r300g: do not use NPOT fallback for CLAMP wrap modes
[mesa.git] / src / gallium / drivers / r300 / r300_fs.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Joakim Sindholt <opensource@zhasha.com>
4 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * on the rights to use, copy, modify, merge, publish, distribute, sub
10 * license, and/or sell copies of the Software, and to permit persons to whom
11 * the Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
21 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
22 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
23 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
24
25 #include "util/u_math.h"
26 #include "util/u_memory.h"
27
28 #include "tgsi/tgsi_dump.h"
29 #include "tgsi/tgsi_ureg.h"
30
31 #include "r300_context.h"
32 #include "r300_screen.h"
33 #include "r300_fs.h"
34 #include "r300_reg.h"
35 #include "r300_tgsi_to_rc.h"
36
37 #include "radeon_code.h"
38 #include "radeon_compiler.h"
39
40 /* Convert info about FS input semantics to r300_shader_semantics. */
41 void r300_shader_read_fs_inputs(struct tgsi_shader_info* info,
42 struct r300_shader_semantics* fs_inputs)
43 {
44 int i;
45 unsigned index;
46
47 r300_shader_semantics_reset(fs_inputs);
48
49 for (i = 0; i < info->num_inputs; i++) {
50 index = info->input_semantic_index[i];
51
52 switch (info->input_semantic_name[i]) {
53 case TGSI_SEMANTIC_COLOR:
54 assert(index < ATTR_COLOR_COUNT);
55 fs_inputs->color[index] = i;
56 break;
57
58 case TGSI_SEMANTIC_GENERIC:
59 assert(index < ATTR_GENERIC_COUNT);
60 fs_inputs->generic[index] = i;
61 break;
62
63 case TGSI_SEMANTIC_FOG:
64 assert(index == 0);
65 fs_inputs->fog = i;
66 break;
67
68 case TGSI_SEMANTIC_POSITION:
69 assert(index == 0);
70 fs_inputs->wpos = i;
71 break;
72
73 default:
74 fprintf(stderr, "r300: FP: Unknown input semantic: %i\n",
75 info->input_semantic_name[i]);
76 }
77 }
78 }
79
80 static void find_output_registers(struct r300_fragment_program_compiler * compiler,
81 struct r300_fragment_shader_code *shader)
82 {
83 unsigned i, colorbuf_count = 0;
84
85 /* Mark the outputs as not present initially */
86 compiler->OutputColor[0] = shader->info.num_outputs;
87 compiler->OutputColor[1] = shader->info.num_outputs;
88 compiler->OutputColor[2] = shader->info.num_outputs;
89 compiler->OutputColor[3] = shader->info.num_outputs;
90 compiler->OutputDepth = shader->info.num_outputs;
91
92 /* Now see where they really are. */
93 for(i = 0; i < shader->info.num_outputs; ++i) {
94 switch(shader->info.output_semantic_name[i]) {
95 case TGSI_SEMANTIC_COLOR:
96 compiler->OutputColor[colorbuf_count] = i;
97 colorbuf_count++;
98 break;
99 case TGSI_SEMANTIC_POSITION:
100 compiler->OutputDepth = i;
101 break;
102 }
103 }
104 }
105
106 static void allocate_hardware_inputs(
107 struct r300_fragment_program_compiler * c,
108 void (*allocate)(void * data, unsigned input, unsigned hwreg),
109 void * mydata)
110 {
111 struct r300_shader_semantics* inputs =
112 (struct r300_shader_semantics*)c->UserData;
113 int i, reg = 0;
114
115 /* Allocate input registers. */
116 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
117 if (inputs->color[i] != ATTR_UNUSED) {
118 allocate(mydata, inputs->color[i], reg++);
119 }
120 }
121 for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
122 if (inputs->generic[i] != ATTR_UNUSED) {
123 allocate(mydata, inputs->generic[i], reg++);
124 }
125 }
126 if (inputs->fog != ATTR_UNUSED) {
127 allocate(mydata, inputs->fog, reg++);
128 }
129 if (inputs->wpos != ATTR_UNUSED) {
130 allocate(mydata, inputs->wpos, reg++);
131 }
132 }
133
134 static void get_external_state(
135 struct r300_context* r300,
136 struct r300_fragment_program_external_state* state)
137 {
138 struct r300_textures_state *texstate = r300->textures_state.state;
