panfrost: Preserve w sign in perspective division
[mesa.git] / src / gallium / drivers / panfrost / midgard / midgard_compile.c
1 /*
2 * Copyright (C) 2018 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include <sys/types.h>
25 #include <sys/stat.h>
26 #include <sys/mman.h>
27 #include <fcntl.h>
28 #include <stdint.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <err.h>
32
33 #include "compiler/glsl/glsl_to_nir.h"
34 #include "compiler/nir_types.h"
35 #include "main/imports.h"
36 #include "compiler/nir/nir_builder.h"
37 #include "util/half_float.h"
38 #include "util/register_allocate.h"
39 #include "util/u_dynarray.h"
40 #include "util/list.h"
41 #include "main/mtypes.h"
42
43 #include "midgard.h"
44 #include "midgard_nir.h"
45 #include "midgard_compile.h"
46 #include "helpers.h"
47
48 #include "disassemble.h"
49
50 /* Instruction arguments represented as block-local SSA indices, rather than
51 * registers. Negative values mean unused. */
52
53 typedef struct {
54 int src0;
55 int src1;
56 int dest;
57
58 /* src1 is -not- SSA but instead a 16-bit inline constant to be smudged
59 * in. Only valid for ALU ops. */
60 bool inline_constant;
61 } ssa_args;
62
63 /* Forward declare so midgard_branch can reference */
64 struct midgard_block;
65
66 /* Target types. Defaults to TARGET_GOTO (the type corresponding directly to
67 * the hardware), hence why that must be zero */
68
69 #define TARGET_GOTO 0
70 #define TARGET_BREAK 1
71 #define TARGET_CONTINUE 2
72
73 typedef struct midgard_branch {
74 /* If conditional, the condition is specified in r31.w */
75 bool conditional;
76
77 /* For conditionals, if this is true, we branch on FALSE. If false, we branch on TRUE. */
78 bool invert_conditional;
79
80 /* Branch targets: the start of a block, the start of a loop (continue), the end of a loop (break). Value is one of TARGET_ */
81 unsigned target_type;
82
83 /* The actual target */
84 union {
85 int target_block;
86 int target_break;
87 int target_continue;
88 };
89 } midgard_branch;
90
91 /* Generic in-memory data type repesenting a single logical instruction, rather
92 * than a single instruction group. This is the preferred form for code gen.
93 * Multiple midgard_insturctions will later be combined during scheduling,
94 * though this is not represented in this structure. Its format bridges
95 * the low-level binary representation with the higher level semantic meaning.
96 *
97 * Notably, it allows registers to be specified as block local SSA, for code
98 * emitted before the register allocation pass.
99 */
100
101 typedef struct midgard_instruction {
102 /* Must be first for casting */
103 struct list_head link;
104
105 unsigned type; /* ALU, load/store, texture */
106
107 /* If the register allocator has not run yet... */
108 ssa_args ssa_args;
109
110 /* Special fields for an ALU instruction */
111 midgard_reg_info registers;
112
113 /* I.e. (1 << alu_bit) */
114 int unit;
115
116 bool has_constants;
117 float constants[4];
118 uint16_t inline_constant;
119 bool has_blend_constant;
120
121 bool compact_branch;
122 bool writeout;
123 bool prepacked_branch;
124
125 union {
126 midgard_load_store_word load_store;
127 midgard_vector_alu alu;
128 midgard_texture_word texture;
129 uint16_t br_compact;
130
131 /* General branch, rather than packed br_compact. Higher level
132 * than the other components */
133 midgard_branch branch;
134 };
135 } midgard_instruction;
136
137 typedef struct midgard_block {
138 /* Link to next block. Must be first for mir_get_block */
139 struct list_head link;
140
141 /* List of midgard_instructions emitted for the current block */
142 struct list_head instructions;
143
144 bool is_scheduled;
145
146 /* List of midgard_bundles emitted (after the scheduler has run) */
147 struct util_dynarray bundles;
148
149 /* Number of quadwords _actually_ emitted, as determined after scheduling */
150 unsigned quadword_count;
151
152 struct midgard_block *next_fallthrough;
153 } midgard_block;
154
155 /* Helpers to generate midgard_instruction's using macro magic, since every
156 * driver seems to do it that way */
157
158 #define EMIT(op, ...) emit_mir_instruction(ctx, v_##op(__VA_ARGS__));
159
160 #define M_LOAD_STORE(name, rname, uname) \
161 static midgard_instruction m_##name(unsigned ssa, unsigned address) { \
162 midgard_instruction i = { \
163 .type = TAG_LOAD_STORE_4, \
164 .ssa_args = { \
165 .rname = ssa, \
166 .uname = -1, \
167 .src1 = -1 \
168 }, \
169 .load_store = { \
170 .op = midgard_op_##name, \
171 .mask = 0xF, \
172 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W), \
173 .address = address \
174 } \
175 }; \
176 \
177 return i; \
178 }
179
180 #define M_LOAD(name) M_LOAD_STORE(name, dest, src0)
181 #define M_STORE(name) M_LOAD_STORE(name, src0, dest)
182
183 const midgard_vector_alu_src blank_alu_src = {
184 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
185 };
186
187 const midgard_scalar_alu_src blank_scalar_alu_src = {
188 .full = true
189 };
190
191 /* Used for encoding the unused source of 1-op instructions */
192 const midgard_vector_alu_src zero_alu_src = { 0 };
193
194 /* Coerce structs to integer */
195
196 static unsigned
197 vector_alu_srco_unsigned(midgard_vector_alu_src src)
198 {
199 unsigned u;
200 memcpy(&u, &src, sizeof(src));
201 return u;
202 }
203
204 /* Inputs a NIR ALU source, with modifiers attached if necessary, and outputs
205 * the corresponding Midgard source */
206
207 static midgard_vector_alu_src
208 vector_alu_modifiers(nir_alu_src *src)
209 {
210 if (!src) return blank_alu_src;
211
212 midgard_vector_alu_src alu_src = {
213 .abs = src->abs,
214 .negate = src->negate,
215 .rep_low = 0,
216 .rep_high = 0,
217 .half = 0, /* TODO */
218 .swizzle = SWIZZLE_FROM_ARRAY(src->swizzle)
219 };
220
221 return alu_src;
222 }
223
224 /* 'Intrinsic' move for misc aliasing uses independent of actual NIR ALU code */
225
226 static midgard_instruction
227 v_fmov(unsigned src, midgard_vector_alu_src mod, unsigned dest)
228 {
229 midgard_instruction ins = {
230 .type = TAG_ALU_4,
231 .ssa_args = {
232 .src0 = SSA_UNUSED_1,
233 .src1 = src,
234 .dest = dest,
235 },
236 .alu = {
237 .op = midgard_alu_op_fmov,
238 .reg_mode = midgard_reg_mode_full,
239 .dest_override = midgard_dest_override_none,
240 .mask = 0xFF,
241 .src1 = vector_alu_srco_unsigned(zero_alu_src),
242 .src2 = vector_alu_srco_unsigned(mod)
243 },
244 };
245
246 return ins;
247 }
248
249 /* load/store instructions have both 32-bit and 16-bit variants, depending on
250 * whether we are using vectors composed of highp or mediump. At the moment, we
251 * don't support half-floats -- this requires changes in other parts of the
252 * compiler -- therefore the 16-bit versions are commented out. */
253
254 //M_LOAD(load_attr_16);
255 M_LOAD(load_attr_32);
256 //M_LOAD(load_vary_16);
257 M_LOAD(load_vary_32);
258 //M_LOAD(load_uniform_16);
259 M_LOAD(load_uniform_32);
260 M_LOAD(load_color_buffer_8);
261 //M_STORE(store_vary_16);
262 M_STORE(store_vary_32);
263
264 static midgard_instruction
265 v_alu_br_compact_cond(midgard_jmp_writeout_op op, unsigned tag, signed offset, unsigned cond)
266 {
267 midgard_branch_cond branch = {
268 .op = op,
269 .dest_tag = tag,
270 .offset = offset,
271 .cond = cond
272 };
273
274 uint16_t compact;
275 memcpy(&compact, &branch, sizeof(branch));
276
277 midgard_instruction ins = {
278 .type = TAG_ALU_4,
279 .unit = ALU_ENAB_BR_COMPACT,
280 .prepacked_branch = true,
281 .compact_branch = true,
282 .br_compact = compact
283 };
284
285 if (op == midgard_jmp_writeout_op_writeout)
286 ins.writeout = true;
287
288 return ins;
289 }
290
291 static midgard_instruction
292 v_branch(bool conditional, bool invert)
293 {
294 midgard_instruction ins = {
295 .type = TAG_ALU_4,
296 .unit = ALU_ENAB_BR_COMPACT,
297 .compact_branch = true,
298 .branch = {
299 .conditional = conditional,
300 .invert_conditional = invert
301 }
302 };
303
304 return ins;
305 }
306
307 typedef struct midgard_bundle {
308 /* Tag for the overall bundle */
309 int tag;
310
311 /* Instructions contained by the bundle */
312 int instruction_count;
313 midgard_instruction instructions[5];
314
315 /* Bundle-wide ALU configuration */
316 int padding;
317 int control;
318 bool has_embedded_constants;
319 float constants[4];
320 bool has_blend_constant;
321
322 uint16_t register_words[8];
323 int register_words_count;
324
325 uint64_t body_words[8];
326 size_t body_size[8];
327 int body_words_count;
328 } midgard_bundle;
329
330 typedef struct compiler_context {
331 nir_shader *nir;
332 gl_shader_stage stage;
333
334 /* Is internally a blend shader? Depends on stage == FRAGMENT */
335 bool is_blend;
336
337 /* Tracking for blend constant patching */
338 int blend_constant_number;
339 int blend_constant_offset;
340
341 /* Current NIR function */
342 nir_function *func;
343
344 /* Unordered list of midgard_blocks */
345 int block_count;
346 struct list_head blocks;
347
348 midgard_block *initial_block;
349 midgard_block *previous_source_block;
350 midgard_block *final_block;
351
352 /* List of midgard_instructions emitted for the current block */
353 midgard_block *current_block;
354
355 /* The index corresponding to the current loop, e.g. for breaks/contineus */
356 int current_loop;
357
358 /* Constants which have been loaded, for later inlining */
359 struct hash_table_u64 *ssa_constants;
360
361 /* SSA indices to be outputted to corresponding varying offset */
362 struct hash_table_u64 *ssa_varyings;
363
364 /* SSA values / registers which have been aliased. Naively, these
365 * demand a fmov output; instead, we alias them in a later pass to
366 * avoid the wasted op.
367 *
368 * A note on encoding: to avoid dynamic memory management here, rather
369 * than ampping to a pointer, we map to the source index; the key
370 * itself is just the destination index. */
371
372 struct hash_table_u64 *ssa_to_alias;
373 struct set *leftover_ssa_to_alias;
374
375 /* Actual SSA-to-register for RA */
376 struct hash_table_u64 *ssa_to_register;
377
378 /* Mapping of hashes computed from NIR indices to the sequential temp indices ultimately used in MIR */
379 struct hash_table_u64 *hash_to_temp;
380 int temp_count;
381 int max_hash;
382
383 /* Uniform IDs for mdg */
384 struct hash_table_u64 *uniform_nir_to_mdg;
385 int uniform_count;
386
387 struct hash_table_u64 *varying_nir_to_mdg;
388 int varying_count;
389
390 /* Just the count of the max register used. Higher count => higher
391 * register pressure */
392 int work_registers;
393
394 /* Used for cont/last hinting. Increase when a tex op is added.
