units & UNITS_SCALAR);
2177
2178 if (vector) {
2179 if (last_unit >= UNIT_VADD) {
2180 if (units & UNIT_VLUT)
2181 unit = UNIT_VLUT;
2182 else
2183 break;
2184 } else {
2185 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2186 unit = UNIT_VMUL;
2187 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2188 unit = UNIT_VADD;
2189 else if (units & UNIT_VLUT)
2190 unit = UNIT_VLUT;
2191 else
2192 break;
2193 }
2194 } else {
2195 if (last_unit >= UNIT_VADD) {
2196 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2197 unit = UNIT_SMUL;
2198 else if (units & UNIT_VLUT)
2199 unit = UNIT_VLUT;
2200 else
2201 break;
2202 } else {
2203 if ((units & UNIT_SADD) && !(control & UNIT_SADD) && !midgard_has_hazard(segment, segment_size, ains))
2204 unit = UNIT_SADD;
2205 else if (units & UNIT_SMUL)
2206 unit = ((units & UNIT_VMUL) && !(control & UNIT_VMUL)) ? UNIT_VMUL : UNIT_SMUL;
2207 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2208 unit = UNIT_VADD;
2209 else
2210 break;
2211 }
2212 }
2213
2214 assert(unit & units);
2215 }
2216
2217 /* Late unit check, this time for encoding (not parallelism) */
2218 if (unit <= last_unit) break;
2219
2220 /* Clear the segment */
2221 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2222 segment_size = 0;
2223
2224 if (midgard_has_hazard(segment, segment_size, ains))
2225 break;
2226
2227 /* We're good to go -- emit the instruction */
2228 ains->unit = unit;
2229
2230 segment[segment_size++] = ains;
2231
2232 /* Only one set of embedded constants per
2233 * bundle possible; if we have more, we must
2234 * break the chain early, unfortunately */
2235
2236 if (ains->has_constants) {
2237 if (bundle.has_embedded_constants) {
2238 /* ...but if there are already
2239 * constants but these are the
2240 * *same* constants, we let it
2241 * through */
2242
2243 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2244 break;
2245 } else {
2246 bundle.has_embedded_constants = true;
2247 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2248
2249 /* If this is a blend shader special constant, track it for patching */
2250 if (ains->has_blend_constant)
2251 bundle.has_blend_constant = true;
2252 }
2253 }
2254
2255 if (ains->unit & UNITS_ANY_VECTOR) {
2256 emit_binary_vector_instruction(ains, bundle.register_words,
2257 &bundle.register_words_count, bundle.body_words,
2258 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2259 } else if (ains->compact_branch) {
2260 /* All of r0 has to be written out
2261 * along with the branch writeout.
2262 * (slow!) */
2263
2264 if (ains->writeout) {
2265 if (index == 0) {
2266 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2267 ins.unit = UNIT_VMUL;
2268
2269 control |= ins.unit;
2270
2271 emit_binary_vector_instruction(&ins, bundle.register_words,
2272 &bundle.register_words_count, bundle.body_words,
2273 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2274 } else {
2275 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2276 bool written_late = false;
2277 bool components[4] = { 0 };
2278 uint16_t register_dep_mask = 0;
2279 uint16_t written_mask = 0;
2280
2281 midgard_instruction *qins = ins;
2282 for (int t = 0; t < index; ++t) {
2283 if (qins->registers.out_reg != 0) {
2284 /* Mark down writes */
2285
2286 written_mask |= (1 << qins->registers.out_reg);
2287 } else {
2288 /* Mark down the register dependencies for errata check */
2289
2290 if (qins->registers.src1_reg < 16)
2291 register_dep_mask |= (1 << qins->registers.src1_reg);
2292
2293 if (qins->registers.src2_reg < 16)
2294 register_dep_mask |= (1 << qins->registers.src2_reg);
2295
2296 int mask = qins->alu.mask;
2297
2298 for (int c = 0; c < 4; ++c)
2299 if (mask & (0x3 << (2 * c)))
2300 components[c] = true;
2301
2302 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2303
2304 if (qins->unit == UNIT_VLUT)
2305 written_late = true;
2306 }
2307
2308 /* Advance instruction pointer */
2309 qins = mir_next_op(qins);
2310 }
2311
2312
2313 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2314 if (register_dep_mask & written_mask) {
2315 DBG("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2316 break;
2317 }
2318
2319 if (written_late)
2320 break;
2321
2322 /* If even a single component is not written, break it up (conservative check). */
2323 bool breakup = false;
2324
2325 for (int c = 0; c < 4; ++c)
2326 if (!components[c])
2327 breakup = true;
2328
2329 if (breakup)
2330 break;
2331
2332 /* Otherwise, we're free to proceed */
2333 }
2334 }
2335
2336 if (ains->unit == ALU_ENAB_BRANCH) {
2337 bundle.body_size[bundle.body_words_count] = sizeof(midgard_branch_extended);
2338 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->branch_extended, sizeof(midgard_branch_extended));
2339 bytes_emitted += sizeof(midgard_branch_extended);
2340 } else {
2341 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2342 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2343 bytes_emitted += sizeof(ains->br_compact);
2344 }
2345 } else {
2346 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2347 bytes_emitted += sizeof(midgard_reg_info);
2348
2349 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2350 bundle.body_words_count++;
2351 bytes_emitted += sizeof(midgard_scalar_alu);
2352 }
2353
2354 /* Defer marking until after writing to allow for break */
2355 control |= ains->unit;
2356 last_unit = ains->unit;
2357 ++instructions_emitted;
2358 ++index;
2359 }
2360
2361 /* Bubble up the number of instructions for skipping */
2362 instructions_consumed = index - 1;
2363
2364 int padding = 0;
2365
2366 /* Pad ALU op to nearest word */
2367
2368 if (bytes_emitted & 15) {
2369 padding = 16 - (bytes_emitted & 15);
2370 bytes_emitted += padding;
2371 }
2372
2373 /* Constants must always be quadwords */
2374 if (bundle.has_embedded_constants)
2375 bytes_emitted += 16;
2376
2377 /* Size ALU instruction for tag */
2378 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2379 bundle.padding = padding;
2380 bundle.control = bundle.tag | control;
2381
2382 break;
2383 }
2384
2385 case TAG_LOAD_STORE_4: {
2386 /* Load store instructions have two words at once. If
2387 * we only have one queued up, we need to NOP pad.
