r300g: fix up after merge
[mesa.git] / src / gallium / drivers / r300 / r300_state.c
1 /*
2 * Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
3 * Copyright 2009 Marek Olšák <maraeo@gmail.com>
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE. */
23
24 #include "draw/draw_context.h"
25
26 #include "util/u_math.h"
27 #include "util/u_memory.h"
28 #include "util/u_pack_color.h"
29
30 #include "tgsi/tgsi_parse.h"
31
32 #include "pipe/p_config.h"
33
34 #include "r300_context.h"
35 #include "r300_reg.h"
36 #include "r300_screen.h"
37 #include "r300_screen_buffer.h"
38 #include "r300_state_inlines.h"
39 #include "r300_fs.h"
40 #include "r300_vs.h"
41
42 #include "radeon_winsys.h"
43
44 /* r300_state: Functions used to intialize state context by translating
45 * Gallium state objects into semi-native r300 state objects. */
46
47 #define UPDATE_STATE(cso, atom) \
48 if (cso != atom.state) { \
49 atom.state = cso; \
50 atom.dirty = TRUE; \
51 }
52
53 static boolean blend_discard_if_src_alpha_0(unsigned srcRGB, unsigned srcA,
54 unsigned dstRGB, unsigned dstA)
55 {
56 /* If the blend equation is ADD or REVERSE_SUBTRACT,
57 * SRC_ALPHA == 0, and the following state is set, the colorbuffer
58 * will not be changed.
59 * Notice that the dst factors are the src factors inverted. */
60 return (srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
61 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
62 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
63 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
64 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
65 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
66 srcA == PIPE_BLENDFACTOR_ZERO) &&
67 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
68 dstRGB == PIPE_BLENDFACTOR_ONE) &&
69 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
70 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
71 dstA == PIPE_BLENDFACTOR_ONE);
72 }
73
74 static boolean blend_discard_if_src_alpha_1(unsigned srcRGB, unsigned srcA,
75 unsigned dstRGB, unsigned dstA)
76 {
77 /* If the blend equation is ADD or REVERSE_SUBTRACT,
78 * SRC_ALPHA == 1, and the following state is set, the colorbuffer
79 * will not be changed.
80 * Notice that the dst factors are the src factors inverted. */
81 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
82 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
83 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
84 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
85 srcA == PIPE_BLENDFACTOR_ZERO) &&
86 (dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
87 dstRGB == PIPE_BLENDFACTOR_ONE) &&
88 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
89 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
90 dstA == PIPE_BLENDFACTOR_ONE);
91 }
92
93 static boolean blend_discard_if_src_color_0(unsigned srcRGB, unsigned srcA,
94 unsigned dstRGB, unsigned dstA)
95 {
96 /* If the blend equation is ADD or REVERSE_SUBTRACT,
97 * SRC_COLOR == (0,0,0), and the following state is set, the colorbuffer
98 * will not be changed.
99 * Notice that the dst factors are the src factors inverted. */
100 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
101 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
102 (srcA == PIPE_BLENDFACTOR_ZERO) &&
103 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
104 dstRGB == PIPE_BLENDFACTOR_ONE) &&
105 (dstA == PIPE_BLENDFACTOR_ONE);
106 }
107
108 static boolean blend_discard_if_src_color_1(unsigned srcRGB, unsigned srcA,
109 unsigned dstRGB, unsigned dstA)
110 {
111 /* If the blend equation is ADD or REVERSE_SUBTRACT,
112 * SRC_COLOR == (1,1,1), and the following state is set, the colorbuffer
113 * will not be changed.
114 * Notice that the dst factors are the src factors inverted. */
115 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
116 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
117 (srcA == PIPE_BLENDFACTOR_ZERO) &&
118 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
119 dstRGB == PIPE_BLENDFACTOR_ONE) &&
120 (dstA == PIPE_BLENDFACTOR_ONE);
121 }
122
123 static boolean blend_discard_if_src_alpha_color_0(unsigned srcRGB, unsigned srcA,
124 unsigned dstRGB, unsigned dstA)
125 {
126 /* If the blend equation is ADD or REVERSE_SUBTRACT,
127 * SRC_ALPHA_COLOR == (0,0,0,0), and the following state is set,
128 * the colorbuffer will not be changed.