395 * Decrease when a tex op is removed. */
396 int texture_op_count;
397
398 /* Mapping of texture register -> SSA index for unaliasing */
399 int texture_index[2];
400
401 /* Count of special uniforms (viewport, etc) in vec4 units */
402 int special_uniforms;
403
404 /* If any path hits a discard instruction */
405 bool can_discard;
406
407 /* The number of uniforms allowable for the fast path */
408 int uniform_cutoff;
409
410 /* Count of instructions emitted from NIR overall, across all blocks */
411 int instruction_count;
412
413 /* Alpha ref value passed in */
414 float alpha_ref;
415
416 /* The index corresponding to the fragment output */
417 unsigned fragment_output;
418 } compiler_context;
419
420 /* Append instruction to end of current block */
421
422 static midgard_instruction *
423 mir_upload_ins(struct midgard_instruction ins)
424 {
425 midgard_instruction *heap = malloc(sizeof(ins));
426 memcpy(heap, &ins, sizeof(ins));
427 return heap;
428 }
429
430 static void
431 emit_mir_instruction(struct compiler_context *ctx, struct midgard_instruction ins)
432 {
433 list_addtail(&(mir_upload_ins(ins))->link, &ctx->current_block->instructions);
434 }
435
436 static void
437 mir_insert_instruction_before(struct midgard_instruction *tag, struct midgard_instruction ins)
438 {
439 list_addtail(&(mir_upload_ins(ins))->link, &tag->link);
440 }
441
442 static void
443 mir_remove_instruction(struct midgard_instruction *ins)
444 {
445 list_del(&ins->link);
446 }
447
448 static midgard_instruction*
449 mir_prev_op(struct midgard_instruction *ins)
450 {
451 return list_last_entry(&(ins->link), midgard_instruction, link);
452 }
453
454 static midgard_instruction*
455 mir_next_op(struct midgard_instruction *ins)
456 {
457 return list_first_entry(&(ins->link), midgard_instruction, link);
458 }
459
460 static midgard_block *
461 mir_next_block(struct midgard_block *blk)
462 {
463 return list_first_entry(&(blk->link), midgard_block, link);
464 }
465
466
467 #define mir_foreach_block(ctx, v) list_for_each_entry(struct midgard_block, v, &ctx->blocks, link)
468 #define mir_foreach_block_from(ctx, from, v) list_for_each_entry_from(struct midgard_block, v, from, &ctx->blocks, link)
469
470 #define mir_foreach_instr(ctx, v) list_for_each_entry(struct midgard_instruction, v, &ctx->current_block->instructions, link)
471 #define mir_foreach_instr_safe(ctx, v) list_for_each_entry_safe(struct midgard_instruction, v, &ctx->current_block->instructions, link)
472 #define mir_foreach_instr_in_block(block, v) list_for_each_entry(struct midgard_instruction, v, &block->instructions, link)
473 #define mir_foreach_instr_in_block_safe(block, v) list_for_each_entry_safe(struct midgard_instruction, v, &block->instructions, link)
474 #define mir_foreach_instr_in_block_safe_rev(block, v) list_for_each_entry_safe_rev(struct midgard_instruction, v, &block->instructions, link)
475 #define mir_foreach_instr_in_block_from(block, v, from) list_for_each_entry_from(struct midgard_instruction, v, from, &block->instructions, link)
476
477
478 static midgard_instruction *
479 mir_last_in_block(struct midgard_block *block)
480 {
481 return list_last_entry(&block->instructions, struct midgard_instruction, link);
482 }
483
484 static midgard_block *
485 mir_get_block(compiler_context *ctx, int idx)
486 {
487 struct list_head *lst = &ctx->blocks;
488
489 while ((idx--) + 1)
490 lst = lst->next;
491
492 return (struct midgard_block *) lst;
493 }
494
495 /* Pretty printer for internal Midgard IR */
496
497 static void
498 print_mir_source(int source)
499 {
500 if (source >= SSA_FIXED_MINIMUM) {
501 /* Specific register */
502 int reg = SSA_REG_FROM_FIXED(source);
503
504 /* TODO: Moving threshold */
505 if (reg > 16 && reg < 24)
506 printf("u%d", 23 - reg);
507 else
508 printf("r%d", reg);
509 } else {
510 printf("%d", source);
511 }
512 }
513
514 static void
515 print_mir_instruction(midgard_instruction *ins)
516 {
517 printf("\t");
518
519 switch (ins->type) {
520 case TAG_ALU_4: {
521 midgard_alu_op op = ins->alu.op;
522 const char *name = alu_opcode_names[op];
523
524 if (ins->unit)
525 printf("%d.", ins->unit);
526
527 printf("%s", name ? name : "??");
528 break;
529 }
530
531 case TAG_LOAD_STORE_4: {
532 midgard_load_store_op op = ins->load_store.op;
533 const char *name = load_store_opcode_names[op];
534
535 assert(name);
536 printf("%s", name);
537 break;
538 }
539
540 case TAG_TEXTURE_4: {
541 printf("texture");
542 break;
543 }
544
545 default:
546 assert(0);
547 }
548
549 ssa_args *args = &ins->ssa_args;
550
551 printf(" %d, ", args->dest);
552
553 print_mir_source(args->src0);
554 printf(", ");
555
556 if (args->inline_constant)
557 printf("#%d", ins->inline_constant);
558 else
559 print_mir_source(args->src1);
560
561 if (ins->has_constants)
562 printf(" <%f, %f, %f, %f>", ins->constants[0], ins->constants[1], ins->constants[2], ins->constants[3]);
563
564 printf("\n");
565 }
566
567 static void
568 print_mir_block(midgard_block *block)
569 {
570 printf("{\n");
571
572 mir_foreach_instr_in_block(block, ins) {
573 print_mir_instruction(ins);
574 }
575
576 printf("}\n");
577 }
578
579
580
581 static void
582 attach_constants(compiler_context *ctx, midgard_instruction *ins, void *constants, int name)
583 {
584 ins->has_constants = true;
585 memcpy(&ins->constants, constants, 16);
586
587 /* If this is the special blend constant, mark this instruction */
588
589 if (ctx->is_blend && ctx->blend_constant_number == name)
590 ins->has_blend_constant = true;
591 }
592
593 static int
594 glsl_type_size(const struct glsl_type *type)
595 {
596 return glsl_count_attribute_slots(type, false);
597 }
598
599 /* Lower fdot2 to a vector multiplication followed by channel addition */
600 static void
601 midgard_nir_lower_fdot2_body(nir_builder *b, nir_alu_instr *alu)
602 {
603 if (alu->op != nir_op_fdot2)
604 return;
605
606 b->cursor = nir_before_instr(&alu->instr);
607
608 nir_ssa_def *src0 = nir_ssa_for_alu_src(b, alu, 0);
609 nir_ssa_def *src1 = nir_ssa_for_alu_src(b, alu, 1);
610
611 nir_ssa_def *product = nir_fmul(b, src0, src1);
612
613 nir_ssa_def *sum = nir_fadd(b,
614 nir_channel(b, product, 0),
615 nir_channel(b, product, 1));
616
617 /* Replace the fdot2 with this sum */
618 nir_ssa_def_rewrite_uses(&alu->dest.dest.ssa, nir_src_for_ssa(sum));
619 }
620
621 static bool
622 midgard_nir_lower_fdot2(nir_shader *shader)
623 {
624 bool progress = false;
625
626 nir_foreach_function(function, shader) {
627 if (!function->impl) continue;
628
629 nir_builder _b;
630 nir_builder *b = &_b;
631 nir_builder_init(b, function->impl);
632
633 nir_foreach_block(block, function->impl) {
634 nir_foreach_instr_safe(instr, block) {
635 if (instr->type != nir_instr_type_alu) continue;
636
637 nir_alu_instr *alu = nir_instr_as_alu(instr);
638 midgard_nir_lower_fdot2_body(b, alu);
639
640 progress |= true;
641 }
642 }
643
644 nir_metadata_preserve(function->impl, nir_metadata_block_index | nir_metadata_dominance);
645
646 }
647
648 return progress;
649 }
650
651 static void
652 optimise_nir(nir_shader *nir)
653 {
654 bool progress;
655
656 NIR_PASS(progress, nir, nir_lower_regs_to_ssa);
657 NIR_PASS(progress, nir, midgard_nir_lower_fdot2);
658
659 nir_lower_tex_options lower_tex_options = {
660 .lower_rect = true
661 };
662
663 NIR_PASS(progress, nir, nir_lower_tex, &lower_tex_options);
664
665 do {
666 progress = false;
667
668 NIR_PASS(progress, nir, midgard_nir_lower_algebraic);
669 NIR_PASS(progress, nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
670 NIR_PASS(progress, nir, nir_lower_var_copies);
671 NIR_PASS(progress, nir, nir_lower_vars_to_ssa);
672
673 NIR_PASS(progress, nir, nir_copy_prop);
674 NIR_PASS(progress, nir, nir_opt_dce);
675 NIR_PASS(progress, nir, nir_opt_dead_cf);
676 NIR_PASS(progress, nir, nir_opt_cse);
677 NIR_PASS(progress, nir, nir_opt_peephole_select, 64, false, true);
678 NIR_PASS(progress, nir, nir_opt_algebraic);
679 NIR_PASS(progress, nir, nir_opt_constant_folding);
680 NIR_PASS(progress, nir, nir_opt_undef);
681 NIR_PASS(progress, nir, nir_opt_loop_unroll,
682 nir_var_shader_in |
683 nir_var_shader_out |
684 nir_var_function_temp);
685
686 /* TODO: Enable vectorize when merged upstream */
687 // NIR_PASS(progress, nir, nir_opt_vectorize);
688 } while (progress);
689
690 /* Must be run at the end to prevent creation of fsin/fcos ops */
691 NIR_PASS(progress, nir, midgard_nir_scale_trig);
692
693 do {
694 progress = false;
695
696 NIR_PASS(progress, nir, nir_opt_dce);
697 NIR_PASS(progress, nir, nir_opt_algebraic);
698 NIR_PASS(progress, nir, nir_opt_constant_folding);
699 NIR_PASS(progress, nir, nir_copy_prop);
700 } while (progress);
701
702 NIR_PASS(progress, nir, nir_opt_algebraic_late);
703
704 /* Lower mods */
705 NIR_PASS(progress, nir, nir_lower_to_source_mods, nir_lower_all_source_mods);
706 NIR_PASS(progress, nir, nir_copy_prop);
707 NIR_PASS(progress, nir, nir_opt_dce);
708
709 /* Take us out of SSA */
710 NIR_PASS(progress, nir, nir_lower_locals_to_regs);
711 NIR_PASS(progress, nir, nir_convert_from_ssa, true);
712
713 /* We are a vector architecture; write combine where possible */
714 NIR_PASS(progress, nir, nir_move_vec_src_uses_to_dest);
715 NIR_PASS(progress, nir, nir_lower_vec_to_movs);
716
717 NIR_PASS(progress, nir, nir_opt_dce);
718 }
719
720 /* Front-half of aliasing the SSA slots, merely by inserting the flag in the
721 * appropriate hash table. Intentional off-by-one to avoid confusing NULL with
722 * r0. See the comments in compiler_context */
723
724 static void
725 alias_ssa(compiler_context *ctx, int dest, int src)
726 {
727 _mesa_hash_table_u64_insert(ctx->ssa_to_alias, dest + 1, (void *) ((uintptr_t) src + 1));
728 _mesa_set_add(ctx->leftover_ssa_to_alias, (void *) (uintptr_t) (dest + 1));
729 }
730
731 /* ...or undo it, after which the original index will be used (dummy move should be emitted alongside this) */
732
733 static void
734 unalias_ssa(compiler_context *ctx, int dest)
735 {
736 _mesa_hash_table_u64_remove(ctx->ssa_to_alias, dest + 1);
737 /* TODO: Remove from leftover or no? */
738 }
739
740 static void
741 midgard_pin_output(compiler_context *ctx, int index, int reg)
742 {
743 _mesa_hash_table_u64_insert(ctx->ssa_to_register, index + 1, (void *) ((uintptr_t) reg + 1));
744 }
745
746 static bool
747 midgard_is_pinned(compiler_context *ctx, int index)
748 {
749 return _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1) != NULL;
750 }
751
752 /* Do not actually emit a load; instead, cache the constant for inlining */
753
754 static void
755 emit_load_const(compiler_context *ctx, nir_load_const_instr *instr)
756 {
757 nir_ssa_def def = instr->def;
758
759 float *v = ralloc_array(NULL, float, 4);
760 memcpy(v, &instr->value.f32, 4 * sizeof(float));
761 _mesa_hash_table_u64_insert(ctx->ssa_constants, def.index + 1, v);
762 }
763
764 /* Duplicate bits to convert sane 4-bit writemask to obscure 8-bit format (or
765 * do the inverse) */
766
767 static unsigned
768 expand_writemask(unsigned mask)
769 {
770 unsigned o = 0;
771
772 for (int i = 0; i < 4; ++i)
773 if (mask & (1 << i))
774 o |= (3 << (2 * i));
775
776 return o;
777 }
778
779 static unsigned
780 squeeze_writemask(unsigned mask)
781 {
782 unsigned o = 0;
783
784 for (int i = 0; i < 4; ++i)
785 if (mask & (3 << (2 * i)))
786 o |= (1 << i);
787
788 return o;
789
790 }
791
792 /* Determines effective writemask, taking quirks and expansion into account */
793 static unsigned
794 effective_writemask(midgard_vector_alu *alu)
795 {
796 /* Channel count is off-by-one to fit in two-bits (0 channel makes no
797 * sense) */
798
799 unsigned channel_count = GET_CHANNEL_COUNT(alu_opcode_props[alu->op]);
800
801 /* If there is a fixed channel count, construct the appropriate mask */
802
803 if (channel_count)
804 return (1 << channel_count) - 1;
805
806 /* Otherwise, just squeeze the existing mask */
807 return squeeze_writemask(alu->mask);
808 }
809
810 static unsigned
811 find_or_allocate_temp(compiler_context *ctx, unsigned hash)
812 {
813 if ((hash < 0) || (hash >= SSA_FIXED_MINIMUM))
814 return hash;
815
816 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->hash_to_temp, hash + 1);
817
818 if (temp)
819 return temp - 1;
820
821 /* If no temp is find, allocate one */
822 temp = ctx->temp_count++;
823 ctx->max_hash = MAX2(ctx->max_hash, hash);
824
825 _mesa_hash_table_u64_insert(ctx->hash_to_temp, hash + 1, (void *) ((uintptr_t) temp + 1));
826
827 return temp;
828 }
829
830 static unsigned
831 nir_src_index(compiler_context *ctx, nir_src *src)
832 {
833 if (src->is_ssa)
834 return src->ssa->index;
835 else
836 return ctx->func->impl->ssa_alloc + src->reg.reg->index;
837 }
838
839 static unsigned
840 nir_dest_index(compiler_context *ctx, nir_dest *dst)
841 {
842 if (dst->is_ssa)
843 return dst->ssa.index;
844 else
845 return ctx->func->impl->ssa_alloc + dst->reg.reg->index;
846 }
847
848 static unsigned
849 nir_alu_src_index(compiler_context *ctx, nir_alu_src *src)
850 {
851 return nir_src_index(ctx, &src->src);
852 }
853
854 /* Midgard puts conditionals in r31.w; move an arbitrary source (the output of
855 * a conditional test) into that register */
856
857 static void
858 emit_condition(compiler_context *ctx, nir_src *src, bool for_branch)
859 {
860 /* XXX: Force component correct */
861 int condition = nir_src_index(ctx, src);
862
863 const midgard_vector_alu_src alu_src = {
864 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_X, COMPONENT_X, COMPONENT_X),
865 };
866
867 /* There is no boolean move instruction. Instead, we simulate a move by
868 * ANDing the condition with itself to get it into r31.w */
869
870 midgard_instruction ins = {
871 .type = TAG_ALU_4,
872 .unit = for_branch ? UNIT_SMUL : UNIT_SADD, /* TODO: DEDUCE THIS */
873 .ssa_args = {
874 .src0 = condition,
875 .src1 = condition,
876 .dest = SSA_FIXED_REGISTER(31),
877 },
878 .alu = {
879 .op = midgard_alu_op_iand,
880 .reg_mode = midgard_reg_mode_full,
881 .dest_override = midgard_dest_override_none,
882 .mask = (0x3 << 6), /* w */
883 .src1 = vector_alu_srco_unsigned(alu_src),
884 .src2 = vector_alu_srco_unsigned(alu_src)
885 },
886 };
887
888 emit_mir_instruction(ctx, ins);
889 }
890
891 #define ALU_CASE(nir, _op) \
892 case nir_op_##nir: \
893 op = midgard_alu_op_##_op; \
894 break;
895
896 static void
897 emit_alu(compiler_context *ctx, nir_alu_instr *instr)
898 {
899 bool is_ssa = instr->dest.dest.is_ssa;
900
901 unsigned dest = nir_dest_index(ctx, &instr->dest.dest);
902 unsigned nr_components = is_ssa ? instr->dest.dest.ssa.num_components : instr->dest.dest.reg.reg->num_components;
903 unsigned nr_inputs = nir_op_infos[instr->op].num_inputs;
904
905 /* Most Midgard ALU ops have a 1:1 correspondance to NIR ops; these are
906 * supported. A few do not and are commented for now. Also, there are a
907 * number of NIR ops which Midgard does not support and need to be
908 * lowered, also TODO. This switch block emits the opcode and calling
909 * convention of the Midgard instruction; actual packing is done in
910 * emit_alu below */
911
912 unsigned op;
913
914 switch (instr->op) {
915 ALU_CASE(fadd, fadd);
916 ALU_CASE(fmul, fmul);
917 ALU_CASE(fmin, fmin);
918 ALU_CASE(fmax, fmax);
919 ALU_CASE(imin, imin);
920 ALU_CASE(imax, imax);
921 ALU_CASE(fmov, fmov);
922 ALU_CASE(ffloor, ffloor);
923 ALU_CASE(fceil, fceil);
924 ALU_CASE(fdot3, fdot3);
925 ALU_CASE(fdot4, fdot4);
926 ALU_CASE(iadd, iadd);
927 ALU_CASE(isub, isub);
928 ALU_CASE(imul, imul);
929
930 /* XXX: Use fmov, not imov, since imov was causing major
931 * issues with texture precision? XXX research */
932 ALU_CASE(imov, fmov);
933
934 ALU_CASE(feq, feq);
935 ALU_CASE(fne, fne);
936 ALU_CASE(flt, flt);
937 ALU_CASE(ieq, ieq);
938 ALU_CASE(ine, ine);
939 ALU_CASE(ilt, ilt);
940
941 ALU_CASE(frcp, frcp);
942 ALU_CASE(frsq, frsqrt);
943 ALU_CASE(fsqrt, fsqrt);
944 ALU_CASE(fexp2, fexp2);
945 ALU_CASE(flog2, flog2);
946
947 ALU_CASE(f2i32, f2i);
948 ALU_CASE(f2u32, f2u);
949 ALU_CASE(i2f32, i2f);
950 ALU_CASE(u2f32, u2f);
951
952 ALU_CASE(fsin, fsin);
953 ALU_CASE(fcos, fcos);
954
955 ALU_CASE(iand, iand);
956 ALU_CASE(ior, ior);
957 ALU_CASE(ixor, ixor);
958 ALU_CASE(inot, inot);
959 ALU_CASE(ishl, ishl);
960 ALU_CASE(ishr, iasr);
961 ALU_CASE(ushr, ilsr);
962
963 ALU_CASE(ball_fequal4, fball_eq);
964 ALU_CASE(bany_fnequal4, fbany_neq);
965 ALU_CASE(ball_iequal4, iball_eq);
966 ALU_CASE(bany_inequal4, ibany_neq);
967
968 /* For greater-or-equal, we use less-or-equal and flip the
969 * arguments */
970
971 case nir_op_ige: {
972 op = midgard_alu_op_ile;
973
974 /* Swap via temporary */
975 nir_alu_src temp = instr->src[1];
976 instr->src[1] = instr->src[0];
977 instr->src[0] = temp;
978
979 break;
980 }
981
982 case nir_op_bcsel: {
983 op = midgard_alu_op_fcsel;
984
985 /* csel works as a two-arg in Midgard, since the condition is hardcoded in r31.w */
986 nr_inputs = 2;
987
988 emit_condition(ctx, &instr->src[0].src, false);
989
990 /* The condition is the first argument; move the other
991 * arguments up one to be a binary instruction for
992 * Midgard */
993
994 memmove(instr->src, instr->src + 1, 2 * sizeof(nir_alu_src));
995 break;
996 }
997
998 /* We don't have a native b2f32 instruction. Instead, like many GPUs,
999 * we exploit booleans as 0/~0 for false/true, and correspondingly AND
1000 * by 1.0 to do the type conversion. For the moment, prime us to emit:
1001 *
1002 * iand [whatever], #0
1003 *
1004 * At the end of emit_alu (as MIR), we'll fix-up the constant */
1005
1006 case nir_op_b2f32: {
1007 op = midgard_alu_op_iand;
1008 break;
1009 }
1010
1011 default:
1012 printf("Unhandled ALU op %s\n", nir_op_infos[instr->op].name);
1013 assert(0);
1014 return;
1015 }
1016
1017 /* Fetch unit, quirks, etc information */
1018 unsigned opcode_props = alu_opcode_props[op];
1019 bool quirk_flipped_r24 = opcode_props & QUIRK_FLIPPED_R24;
1020
1021 /* Initialise fields common between scalar/vector instructions */
1022 midgard_outmod outmod = instr->dest.saturate ? midgard_outmod_sat : midgard_outmod_none;
1023
1024 /* src0 will always exist afaik, but src1 will not for 1-argument
1025 * instructions. The latter can only be fetched if the instruction
1026 * needs it, or else we may segfault. */
1027
1028 unsigned src0 = nir_alu_src_index(ctx, &instr->src[0]);
1029 unsigned src1 = nr_inputs == 2 ? nir_alu_src_index(ctx, &instr->src[1]) : SSA_UNUSED_0;
1030
1031 /* Rather than use the instruction generation helpers, we do it
1032 * ourselves here to avoid the mess */
1033
1034 midgard_instruction ins = {
1035 .type = TAG_ALU_4,
1036 .ssa_args = {
1037 .src0 = quirk_flipped_r24 ? SSA_UNUSED_1 : src0,
1038 .src1 = quirk_flipped_r24 ? src0 : src1,
1039 .dest = dest,
1040 .inline_constant = (nr_inputs == 1) && !quirk_flipped_r24
1041 }
1042 };
1043
1044 nir_alu_src *nirmods[2] = { NULL };
1045
1046 if (nr_inputs == 2) {
1047 nirmods[0] = &instr->src[0];
1048 nirmods[1] = &instr->src[1];
1049 } else if (nr_inputs == 1) {
1050 nirmods[quirk_flipped_r24] = &instr->src[0];
1051 } else {
1052 assert(0);
1053 }
1054
1055 midgard_vector_alu alu = {
1056 .op = op,
1057 .reg_mode = midgard_reg_mode_full,
1058 .dest_override = midgard_dest_override_none,
1059 .outmod = outmod,
1060
1061 /* Writemask only valid for non-SSA NIR */
1062 .mask = expand_writemask((1 << nr_components) - 1),
1063
1064 .src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0])),
1065 .src2 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[1])),
1066 };
1067
1068 /* Apply writemask if non-SSA, keeping in mind that we can't write to components that don't exist */
1069
1070 if (!is_ssa)
1071 alu.mask &= expand_writemask(instr->dest.write_mask);
1072
1073 ins.alu = alu;
1074
1075 /* Late fixup for emulated instructions */
1076
1077 if (instr->op == nir_op_b2f32) {
1078 /* Presently, our second argument is an inline #0 constant.