2388 * Otherwise, we store both in succession to save space
2389 * and cycles -- letting them go in parallel -- skip
2390 * the next. The usefulness of this optimisation is
2391 * greatly dependent on the quality of the instruction
2392 * scheduler.
2393 */
2394
2395 midgard_instruction *next_op = mir_next_op(ins);
2396
2397 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2398 /* As the two operate concurrently, make sure
2399 * they are not dependent */
2400
2401 if (can_run_concurrent_ssa(ins, next_op) || true) {
2402 /* Skip ahead, since it's redundant with the pair */
2403 instructions_consumed = 1 + (instructions_emitted++);
2404 }
2405 }
2406
2407 break;
2408 }
2409
2410 default:
2411 /* Texture ops default to single-op-per-bundle scheduling */
2412 break;
2413 }
2414
2415 /* Copy the instructions into the bundle */
2416 bundle.instruction_count = instructions_emitted + 1;
2417
2418 int used_idx = 0;
2419
2420 midgard_instruction *uins = ins;
2421 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2422 bundle.instructions[used_idx++] = *uins;
2423 uins = mir_next_op(uins);
2424 }
2425
2426 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2427
2428 return bundle;
2429 }
2430
2431 static int
2432 quadword_size(int tag)
2433 {
2434 switch (tag) {
2435 case TAG_ALU_4:
2436 return 1;
2437
2438 case TAG_ALU_8:
2439 return 2;
2440
2441 case TAG_ALU_12:
2442 return 3;
2443
2444 case TAG_ALU_16:
2445 return 4;
2446
2447 case TAG_LOAD_STORE_4:
2448 return 1;
2449
2450 case TAG_TEXTURE_4:
2451 return 1;
2452
2453 default:
2454 assert(0);
2455 return 0;
2456 }
2457 }
2458
2459 /* Schedule a single block by iterating its instruction to create bundles.
2460 * While we go, tally about the bundle sizes to compute the block size. */
2461
2462 static void
2463 schedule_block(compiler_context *ctx, midgard_block *block)
2464 {
2465 util_dynarray_init(&block->bundles, NULL);
2466
2467 block->quadword_count = 0;
2468
2469 mir_foreach_instr_in_block(block, ins) {
2470 int skip;
2471 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2472 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2473
2474 if (bundle.has_blend_constant) {
2475 /* TODO: Multiblock? */
2476 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2477 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2478 }
2479
2480 while(skip--)
2481 ins = mir_next_op(ins);
2482
2483 block->quadword_count += quadword_size(bundle.tag);
2484 }
2485
2486 block->is_scheduled = true;
2487 }
2488
2489 static void
2490 schedule_program(compiler_context *ctx)
2491 {
2492 allocate_registers(ctx);
2493
2494 mir_foreach_block(ctx, block) {
2495 schedule_block(ctx, block);
2496 }
2497 }
2498
2499 /* After everything is scheduled, emit whole bundles at a time */
2500
2501 static void
2502 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2503 {
2504 int lookahead = next_tag << 4;
2505
2506 switch (bundle->tag) {
2507 case TAG_ALU_4:
2508 case TAG_ALU_8:
2509 case TAG_ALU_12:
2510 case TAG_ALU_16: {
2511 /* Actually emit each component */
2512 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2513
2514 for (int i = 0; i < bundle->register_words_count; ++i)
2515 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2516
2517 /* Emit body words based on the instructions bundled */
2518 for (int i = 0; i < bundle->instruction_count; ++i) {
2519 midgard_instruction *ins = &bundle->instructions[i];
2520
2521 if (ins->unit & UNITS_ANY_VECTOR) {
2522 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2523 } else if (ins->compact_branch) {
2524 /* Dummy move, XXX DRY */
2525 if ((i == 0) && ins->writeout) {
2526 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2527 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2528 }
2529
2530 if (ins->unit == ALU_ENAB_BR_COMPACT) {
2531 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2532 } else {
2533 memcpy(util_dynarray_grow(emission, sizeof(ins->branch_extended)), &ins->branch_extended, sizeof(ins->branch_extended));
2534 }
2535 } else {
2536 /* Scalar */
2537 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2538 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2539 }
2540 }
2541
2542 /* Emit padding (all zero) */
2543 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2544
2545 /* Tack on constants */
2546
2547 if (bundle->has_embedded_constants) {
2548 util_dynarray_append(emission, float, bundle->constants[0]);
2549 util_dynarray_append(emission, float, bundle->constants[1]);
2550 util_dynarray_append(emission, float, bundle->constants[2]);
2551 util_dynarray_append(emission, float, bundle->constants[3]);
2552 }
2553
2554 break;
2555 }
2556
2557 case TAG_LOAD_STORE_4: {
2558 /* One or two composing instructions */
2559
2560 uint64_t current64, next64 = LDST_NOP;
2561
2562 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2563
2564 if (bundle->instruction_count == 2)
2565 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2566
2567 midgard_load_store instruction = {
2568 .type = bundle->tag,
2569 .next_type = next_tag,
2570 .word1 = current64,
2571 .word2 = next64
2572 };
2573
2574 util_dynarray_append(emission, midgard_load_store, instruction);
2575
2576 break;
2577 }
2578
2579 case TAG_TEXTURE_4: {
2580 /* Texture instructions are easy, since there is no
2581 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2582
2583 midgard_instruction *ins = &bundle->instructions[0];
2584
2585 ins->texture.type = TAG_TEXTURE_4;
2586 ins->texture.next_type = next_tag;
2587
2588 ctx->texture_op_count--;