129 * Notice that the dst factors are the src factors inverted. */
130 return (srcRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
131 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
132 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
133 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
134 (srcA == PIPE_BLENDFACTOR_SRC_COLOR ||
135 srcA == PIPE_BLENDFACTOR_SRC_ALPHA ||
136 srcA == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE ||
137 srcA == PIPE_BLENDFACTOR_ZERO) &&
138 (dstRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
139 dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
140 dstRGB == PIPE_BLENDFACTOR_ONE) &&
141 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
142 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
143 dstA == PIPE_BLENDFACTOR_ONE);
144 }
145
146 static boolean blend_discard_if_src_alpha_color_1(unsigned srcRGB, unsigned srcA,
147 unsigned dstRGB, unsigned dstA)
148 {
149 /* If the blend equation is ADD or REVERSE_SUBTRACT,
150 * SRC_ALPHA_COLOR == (1,1,1,1), and the following state is set,
151 * the colorbuffer will not be changed.
152 * Notice that the dst factors are the src factors inverted. */
153 return (srcRGB == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
154 srcRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
155 srcRGB == PIPE_BLENDFACTOR_ZERO) &&
156 (srcA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
157 srcA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
158 srcA == PIPE_BLENDFACTOR_ZERO) &&
159 (dstRGB == PIPE_BLENDFACTOR_SRC_COLOR ||
160 dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
161 dstRGB == PIPE_BLENDFACTOR_ONE) &&
162 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
163 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
164 dstA == PIPE_BLENDFACTOR_ONE);
165 }
166
167 static unsigned bgra_cmask(unsigned mask)
168 {
169 /* Gallium uses RGBA color ordering while R300 expects BGRA. */
170
171 return ((mask & PIPE_MASK_R) << 2) |
172 ((mask & PIPE_MASK_B) >> 2) |
173 (mask & (PIPE_MASK_G | PIPE_MASK_A));
174 }
175
176 /* Create a new blend state based on the CSO blend state.
177 *
178 * This encompasses alpha blending, logic/raster ops, and blend dithering. */
179 static void* r300_create_blend_state(struct pipe_context* pipe,
180 const struct pipe_blend_state* state)
181 {
182 struct r300_screen* r300screen = r300_screen(pipe->screen);
183 struct r300_blend_state* blend = CALLOC_STRUCT(r300_blend_state);
184
185 if (state->rt[0].blend_enable)
186 {
187 unsigned eqRGB = state->rt[0].rgb_func;
188 unsigned srcRGB = state->rt[0].rgb_src_factor;
189 unsigned dstRGB = state->rt[0].rgb_dst_factor;
190
191 unsigned eqA = state->rt[0].alpha_func;
192 unsigned srcA = state->rt[0].alpha_src_factor;
193 unsigned dstA = state->rt[0].alpha_dst_factor;
194
195 /* despite the name, ALPHA_BLEND_ENABLE has nothing to do with alpha,
196 * this is just the crappy D3D naming */
197 blend->blend_control = R300_ALPHA_BLEND_ENABLE |
198 r300_translate_blend_function(eqRGB) |
199 ( r300_translate_blend_factor(srcRGB) << R300_SRC_BLEND_SHIFT) |
200 ( r300_translate_blend_factor(dstRGB) << R300_DST_BLEND_SHIFT);
201
202 /* Optimization: some operations do not require the destination color.