1079 * Switch over to an embedded 1.0 constant (that can't fit
1080 * inline, since we're 32-bit, not 16-bit like the inline
1081 * constants) */
1082
1083 ins.ssa_args.inline_constant = false;
1084 ins.ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
1085 ins.has_constants = true;
1086 ins.constants[0] = 1.0;
1087 }
1088
1089 if ((opcode_props & UNITS_ALL) == UNIT_VLUT) {
1090 /* To avoid duplicating the lookup tables (probably), true LUT
1091 * instructions can only operate as if they were scalars. Lower
1092 * them here by changing the component. */
1093
1094 uint8_t original_swizzle[4];
1095 memcpy(original_swizzle, nirmods[0]->swizzle, sizeof(nirmods[0]->swizzle));
1096
1097 for (int i = 0; i < nr_components; ++i) {
1098 ins.alu.mask = (0x3) << (2 * i); /* Mask the associated component */
1099
1100 for (int j = 0; j < 4; ++j)
1101 nirmods[0]->swizzle[j] = original_swizzle[i]; /* Pull from the correct component */
1102
1103 ins.alu.src1 = vector_alu_srco_unsigned(vector_alu_modifiers(nirmods[0]));
1104 emit_mir_instruction(ctx, ins);
1105 }
1106 } else {
1107 emit_mir_instruction(ctx, ins);
1108 }
1109 }
1110
1111 #undef ALU_CASE
1112
1113 static void
1114 emit_intrinsic(compiler_context *ctx, nir_intrinsic_instr *instr)
1115 {
1116 nir_const_value *const_offset;
1117 unsigned offset, reg;
1118
1119 switch (instr->intrinsic) {
1120 case nir_intrinsic_discard_if:
1121 emit_condition(ctx, &instr->src[0], true);
1122
1123 /* fallthrough */
1124
1125 case nir_intrinsic_discard: {
1126 midgard_condition cond = instr->intrinsic == nir_intrinsic_discard_if ?
1127 midgard_condition_true : midgard_condition_always;
1128
1129 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_discard, 0, 2, cond);
1130 ctx->can_discard = true;
1131 break;
1132 }
1133
1134 case nir_intrinsic_load_uniform:
1135 case nir_intrinsic_load_input:
1136 const_offset = nir_src_as_const_value(instr->src[0]);
1137 assert (const_offset && "no indirect inputs");
1138
1139 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1140
1141 reg = nir_dest_index(ctx, &instr->dest);
1142
1143 if (instr->intrinsic == nir_intrinsic_load_uniform && !ctx->is_blend) {
1144 /* TODO: half-floats */
1145
1146 int uniform_offset = 0;
1147
1148 if (offset >= SPECIAL_UNIFORM_BASE) {
1149 /* XXX: Resolve which uniform */
1150 uniform_offset = 0;
1151 } else {
1152 /* Offset away from the special
1153 * uniform block */
1154
1155 void *entry = _mesa_hash_table_u64_search(ctx->uniform_nir_to_mdg, offset + 1);
1156
1157 /* XXX */
1158 if (!entry) {
1159 printf("WARNING: Unknown uniform %d\n", offset);
1160 break;
1161 }
1162
1163 uniform_offset = (uintptr_t) (entry) - 1;
1164 uniform_offset += ctx->special_uniforms;
1165 }
1166
1167 if (uniform_offset < ctx->uniform_cutoff) {
1168 /* Fast path: For the first 16 uniform,
1169 * accesses are 0-cycle, since they're
1170 * just a register fetch in the usual
1171 * case. So, we alias the registers
1172 * while we're still in SSA-space */
1173
1174 int reg_slot = 23 - uniform_offset;
1175 alias_ssa(ctx, reg, SSA_FIXED_REGISTER(reg_slot));
1176 } else {
1177 /* Otherwise, read from the 'special'
1178 * UBO to access higher-indexed
1179 * uniforms, at a performance cost */
1180
1181 midgard_instruction ins = m_load_uniform_32(reg, uniform_offset);
1182
1183 /* TODO: Don't split */
1184 ins.load_store.varying_parameters = (uniform_offset & 7) << 7;
1185 ins.load_store.address = uniform_offset >> 3;
1186
1187 ins.load_store.unknown = 0x1E00; /* xxx: what is this? */
1188 emit_mir_instruction(ctx, ins);
1189 }
1190 } else if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->is_blend) {
1191 /* XXX: Half-floats? */
1192 /* TODO: swizzle, mask */
1193
1194 midgard_instruction ins = m_load_vary_32(reg, offset);
1195
1196 midgard_varying_parameter p = {
1197 .is_varying = 1,
1198 .interpolation = midgard_interp_default,
1199 .flat = /*var->data.interpolation == INTERP_MODE_FLAT*/ 0
1200 };
1201
1202 unsigned u;
1203 memcpy(&u, &p, sizeof(p));
1204 ins.load_store.varying_parameters = u;
1205
1206 ins.load_store.unknown = 0x1e9e; /* xxx: what is this? */
1207 emit_mir_instruction(ctx, ins);
1208 } else if (ctx->is_blend && instr->intrinsic == nir_intrinsic_load_uniform) {
1209 /* Constant encoded as a pinned constant */
1210
1211 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, reg);
1212 ins.has_constants = true;
1213 ins.has_blend_constant = true;
1214 emit_mir_instruction(ctx, ins);
1215 } else if (ctx->is_blend) {
1216 /* For blend shaders, a load might be
1217 * translated various ways depending on what
1218 * we're loading. Figure out how this is used */
1219
1220 nir_variable *out = NULL;
1221
1222 nir_foreach_variable(var, &ctx->nir->inputs) {
1223 int drvloc = var->data.driver_location;
1224
1225 if (nir_intrinsic_base(instr) == drvloc) {
1226 out = var;
1227 break;
1228 }
1229 }
1230
1231 assert(out);
1232
1233 if (out->data.location == VARYING_SLOT_COL0) {
1234 /* Source color preloaded to r0 */
1235
1236 midgard_pin_output(ctx, reg, 0);
1237 } else if (out->data.location == VARYING_SLOT_COL1) {
1238 /* Destination color must be read from framebuffer */
1239
1240 midgard_instruction ins = m_load_color_buffer_8(reg, 0);
1241 ins.load_store.swizzle = 0; /* xxxx */
1242
1243 /* Read each component sequentially */
1244
1245 for (int c = 0; c < 4; ++c) {
1246 ins.load_store.mask = (1 << c);
1247 ins.load_store.unknown = c;
1248 emit_mir_instruction(ctx, ins);
1249 }
1250
1251 /* vadd.u2f hr2, abs(hr2), #0 */
1252
1253 midgard_vector_alu_src alu_src = blank_alu_src;
1254 alu_src.abs = true;
1255 alu_src.half = true;
1256
1257 midgard_instruction u2f = {
1258 .type = TAG_ALU_4,
1259 .ssa_args = {
1260 .src0 = reg,
1261 .src1 = SSA_UNUSED_0,
1262 .dest = reg,
1263 .inline_constant = true
1264 },
1265 .alu = {
1266 .op = midgard_alu_op_u2f,
1267 .reg_mode = midgard_reg_mode_half,
1268 .dest_override = midgard_dest_override_none,
1269 .mask = 0xF,
1270 .src1 = vector_alu_srco_unsigned(alu_src),
1271 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1272 }
1273 };
1274
1275 emit_mir_instruction(ctx, u2f);
1276
1277 /* vmul.fmul.sat r1, hr2, #0.00392151 */
1278
1279 alu_src.abs = false;
1280
1281 midgard_instruction fmul = {
1282 .type = TAG_ALU_4,
1283 .inline_constant = _mesa_float_to_half(1.0 / 255.0),
1284 .ssa_args = {
1285 .src0 = reg,
1286 .dest = reg,
1287 .src1 = SSA_UNUSED_0,
1288 .inline_constant = true
1289 },
1290 .alu = {
1291 .op = midgard_alu_op_fmul,
1292 .reg_mode = midgard_reg_mode_full,
1293 .dest_override = midgard_dest_override_none,
1294 .outmod = midgard_outmod_sat,
1295 .mask = 0xFF,
1296 .src1 = vector_alu_srco_unsigned(alu_src),
1297 .src2 = vector_alu_srco_unsigned(blank_alu_src),
1298 }
1299 };
1300
1301 emit_mir_instruction(ctx, fmul);
1302 } else {
1303 printf("Unknown input in blend shader\n");
1304 assert(0);
1305 }
1306 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1307 midgard_instruction ins = m_load_attr_32(reg, offset);
1308 ins.load_store.unknown = 0x1E1E; /* XXX: What is this? */
1309 ins.load_store.mask = (1 << instr->num_components) - 1;
1310 emit_mir_instruction(ctx, ins);
1311 } else {
1312 printf("Unknown load\n");
1313 assert(0);
1314 }
1315
1316 break;
1317
1318 case nir_intrinsic_store_output:
1319 const_offset = nir_src_as_const_value(instr->src[1]);
1320 assert(const_offset && "no indirect outputs");
1321
1322 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1323
1324 reg = nir_src_index(ctx, &instr->src[0]);
1325
1326 if (ctx->stage == MESA_SHADER_FRAGMENT) {
1327 /* gl_FragColor is not emitted with load/store
1328 * instructions. Instead, it gets plonked into
1329 * r0 at the end of the shader and we do the
1330 * framebuffer writeout dance. TODO: Defer
1331 * writes */
1332
1333 midgard_pin_output(ctx, reg, 0);
1334
1335 /* Save the index we're writing to for later reference
1336 * in the epilogue */
1337
1338 ctx->fragment_output = reg;
1339 } else if (ctx->stage == MESA_SHADER_VERTEX) {
1340 /* Varyings are written into one of two special
1341 * varying register, r26 or r27. The register itself is selected as the register
1342 * in the st_vary instruction, minus the base of 26. E.g. write into r27 and then call st_vary(1)
1343 *
1344 * Normally emitting fmov's is frowned upon,
1345 * but due to unique constraints of
1346 * REGISTER_VARYING, fmov emission + a
1347 * dedicated cleanup pass is the only way to
1348 * guarantee correctness when considering some
1349 * (common) edge cases XXX: FIXME */
1350
1351 /* Look up how it was actually laid out */
1352
1353 void *entry = _mesa_hash_table_u64_search(ctx->varying_nir_to_mdg, offset + 1);
1354
1355 if (!entry) {
1356 printf("WARNING: skipping varying\n");
1357 break;
1358 }
1359
1360 offset = (uintptr_t) (entry) - 1;
1361
1362 /* If this varying corresponds to a constant (why?!),
1363 * emit that now since it won't get picked up by
1364 * hoisting (since there is no corresponding move
1365 * emitted otherwise) */
1366
1367 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, reg + 1);
1368
1369 if (constant_value) {
1370 /* Special case: emit the varying write
1371 * directly to r26 (looks funny in asm but it's
1372 * fine) and emit the store _now_. Possibly
1373 * slightly slower, but this is a really stupid
1374 * special case anyway (why on earth would you
1375 * have a constant varying? Your own fault for
1376 * slightly worse perf :P) */
1377
1378 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(26));
1379 attach_constants(ctx, &ins, constant_value, reg + 1);
1380 emit_mir_instruction(ctx, ins);
1381
1382 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(0), offset);
1383 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
1384 emit_mir_instruction(ctx, st);
1385 } else {
1386 /* Do not emit the varying yet -- instead, just mark down that we need to later */
1387
1388 _mesa_hash_table_u64_insert(ctx->ssa_varyings, reg + 1, (void *) ((uintptr_t) (offset + 1)));
1389 }
1390 } else {
1391 printf("Unknown store\n");
1392 assert(0);
1393 }
1394
1395 break;
1396
1397 case nir_intrinsic_load_alpha_ref_float:
1398 assert(instr->dest.is_ssa);
1399
1400 float ref_value = ctx->alpha_ref;
1401
1402 float *v = ralloc_array(NULL, float, 4);
1403 memcpy(v, &ref_value, sizeof(float));
1404 _mesa_hash_table_u64_insert(ctx->ssa_constants, instr->dest.ssa.index + 1, v);
1405 break;
1406
1407
1408 default:
1409 printf ("Unhandled intrinsic\n");
1410 assert(0);
1411 break;
1412 }
1413 }
1414
1415 static unsigned
1416 midgard_tex_format(enum glsl_sampler_dim dim)
1417 {
1418 switch (dim) {
1419 case GLSL_SAMPLER_DIM_2D:
1420 case GLSL_SAMPLER_DIM_EXTERNAL:
1421 return TEXTURE_2D;
1422
1423 case GLSL_SAMPLER_DIM_3D:
1424 return TEXTURE_3D;
1425
1426 case GLSL_SAMPLER_DIM_CUBE:
1427 return TEXTURE_CUBE;
1428
1429 default:
1430 printf("Unknown sampler dim type\n");
1431 assert(0);
1432 return 0;
1433 }
1434 }
1435
1436 static void
1437 emit_tex(compiler_context *ctx, nir_tex_instr *instr)
1438 {
1439 /* TODO */
1440 //assert (!instr->sampler);
1441 //assert (!instr->texture_array_size);
1442 assert (instr->op == nir_texop_tex);
1443
1444 /* Allocate registers via a round robin scheme to alternate between the two registers */
1445 int reg = ctx->texture_op_count & 1;
1446 int in_reg = reg, out_reg = reg;
1447
1448 /* Make room for the reg */
1449
1450 if (ctx->texture_index[reg] > -1)
1451 unalias_ssa(ctx, ctx->texture_index[reg]);
1452
1453 int texture_index = instr->texture_index;
1454 int sampler_index = texture_index;
1455
1456 for (unsigned i = 0; i < instr->num_srcs; ++i) {
1457 switch (instr->src[i].src_type) {
1458 case nir_tex_src_coord: {
1459 int index = nir_src_index(ctx, &instr->src[i].src);
1460
1461 midgard_vector_alu_src alu_src = blank_alu_src;
1462 alu_src.swizzle = (COMPONENT_Y << 2);
1463
1464 midgard_instruction ins = v_fmov(index, alu_src, SSA_FIXED_REGISTER(REGISTER_TEXTURE_BASE + in_reg));
1465 emit_mir_instruction(ctx, ins);
1466
1467 //midgard_pin_output(ctx, index, REGISTER_TEXTURE_BASE + in_reg);
1468
1469 break;
1470 }
1471
1472 default: {
1473 printf("Unknown source type\n");
1474 //assert(0);
1475 break;
1476 }
1477 }
1478 }
1479