2589
2590 if (!ctx->texture_op_count) {
2591 ins->texture.cont = 0;
2592 ins->texture.last = 1;
2593 }
2594
2595 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2596 break;
2597 }
2598
2599 default:
2600 DBG("Unknown midgard instruction type\n");
2601 assert(0);
2602 break;
2603 }
2604 }
2605
2606
2607 /* ALU instructions can inline or embed constants, which decreases register
2608 * pressure and saves space. */
2609
2610 #define CONDITIONAL_ATTACH(src) { \
2611 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2612 \
2613 if (entry) { \
2614 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2615 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2616 } \
2617 }
2618
2619 static void
2620 inline_alu_constants(compiler_context *ctx)
2621 {
2622 mir_foreach_instr(ctx, alu) {
2623 /* Other instructions cannot inline constants */
2624 if (alu->type != TAG_ALU_4) continue;
2625
2626 /* If there is already a constant here, we can do nothing */
2627 if (alu->has_constants) continue;
2628
2629 CONDITIONAL_ATTACH(src0);
2630
2631 if (!alu->has_constants) {
2632 CONDITIONAL_ATTACH(src1)
2633 } else if (!alu->inline_constant) {
2634 /* Corner case: _two_ vec4 constants, for instance with a
2635 * csel. For this case, we can only use a constant
2636 * register for one, we'll have to emit a move for the
2637 * other. Note, if both arguments are constants, then
2638 * necessarily neither argument depends on the value of
2639 * any particular register. As the destination register
2640 * will be wiped, that means we can spill the constant
2641 * to the destination register.
2642 */
2643
2644 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2645 unsigned scratch = alu->ssa_args.dest;
2646
2647 if (entry) {
2648 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2649 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2650
2651 /* Force a break XXX Defer r31 writes */
2652 ins.unit = UNIT_VLUT;
2653
2654 /* Set the source */
2655 alu->ssa_args.src1 = scratch;
2656
2657 /* Inject us -before- the last instruction which set r31 */
2658 mir_insert_instruction_before(mir_prev_op(alu), ins);
2659 }
2660 }
2661 }
2662 }
2663
2664 /* Midgard supports two types of constants, embedded constants (128-bit) and
2665 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2666 * constants can be demoted to inline constants, for space savings and
2667 * sometimes a performance boost */
2668
2669 static void
2670 embedded_to_inline_constant(compiler_context *ctx)
2671 {
2672 mir_foreach_instr(ctx, ins) {
2673 if (!ins->has_constants) continue;
2674
2675 if (ins->ssa_args.inline_constant) continue;
2676
2677 /* Blend constants must not be inlined by definition */
2678 if (ins->has_blend_constant) continue;
2679
2680 /* src1 cannot be an inline constant due to encoding
2681 * restrictions. So, if possible we try to flip the arguments
2682 * in that case */
2683
2684 int op = ins->alu.op;
2685
2686 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2687 /* Flip based on op. Fallthrough intentional */
2688
2689 switch (op) {
2690 /* These ops require an operational change to flip their arguments TODO */
2691 case midgard_alu_op_flt:
2692 case midgard_alu_op_fle:
2693 case midgard_alu_op_ilt:
2694 case midgard_alu_op_ile:
2695 case midgard_alu_op_fcsel:
2696 case midgard_alu_op_icsel:
2697 case midgard_alu_op_isub:
2698 DBG("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2699 break;
2700
2701 /* These ops are commutative and Just Flip */
2702 case midgard_alu_op_fne:
2703 case midgard_alu_op_fadd:
2704 case midgard_alu_op_fmul:
2705 case midgard_alu_op_fmin:
2706 case midgard_alu_op_fmax:
2707 case midgard_alu_op_iadd:
2708 case midgard_alu_op_imul:
2709 case midgard_alu_op_feq:
2710 case midgard_alu_op_ieq:
2711 case midgard_alu_op_ine:
2712 case midgard_alu_op_iand:
2713 case midgard_alu_op_ior:
2714 case midgard_alu_op_ixor:
2715 /* Flip the SSA numbers */
2716 ins->ssa_args.src0 = ins->ssa_args.src1;
2717 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2718
2719 /* And flip the modifiers */
2720
2721 unsigned src_temp;
2722
2723 src_temp = ins->alu.src2;
2724 ins->alu.src2 = ins->alu.src1;
2725 ins->alu.src1 = src_temp;
2726
2727 default:
2728 break;
2729 }
2730 }
2731
2732 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2733 /* Extract the source information */
2734
2735 midgard_vector_alu_src *src;
2736 int q = ins->alu.src2;
2737 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2738 src = m;
2739
2740 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2741 int component = src->swizzle & 3;
2742
2743 /* Scale constant appropriately, if we can legally */
2744 uint16_t scaled_constant = 0;
2745
2746 /* XXX: Check legality */
2747 if (midgard_is_integer_op(op)) {
2748 /* TODO: Inline integer */
2749 continue;
2750
2751 unsigned int *iconstants = (unsigned int *) ins->constants;
2752 scaled_constant = (uint16_t) iconstants[component];
2753
2754 /* Constant overflow after resize */
2755 if (scaled_constant != iconstants[component])
2756 continue;
2757 } else {
2758 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2759 }
2760
2761 /* We don't know how to handle these with a constant */
2762
2763 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2764 DBG("Bailing inline constant...\n");
2765 continue;
2766 }
2767
2768 /* Make sure that the constant is not itself a
2769 * vector by checking if all accessed values
2770 * (by the swizzle) are the same. */
2771
2772 uint32_t *cons = (uint32_t *) ins->constants;