139 unsigned i;
140
141 for (i = 0; i < texstate->sampler_state_count; i++) {
142 struct r300_sampler_state* s = texstate->sampler_states[i];
143
144 if (!s) {
145 continue;
146 }
147
148 if (s->state.compare_mode == PIPE_TEX_COMPARE_R_TO_TEXTURE) {
149 /* XXX Gallium doesn't provide us with any information regarding
150 * this mode, so we are screwed. I'm setting 0 = LUMINANCE. */
151 state->unit[i].depth_texture_mode = 0;
152
153 /* Fortunately, no need to translate this. */
154 state->unit[i].texture_compare_func = s->state.compare_func;
155 }
156
157 state->unit[i].non_normalized_coords = !s->state.normalized_coords;
158
159 if (texstate->sampler_views[i]) {
160 struct r300_texture *t;
161 t = (struct r300_texture*)texstate->sampler_views[i]->base.texture;
162
163 /* XXX this should probably take into account STR, not just S. */
164 if (t->uses_pitch) {
165 switch (s->state.wrap_s) {
166 case PIPE_TEX_WRAP_REPEAT:
167 state->unit[i].wrap_mode = RC_WRAP_REPEAT;
168 state->unit[i].fake_npot = TRUE;
169 break;
170
171 case PIPE_TEX_WRAP_CLAMP:
172 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
173 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
174 state->unit[i].wrap_mode = RC_WRAP_CLAMP;
175 break;
176
177 case PIPE_TEX_WRAP_MIRROR_REPEAT:
178 case PIPE_TEX_WRAP_MIRROR_CLAMP:
179 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
180 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
181 state->unit[i].wrap_mode = RC_WRAP_MIRROR;
182 state->unit[i].fake_npot = TRUE;
183 break;
184
185 default:
186 state->unit[i].wrap_mode = RC_WRAP_NONE;
187 break;
188 }
189 }
190 }
191 }
192 }
193
194 static void r300_translate_fragment_shader(
195 struct r300_context* r300,
196 struct r300_fragment_shader_code* shader,
197 const struct tgsi_token *tokens);
198
199 static void r300_dummy_fragment_shader(
200 struct r300_context* r300,
201 struct r300_fragment_shader_code* shader)
202 {
203 struct pipe_shader_state state;
204 struct ureg_program *ureg;
205 struct ureg_dst out;
206 struct ureg_src imm;
207
208 /* Make a simple fragment shader which outputs (0, 0, 0, 1) */
209 ureg = ureg_create(TGSI_PROCESSOR_FRAGMENT);
210 out = ureg_DECL_output(ureg, TGSI_SEMANTIC_COLOR, 0);
211 imm = ureg_imm4f(ureg, 0, 0, 0, 1);
212
213 ureg_MOV(ureg, out, imm);
214 ureg_END(ureg);
215
216 state.tokens = ureg_finalize(ureg);
217
218 shader->dummy = TRUE;
219 r300_translate_fragment_shader(r300, shader, state.tokens);
220
221 ureg_destroy(ureg);
222 }
223
224 static void r300_translate_fragment_shader(
225 struct r300_context* r300,
226 struct r300_fragment_shader_code* shader,
227 const struct tgsi_token *tokens)
228 {
229 struct r300_fragment_program_compiler compiler;
230 struct tgsi_to_rc ttr;
231 int wpos;
232 unsigned i;
233
234 tgsi_scan_shader(tokens, &shader->info);
235 r300_shader_read_fs_inputs(&shader->info, &shader->inputs);
236
237 wpos = shader->inputs.wpos;
238
239 /* Setup the compiler. */
240 memset(&compiler, 0, sizeof(compiler));
241 rc_init(&compiler.Base);
242 compiler.Base.Debug = DBG_ON(r300, DBG_FP);
243
244 compiler.code = &shader->code;
245 compiler.state = shader->compare_state;
246 compiler.is_r500 = r300->screen->caps.is_r500;
247 compiler.max_temp_regs = compiler.is_r500 ? 128 : 32;
248 compiler.AllocateHwInputs = &allocate_hardware_inputs;
249 compiler.UserData = &shader->inputs;
250
251 find_output_registers(&compiler, shader);
252
253 if (compiler.Base.Debug) {
254 debug_printf("r300: Initial fragment program\n");
255 tgsi_dump(tokens, 0);
256 }
257
258 /* Translate TGSI to our internal representation */
259 ttr.compiler = &compiler.Base;
260 ttr.info = &shader->info;
261 ttr.use_half_swizzles = TRUE;
262
263 r300_tgsi_to_rc(&ttr, tokens);
264
265 /**
266 * Transform the program to support WPOS.