1480 /* No helper to build texture words -- we do it all here */
1481 midgard_instruction ins = {
1482 .type = TAG_TEXTURE_4,
1483 .texture = {
1484 .op = TEXTURE_OP_NORMAL,
1485 .format = midgard_tex_format(instr->sampler_dim),
1486 .texture_handle = texture_index,
1487 .sampler_handle = sampler_index,
1488
1489 /* TODO: Don't force xyzw */
1490 .swizzle = SWIZZLE(COMPONENT_X, COMPONENT_Y, COMPONENT_Z, COMPONENT_W),
1491 .mask = 0xF,
1492
1493 /* TODO: half */
1494 //.in_reg_full = 1,
1495 .out_full = 1,
1496
1497 .filter = 1,
1498
1499 /* Always 1 */
1500 .unknown7 = 1,
1501
1502 /* Assume we can continue; hint it out later */
1503 .cont = 1,
1504 }
1505 };
1506
1507 /* Set registers to read and write from the same place */
1508 ins.texture.in_reg_select = in_reg;
1509 ins.texture.out_reg_select = out_reg;
1510
1511 /* TODO: Dynamic swizzle input selection, half-swizzles? */
1512 if (instr->sampler_dim == GLSL_SAMPLER_DIM_3D) {
1513 ins.texture.in_reg_swizzle_right = COMPONENT_X;
1514 ins.texture.in_reg_swizzle_left = COMPONENT_Y;
1515 //ins.texture.in_reg_swizzle_third = COMPONENT_Z;
1516 } else {
1517 ins.texture.in_reg_swizzle_left = COMPONENT_X;
1518 ins.texture.in_reg_swizzle_right = COMPONENT_Y;
1519 //ins.texture.in_reg_swizzle_third = COMPONENT_X;
1520 }
1521
1522 emit_mir_instruction(ctx, ins);
1523
1524 /* Simultaneously alias the destination and emit a move for it. The move will be eliminated if possible */
1525
1526 int o_reg = REGISTER_TEXTURE_BASE + out_reg, o_index = nir_dest_index(ctx, &instr->dest);
1527 alias_ssa(ctx, o_index, SSA_FIXED_REGISTER(o_reg));
1528 ctx->texture_index[reg] = o_index;
1529
1530 midgard_instruction ins2 = v_fmov(SSA_FIXED_REGISTER(o_reg), blank_alu_src, o_index);
1531 emit_mir_instruction(ctx, ins2);
1532
1533 /* Used for .cont and .last hinting */
1534 ctx->texture_op_count++;
1535 }
1536
1537 static void
1538 emit_jump(compiler_context *ctx, nir_jump_instr *instr)
1539 {
1540 switch (instr->type) {
1541 case nir_jump_break: {
1542 /* Emit a branch out of the loop */
1543 struct midgard_instruction br = v_branch(false, false);
1544 br.branch.target_type = TARGET_BREAK;
1545 br.branch.target_break = ctx->current_loop;
1546 emit_mir_instruction(ctx, br);
1547
1548 printf("break..\n");
1549 break;
1550 }
1551
1552 default:
1553 printf("Unknown jump type %d\n", instr->type);
1554 break;
1555 }
1556 }
1557
1558 static void
1559 emit_instr(compiler_context *ctx, struct nir_instr *instr)
1560 {
1561 switch (instr->type) {
1562 case nir_instr_type_load_const:
1563 emit_load_const(ctx, nir_instr_as_load_const(instr));
1564 break;
1565
1566 case nir_instr_type_intrinsic:
1567 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
1568 break;
1569
1570 case nir_instr_type_alu:
1571 emit_alu(ctx, nir_instr_as_alu(instr));
1572 break;
1573
1574 case nir_instr_type_tex:
1575 emit_tex(ctx, nir_instr_as_tex(instr));
1576 break;
1577
1578 case nir_instr_type_jump:
1579 emit_jump(ctx, nir_instr_as_jump(instr));
1580 break;
1581
1582 case nir_instr_type_ssa_undef:
1583 /* Spurious */
1584 break;
1585
1586 default:
1587 printf("Unhandled instruction type\n");
1588 break;
1589 }
1590 }
1591
1592 /* Determine the actual hardware from the index based on the RA results or special values */
1593
1594 static int
1595 dealias_register(compiler_context *ctx, struct ra_graph *g, int reg, int maxreg)
1596 {
1597 if (reg >= SSA_FIXED_MINIMUM)
1598 return SSA_REG_FROM_FIXED(reg);
1599
1600 if (reg >= 0) {
1601 assert(reg < maxreg);
1602 int r = ra_get_node_reg(g, reg);
1603 ctx->work_registers = MAX2(ctx->work_registers, r);
1604 return r;
1605 }
1606
1607 switch (reg) {
1608 /* fmov style unused */
1609 case SSA_UNUSED_0:
1610 return REGISTER_UNUSED;
1611
1612 /* lut style unused */
1613 case SSA_UNUSED_1:
1614 return REGISTER_UNUSED;
1615
1616 default:
1617 printf("Unknown SSA register alias %d\n", reg);
1618 assert(0);
1619 return 31;
1620 }
1621 }
1622
1623 static unsigned int
1624 midgard_ra_select_callback(struct ra_graph *g, BITSET_WORD *regs, void *data)
1625 {
1626 /* Choose the first available register to minimise reported register pressure */
1627
1628 for (int i = 0; i < 16; ++i) {
1629 if (BITSET_TEST(regs, i)) {
1630 return i;
1631 }
1632 }
1633
1634 assert(0);
1635 return 0;
1636 }
1637
1638 static bool
1639 midgard_is_live_in_instr(midgard_instruction *ins, int src)
1640 {
1641 if (ins->ssa_args.src0 == src) return true;
1642 if (ins->ssa_args.src1 == src) return true;
1643
1644 return false;
1645 }
1646
1647 static bool
1648 is_live_after(compiler_context *ctx, midgard_block *block, midgard_instruction *start, int src)
1649 {
1650 /* Check the rest of the block for liveness */
1651 mir_foreach_instr_in_block_from(block, ins, mir_next_op(start)) {
1652 if (midgard_is_live_in_instr(ins, src))
1653 return true;
1654 }
1655
1656 /* Check the rest of the blocks for liveness */
1657 mir_foreach_block_from(ctx, mir_next_block(block), b) {
1658 mir_foreach_instr_in_block(b, ins) {
1659 if (midgard_is_live_in_instr(ins, src))
1660 return true;
1661 }
1662 }
1663
1664 /* TODO: How does control flow interact in complex shaders? */
1665
1666 return false;
1667 }
1668
1669 static void
1670 allocate_registers(compiler_context *ctx)
1671 {
1672 /* First, initialize the RA */
1673 struct ra_regs *regs = ra_alloc_reg_set(NULL, 32, true);
1674
1675 /* Create a primary (general purpose) class, as well as special purpose
1676 * pipeline register classes */
1677
1678 int primary_class = ra_alloc_reg_class(regs);
1679 int varying_class = ra_alloc_reg_class(regs);
1680
1681 /* Add the full set of work registers */
1682 int work_count = 16 - MAX2((ctx->uniform_cutoff - 8), 0);
1683 for (int i = 0; i < work_count; ++i)
1684 ra_class_add_reg(regs, primary_class, i);
1685
1686 /* Add special registers */
1687 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE);
1688 ra_class_add_reg(regs, varying_class, REGISTER_VARYING_BASE + 1);
1689
1690 /* We're done setting up */
1691 ra_set_finalize(regs, NULL);
1692
1693 /* Transform the MIR into squeezed index form */
1694 mir_foreach_block(ctx, block) {
1695 mir_foreach_instr_in_block(block, ins) {
1696 if (ins->compact_branch) continue;
1697
1698 ins->ssa_args.src0 = find_or_allocate_temp(ctx, ins->ssa_args.src0);
1699 ins->ssa_args.src1 = find_or_allocate_temp(ctx, ins->ssa_args.src1);
1700 ins->ssa_args.dest = find_or_allocate_temp(ctx, ins->ssa_args.dest);
1701 }
1702
1703 print_mir_block(block);
1704 }
1705
1706 /* Let's actually do register allocation */
1707 int nodes = ctx->temp_count;
1708 struct ra_graph *g = ra_alloc_interference_graph(regs, nodes);
1709
1710 /* Set everything to the work register class, unless it has somewhere
1711 * special to go */
1712
1713 mir_foreach_block(ctx, block) {
1714 mir_foreach_instr_in_block(block, ins) {
1715 if (ins->compact_branch) continue;
1716
1717 if (ins->ssa_args.dest < 0) continue;
1718
1719 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
1720
1721 int class = primary_class;
1722
1723 ra_set_node_class(g, ins->ssa_args.dest, class);
1724 }
1725 }
1726
1727 for (int index = 0; index <= ctx->max_hash; ++index) {
1728 unsigned temp = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_register, index + 1);
1729
1730 if (temp) {
1731 unsigned reg = temp - 1;
1732 int t = find_or_allocate_temp(ctx, index);
1733 ra_set_node_reg(g, t, reg);
1734 }
1735 }
1736
1737 /* Determine liveness */
1738
1739 int *live_start = malloc(nodes * sizeof(int));
1740 int *live_end = malloc(nodes * sizeof(int));
1741
1742 /* Initialize as non-existent */
1743
1744 for (int i = 0; i < nodes; ++i) {
1745 live_start[i] = live_end[i] = -1;
1746 }
1747
1748 int d = 0;
1749
1750 mir_foreach_block(ctx, block) {
1751 mir_foreach_instr_in_block(block, ins) {
1752 if (ins->compact_branch) continue;
1753
1754 if (ins->ssa_args.dest < SSA_FIXED_MINIMUM) {
1755 /* If this destination is not yet live, it is now since we just wrote it */
1756
1757 int dest = ins->ssa_args.dest;
1758
1759 if (live_start[dest] == -1)
1760 live_start[dest] = d;
1761 }
1762
1763 /* Since we just used a source, the source might be
1764 * dead now. Scan the rest of the block for
1765 * invocations, and if there are none, the source dies
1766 * */
1767
1768 int sources[2] = { ins->ssa_args.src0, ins->ssa_args.src1 };
1769
1770 for (int src = 0; src < 2; ++src) {
1771 int s = sources[src];
1772
1773 if (s < 0) continue;
1774
1775 if (s >= SSA_FIXED_MINIMUM) continue;
1776
1777 if (!is_live_after(ctx, block, ins, s)) {
1778 live_end[s] = d;
1779 }
1780 }
1781
1782 ++d;
1783 }
1784 }
1785
1786 /* If a node still hasn't been killed, kill it now */
1787
1788 for (int i = 0; i < nodes; ++i) {
1789 /* live_start == -1 most likely indicates a pinned output */
1790
1791 if (live_end[i] == -1)
1792 live_end[i] = d;
1793 }
1794
1795 /* Setup interference between nodes that are live at the same time */
1796
1797 for (int i = 0; i < nodes; ++i) {
1798 for (int j = i + 1; j < nodes; ++j) {
1799 if (!(live_start[i] >= live_end[j] || live_start[j] >= live_end[i]))
1800 ra_add_node_interference(g, i, j);
1801 }
1802 }
1803
1804 ra_set_select_reg_callback(g, midgard_ra_select_callback, NULL);
1805
1806 if (!ra_allocate(g)) {
1807 printf("Error allocating registers\n");
1808 assert(0);
1809 }
1810
1811 /* Cleanup */
1812 free(live_start);
1813 free(live_end);
1814
1815 mir_foreach_block(ctx, block) {
1816 mir_foreach_instr_in_block(block, ins) {
1817 if (ins->compact_branch) continue;
1818
1819 ssa_args args = ins->ssa_args;
1820
1821 switch (ins->type) {
1822 case TAG_ALU_4:
1823 ins->registers.src1_reg = dealias_register(ctx, g, args.src0, nodes);
1824
1825 ins->registers.src2_imm = args.inline_constant;
1826
1827 if (args.inline_constant) {
1828 /* Encode inline 16-bit constant as a vector by default */
1829
1830 ins->registers.src2_reg = ins->inline_constant >> 11;
1831
1832 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1833
1834 uint16_t imm = ((lower_11 >> 8) & 0x7) | ((lower_11 & 0xFF) << 3);
1835 ins->alu.src2 = imm << 2;
1836 } else {
1837 ins->registers.src2_reg = dealias_register(ctx, g, args.src1, nodes);
1838 }
1839
1840 ins->registers.out_reg = dealias_register(ctx, g, args.dest, nodes);
1841
1842 break;
1843
1844 case TAG_LOAD_STORE_4: {
1845 if (OP_IS_STORE(ins->load_store.op)) {
1846 /* TODO: use ssa_args for store_vary */
1847 ins->load_store.reg = 0;
1848 } else {
1849 bool has_dest = args.dest >= 0;
1850 int ssa_arg = has_dest ? args.dest : args.src0;
1851
1852 ins->load_store.reg = dealias_register(ctx, g, ssa_arg, nodes);
1853 }
1854
1855 break;
1856 }
1857
1858 default:
1859 break;
1860 }
1861 }
1862 }
1863 }
1864
1865 /* Midgard IR only knows vector ALU types, but we sometimes need to actually
1866 * use scalar ALU instructions, for functional or performance reasons. To do
1867 * this, we just demote vector ALU payloads to scalar. */
1868
1869 static int
1870 component_from_mask(unsigned mask)
1871 {
1872 for (int c = 0; c < 4; ++c) {
1873 if (mask & (3 << (2 * c)))
1874 return c;
1875 }
1876
1877 assert(0);
1878 return 0;
1879 }
1880
1881 static bool
1882 is_single_component_mask(unsigned mask)
1883 {
1884 int components = 0;
1885
1886 for (int c = 0; c < 4; ++c)
1887 if (mask & (3 << (2 * c)))
1888 components++;
1889
1890 return components == 1;
1891 }
1892
1893 /* Create a mask of accessed components from a swizzle to figure out vector
1894 * dependencies */
1895
1896 static unsigned
1897 swizzle_to_access_mask(unsigned swizzle)
1898 {
1899 unsigned component_mask = 0;
1900
1901 for (int i = 0; i < 4; ++i) {
1902 unsigned c = (swizzle >> (2 * i)) & 3;
1903 component_mask |= (1 << c);
1904 }
1905
1906 return component_mask;
1907 }
1908
1909 static unsigned
1910 vector_to_scalar_source(unsigned u)
1911 {
1912 midgard_vector_alu_src v;
1913 memcpy(&v, &u, sizeof(v));
1914
1915 midgard_scalar_alu_src s = {
1916 .abs = v.abs,
1917 .negate = v.negate,
1918 .full = !v.half,
1919 .component = (v.swizzle & 3) << 1
1920 };
1921
1922 unsigned o;
1923 memcpy(&o, &s, sizeof(s));
1924
1925 return o & ((1 << 6) - 1);
1926 }
1927
1928 static midgard_scalar_alu
1929 vector_to_scalar_alu(midgard_vector_alu v, midgard_instruction *ins)
1930 {
1931 /* The output component is from the mask */