2773 uint32_t value = cons[component];
2774
2775 bool is_vector = false;
2776 unsigned mask = effective_writemask(&ins->alu);
2777
2778 for (int c = 1; c < 4; ++c) {
2779 /* We only care if this component is actually used */
2780 if (!(mask & (1 << c)))
2781 continue;
2782
2783 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2784
2785 if (test != value) {
2786 is_vector = true;
2787 break;
2788 }
2789 }
2790
2791 if (is_vector)
2792 continue;
2793
2794 /* Get rid of the embedded constant */
2795 ins->has_constants = false;
2796 ins->ssa_args.src1 = SSA_UNUSED_0;
2797 ins->ssa_args.inline_constant = true;
2798 ins->inline_constant = scaled_constant;
2799 }
2800 }
2801 }
2802
2803 /* Map normal SSA sources to other SSA sources / fixed registers (like
2804 * uniforms) */
2805
2806 static void
2807 map_ssa_to_alias(compiler_context *ctx, int *ref)
2808 {
2809 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2810
2811 if (alias) {
2812 /* Remove entry in leftovers to avoid a redunant fmov */
2813
2814 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2815
2816 if (leftover)
2817 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2818
2819 /* Assign the alias map */
2820 *ref = alias - 1;
2821 return;
2822 }
2823 }
2824
2825 #define AS_SRC(to, u) \
2826 int q##to = ins->alu.src2; \
2827 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2828
2829 /* Removing unused moves is necessary to clean up the texture pipeline results.
2830 *
2831 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2832
2833 static void
2834 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2835 {
2836 mir_foreach_instr_in_block_safe(block, ins) {
2837 if (ins->type != TAG_ALU_4) continue;
2838
2839 if (ins->alu.op != midgard_alu_op_fmov) continue;
2840
2841 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2842
2843 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2844
2845 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2846
2847 mir_remove_instruction(ins);
2848 }
2849 }
2850
2851 /* The following passes reorder MIR instructions to enable better scheduling */
2852
2853 static void
2854 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2855 {
2856 mir_foreach_instr_in_block_safe(block, ins) {
2857 if (ins->type != TAG_LOAD_STORE_4) continue;
2858
2859 /* We've found a load/store op. Check if next is also load/store. */
2860 midgard_instruction *next_op = mir_next_op(ins);
2861 if (&next_op->link != &block->instructions) {
2862 if (next_op->type == TAG_LOAD_STORE_4) {
2863 /* If so, we're done since we're a pair */
2864 ins = mir_next_op(ins);
2865 continue;
2866 }
2867
2868 /* Maximum search distance to pair, to avoid register pressure disasters */
2869 int search_distance = 8;
2870
2871 /* Otherwise, we have an orphaned load/store -- search for another load */
2872 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2873 /* Terminate search if necessary */
2874 if (!(search_distance--)) break;
2875
2876 if (c->type != TAG_LOAD_STORE_4) continue;
2877
2878 if (OP_IS_STORE(c->load_store.op)) continue;
2879
2880 /* We found one! Move it up to pair and remove it from the old location */
2881
2882 mir_insert_instruction_before(ins, *c);
2883 mir_remove_instruction(c);
2884
2885 break;
2886 }
2887 }
2888 }
2889 }
2890
2891 /* Emit varying stores late */
2892
2893 static void
2894 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2895 /* Iterate in reverse to get the final write, rather than the first */
2896
2897 mir_foreach_instr_in_block_safe_rev(block, ins) {
2898 /* Check if what we just wrote needs a store */
2899 int idx = ins->ssa_args.dest;
2900 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2901
2902 if (!varying) continue;
2903
2904 varying -= 1;
2905
2906 /* We need to store to the appropriate varying, so emit the
2907 * move/store */
2908
2909 /* TODO: Integrate with special purpose RA (and scheduler?) */
2910 bool high_varying_register = false;
2911
2912 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2913
2914 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2915 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2916
2917 mir_insert_instruction_before(mir_next_op(ins), st);
2918 mir_insert_instruction_before(mir_next_op(ins), mov);
2919
2920 /* We no longer need to store this varying */
2921 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2922 }
2923 }
2924
2925 /* If there are leftovers after the below pass, emit actual fmov
2926 * instructions for the slow-but-correct path */
2927
2928 static void
2929 emit_leftover_move(compiler_context *ctx)
2930 {
2931 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2932 int base = ((uintptr_t) leftover->key) - 1;
2933 int mapped = base;
2934
2935 map_ssa_to_alias(ctx, &mapped);
2936 EMIT(fmov, mapped, blank_alu_src, base);
2937 }
2938 }
2939
2940 static void
2941 actualise_ssa_to_alias(compiler_context *ctx)
2942 {
2943 mir_foreach_instr(ctx, ins) {
2944 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2945 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2946 }
2947
2948 emit_leftover_move(ctx);
2949 }
2950
2951 /* Vertex shaders do not write gl_Position as is; instead, they write a
2952 * transformed screen space position as a varying. See section 12.5 "Coordinate
2953 * Transformation" of the ES 3.2 full specification for details.
2954 *
2955 * This transformation occurs early on, as NIR and prior to optimisation, in
2956 * order to take advantage of NIR optimisation passes of the transform itself.