267 *
268 * Introduce a small fragment at the start of the program that will be
269 * the only code that directly reads the WPOS input.
270 * All other code pieces that reference that input will be rewritten
271 * to read from a newly allocated temporary. */
272 if (wpos != ATTR_UNUSED) {
273 /* Moving the input to some other reg is not really necessary. */
274 rc_transform_fragment_wpos(&compiler.Base, wpos, wpos, TRUE);
275 }
276
277 /* Invoke the compiler */
278 r3xx_compile_fragment_program(&compiler);
279
280 if (compiler.Base.Error) {
281 fprintf(stderr, "r300 FP: Compiler Error:\n%sUsing a dummy shader"
282 " instead.\n", compiler.Base.ErrorMsg);
283
284 if (shader->dummy) {
285 fprintf(stderr, "r300 FP: Cannot compile the dummy shader! "
286 "Giving up...\n");
287 abort();
288 }
289
290 rc_destroy(&compiler.Base);
291 r300_dummy_fragment_shader(r300, shader);
292 return;
293 }
294
295 /* Initialize numbers of constants for each type. */
296 shader->externals_count = ttr.immediate_offset;
297 shader->immediates_count = 0;
298 shader->rc_state_count = 0;
299
300 for (i = shader->externals_count; i < shader->code.constants.Count; i++) {
301 switch (shader->code.constants.Constants[i].Type) {
302 case RC_CONSTANT_IMMEDIATE:
303 ++shader->immediates_count;
304 break;
305 case RC_CONSTANT_STATE:
306 ++shader->rc_state_count;
307 break;
308 default:
309 assert(0);
310 }
311 }
312
313 /* Setup shader depth output. */
314 if (shader->code.writes_depth) {
315 shader->fg_depth_src = R300_FG_DEPTH_SRC_SHADER;
316 shader->us_out_w = R300_W_FMT_W24 | R300_W_SRC_US;
317 } else {
318 shader->fg_depth_src = R300_FG_DEPTH_SRC_SCAN;
319 shader->us_out_w = R300_W_FMT_W0 | R300_W_SRC_US;
320 }
321
322 /* And, finally... */
323 rc_destroy(&compiler.Base);
324 }
325
326 boolean r300_pick_fragment_shader(struct r300_context* r300)
327 {
328 struct r300_fragment_shader* fs = r300_fs(r300);
329 struct r300_fragment_program_external_state state = {{{ 0 }}};
330 struct r300_fragment_shader_code* ptr;
331
332 get_external_state(r300, &state);
333
334 if (!fs->first) {
335 /* Build the fragment shader for the first time. */
336 fs->first = fs->shader = CALLOC_STRUCT(r300_fragment_shader_code);
337
338 memcpy(&fs->shader->compare_state, &state,
339 sizeof(struct r300_fragment_program_external_state));
340 r300_translate_fragment_shader(r300, fs->shader, fs->state.tokens);
341 return TRUE;
342
343 } else {
344 /* Check if the currently-bound shader has been compiled
345 * with the texture-compare state we need. */
346 if (memcmp(&fs->shader->compare_state, &state, sizeof(state)) != 0) {
347 /* Search for the right shader. */
348 ptr = fs->first;
349 while (ptr) {
350 if (memcmp(&ptr->compare_state, &state, sizeof(state)) == 0) {
351 if (fs->shader != ptr) {
352 fs->shader = ptr;
353 return TRUE;
354 }
355 /* The currently-bound one is OK. */
356 return FALSE;
357 }
358 ptr = ptr->next;
359 }
360
361 /* Not found, gotta compile a new one. */
362 ptr = CALLOC_STRUCT(r300_fragment_shader_code);
363 ptr->next = fs->first;
364 fs->first = fs->shader = ptr;
365
366 ptr->compare_state = state;
367 r300_translate_fragment_shader(r300, ptr, fs->state.tokens);
368 return TRUE;
369 }
370 }
371
372 return FALSE;
373 }