1932 midgard_scalar_alu s = {
1933 .op = v.op,
1934 .src1 = vector_to_scalar_source(v.src1),
1935 .src2 = vector_to_scalar_source(v.src2),
1936 .unknown = 0,
1937 .outmod = v.outmod,
1938 .output_full = 1, /* TODO: Half */
1939 .output_component = component_from_mask(v.mask) << 1,
1940 };
1941
1942 /* Inline constant is passed along rather than trying to extract it
1943 * from v */
1944
1945 if (ins->ssa_args.inline_constant) {
1946 uint16_t imm = 0;
1947 int lower_11 = ins->inline_constant & ((1 << 12) - 1);
1948 imm |= (lower_11 >> 9) & 3;
1949 imm |= (lower_11 >> 6) & 4;
1950 imm |= (lower_11 >> 2) & 0x38;
1951 imm |= (lower_11 & 63) << 6;
1952
1953 s.src2 = imm;
1954 }
1955
1956 return s;
1957 }
1958
1959 /* Midgard prefetches instruction types, so during emission we need to
1960 * lookahead too. Unless this is the last instruction, in which we return 1. Or
1961 * if this is the second to last and the last is an ALU, then it's also 1... */
1962
1963 #define IS_ALU(tag) (tag == TAG_ALU_4 || tag == TAG_ALU_8 || \
1964 tag == TAG_ALU_12 || tag == TAG_ALU_16)
1965
1966 #define EMIT_AND_COUNT(type, val) util_dynarray_append(emission, type, val); \
1967 bytes_emitted += sizeof(type)
1968
1969 static void
1970 emit_binary_vector_instruction(midgard_instruction *ains,
1971 uint16_t *register_words, int *register_words_count,
1972 uint64_t *body_words, size_t *body_size, int *body_words_count,
1973 size_t *bytes_emitted)
1974 {
1975 memcpy(&register_words[(*register_words_count)++], &ains->registers, sizeof(ains->registers));
1976 *bytes_emitted += sizeof(midgard_reg_info);
1977
1978 body_size[*body_words_count] = sizeof(midgard_vector_alu);
1979 memcpy(&body_words[(*body_words_count)++], &ains->alu, sizeof(ains->alu));
1980 *bytes_emitted += sizeof(midgard_vector_alu);
1981 }
1982
1983 /* Checks for an SSA data hazard between two adjacent instructions, keeping in
1984 * mind that we are a vector architecture and we can write to different
1985 * components simultaneously */
1986
1987 static bool
1988 can_run_concurrent_ssa(midgard_instruction *first, midgard_instruction *second)
1989 {
1990 /* Each instruction reads some registers and writes to a register. See
1991 * where the first writes */
1992
1993 /* Figure out where exactly we wrote to */
1994 int source = first->ssa_args.dest;
1995 int source_mask = first->type == TAG_ALU_4 ? squeeze_writemask(first->alu.mask) : 0xF;
1996
1997 /* As long as the second doesn't read from the first, we're okay */
1998 if (second->ssa_args.src0 == source) {
1999 if (first->type == TAG_ALU_4) {
2000 /* Figure out which components we just read from */
2001
2002 int q = second->alu.src1;
2003 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2004
2005 /* Check if there are components in common, and fail if so */
2006 if (swizzle_to_access_mask(m->swizzle) & source_mask)
2007 return false;
2008 } else
2009 return false;
2010
2011 }
2012
2013 if (second->ssa_args.src1 == source)
2014 return false;
2015
2016 /* Otherwise, it's safe in that regard. Another data hazard is both
2017 * writing to the same place, of course */
2018
2019 if (second->ssa_args.dest == source) {
2020 /* ...but only if the components overlap */
2021 int dest_mask = second->type == TAG_ALU_4 ? squeeze_writemask(second->alu.mask) : 0xF;
2022
2023 if (dest_mask & source_mask)
2024 return false;
2025 }
2026
2027 /* ...That's it */
2028 return true;
2029 }
2030
2031 /* Schedules, but does not emit, a single basic block. After scheduling, the
2032 * final tag and size of the block are known, which are necessary for branching
2033 * */
2034
2035 static midgard_bundle
2036 schedule_bundle(compiler_context *ctx, midgard_block *block, midgard_instruction *ins, int *skip)
2037 {
2038 int instructions_emitted = 0, instructions_consumed = -1;
2039 midgard_bundle bundle = { 0 };
2040
2041 uint8_t tag = ins->type;
2042
2043 /* Default to the instruction's tag */
2044 bundle.tag = tag;
2045
2046 switch (ins->type) {
2047 case TAG_ALU_4: {
2048 uint32_t control = 0;
2049 size_t bytes_emitted = sizeof(control);
2050
2051 /* TODO: Constant combining */
2052 int index = 0, last_unit = 0;
2053
2054 /* Previous instructions, for the purpose of parallelism */
2055 midgard_instruction *segment[4] = {0};
2056 int segment_size = 0;
2057
2058 instructions_emitted = -1;
2059 midgard_instruction *pins = ins;
2060
2061 for (;;) {
2062 midgard_instruction *ains = pins;
2063
2064 /* Advance instruction pointer */
2065 if (index) {
2066 ains = mir_next_op(pins);
2067 pins = ains;
2068 }
2069
2070 /* Out-of-work condition */
2071 if ((struct list_head *) ains == &block->instructions)
2072 break;
2073
2074 /* Ensure that the chain can continue */
2075 if (ains->type != TAG_ALU_4) break;
2076
2077 /* According to the presentation "The ARM
2078 * Mali-T880 Mobile GPU" from HotChips 27,
2079 * there are two pipeline stages. Branching
2080 * position determined experimentally. Lines
2081 * are executed in parallel:
2082 *
2083 * [ VMUL ] [ SADD ]
2084 * [ VADD ] [ SMUL ] [ LUT ] [ BRANCH ]
2085 *
2086 * Verify that there are no ordering dependencies here.
2087 *
2088 * TODO: Allow for parallelism!!!
2089 */
2090
2091 /* Pick a unit for it if it doesn't force a particular unit */
2092
2093 int unit = ains->unit;
2094
2095 if (!unit) {
2096 int op = ains->alu.op;
2097 int units = alu_opcode_props[op];
2098
2099 /* TODO: Promotion of scalars to vectors */
2100 int vector = ((!is_single_component_mask(ains->alu.mask)) || ((units & UNITS_SCALAR) == 0)) && (units & UNITS_ANY_VECTOR);
2101
2102 if (!vector)
2103 assert(units & UNITS_SCALAR);
2104
2105 if (vector) {
2106 if (last_unit >= UNIT_VADD) {
2107 if (units & UNIT_VLUT)
2108 unit = UNIT_VLUT;
2109 else
2110 break;
2111 } else {
2112 if ((units & UNIT_VMUL) && !(control & UNIT_VMUL))
2113 unit = UNIT_VMUL;
2114 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2115 unit = UNIT_VADD;
2116 else if (units & UNIT_VLUT)
2117 unit = UNIT_VLUT;
2118 else
2119 break;
2120 }
2121 } else {
2122 if (last_unit >= UNIT_VADD) {
2123 if ((units & UNIT_SMUL) && !(control & UNIT_SMUL))
2124 unit = UNIT_SMUL;
2125 else if (units & UNIT_VLUT)
2126 unit = UNIT_VLUT;
2127 else
2128 break;
2129 } else {
2130 if ((units & UNIT_SADD) && !(control & UNIT_SADD))
2131 unit = UNIT_SADD;
2132 else if (units & UNIT_SMUL)
2133 unit = UNIT_SMUL;
2134 else if ((units & UNIT_VADD) && !(control & UNIT_VADD))
2135 unit = UNIT_VADD;
2136 else
2137 break;
2138 }
2139 }
2140
2141 assert(unit & units);
2142 }
2143
2144 /* Late unit check, this time for encoding (not parallelism) */
2145 if (unit <= last_unit) break;
2146
2147 /* Clear the segment */
2148 if (last_unit < UNIT_VADD && unit >= UNIT_VADD)
2149 segment_size = 0;
2150
2151 /* Check for data hazards */
2152 int has_hazard = false;
2153
2154 for (int s = 0; s < segment_size; ++s)
2155 if (!can_run_concurrent_ssa(segment[s], ains))
2156 has_hazard = true;
2157
2158 if (has_hazard)
2159 break;
2160
2161 /* We're good to go -- emit the instruction */
2162 ains->unit = unit;
2163
2164 segment[segment_size++] = ains;
2165
2166 /* Only one set of embedded constants per
2167 * bundle possible; if we have more, we must
2168 * break the chain early, unfortunately */
2169
2170 if (ains->has_constants) {
2171 if (bundle.has_embedded_constants) {
2172 /* ...but if there are already
2173 * constants but these are the
2174 * *same* constants, we let it
2175 * through */
2176
2177 if (memcmp(bundle.constants, ains->constants, sizeof(bundle.constants)))
2178 break;
2179 } else {
2180 bundle.has_embedded_constants = true;
2181 memcpy(bundle.constants, ains->constants, sizeof(bundle.constants));
2182
2183 /* If this is a blend shader special constant, track it for patching */
2184 if (ains->has_blend_constant)
2185 bundle.has_blend_constant = true;
2186 }
2187 }
2188
2189 if (ains->unit & UNITS_ANY_VECTOR) {
2190 emit_binary_vector_instruction(ains, bundle.register_words,
2191 &bundle.register_words_count, bundle.body_words,
2192 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2193 } else if (ains->compact_branch) {
2194 /* All of r0 has to be written out
2195 * along with the branch writeout.
2196 * (slow!) */
2197
2198 if (ains->writeout) {
2199 if (index == 0) {
2200 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2201 ins.unit = UNIT_VMUL;
2202
2203 control |= ins.unit;
2204
2205 emit_binary_vector_instruction(&ins, bundle.register_words,
2206 &bundle.register_words_count, bundle.body_words,
2207 bundle.body_size, &bundle.body_words_count, &bytes_emitted);
2208 } else {
2209 /* Analyse the group to see if r0 is written in full, on-time, without hanging dependencies*/
2210 bool written_late = false;
2211 bool components[4] = { 0 };
2212 uint16_t register_dep_mask = 0;
2213 uint16_t written_mask = 0;
2214
2215 midgard_instruction *qins = ins;
2216 for (int t = 0; t < index; ++t) {
2217 if (qins->registers.out_reg != 0) {
2218 /* Mark down writes */
2219
2220 written_mask |= (1 << qins->registers.out_reg);
2221 } else {
2222 /* Mark down the register dependencies for errata check */
2223
2224 if (qins->registers.src1_reg < 16)
2225 register_dep_mask |= (1 << qins->registers.src1_reg);
2226
2227 if (qins->registers.src2_reg < 16)
2228 register_dep_mask |= (1 << qins->registers.src2_reg);
2229
2230 int mask = qins->alu.mask;
2231
2232 for (int c = 0; c < 4; ++c)
2233 if (mask & (0x3 << (2 * c)))
2234 components[c] = true;
2235
2236 /* ..but if the writeout is too late, we have to break up anyway... for some reason */
2237
2238 if (qins->unit == UNIT_VLUT)
2239 written_late = true;
2240 }
2241
2242 /* Advance instruction pointer */
2243 qins = mir_next_op(qins);
2244 }
2245
2246
2247 /* ERRATA (?): In a bundle ending in a fragment writeout, the register dependencies of r0 cannot be written within this bundle (discovered in -bshading:shading=phong) */
2248 if (register_dep_mask & written_mask) {
2249 printf("ERRATA WORKAROUND: Breakup for writeout dependency masks %X vs %X (common %X)\n", register_dep_mask, written_mask, register_dep_mask & written_mask);
2250 break;
2251 }
2252
2253 if (written_late)
2254 break;
2255
2256 /* If even a single component is not written, break it up (conservative check). */
2257 bool breakup = false;
2258
2259 for (int c = 0; c < 4; ++c)
2260 if (!components[c])
2261 breakup = true;
2262
2263 if (breakup)
2264 break;
2265
2266 /* Otherwise, we're free to proceed */
2267 }
2268 }
2269
2270 bundle.body_size[bundle.body_words_count] = sizeof(ains->br_compact);
2271 memcpy(&bundle.body_words[bundle.body_words_count++], &ains->br_compact, sizeof(ains->br_compact));
2272 bytes_emitted += sizeof(ains->br_compact);
2273 } else {
2274 memcpy(&bundle.register_words[bundle.register_words_count++], &ains->registers, sizeof(ains->registers));
2275 bytes_emitted += sizeof(midgard_reg_info);
2276
2277 bundle.body_size[bundle.body_words_count] = sizeof(midgard_scalar_alu);
2278 bundle.body_words_count++;
2279 bytes_emitted += sizeof(midgard_scalar_alu);
2280 }
2281
2282 /* Defer marking until after writing to allow for break */
2283 control |= ains->unit;
2284 last_unit = ains->unit;
2285 ++instructions_emitted;
2286 ++index;
2287 }
2288
2289 /* Bubble up the number of instructions for skipping */
2290 instructions_consumed = index - 1;
2291
2292 int padding = 0;
2293
2294 /* Pad ALU op to nearest word */
2295
2296 if (bytes_emitted & 15) {
2297 padding = 16 - (bytes_emitted & 15);
2298 bytes_emitted += padding;
2299 }
2300
2301 /* Constants must always be quadwords */
2302 if (bundle.has_embedded_constants)
2303 bytes_emitted += 16;
2304
2305 /* Size ALU instruction for tag */
2306 bundle.tag = (TAG_ALU_4) + (bytes_emitted / 16) - 1;
2307 bundle.padding = padding;
2308 bundle.control = bundle.tag | control;
2309
2310 break;
2311 }
2312
2313 case TAG_LOAD_STORE_4: {
2314 /* Load store instructions have two words at once. If
2315 * we only have one queued up, we need to NOP pad.
2316 * Otherwise, we store both in succession to save space
2317 * and cycles -- letting them go in parallel -- skip
2318 * the next. The usefulness of this optimisation is
2319 * greatly dependent on the quality of the instruction
2320 * scheduler.