203 *
204 * When SRC_ALPHA_SATURATE is used, colorbuffer reads must be enabled,
205 * otherwise blending gives incorrect results. It seems to be
206 * a hardware bug. */
207 if (eqRGB == PIPE_BLEND_MIN || eqA == PIPE_BLEND_MIN ||
208 eqRGB == PIPE_BLEND_MAX || eqA == PIPE_BLEND_MAX ||
209 dstRGB != PIPE_BLENDFACTOR_ZERO ||
210 dstA != PIPE_BLENDFACTOR_ZERO ||
211 srcRGB == PIPE_BLENDFACTOR_DST_COLOR ||
212 srcRGB == PIPE_BLENDFACTOR_DST_ALPHA ||
213 srcRGB == PIPE_BLENDFACTOR_INV_DST_COLOR ||
214 srcRGB == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
215 srcA == PIPE_BLENDFACTOR_DST_COLOR ||
216 srcA == PIPE_BLENDFACTOR_DST_ALPHA ||
217 srcA == PIPE_BLENDFACTOR_INV_DST_COLOR ||
218 srcA == PIPE_BLENDFACTOR_INV_DST_ALPHA ||
219 srcRGB == PIPE_BLENDFACTOR_SRC_ALPHA_SATURATE) {
220 /* Enable reading from the colorbuffer. */
221 blend->blend_control |= R300_READ_ENABLE;
222
223 if (r300_screen(r300_context(pipe)->context.screen)->caps->is_r500) {
224 /* Optimization: Depending on incoming pixels, we can
225 * conditionally disable the reading in hardware... */
226 if (eqRGB != PIPE_BLEND_MIN && eqA != PIPE_BLEND_MIN &&
227 eqRGB != PIPE_BLEND_MAX && eqA != PIPE_BLEND_MAX) {
228 /* Disable reading if SRC_ALPHA == 0. */
229 if ((dstRGB == PIPE_BLENDFACTOR_SRC_ALPHA ||
230 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
231 (dstA == PIPE_BLENDFACTOR_SRC_COLOR ||
232 dstA == PIPE_BLENDFACTOR_SRC_ALPHA ||
233 dstA == PIPE_BLENDFACTOR_ZERO)) {
234 blend->blend_control |= R500_SRC_ALPHA_0_NO_READ;
235 }
236
237 /* Disable reading if SRC_ALPHA == 1. */
238 if ((dstRGB == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
239 dstRGB == PIPE_BLENDFACTOR_ZERO) &&
240 (dstA == PIPE_BLENDFACTOR_INV_SRC_COLOR ||
241 dstA == PIPE_BLENDFACTOR_INV_SRC_ALPHA ||
242 dstA == PIPE_BLENDFACTOR_ZERO)) {
243 blend->blend_control |= R500_SRC_ALPHA_1_NO_READ;
244 }
245 }
246 }
247 }
248
249 /* Optimization: discard pixels which don't change the colorbuffer.
250 *
251 * The code below is non-trivial and some math is involved.
252 *
253 * Discarding pixels must be disabled when FP16 AA is enabled.
254 * This is a hardware bug. Also, this implementation wouldn't work
255 * with FP blending enabled and equation clamping disabled.
256 *
257 * Equations other than ADD are rarely used and therefore won't be
258 * optimized. */
259 if ((eqRGB == PIPE_BLEND_ADD || eqRGB == PIPE_BLEND_REVERSE_SUBTRACT) &&
260 (eqA == PIPE_BLEND_ADD || eqA == PIPE_BLEND_REVERSE_SUBTRACT)) {
261 /* ADD: X+Y
262 * REVERSE_SUBTRACT: Y-X
263 *
264 * The idea is:
265 * If X = src*srcFactor = 0 and Y = dst*dstFactor = 1,
266 * then CB will not be changed.
267 *
268 * Given the srcFactor and dstFactor variables, we can derive
269 * what src and dst should be equal to and discard appropriate
270 * pixels.