2957 * */
2958
2959 static void
2960 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2961 {
2962 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2963
2964 /* Get viewport from the uniforms */
2965 nir_intrinsic_instr *load;
2966 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2967 load->num_components = 4;
2968 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2969 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2970 nir_builder_instr_insert(b, &load->instr);
2971
2972 /* Formatted as <width, height, centerx, centery> */
2973 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2974 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2975 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2976 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2977
2978 /* XXX: From uniforms? */
2979 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2980 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2981
2982 /* World space to normalised device coordinates */
2983
2984 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2985 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2986
2987 /* Normalised device coordinates to screen space */
2988
2989 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2990 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2991
2992 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2993 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2994 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2995
2996 /* gl_Position will be written out in screenspace xyz, with w set to
2997 * the reciprocal we computed earlier. The transformed w component is
2998 * then used for perspective-correct varying interpolation. The
2999 * transformed w component must preserve its original sign; this is
3000 * used in depth clipping computations */
3001
3002 nir_ssa_def *screen_space = nir_vec4(b,
3003 nir_channel(b, viewport_xy, 0),
3004 nir_channel(b, viewport_xy, 1),
3005 screen_depth,
3006 w_recip);
3007
3008 /* Finally, write out the transformed values to the varying */
3009
3010 nir_intrinsic_instr *store;
3011 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
3012 store->num_components = 4;
3013 nir_intrinsic_set_base(store, 0);
3014 nir_intrinsic_set_write_mask(store, 0xf);
3015 store->src[0].ssa = screen_space;
3016 store->src[0].is_ssa = true;
3017 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
3018 nir_builder_instr_insert(b, &store->instr);
3019 }
3020
3021 static void
3022 transform_position_writes(nir_shader *shader)
3023 {
3024 nir_foreach_function(func, shader) {
3025 nir_foreach_block(block, func->impl) {
3026 nir_foreach_instr_safe(instr, block) {
3027 if (instr->type != nir_instr_type_intrinsic) continue;
3028
3029 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
3030 nir_variable *out = NULL;
3031
3032 switch (intr->intrinsic) {
3033 case nir_intrinsic_store_output:
3034 /* already had i/o lowered.. lookup the matching output var: */
3035 nir_foreach_variable(var, &shader->outputs) {
3036 int drvloc = var->data.driver_location;
3037
3038 if (nir_intrinsic_base(intr) == drvloc) {
3039 out = var;
3040 break;
3041 }
3042 }
3043
3044 break;
3045
3046 default:
3047 break;
3048 }
3049
3050 if (!out) continue;
3051
3052 if (out->data.mode != nir_var_shader_out)
3053 continue;
3054
3055 if (out->data.location != VARYING_SLOT_POS)
3056 continue;
3057
3058 nir_builder b;
3059 nir_builder_init(&b, func->impl);
3060 b.cursor = nir_before_instr(instr);
3061
3062 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
3063 nir_instr_remove(instr);
3064 }
3065 }
3066 }
3067 }
3068
3069 static void
3070 emit_fragment_epilogue(compiler_context *ctx)
3071 {
3072 /* Special case: writing out constants requires us to include the move
3073 * explicitly now, so shove it into r0 */
3074
3075 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3076
3077 if (constant_value) {
3078 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3079 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3080 emit_mir_instruction(ctx, ins);
3081 }
3082
3083 /* Perform the actual fragment writeout. We have two writeout/branch
3084 * instructions, forming a loop until writeout is successful as per the
3085 * docs. TODO: gl_FragDepth */
3086
3087 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3088 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3089 }
3090
3091 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3092 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3093 * with the int8 analogue to the fragment epilogue */
3094
3095 static void
3096 emit_blend_epilogue(compiler_context *ctx)
3097 {
3098 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3099
3100 midgard_instruction scale = {
3101 .type = TAG_ALU_4,
3102 .unit = UNIT_VMUL,
3103 .inline_constant = _mesa_float_to_half(255.0),
3104 .ssa_args = {
3105 .src0 = SSA_FIXED_REGISTER(0),
3106 .src1 = SSA_UNUSED_0,
3107 .dest = SSA_FIXED_REGISTER(24),
3108 .inline_constant = true
3109 },
3110 .alu = {
3111 .op = midgard_alu_op_fmul,
3112 .reg_mode = midgard_reg_mode_full,
3113 .dest_override = midgard_dest_override_lower,
3114 .mask = 0xFF,
3115 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3116 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3117 }
3118 };
3119
3120 emit_mir_instruction(ctx, scale);
3121
3122 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3123
3124 midgard_vector_alu_src alu_src = blank_alu_src;
3125 alu_src.half = true;
3126
3127 midgard_instruction f2u8 = {
3128 .type = TAG_ALU_4,
3129 .ssa_args = {
3130 .src0 = SSA_FIXED_REGISTER(24),
3131 .src1 = SSA_UNUSED_0,
3132 .dest = SSA_FIXED_REGISTER(0),
3133 .inline_constant = true
3134 },
3135 .alu = {
3136 .op = midgard_alu_op_f2u8,
3137 .reg_mode = midgard_reg_mode_half,
3138 .dest_override = midgard_dest_override_lower,
3139 .outmod = midgard_outmod_pos,
3140 .mask = 0xF,