2321 */
2322
2323 midgard_instruction *next_op = mir_next_op(ins);
2324
2325 if ((struct list_head *) next_op != &block->instructions && next_op->type == TAG_LOAD_STORE_4) {
2326 /* As the two operate concurrently, make sure
2327 * they are not dependent */
2328
2329 if (can_run_concurrent_ssa(ins, next_op) || true) {
2330 /* Skip ahead, since it's redundant with the pair */
2331 instructions_consumed = 1 + (instructions_emitted++);
2332 }
2333 }
2334
2335 break;
2336 }
2337
2338 default:
2339 /* Texture ops default to single-op-per-bundle scheduling */
2340 break;
2341 }
2342
2343 /* Copy the instructions into the bundle */
2344 bundle.instruction_count = instructions_emitted + 1;
2345
2346 int used_idx = 0;
2347
2348 midgard_instruction *uins = ins;
2349 for (int i = 0; used_idx < bundle.instruction_count; ++i) {
2350 bundle.instructions[used_idx++] = *uins;
2351 uins = mir_next_op(uins);
2352 }
2353
2354 *skip = (instructions_consumed == -1) ? instructions_emitted : instructions_consumed;
2355
2356 return bundle;
2357 }
2358
2359 static int
2360 quadword_size(int tag)
2361 {
2362 switch (tag) {
2363 case TAG_ALU_4:
2364 return 1;
2365
2366 case TAG_ALU_8:
2367 return 2;
2368
2369 case TAG_ALU_12:
2370 return 3;
2371
2372 case TAG_ALU_16:
2373 return 4;
2374
2375 case TAG_LOAD_STORE_4:
2376 return 1;
2377
2378 case TAG_TEXTURE_4:
2379 return 1;
2380
2381 default:
2382 assert(0);
2383 return 0;
2384 }
2385 }
2386
2387 /* Schedule a single block by iterating its instruction to create bundles.
2388 * While we go, tally about the bundle sizes to compute the block size. */
2389
2390 static void
2391 schedule_block(compiler_context *ctx, midgard_block *block)
2392 {
2393 util_dynarray_init(&block->bundles, NULL);
2394
2395 block->quadword_count = 0;
2396
2397 mir_foreach_instr_in_block(block, ins) {
2398 int skip;
2399 midgard_bundle bundle = schedule_bundle(ctx, block, ins, &skip);
2400 util_dynarray_append(&block->bundles, midgard_bundle, bundle);
2401
2402 if (bundle.has_blend_constant) {
2403 /* TODO: Multiblock? */
2404 int quadwords_within_block = block->quadword_count + quadword_size(bundle.tag) - 1;
2405 ctx->blend_constant_offset = quadwords_within_block * 0x10;
2406 }
2407
2408 while(skip--)
2409 ins = mir_next_op(ins);
2410
2411 block->quadword_count += quadword_size(bundle.tag);
2412 }
2413
2414 block->is_scheduled = true;
2415 }
2416
2417 static void
2418 schedule_program(compiler_context *ctx)
2419 {
2420 allocate_registers(ctx);
2421
2422 mir_foreach_block(ctx, block) {
2423 schedule_block(ctx, block);
2424 }
2425 }
2426
2427 /* After everything is scheduled, emit whole bundles at a time */
2428
2429 static void
2430 emit_binary_bundle(compiler_context *ctx, midgard_bundle *bundle, struct util_dynarray *emission, int next_tag)
2431 {
2432 int lookahead = next_tag << 4;
2433
2434 switch (bundle->tag) {
2435 case TAG_ALU_4:
2436 case TAG_ALU_8:
2437 case TAG_ALU_12:
2438 case TAG_ALU_16: {
2439 /* Actually emit each component */
2440 util_dynarray_append(emission, uint32_t, bundle->control | lookahead);
2441
2442 for (int i = 0; i < bundle->register_words_count; ++i)
2443 util_dynarray_append(emission, uint16_t, bundle->register_words[i]);
2444
2445 /* Emit body words based on the instructions bundled */
2446 for (int i = 0; i < bundle->instruction_count; ++i) {
2447 midgard_instruction *ins = &bundle->instructions[i];
2448
2449 if (ins->unit & UNITS_ANY_VECTOR) {
2450 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins->alu, sizeof(midgard_vector_alu));
2451 } else if (ins->compact_branch) {
2452 /* Dummy move, XXX DRY */
2453 if ((i == 0) && ins->writeout) {
2454 midgard_instruction ins = v_fmov(0, blank_alu_src, SSA_FIXED_REGISTER(0));
2455 memcpy(util_dynarray_grow(emission, sizeof(midgard_vector_alu)), &ins.alu, sizeof(midgard_vector_alu));
2456 }
2457
2458 memcpy(util_dynarray_grow(emission, sizeof(ins->br_compact)), &ins->br_compact, sizeof(ins->br_compact));
2459 } else {
2460 /* Scalar */
2461 midgard_scalar_alu scalarised = vector_to_scalar_alu(ins->alu, ins);
2462 memcpy(util_dynarray_grow(emission, sizeof(scalarised)), &scalarised, sizeof(scalarised));
2463 }
2464 }
2465
2466 /* Emit padding (all zero) */
2467 memset(util_dynarray_grow(emission, bundle->padding), 0, bundle->padding);
2468
2469 /* Tack on constants */
2470
2471 if (bundle->has_embedded_constants) {
2472 util_dynarray_append(emission, float, bundle->constants[0]);
2473 util_dynarray_append(emission, float, bundle->constants[1]);
2474 util_dynarray_append(emission, float, bundle->constants[2]);
2475 util_dynarray_append(emission, float, bundle->constants[3]);
2476 }
2477
2478 break;
2479 }
2480
2481 case TAG_LOAD_STORE_4: {
2482 /* One or two composing instructions */
2483
2484 uint64_t current64, next64 = LDST_NOP;
2485
2486 memcpy(&current64, &bundle->instructions[0].load_store, sizeof(current64));
2487
2488 if (bundle->instruction_count == 2)
2489 memcpy(&next64, &bundle->instructions[1].load_store, sizeof(next64));
2490
2491 midgard_load_store instruction = {
2492 .type = bundle->tag,
2493 .next_type = next_tag,
2494 .word1 = current64,
2495 .word2 = next64
2496 };
2497
2498 util_dynarray_append(emission, midgard_load_store, instruction);
2499
2500 break;
2501 }
2502
2503 case TAG_TEXTURE_4: {
2504 /* Texture instructions are easy, since there is no
2505 * pipelining nor VLIW to worry about. We may need to set the .last flag */
2506
2507 midgard_instruction *ins = &bundle->instructions[0];
2508
2509 ins->texture.type = TAG_TEXTURE_4;
2510 ins->texture.next_type = next_tag;
2511
2512 ctx->texture_op_count--;
2513
2514 if (!ctx->texture_op_count) {
2515 ins->texture.cont = 0;
2516 ins->texture.last = 1;
2517 }
2518
2519 util_dynarray_append(emission, midgard_texture_word, ins->texture);
2520 break;
2521 }
2522
2523 default:
2524 printf("Unknown midgard instruction type\n");
2525 assert(0);
2526 break;
2527 }
2528 }
2529
2530
2531 /* ALU instructions can inline or embed constants, which decreases register
2532 * pressure and saves space. */
2533
2534 #define CONDITIONAL_ATTACH(src) { \
2535 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src + 1); \
2536 \
2537 if (entry) { \
2538 attach_constants(ctx, alu, entry, alu->ssa_args.src + 1); \
2539 alu->ssa_args.src = SSA_FIXED_REGISTER(REGISTER_CONSTANT); \
2540 } \
2541 }
2542
2543 static void
2544 inline_alu_constants(compiler_context *ctx)
2545 {
2546 mir_foreach_instr(ctx, alu) {
2547 /* Other instructions cannot inline constants */
2548 if (alu->type != TAG_ALU_4) continue;
2549
2550 /* If there is already a constant here, we can do nothing */
2551 if (alu->has_constants) continue;
2552
2553 CONDITIONAL_ATTACH(src0);
2554
2555 if (!alu->has_constants) {
2556 CONDITIONAL_ATTACH(src1)
2557 } else if (!alu->inline_constant) {
2558 /* Corner case: _two_ vec4 constants, for instance with a
2559 * csel. For this case, we can only use a constant
2560 * register for one, we'll have to emit a move for the
2561 * other. Note, if both arguments are constants, then
2562 * necessarily neither argument depends on the value of
2563 * any particular register. As the destination register
2564 * will be wiped, that means we can spill the constant
2565 * to the destination register.
2566 */
2567
2568 void *entry = _mesa_hash_table_u64_search(ctx->ssa_constants, alu->ssa_args.src1 + 1);
2569 unsigned scratch = alu->ssa_args.dest;
2570
2571 if (entry) {
2572 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, scratch);
2573 attach_constants(ctx, &ins, entry, alu->ssa_args.src1 + 1);
2574
2575 /* Force a break XXX Defer r31 writes */
2576 ins.unit = UNIT_VLUT;
2577
2578 /* Set the source */
2579 alu->ssa_args.src1 = scratch;
2580
2581 /* Inject us -before- the last instruction which set r31 */
2582 mir_insert_instruction_before(mir_prev_op(alu), ins);
2583 }
2584 }
2585 }
2586 }
2587
2588 /* Midgard supports two types of constants, embedded constants (128-bit) and
2589 * inline constants (16-bit). Sometimes, especially with scalar ops, embedded
2590 * constants can be demoted to inline constants, for space savings and
2591 * sometimes a performance boost */
2592
2593 static void
2594 embedded_to_inline_constant(compiler_context *ctx)
2595 {
2596 mir_foreach_instr(ctx, ins) {
2597 if (!ins->has_constants) continue;
2598
2599 if (ins->ssa_args.inline_constant) continue;
2600
2601 /* Blend constants must not be inlined by definition */
2602 if (ins->has_blend_constant) continue;
2603
2604 /* src1 cannot be an inline constant due to encoding
2605 * restrictions. So, if possible we try to flip the arguments
2606 * in that case */
2607
2608 int op = ins->alu.op;
2609
2610 if (ins->ssa_args.src0 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2611 /* Flip based on op. Fallthrough intentional */
2612
2613 switch (op) {
2614 /* These ops require an operational change to flip their arguments TODO */
2615 case midgard_alu_op_flt:
2616 case midgard_alu_op_fle:
2617 case midgard_alu_op_ilt:
2618 case midgard_alu_op_ile:
2619 case midgard_alu_op_fcsel:
2620 case midgard_alu_op_icsel:
2621 case midgard_alu_op_isub:
2622 printf("Missed non-commutative flip (%s)\n", alu_opcode_names[op]);
2623 break;
2624
2625 /* These ops are commutative and Just Flip */
2626 case midgard_alu_op_fne:
2627 case midgard_alu_op_fadd:
2628 case midgard_alu_op_fmul:
2629 case midgard_alu_op_fmin:
2630 case midgard_alu_op_fmax:
2631 case midgard_alu_op_iadd:
2632 case midgard_alu_op_imul:
2633 case midgard_alu_op_feq:
2634 case midgard_alu_op_ieq:
2635 case midgard_alu_op_ine:
2636 case midgard_alu_op_iand:
2637 case midgard_alu_op_ior:
2638 case midgard_alu_op_ixor:
2639 /* Flip the SSA numbers */
2640 ins->ssa_args.src0 = ins->ssa_args.src1;
2641 ins->ssa_args.src1 = SSA_FIXED_REGISTER(REGISTER_CONSTANT);
2642
2643 /* And flip the modifiers */
2644
2645 unsigned src_temp;
2646
2647 src_temp = ins->alu.src2;
2648 ins->alu.src2 = ins->alu.src1;
2649 ins->alu.src1 = src_temp;
2650
2651 default:
2652 break;
2653 }
2654 }
2655
2656 if (ins->ssa_args.src1 == SSA_FIXED_REGISTER(REGISTER_CONSTANT)) {
2657 /* Extract the source information */
2658
2659 midgard_vector_alu_src *src;
2660 int q = ins->alu.src2;
2661 midgard_vector_alu_src *m = (midgard_vector_alu_src *) &q;
2662 src = m;
2663
2664 /* Component is from the swizzle, e.g. r26.w -> w component. TODO: What if x is masked out? */
2665 int component = src->swizzle & 3;
2666
2667 /* Scale constant appropriately, if we can legally */
2668 uint16_t scaled_constant = 0;
2669
2670 /* XXX: Check legality */
2671 if (midgard_is_integer_op(op)) {
2672 /* TODO: Inline integer */
2673 continue;
2674
2675 unsigned int *iconstants = (unsigned int *) ins->constants;
2676 scaled_constant = (uint16_t) iconstants[component];
2677
2678 /* Constant overflow after resize */
2679 if (scaled_constant != iconstants[component])
2680 continue;
2681 } else {
2682 scaled_constant = _mesa_float_to_half((float) ins->constants[component]);
2683 }
2684
2685 /* We don't know how to handle these with a constant */
2686
2687 if (src->abs || src->negate || src->half || src->rep_low || src->rep_high) {
2688 printf("Bailing inline constant...\n");
2689 continue;
2690 }
2691
2692 /* Make sure that the constant is not itself a
2693 * vector by checking if all accessed values
2694 * (by the swizzle) are the same. */
2695
2696 uint32_t *cons = (uint32_t *) ins->constants;
2697 uint32_t value = cons[component];
2698
2699 bool is_vector = false;
2700 unsigned mask = effective_writemask(&ins->alu);
2701
2702 for (int c = 1; c < 4; ++c) {
2703 /* We only care if this component is actually used */
2704 if (!(mask & (1 << c)))
2705 continue;
2706
2707 uint32_t test = cons[(src->swizzle >> (2 * c)) & 3];
2708
2709 if (test != value) {
2710 is_vector = true;
2711 break;
2712 }
2713 }
2714
2715 if (is_vector)
2716 continue;
2717
2718 /* Get rid of the embedded constant */
2719 ins->has_constants = false;
2720 ins->ssa_args.src1 = SSA_UNUSED_0;
2721 ins->ssa_args.inline_constant = true;
2722 ins->inline_constant = scaled_constant;
2723 }
2724 }
2725 }
2726
2727 /* Map normal SSA sources to other SSA sources / fixed registers (like
2728 * uniforms) */
2729
2730 static void
2731 map_ssa_to_alias(compiler_context *ctx, int *ref)
2732 {
2733 unsigned int alias = (uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_to_alias, *ref + 1);
2734
2735 if (alias) {
2736 /* Remove entry in leftovers to avoid a redunant fmov */
2737
2738 struct set_entry *leftover = _mesa_set_search(ctx->leftover_ssa_to_alias, ((void *) (uintptr_t) (*ref + 1)));
2739
2740 if (leftover)
2741 _mesa_set_remove(ctx->leftover_ssa_to_alias, leftover);
2742
2743 /* Assign the alias map */
2744 *ref = alias - 1;
2745 return;
2746 }
2747 }
2748
2749 #define AS_SRC(to, u) \
2750 int q##to = ins->alu.src2; \
2751 midgard_vector_alu_src *to = (midgard_vector_alu_src *) &q##to;
2752
2753 /* Removing unused moves is necessary to clean up the texture pipeline results.