3141 .src1 = vector_alu_srco_unsigned(alu_src),
3142 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3143 }
3144 };
3145
3146 emit_mir_instruction(ctx, f2u8);
3147
3148 /* vmul.imov.quarter r0, r0, r0 */
3149
3150 midgard_instruction imov_8 = {
3151 .type = TAG_ALU_4,
3152 .ssa_args = {
3153 .src0 = SSA_UNUSED_1,
3154 .src1 = SSA_FIXED_REGISTER(0),
3155 .dest = SSA_FIXED_REGISTER(0),
3156 },
3157 .alu = {
3158 .op = midgard_alu_op_imov,
3159 .reg_mode = midgard_reg_mode_quarter,
3160 .dest_override = midgard_dest_override_none,
3161 .mask = 0xFF,
3162 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3163 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3164 }
3165 };
3166
3167 /* Emit branch epilogue with the 8-bit move as the source */
3168
3169 emit_mir_instruction(ctx, imov_8);
3170 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3171
3172 emit_mir_instruction(ctx, imov_8);
3173 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3174 }
3175
3176 static midgard_block *
3177 emit_block(compiler_context *ctx, nir_block *block)
3178 {
3179 midgard_block *this_block = malloc(sizeof(midgard_block));
3180 list_addtail(&this_block->link, &ctx->blocks);
3181
3182 this_block->is_scheduled = false;
3183 ++ctx->block_count;
3184
3185 ctx->texture_index[0] = -1;
3186 ctx->texture_index[1] = -1;
3187
3188 /* Set up current block */
3189 list_inithead(&this_block->instructions);
3190 ctx->current_block = this_block;
3191
3192 nir_foreach_instr(instr, block) {
3193 emit_instr(ctx, instr);
3194 ++ctx->instruction_count;
3195 }
3196
3197 inline_alu_constants(ctx);
3198 embedded_to_inline_constant(ctx);
3199
3200 /* Perform heavylifting for aliasing */
3201 actualise_ssa_to_alias(ctx);
3202
3203 midgard_emit_store(ctx, this_block);
3204 midgard_eliminate_orphan_moves(ctx, this_block);
3205 midgard_pair_load_store(ctx, this_block);
3206
3207 /* Append fragment shader epilogue (value writeout) */
3208 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3209 if (block == nir_impl_last_block(ctx->func->impl)) {
3210 if (ctx->is_blend)
3211 emit_blend_epilogue(ctx);
3212 else
3213 emit_fragment_epilogue(ctx);
3214 }
3215 }
3216
3217 /* Fallthrough save */
3218 this_block->next_fallthrough = ctx->previous_source_block;
3219
3220 if (block == nir_start_block(ctx->func->impl))
3221 ctx->initial_block = this_block;
3222
3223 if (block == nir_impl_last_block(ctx->func->impl))
3224 ctx->final_block = this_block;
3225
3226 /* Allow the next control flow to access us retroactively, for
3227 * branching etc */
3228 ctx->current_block = this_block;
3229
3230 /* Document the fallthrough chain */
3231 ctx->previous_source_block = this_block;
3232
3233 return this_block;
3234 }
3235
3236 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3237
3238 static void
3239 emit_if(struct compiler_context *ctx, nir_if *nif)
3240 {
3241 /* Conditional branches expect the condition in r31.w; emit a move for
3242 * that in the _previous_ block (which is the current block). */
3243 emit_condition(ctx, &nif->condition, true);
3244
3245 /* Speculatively emit the branch, but we can't fill it in until later */
3246 EMIT(branch, true, true);
3247 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3248
3249 /* Emit the two subblocks */
3250 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3251
3252 /* Emit a jump from the end of the then block to the end of the else */
3253 EMIT(branch, false, false);
3254 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3255
3256 /* Emit second block, and check if it's empty */
3257
3258 int else_idx = ctx->block_count;
3259 int count_in = ctx->instruction_count;
3260 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3261 int after_else_idx = ctx->block_count;
3262
3263 /* Now that we have the subblocks emitted, fix up the branches */
3264
3265 assert(then_block);
3266 assert(else_block);
3267
3268 if (ctx->instruction_count == count_in) {
3269 /* The else block is empty, so don't emit an exit jump */
3270 mir_remove_instruction(then_exit);
3271 then_branch->branch.target_block = after_else_idx;
3272 } else {
3273 then_branch->branch.target_block = else_idx;
3274 then_exit->branch.target_block = after_else_idx;
3275 }
3276 }
3277
3278 static void
3279 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3280 {
3281 /* Remember where we are */
3282 midgard_block *start_block = ctx->current_block;
3283
3284 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3285 * single current_loop variable, maybe we need a stack */
3286
3287 int loop_idx = ++ctx->current_loop;
3288
3289 /* Get index from before the body so we can loop back later */
3290 int start_idx = ctx->block_count;
3291
3292 /* Emit the body itself */
3293 emit_cf_list(ctx, &nloop->body);
3294
3295 /* Branch back to loop back */
3296 struct midgard_instruction br_back = v_branch(false, false);
3297 br_back.branch.target_block = start_idx;
3298 emit_mir_instruction(ctx, br_back);
3299
3300 /* Find the index of the block about to follow us (note: we don't add
3301 * one; blocks are 0-indexed so we get a fencepost problem) */
3302 int break_block_idx = ctx->block_count;
3303
3304 /* Fix up the break statements we emitted to point to the right place,
3305 * now that we can allocate a block number for them */
3306
3307 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3308 if (midgard_debug & MIDGARD_DBG_SHADERS)
3309 print_mir_block(block);
3310 mir_foreach_instr_in_block(block, ins) {
3311 if (ins->type != TAG_ALU_4) continue;
3312 if (!ins->compact_branch) continue;
3313 if (ins->prepacked_branch) continue;
3314
3315 /* We found a branch -- check the type to see if we need to do anything */
3316 if (ins->branch.target_type != TARGET_BREAK) continue;
3317
3318 /* It's a break! Check if it's our break */
3319 if (ins->branch.target_break != loop_idx) continue;
3320
3321 /* Okay, cool, we're breaking out of this loop.
3322 * Rewrite from a break to a goto */
3323
3324 ins->branch.target_type = TARGET_GOTO;
3325 ins->branch.target_block = break_block_idx;
3326 }
3327 }
3328 }
3329
3330 static midgard_block *
3331 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3332 {
3333 midgard_block *start_block = NULL;
3334
3335 foreach_list_typed(nir_cf_node, node, node, list) {
3336 switch (node->type) {
3337 case nir_cf_node_block: {
3338 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3339
3340 if (!start_block)
3341 start_block = block;
3342
3343 break;
3344 }
3345
3346 case nir_cf_node_if:
3347 emit_if(ctx, nir_cf_node_as_if(node));
3348 break;
3349
3350 case nir_cf_node_loop:
3351 emit_loop(ctx, nir_cf_node_as_loop(node));
3352 break;
3353
3354 case nir_cf_node_function:
3355 assert(0);
3356 break;
3357 }
3358 }
3359
3360 return start_block;
3361 }
3362
3363 /* Due to lookahead, we need to report the first tag executed in the command
3364 * stream and in branch targets. An initial block might be empty, so iterate
3365 * until we find one that 'works' */
3366
3367 static unsigned
3368 midgard_get_first_tag_from_block(compiler_context *ctx, unsigned block_idx)
3369 {
3370 midgard_block *initial_block = mir_get_block(ctx, block_idx);
3371
3372 unsigned first_tag = 0;
3373
3374 do {
3375 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3376
3377 if (initial_bundle) {
3378 first_tag = initial_bundle->tag;
3379 break;
3380 }
3381
3382 /* Initial block is empty, try the next block */
3383 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3384 } while(initial_block != NULL);
3385
3386 assert(first_tag);
3387 return first_tag;
3388 }
3389
3390 int
3391 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3392 {
3393 struct util_dynarray *compiled = &program->compiled;
3394
3395 midgard_debug = debug_get_option_midgard_debug();
3396
3397 compiler_context ictx = {
3398 .nir = nir,
3399 .stage = nir->info.stage,
3400
3401 .is_blend = is_blend,
3402 .blend_constant_offset = -1,
3403
3404 .alpha_ref = program->alpha_ref
3405 };
3406
3407 compiler_context *ctx = &ictx;
3408
3409 /* TODO: Decide this at runtime */
3410 ctx->uniform_cutoff = 8;
3411
3412 switch (ctx->stage) {
3413 case MESA_SHADER_VERTEX:
3414 ctx->special_uniforms = 1;
3415 break;
3416
3417 default:
3418 ctx->special_uniforms = 0;
3419 break;
3420 }
3421
3422 /* Append epilogue uniforms if necessary. The cmdstream depends on
3423 * these being at the -end-; see assign_var_locations. */
3424
3425 if (ctx->stage == MESA_SHADER_VERTEX) {
3426 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3427 }
3428
3429 /* Assign var locations early, so the epilogue can use them if necessary */
3430
3431 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3432 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3433 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3434
3435 /* Initialize at a global (not block) level hash tables */
3436
3437 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3438 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3439 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3440 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3441 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3442 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3443
3444 /* Assign actual uniform location, skipping over samplers */
3445
3446 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3447
3448 nir_foreach_variable(var, &nir->uniforms) {
3449 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3450
3451 unsigned length = glsl_get_aoa_size(var->type);
3452
3453 if (!length) {
3454 length = glsl_get_length(var->type);
3455 }
3456
3457 if (!length) {
3458 length = glsl_get_matrix_columns(var->type);
3459 }
3460
3461 for (int col = 0; col < length; ++col) {
3462 int id = ctx->uniform_count++;
3463 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3464 }
3465 }
3466
3467 /* Record the varying mapping for the command stream's bookkeeping */
3468
3469 struct exec_list *varyings =
3470 ctx->stage == MESA_SHADER_VERTEX ? &nir->outputs : &nir->inputs;
3471
3472 nir_foreach_variable(var, varyings) {
3473 unsigned loc = var->data.driver_location;
3474 program->varyings[loc] = var->data.location;
3475 }
3476
3477 /* Lower vars -- not I/O -- before epilogue */
3478
3479 NIR_PASS_V(nir, nir_lower_var_copies);
3480 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3481 NIR_PASS_V(nir, nir_split_var_copies);
3482 NIR_PASS_V(nir, nir_lower_var_copies);
3483 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3484 NIR_PASS_V(nir, nir_lower_var_copies);
3485 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3486 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3487
3488 /* Append vertex epilogue before optimisation, so the epilogue itself
3489 * is optimised */
3490
3491 if (ctx->stage == MESA_SHADER_VERTEX)
3492 transform_position_writes(nir);
3493
3494 /* Optimisation passes */
3495
3496 optimise_nir(nir);
3497
3498 if (midgard_debug & MIDGARD_DBG_SHADERS) {
3499 nir_print_shader(nir, stdout);
3500 }
3501
3502 /* Assign counts, now that we're sure (post-optimisation) */
3503 program->uniform_count = nir->num_uniforms;
3504
3505 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3506 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3507
3508
3509 nir_foreach_function(func, nir) {
3510 if (!func->impl)
3511 continue;
3512
3513 list_inithead(&ctx->blocks);
3514 ctx->block_count = 0;
3515 ctx->func = func;
3516
3517 emit_cf_list(ctx, &func->impl->body);
3518 emit_block(ctx, func->impl->end_block);
3519
3520 break; /* TODO: Multi-function shaders */
3521 }
3522
3523 util_dynarray_init(compiled, NULL);
3524
3525 /* Schedule! */