2754 *
2755 * To do so, we find moves in the MIR. We check if their destination is live later. If it's not, the move is redundant. */
2756
2757 static void
2758 midgard_eliminate_orphan_moves(compiler_context *ctx, midgard_block *block)
2759 {
2760 mir_foreach_instr_in_block_safe(block, ins) {
2761 if (ins->type != TAG_ALU_4) continue;
2762
2763 if (ins->alu.op != midgard_alu_op_fmov) continue;
2764
2765 if (ins->ssa_args.dest >= SSA_FIXED_MINIMUM) continue;
2766
2767 if (midgard_is_pinned(ctx, ins->ssa_args.dest)) continue;
2768
2769 if (is_live_after(ctx, block, ins, ins->ssa_args.dest)) continue;
2770
2771 mir_remove_instruction(ins);
2772 }
2773 }
2774
2775 /* The following passes reorder MIR instructions to enable better scheduling */
2776
2777 static void
2778 midgard_pair_load_store(compiler_context *ctx, midgard_block *block)
2779 {
2780 mir_foreach_instr_in_block_safe(block, ins) {
2781 if (ins->type != TAG_LOAD_STORE_4) continue;
2782
2783 /* We've found a load/store op. Check if next is also load/store. */
2784 midgard_instruction *next_op = mir_next_op(ins);
2785 if (&next_op->link != &block->instructions) {
2786 if (next_op->type == TAG_LOAD_STORE_4) {
2787 /* If so, we're done since we're a pair */
2788 ins = mir_next_op(ins);
2789 continue;
2790 }
2791
2792 /* Maximum search distance to pair, to avoid register pressure disasters */
2793 int search_distance = 8;
2794
2795 /* Otherwise, we have an orphaned load/store -- search for another load */
2796 mir_foreach_instr_in_block_from(block, c, mir_next_op(ins)) {
2797 /* Terminate search if necessary */
2798 if (!(search_distance--)) break;
2799
2800 if (c->type != TAG_LOAD_STORE_4) continue;
2801
2802 if (OP_IS_STORE(c->load_store.op)) continue;
2803
2804 /* We found one! Move it up to pair and remove it from the old location */
2805
2806 mir_insert_instruction_before(ins, *c);
2807 mir_remove_instruction(c);
2808
2809 break;
2810 }
2811 }
2812 }
2813 }
2814
2815 /* Emit varying stores late */
2816
2817 static void
2818 midgard_emit_store(compiler_context *ctx, midgard_block *block) {
2819 /* Iterate in reverse to get the final write, rather than the first */
2820
2821 mir_foreach_instr_in_block_safe_rev(block, ins) {
2822 /* Check if what we just wrote needs a store */
2823 int idx = ins->ssa_args.dest;
2824 uintptr_t varying = ((uintptr_t) _mesa_hash_table_u64_search(ctx->ssa_varyings, idx + 1));
2825
2826 if (!varying) continue;
2827
2828 varying -= 1;
2829
2830 /* We need to store to the appropriate varying, so emit the
2831 * move/store */
2832
2833 /* TODO: Integrate with special purpose RA (and scheduler?) */
2834 bool high_varying_register = false;
2835
2836 midgard_instruction mov = v_fmov(idx, blank_alu_src, SSA_FIXED_REGISTER(REGISTER_VARYING_BASE + high_varying_register));
2837
2838 midgard_instruction st = m_store_vary_32(SSA_FIXED_REGISTER(high_varying_register), varying);
2839 st.load_store.unknown = 0x1E9E; /* XXX: What is this? */
2840
2841 mir_insert_instruction_before(mir_next_op(ins), st);
2842 mir_insert_instruction_before(mir_next_op(ins), mov);
2843
2844 /* We no longer need to store this varying */
2845 _mesa_hash_table_u64_remove(ctx->ssa_varyings, idx + 1);
2846 }
2847 }
2848
2849 /* If there are leftovers after the below pass, emit actual fmov
2850 * instructions for the slow-but-correct path */
2851
2852 static void
2853 emit_leftover_move(compiler_context *ctx)
2854 {
2855 set_foreach(ctx->leftover_ssa_to_alias, leftover) {
2856 int base = ((uintptr_t) leftover->key) - 1;
2857 int mapped = base;
2858
2859 map_ssa_to_alias(ctx, &mapped);
2860 EMIT(fmov, mapped, blank_alu_src, base);
2861 }
2862 }
2863
2864 static void
2865 actualise_ssa_to_alias(compiler_context *ctx)
2866 {
2867 mir_foreach_instr(ctx, ins) {
2868 map_ssa_to_alias(ctx, &ins->ssa_args.src0);
2869 map_ssa_to_alias(ctx, &ins->ssa_args.src1);
2870 }
2871
2872 emit_leftover_move(ctx);
2873 }
2874
2875 /* Vertex shaders do not write gl_Position as is; instead, they write a
2876 * transformed screen space position as a varying. See section 12.5 "Coordinate
2877 * Transformation" of the ES 3.2 full specification for details.
2878 *
2879 * This transformation occurs early on, as NIR and prior to optimisation, in
2880 * order to take advantage of NIR optimisation passes of the transform itself.
2881 * */
2882
2883 static void
2884 write_transformed_position(nir_builder *b, nir_src input_point_src, int uniform_no)
2885 {
2886 nir_ssa_def *input_point = nir_ssa_for_src(b, input_point_src, 4);
2887
2888 /* Get viewport from the uniforms */
2889 nir_intrinsic_instr *load;
2890 load = nir_intrinsic_instr_create(b->shader, nir_intrinsic_load_uniform);
2891 load->num_components = 4;
2892 load->src[0] = nir_src_for_ssa(nir_imm_int(b, uniform_no));
2893 nir_ssa_dest_init(&load->instr, &load->dest, 4, 32, NULL);
2894 nir_builder_instr_insert(b, &load->instr);
2895
2896 /* Formatted as <width, height, centerx, centery> */
2897 nir_ssa_def *viewport_vec4 = &load->dest.ssa;
2898 nir_ssa_def *viewport_width_2 = nir_channel(b, viewport_vec4, 0);
2899 nir_ssa_def *viewport_height_2 = nir_channel(b, viewport_vec4, 1);
2900 nir_ssa_def *viewport_offset = nir_channels(b, viewport_vec4, 0x8 | 0x4);
2901
2902 /* XXX: From uniforms? */
2903 nir_ssa_def *depth_near = nir_imm_float(b, 0.0);
2904 nir_ssa_def *depth_far = nir_imm_float(b, 1.0);
2905
2906 /* World space to normalised device coordinates */
2907
2908 nir_ssa_def *w_recip = nir_frcp(b, nir_channel(b, input_point, 3));
2909 nir_ssa_def *ndc_point = nir_fmul(b, nir_channels(b, input_point, 0x7), w_recip);
2910
2911 /* Normalised device coordinates to screen space */
2912
2913 nir_ssa_def *viewport_multiplier = nir_vec2(b, viewport_width_2, viewport_height_2);
2914 nir_ssa_def *viewport_xy = nir_fadd(b, nir_fmul(b, nir_channels(b, ndc_point, 0x3), viewport_multiplier), viewport_offset);
2915
2916 nir_ssa_def *depth_multiplier = nir_fmul(b, nir_fsub(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2917 nir_ssa_def *depth_offset = nir_fmul(b, nir_fadd(b, depth_far, depth_near), nir_imm_float(b, 0.5f));
2918 nir_ssa_def *screen_depth = nir_fadd(b, nir_fmul(b, nir_channel(b, ndc_point, 2), depth_multiplier), depth_offset);
2919
2920 /* gl_Position will be written out in screenspace xyz, with w set to
2921 * the reciprocal we computed earlier. The transformed w component is
2922 * then used for perspective-correct varying interpolation. The
2923 * transformed w component must preserve its original sign; this is
2924 * used in depth clipping computations */
2925
2926 nir_ssa_def *screen_space = nir_vec4(b,
2927 nir_channel(b, viewport_xy, 0),
2928 nir_channel(b, viewport_xy, 1),
2929 screen_depth,
2930 w_recip);
2931
2932 /* Finally, write out the transformed values to the varying */
2933
2934 nir_intrinsic_instr *store;
2935 store = nir_intrinsic_instr_create(b->shader, nir_intrinsic_store_output);
2936 store->num_components = 4;
2937 nir_intrinsic_set_base(store, 0);
2938 nir_intrinsic_set_write_mask(store, 0xf);
2939 store->src[0].ssa = screen_space;
2940 store->src[0].is_ssa = true;
2941 store->src[1] = nir_src_for_ssa(nir_imm_int(b, 0));
2942 nir_builder_instr_insert(b, &store->instr);
2943 }
2944
2945 static void
2946 transform_position_writes(nir_shader *shader)
2947 {
2948 nir_foreach_function(func, shader) {
2949 nir_foreach_block(block, func->impl) {
2950 nir_foreach_instr_safe(instr, block) {
2951 if (instr->type != nir_instr_type_intrinsic) continue;
2952
2953 nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr);
2954 nir_variable *out = NULL;
2955
2956 switch (intr->intrinsic) {
2957 case nir_intrinsic_store_output:
2958 /* already had i/o lowered.. lookup the matching output var: */
2959 nir_foreach_variable(var, &shader->outputs) {
2960 int drvloc = var->data.driver_location;
2961
2962 if (nir_intrinsic_base(intr) == drvloc) {
2963 out = var;
2964 break;
2965 }
2966 }
2967
2968 break;
2969
2970 default:
2971 break;
2972 }
2973
2974 if (!out) continue;
2975
2976 if (out->data.mode != nir_var_shader_out)
2977 continue;
2978
2979 if (out->data.location != VARYING_SLOT_POS)
2980 continue;
2981
2982 nir_builder b;
2983 nir_builder_init(&b, func->impl);
2984 b.cursor = nir_before_instr(instr);
2985
2986 write_transformed_position(&b, intr->src[0], UNIFORM_VIEWPORT);
2987 nir_instr_remove(instr);
2988 }
2989 }
2990 }
2991 }
2992
2993 static void
2994 emit_fragment_epilogue(compiler_context *ctx)
2995 {
2996 /* Special case: writing out constants requires us to include the move
2997 * explicitly now, so shove it into r0 */
2998
2999 void *constant_value = _mesa_hash_table_u64_search(ctx->ssa_constants, ctx->fragment_output + 1);
3000
3001 if (constant_value) {
3002 midgard_instruction ins = v_fmov(SSA_FIXED_REGISTER(REGISTER_CONSTANT), blank_alu_src, SSA_FIXED_REGISTER(0));
3003 attach_constants(ctx, &ins, constant_value, ctx->fragment_output + 1);
3004 emit_mir_instruction(ctx, ins);
3005 }
3006
3007 /* Perform the actual fragment writeout. We have two writeout/branch
3008 * instructions, forming a loop until writeout is successful as per the
3009 * docs. TODO: gl_FragDepth */
3010
3011 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3012 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3013 }
3014
3015 /* For the blend epilogue, we need to convert the blended fragment vec4 (stored
3016 * in r0) to a RGBA8888 value by scaling and type converting. We then output it
3017 * with the int8 analogue to the fragment epilogue */
3018
3019 static void
3020 emit_blend_epilogue(compiler_context *ctx)
3021 {
3022 /* vmul.fmul.none.fulllow hr48, r0, #255 */
3023
3024 midgard_instruction scale = {
3025 .type = TAG_ALU_4,
3026 .unit = UNIT_VMUL,
3027 .inline_constant = _mesa_float_to_half(255.0),
3028 .ssa_args = {
3029 .src0 = SSA_FIXED_REGISTER(0),
3030 .src1 = SSA_UNUSED_0,
3031 .dest = SSA_FIXED_REGISTER(24),
3032 .inline_constant = true
3033 },
3034 .alu = {
3035 .op = midgard_alu_op_fmul,
3036 .reg_mode = midgard_reg_mode_full,
3037 .dest_override = midgard_dest_override_lower,
3038 .mask = 0xFF,
3039 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3040 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3041 }
3042 };
3043
3044 emit_mir_instruction(ctx, scale);
3045
3046 /* vadd.f2u8.pos.low hr0, hr48, #0 */
3047
3048 midgard_vector_alu_src alu_src = blank_alu_src;
3049 alu_src.half = true;
3050
3051 midgard_instruction f2u8 = {
3052 .type = TAG_ALU_4,
3053 .ssa_args = {
3054 .src0 = SSA_FIXED_REGISTER(24),
3055 .src1 = SSA_UNUSED_0,
3056 .dest = SSA_FIXED_REGISTER(0),
3057 .inline_constant = true
3058 },
3059 .alu = {
3060 .op = midgard_alu_op_f2u8,
3061 .reg_mode = midgard_reg_mode_half,
3062 .dest_override = midgard_dest_override_lower,
3063 .outmod = midgard_outmod_pos,
3064 .mask = 0xF,
3065 .src1 = vector_alu_srco_unsigned(alu_src),
3066 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3067 }
3068 };
3069
3070 emit_mir_instruction(ctx, f2u8);
3071
3072 /* vmul.imov.quarter r0, r0, r0 */
3073
3074 midgard_instruction imov_8 = {
3075 .type = TAG_ALU_4,
3076 .ssa_args = {
3077 .src0 = SSA_UNUSED_1,
3078 .src1 = SSA_FIXED_REGISTER(0),
3079 .dest = SSA_FIXED_REGISTER(0),
3080 },
3081 .alu = {
3082 .op = midgard_alu_op_imov,
3083 .reg_mode = midgard_reg_mode_quarter,
3084 .dest_override = midgard_dest_override_none,
3085 .mask = 0xFF,
3086 .src1 = vector_alu_srco_unsigned(blank_alu_src),
3087 .src2 = vector_alu_srco_unsigned(blank_alu_src),
3088 }
3089 };
3090
3091 /* Emit branch epilogue with the 8-bit move as the source */
3092
3093 emit_mir_instruction(ctx, imov_8);
3094 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, 0, midgard_condition_always);
3095
3096 emit_mir_instruction(ctx, imov_8);
3097 EMIT(alu_br_compact_cond, midgard_jmp_writeout_op_writeout, TAG_ALU_4, -1, midgard_condition_always);
3098 }
3099
3100 static midgard_block *
3101 emit_block(compiler_context *ctx, nir_block *block)
3102 {
3103 midgard_block *this_block = malloc(sizeof(midgard_block));
3104 list_addtail(&this_block->link, &ctx->blocks);
3105
3106 this_block->is_scheduled = false;
3107 ++ctx->block_count;
3108
3109 ctx->texture_index[0] = -1;
3110 ctx->texture_index[1] = -1;
3111
3112 /* Set up current block */
3113 list_inithead(&this_block->instructions);
3114 ctx->current_block = this_block;
3115
3116 nir_foreach_instr(instr, block) {
3117 emit_instr(ctx, instr);
3118 ++ctx->instruction_count;
3119 }
3120
3121 inline_alu_constants(ctx);
3122 embedded_to_inline_constant(ctx);
3123
3124 /* Perform heavylifting for aliasing */
3125 actualise_ssa_to_alias(ctx);
3126
3127 midgard_emit_store(ctx, this_block);
3128 midgard_eliminate_orphan_moves(ctx, this_block);
3129 midgard_pair_load_store(ctx, this_block);
3130
3131 /* Append fragment shader epilogue (value writeout) */
3132 if (ctx->stage == MESA_SHADER_FRAGMENT) {
3133 if (block == nir_impl_last_block(ctx->func->impl)) {
3134 if (ctx->is_blend)
3135 emit_blend_epilogue(ctx);
3136 else
3137 emit_fragment_epilogue(ctx);
3138 }
3139 }
3140
3141 /* Fallthrough save */
3142 this_block->next_fallthrough = ctx->previous_source_block;
3143
3144 if (block == nir_start_block(ctx->func->impl))
3145 ctx->initial_block = this_block;
3146
3147 if (block == nir_impl_last_block(ctx->func->impl))
3148 ctx->final_block = this_block;
3149
3150 /* Allow the next control flow to access us retroactively, for
3151 * branching etc */
3152 ctx->current_block = this_block;
3153
3154 /* Document the fallthrough chain */
3155 ctx->previous_source_block = this_block;
3156
3157 return this_block;
3158 }
3159
3160 static midgard_block *emit_cf_list(struct compiler_context *ctx, struct exec_list *list);
3161
3162 static void
3163 emit_if(struct compiler_context *ctx, nir_if *nif)
3164 {
3165 /* Conditional branches expect the condition in r31.w; emit a move for
3166 * that in the _previous_ block (which is the current block). */
3167 emit_condition(ctx, &nif->condition, true);
3168
3169 /* Speculatively emit the branch, but we can't fill it in until later */
3170 EMIT(branch, true, true);
3171 midgard_instruction *then_branch = mir_last_in_block(ctx->current_block);
3172
3173 /* Emit the two subblocks */
3174 midgard_block *then_block = emit_cf_list(ctx, &nif->then_list);
3175
3176 /* Emit a jump from the end of the then block to the end of the else */
3177 EMIT(branch, false, false);
3178 midgard_instruction *then_exit = mir_last_in_block(ctx->current_block);
3179
3180 /* Emit second block, and check if it's empty */
3181
3182 int else_idx = ctx->block_count;
3183 int count_in = ctx->instruction_count;
3184 midgard_block *else_block = emit_cf_list(ctx, &nif->else_list);
3185
3186 /* Now that we have the subblocks emitted, fix up the branches */
3187
3188 assert(then_block);
3189 assert(else_block);
3190
3191
3192 if (ctx->instruction_count == count_in) {
3193 /* The else block is empty, so don't emit an exit jump */
3194 mir_remove_instruction(then_exit);
3195 then_branch->branch.target_block = else_idx + 1;
3196 } else {
3197 then_branch->branch.target_block = else_idx;
3198 then_exit->branch.target_block = else_idx + 1;
3199 }
3200 }
3201
3202 static void
3203 emit_loop(struct compiler_context *ctx, nir_loop *nloop)
3204 {
3205 /* Remember where we are */
3206 midgard_block *start_block = ctx->current_block;
3207
3208 /* Allocate a loop number for this. TODO: Nested loops. Instead of a
3209 * single current_loop variable, maybe we need a stack */
3210
3211 int loop_idx = ++ctx->current_loop;
3212
3213 /* Get index from before the body so we can loop back later */
3214 int start_idx = ctx->block_count;
3215
3216 /* Emit the body itself */
3217 emit_cf_list(ctx, &nloop->body);
3218
3219 /* Branch back to loop back */
3220 struct midgard_instruction br_back = v_branch(false, false);
3221 br_back.branch.target_block = start_idx;
3222 emit_mir_instruction(ctx, br_back);
3223
3224 /* Find the index of the block about to follow us (note: we don't add
3225 * one; blocks are 0-indexed so we get a fencepost problem) */
3226 int break_block_idx = ctx->block_count;
3227
3228 /* Fix up the break statements we emitted to point to the right place,
3229 * now that we can allocate a block number for them */
3230
3231 list_for_each_entry_from(struct midgard_block, block, start_block, &ctx->blocks, link) {
3232 print_mir_block(block);
3233 mir_foreach_instr_in_block(block, ins) {
3234 if (ins->type != TAG_ALU_4) continue;
3235 if (!ins->compact_branch) continue;
3236 if (ins->prepacked_branch) continue;
3237
3238 /* We found a branch -- check the type to see if we need to do anything */
3239 if (ins->branch.target_type != TARGET_BREAK) continue;
3240
3241 /* It's a break! Check if it's our break */
3242 if (ins->branch.target_break != loop_idx) continue;
3243
3244 /* Okay, cool, we're breaking out of this loop.