3526 schedule_program(ctx);
3527
3528 /* Now that all the bundles are scheduled and we can calculate block
3529 * sizes, emit actual branch instructions rather than placeholders */
3530
3531 int br_block_idx = 0;
3532
3533 mir_foreach_block(ctx, block) {
3534 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3535 for (int c = 0; c < bundle->instruction_count; ++c) {
3536 midgard_instruction *ins = &bundle->instructions[c];
3537
3538 if (!midgard_is_branch_unit(ins->unit)) continue;
3539
3540 if (ins->prepacked_branch) continue;
3541
3542 /* Parse some basic branch info */
3543 bool is_compact = ins->unit == ALU_ENAB_BR_COMPACT;
3544 bool is_conditional = ins->branch.conditional;
3545 bool is_inverted = ins->branch.invert_conditional;
3546 bool is_discard = ins->branch.target_type == TARGET_DISCARD;
3547
3548 /* Determine the block we're jumping to */
3549 int target_number = ins->branch.target_block;
3550
3551 /* Report the destination tag. Discards don't need this */
3552 int dest_tag = is_discard ? 0 : midgard_get_first_tag_from_block(ctx, target_number);
3553
3554 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3555 int quadword_offset = 0;
3556
3557 if (is_discard) {
3558 /* Jump to the end of the shader. We
3559 * need to include not only the
3560 * following blocks, but also the
3561 * contents of our current block (since
3562 * discard can come in the middle of
3563 * the block) */
3564
3565 midgard_block *blk = mir_get_block(ctx, br_block_idx + 1);
3566
3567 for (midgard_bundle *bun = bundle + 1; bun < (midgard_bundle *)((char*) block->bundles.data + block->bundles.size); ++bun) {
3568 quadword_offset += quadword_size(bun->tag);
3569 }
3570
3571 mir_foreach_block_from(ctx, blk, b) {
3572 quadword_offset += b->quadword_count;
3573 }
3574
3575 } else if (target_number > br_block_idx) {
3576 /* Jump forward */
3577
3578 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3579 midgard_block *blk = mir_get_block(ctx, idx);
3580 assert(blk);
3581
3582 quadword_offset += blk->quadword_count;
3583 }
3584 } else {
3585 /* Jump backwards */
3586
3587 for (int idx = br_block_idx; idx >= target_number; --idx) {
3588 midgard_block *blk = mir_get_block(ctx, idx);
3589 assert(blk);
3590
3591 quadword_offset -= blk->quadword_count;
3592 }
3593 }
3594
3595 /* Unconditional extended branches (far jumps)
3596 * have issues, so we always use a conditional
3597 * branch, setting the condition to always for
3598 * unconditional. For compact unconditional
3599 * branches, cond isn't used so it doesn't
3600 * matter what we pick. */
3601
3602 midgard_condition cond =
3603 !is_conditional ? midgard_condition_always :
3604 is_inverted ? midgard_condition_false :
3605 midgard_condition_true;
3606
3607 midgard_jmp_writeout_op op =
3608 is_discard ? midgard_jmp_writeout_op_discard :
3609 (is_compact && !is_conditional) ? midgard_jmp_writeout_op_branch_uncond :
3610 midgard_jmp_writeout_op_branch_cond;
3611
3612 if (!is_compact) {
3613 midgard_branch_extended branch =
3614 midgard_create_branch_extended(
3615 cond, op,
3616 dest_tag,
3617 quadword_offset);
3618
3619 memcpy(&ins->branch_extended, &branch, sizeof(branch));
3620 } else if (is_conditional || is_discard) {
3621 midgard_branch_cond branch = {
3622 .op = op,
3623 .dest_tag = dest_tag,
3624 .offset = quadword_offset,
3625 .cond = cond
3626 };
3627
3628 assert(branch.offset == quadword_offset);
3629
3630 memcpy(&ins->br_compact, &branch, sizeof(branch));
3631 } else {
3632 assert(op == midgard_jmp_writeout_op_branch_uncond);
3633
3634 midgard_branch_uncond branch = {
3635 .op = op,
3636 .dest_tag = dest_tag,
3637 .offset = quadword_offset,
3638 .unknown = 1
3639 };
3640
3641 assert(branch.offset == quadword_offset);
3642
3643 memcpy(&ins->br_compact, &branch, sizeof(branch));
3644 }
3645 }
3646 }
3647
3648 ++br_block_idx;
3649 }
3650
3651 /* Emit flat binary from the instruction arrays. Iterate each block in
3652 * sequence. Save instruction boundaries such that lookahead tags can
3653 * be assigned easily */
3654
3655 /* Cache _all_ bundles in source order for lookahead across failed branches */
3656
3657 int bundle_count = 0;
3658 mir_foreach_block(ctx, block) {
3659 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3660 }
3661 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3662 int bundle_idx = 0;
3663 mir_foreach_block(ctx, block) {
3664 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3665 source_order_bundles[bundle_idx++] = bundle;
3666 }
3667 }
3668
3669 int current_bundle = 0;
3670
3671 mir_foreach_block(ctx, block) {
3672 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3673 int lookahead = 1;
3674
3675 if (current_bundle + 1 < bundle_count) {
3676 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3677
3678 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3679 lookahead = 1;
3680 } else {
3681 lookahead = next;
3682 }
3683 }
3684
3685 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3686 ++current_bundle;
3687 }
3688
3689 /* TODO: Free deeper */
3690 //util_dynarray_fini(&block->instructions);
3691 }
3692
3693 free(source_order_bundles);
3694
3695 /* Report the very first tag executed */
3696 program->first_tag = midgard_get_first_tag_from_block(ctx, 0);
3697
3698 /* Deal with off-by-one related to the fencepost problem */
3699 program->work_register_count = ctx->work_registers + 1;
3700
3701 program->can_discard = ctx->can_discard;
3702 program->uniform_cutoff = ctx->uniform_cutoff;
3703
3704 program->blend_patch_offset = ctx->blend_constant_offset;
3705
3706 if (midgard_debug & MIDGARD_DBG_SHADERS)
3707 disassemble_midgard(program->compiled.data, program->compiled.size);
3708
3709 return 0;
3710 }