3245 * Rewrite from a break to a goto */
3246
3247 ins->branch.target_type = TARGET_GOTO;
3248 ins->branch.target_block = break_block_idx;
3249 }
3250 }
3251 }
3252
3253 static midgard_block *
3254 emit_cf_list(struct compiler_context *ctx, struct exec_list *list)
3255 {
3256 midgard_block *start_block = NULL;
3257
3258 foreach_list_typed(nir_cf_node, node, node, list) {
3259 switch (node->type) {
3260 case nir_cf_node_block: {
3261 midgard_block *block = emit_block(ctx, nir_cf_node_as_block(node));
3262
3263 if (!start_block)
3264 start_block = block;
3265
3266 break;
3267 }
3268
3269 case nir_cf_node_if:
3270 emit_if(ctx, nir_cf_node_as_if(node));
3271 break;
3272
3273 case nir_cf_node_loop:
3274 emit_loop(ctx, nir_cf_node_as_loop(node));
3275 break;
3276
3277 case nir_cf_node_function:
3278 assert(0);
3279 break;
3280 }
3281 }
3282
3283 return start_block;
3284 }
3285
3286 int
3287 midgard_compile_shader_nir(nir_shader *nir, midgard_program *program, bool is_blend)
3288 {
3289 struct util_dynarray *compiled = &program->compiled;
3290
3291 compiler_context ictx = {
3292 .nir = nir,
3293 .stage = nir->info.stage,
3294
3295 .is_blend = is_blend,
3296 .blend_constant_offset = -1,
3297
3298 .alpha_ref = program->alpha_ref
3299 };
3300
3301 compiler_context *ctx = &ictx;
3302
3303 /* TODO: Decide this at runtime */
3304 ctx->uniform_cutoff = 8;
3305
3306 switch (ctx->stage) {
3307 case MESA_SHADER_VERTEX:
3308 ctx->special_uniforms = 1;
3309 break;
3310
3311 default:
3312 ctx->special_uniforms = 0;
3313 break;
3314 }
3315
3316 /* Append epilogue uniforms if necessary. The cmdstream depends on
3317 * these being at the -end-; see assign_var_locations. */
3318
3319 if (ctx->stage == MESA_SHADER_VERTEX) {
3320 nir_variable_create(nir, nir_var_uniform, glsl_vec4_type(), "viewport");
3321 }
3322
3323 /* Assign var locations early, so the epilogue can use them if necessary */
3324
3325 nir_assign_var_locations(&nir->outputs, &nir->num_outputs, glsl_type_size);
3326 nir_assign_var_locations(&nir->inputs, &nir->num_inputs, glsl_type_size);
3327 nir_assign_var_locations(&nir->uniforms, &nir->num_uniforms, glsl_type_size);
3328
3329 /* Initialize at a global (not block) level hash tables */
3330
3331 ctx->ssa_constants = _mesa_hash_table_u64_create(NULL);
3332 ctx->ssa_varyings = _mesa_hash_table_u64_create(NULL);
3333 ctx->ssa_to_alias = _mesa_hash_table_u64_create(NULL);
3334 ctx->ssa_to_register = _mesa_hash_table_u64_create(NULL);
3335 ctx->hash_to_temp = _mesa_hash_table_u64_create(NULL);
3336 ctx->leftover_ssa_to_alias = _mesa_set_create(NULL, _mesa_hash_pointer, _mesa_key_pointer_equal);
3337
3338 /* Assign actual uniform location, skipping over samplers */
3339
3340 ctx->uniform_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3341
3342 nir_foreach_variable(var, &nir->uniforms) {
3343 if (glsl_get_base_type(var->type) == GLSL_TYPE_SAMPLER) continue;
3344
3345 unsigned length = glsl_get_aoa_size(var->type);
3346
3347 if (!length) {
3348 length = glsl_get_length(var->type);
3349 }
3350
3351 if (!length) {
3352 length = glsl_get_matrix_columns(var->type);
3353 }
3354
3355 for (int col = 0; col < length; ++col) {
3356 int id = ctx->uniform_count++;
3357 _mesa_hash_table_u64_insert(ctx->uniform_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3358 }
3359 }
3360
3361 if (ctx->stage == MESA_SHADER_VERTEX) {
3362 ctx->varying_nir_to_mdg = _mesa_hash_table_u64_create(NULL);
3363
3364 /* First, collect the special varyings */
3365 nir_foreach_variable(var, &nir->outputs) {
3366 if (var->data.location == VARYING_SLOT_POS) {
3367 /* Set position first, always. It takes up two
3368 * spots, the latter one is de facto unused (at
3369 * least from the shader's perspective), we
3370 * just need to skip over the spot*/
3371
3372 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (0 + 1)));
3373 ctx->varying_count = MAX2(ctx->varying_count, 2);
3374 } else if (var->data.location == VARYING_SLOT_PSIZ) {
3375 /* Set point size second (third, see above) */
3376 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + 1, (void *) ((uintptr_t) (2 + 1)));
3377 ctx->varying_count = MAX2(ctx->varying_count, 3);
3378
3379 program->writes_point_size = true;
3380 }
3381 }
3382
3383 /* Now, collect normal varyings */
3384
3385 nir_foreach_variable(var, &nir->outputs) {
3386 if (var->data.location == VARYING_SLOT_POS || var->data.location == VARYING_SLOT_PSIZ) continue;
3387
3388 for (int col = 0; col < glsl_get_matrix_columns(var->type); ++col) {
3389 int id = ctx->varying_count++;
3390 _mesa_hash_table_u64_insert(ctx->varying_nir_to_mdg, var->data.driver_location + col + 1, (void *) ((uintptr_t) (id + 1)));
3391 }
3392 }
3393 }
3394
3395
3396
3397 /* Lower vars -- not I/O -- before epilogue */
3398
3399 NIR_PASS_V(nir, nir_lower_var_copies);
3400 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3401 NIR_PASS_V(nir, nir_split_var_copies);
3402 NIR_PASS_V(nir, nir_lower_var_copies);
3403 NIR_PASS_V(nir, nir_lower_global_vars_to_local);
3404 NIR_PASS_V(nir, nir_lower_var_copies);
3405 NIR_PASS_V(nir, nir_lower_vars_to_ssa);
3406 NIR_PASS_V(nir, nir_lower_io, nir_var_all, glsl_type_size, 0);
3407
3408 /* Append vertex epilogue before optimisation, so the epilogue itself
3409 * is optimised */
3410
3411 if (ctx->stage == MESA_SHADER_VERTEX)
3412 transform_position_writes(nir);
3413
3414 /* Optimisation passes */
3415
3416 optimise_nir(nir);
3417
3418 nir_print_shader(nir, stdout);
3419
3420 /* Assign counts, now that we're sure (post-optimisation) */
3421 program->uniform_count = nir->num_uniforms;
3422
3423 program->attribute_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_inputs : 0;
3424 program->varying_count = (ctx->stage == MESA_SHADER_VERTEX) ? nir->num_outputs : ((ctx->stage == MESA_SHADER_FRAGMENT) ? nir->num_inputs : 0);
3425
3426
3427 nir_foreach_function(func, nir) {
3428 if (!func->impl)
3429 continue;
3430
3431 list_inithead(&ctx->blocks);
3432 ctx->block_count = 0;
3433 ctx->func = func;
3434
3435 emit_cf_list(ctx, &func->impl->body);
3436 emit_block(ctx, func->impl->end_block);
3437
3438 break; /* TODO: Multi-function shaders */
3439 }
3440
3441 util_dynarray_init(compiled, NULL);
3442
3443 /* Schedule! */
3444 schedule_program(ctx);
3445
3446 /* Now that all the bundles are scheduled and we can calculate block
3447 * sizes, emit actual branch instructions rather than placeholders */
3448
3449 int br_block_idx = 0;
3450
3451 mir_foreach_block(ctx, block) {
3452 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3453 for (int c = 0; c < bundle->instruction_count; ++c) {
3454 midgard_instruction *ins = &bundle->instructions[c];
3455
3456 if (ins->unit != ALU_ENAB_BR_COMPACT) continue;
3457
3458 if (ins->prepacked_branch) continue;
3459
3460 uint16_t compact;
3461
3462 /* Determine the block we're jumping to */
3463 int target_number = ins->branch.target_block;
3464
3465 midgard_block *target = mir_get_block(ctx, target_number);
3466 assert(target);
3467
3468 /* Determine the destination tag */
3469 midgard_bundle *first = util_dynarray_element(&target->bundles, midgard_bundle, 0);
3470 assert(first);
3471
3472 int dest_tag = first->tag;
3473
3474 /* Count up the number of quadwords we're jumping over. That is, the number of quadwords in each of the blocks between (br_block_idx, target_number) */
3475 int quadword_offset = 0;
3476
3477 if (target_number > br_block_idx) {
3478 /* Jump forward */
3479
3480 for (int idx = br_block_idx + 1; idx < target_number; ++idx) {
3481 midgard_block *blk = mir_get_block(ctx, idx);
3482 assert(blk);
3483
3484 quadword_offset += blk->quadword_count;
3485 }
3486 } else {
3487 /* Jump backwards */
3488
3489 for (int idx = br_block_idx; idx >= target_number; --idx) {
3490 midgard_block *blk = mir_get_block(ctx, idx);
3491 assert(blk);
3492
3493 quadword_offset -= blk->quadword_count;
3494 }
3495 }
3496
3497 if (ins->branch.conditional) {
3498 midgard_branch_cond branch = {
3499 .op = midgard_jmp_writeout_op_branch_cond,
3500 .dest_tag = dest_tag,
3501 .offset = quadword_offset,
3502 .cond = ins->branch.invert_conditional ? midgard_condition_false : midgard_condition_true
3503 };
3504
3505 memcpy(&compact, &branch, sizeof(branch));
3506 } else {
3507 midgard_branch_uncond branch = {
3508 .op = midgard_jmp_writeout_op_branch_uncond,
3509 .dest_tag = dest_tag,
3510 .offset = quadword_offset,
3511 .unknown = 1
3512 };
3513
3514 memcpy(&compact, &branch, sizeof(branch));
3515 }
3516
3517 /* Swap in the generic branch for our actual branch */
3518 ins->unit = ALU_ENAB_BR_COMPACT;
3519 ins->br_compact = compact;
3520 }
3521
3522 }
3523
3524 ++br_block_idx;
3525 }
3526
3527 /* Emit flat binary from the instruction arrays. Iterate each block in
3528 * sequence. Save instruction boundaries such that lookahead tags can
3529 * be assigned easily */
3530
3531 /* Cache _all_ bundles in source order for lookahead across failed branches */
3532
3533 int bundle_count = 0;
3534 mir_foreach_block(ctx, block) {
3535 bundle_count += block->bundles.size / sizeof(midgard_bundle);
3536 }
3537 midgard_bundle **source_order_bundles = malloc(sizeof(midgard_bundle *) * bundle_count);
3538 int bundle_idx = 0;
3539 mir_foreach_block(ctx, block) {
3540 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3541 source_order_bundles[bundle_idx++] = bundle;
3542 }
3543 }
3544
3545 int current_bundle = 0;
3546
3547 mir_foreach_block(ctx, block) {
3548 util_dynarray_foreach(&block->bundles, midgard_bundle, bundle) {
3549 int lookahead = 1;
3550
3551 if (current_bundle + 1 < bundle_count) {
3552 uint8_t next = source_order_bundles[current_bundle + 1]->tag;
3553
3554 if (!(current_bundle + 2 < bundle_count) && IS_ALU(next)) {
3555 lookahead = 1;
3556 } else {
3557 lookahead = next;
3558 }
3559 }
3560
3561 emit_binary_bundle(ctx, bundle, compiled, lookahead);
3562 ++current_bundle;
3563 }
3564
3565 /* TODO: Free deeper */
3566 //util_dynarray_fini(&block->instructions);
3567 }
3568
3569 free(source_order_bundles);
3570
3571 /* Due to lookahead, we need to report in the command stream the first
3572 * tag executed. An initial block might be empty, so iterate until we
3573 * find one that 'works' */
3574
3575 midgard_block *initial_block = list_first_entry(&ctx->blocks, midgard_block, link);
3576
3577 program->first_tag = 0;
3578
3579 do {
3580 midgard_bundle *initial_bundle = util_dynarray_element(&initial_block->bundles, midgard_bundle, 0);
3581
3582 if (initial_bundle) {
3583 program->first_tag = initial_bundle->tag;
3584 break;
3585 }
3586
3587 /* Initial block is empty, try the next block */
3588 initial_block = list_first_entry(&(initial_block->link), midgard_block, link);
3589 } while(initial_block != NULL);
3590
3591 /* Make sure we actually set the tag */
3592 assert(program->first_tag);
3593
3594 /* Deal with off-by-one related to the fencepost problem */
3595 program->work_register_count = ctx->work_registers + 1;
3596
3597 program->can_discard = ctx->can_discard;
3598 program->uniform_cutoff = ctx->uniform_cutoff;
3599
3600 program->blend_patch_offset = ctx->blend_constant_offset;
3601
3602 disassemble_midgard(program->compiled.data, program->compiled.size);
3603
3604 return 0;
3605 }