271 */
272 if (blend_discard_if_src_alpha_0(srcRGB, srcA, dstRGB, dstA)) {
273 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_0;
274 } else if (blend_discard_if_src_alpha_1(srcRGB, srcA,
275 dstRGB, dstA)) {
276 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_ALPHA_1;
277 } else if (blend_discard_if_src_color_0(srcRGB, srcA,
278 dstRGB, dstA)) {
279 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_0;
280 } else if (blend_discard_if_src_color_1(srcRGB, srcA,
281 dstRGB, dstA)) {
282 blend->blend_control |= R300_DISCARD_SRC_PIXELS_SRC_COLOR_1;
283 } else if (blend_discard_if_src_alpha_color_0(srcRGB, srcA,
284 dstRGB, dstA)) {
285 blend->blend_control |=
286 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_0;
287 } else if (blend_discard_if_src_alpha_color_1(srcRGB, srcA,
288 dstRGB, dstA)) {
289 blend->blend_control |=
290 R300_DISCARD_SRC_PIXELS_SRC_ALPHA_COLOR_1;
291 }
292 }
293
294 /* separate alpha */
295 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) {
296 blend->blend_control |= R300_SEPARATE_ALPHA_ENABLE;
297 blend->alpha_blend_control =
298 r300_translate_blend_function(eqA) |
299 (r300_translate_blend_factor(srcA) << R300_SRC_BLEND_SHIFT) |
300 (r300_translate_blend_factor(dstA) << R300_DST_BLEND_SHIFT);
301 }
302 }
303
304 /* PIPE_LOGICOP_* don't need to be translated, fortunately. */
305 if (state->logicop_enable) {
306 blend->rop = R300_RB3D_ROPCNTL_ROP_ENABLE |
307 (state->logicop_func) << R300_RB3D_ROPCNTL_ROP_SHIFT;
308 }
309
310 /* Color channel masks for all MRTs. */
311 blend->color_channel_mask = bgra_cmask(state->rt[0].colormask);
312 if (r300screen->caps->is_r500 && state->independent_blend_enable) {
313 if (state->rt[1].blend_enable) {
314 blend->color_channel_mask |= bgra_cmask(state->rt[1].colormask) << 4;
315 }
316 if (state->rt[2].blend_enable) {
317 blend->color_channel_mask |= bgra_cmask(state->rt[2].colormask) << 8;
318 }
319 if (state->rt[3].blend_enable) {
320 blend->color_channel_mask |= bgra_cmask(state->rt[3].colormask) << 12;
321 }
322 }
323
324 if (state->dither) {
325 blend->dither = R300_RB3D_DITHER_CTL_DITHER_MODE_LUT |
326 R300_RB3D_DITHER_CTL_ALPHA_DITHER_MODE_LUT;
327 }
328
329 return (void*)blend;
330 }
331
332 /* Bind blend state. */
333 static void r300_bind_blend_state(struct pipe_context* pipe,
334 void* state)
335 {
336 struct r300_context* r300 = r300_context(pipe);
337
338 UPDATE_STATE(state, r300->blend_state);
339 }
340
341 /* Free blend state. */
342 static void r300_delete_blend_state(struct pipe_context* pipe,
343 void* state)
344 {
345 FREE(state);
346 }
347
348 /* Convert float to 10bit integer */
349 static unsigned float_to_fixed10(float f)
350 {
351 return CLAMP((unsigned)(f * 1023.9f), 0, 1023);
352 }
353
354 /* Set blend color.
355 * Setup both R300 and R500 registers, figure out later which one to write. */
356 static void r300_set_blend_color(struct pipe_context* pipe,
357 const struct pipe_blend_color* color)
358 {
359 struct r300_context* r300 = r300_context(pipe);
360 struct r300_screen* r300screen = r300_screen(pipe->screen);
361 struct r300_blend_color_state* state =
362 (struct r300_blend_color_state*)r300->blend_color_state.state;
363 union util_color uc;
364
365 util_pack_color(color->color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
366 state->blend_color = uc.ui;
367
368 /* XXX if FP16 blending is enabled, we should use the FP16 format */
369 state->blend_color_red_alpha =
370 float_to_fixed10(color->color[0]) |
371 (float_to_fixed10(color->color[3]) << 16);
372 state->blend_color_green_blue =
373 float_to_fixed10(color->color[2]) |
374 (float_to_fixed10(color->color[1]) << 16);
375
376 r300->blend_color_state.size = r300screen->caps->is_r500 ? 3 : 2;
377 r300->blend_color_state.dirty = TRUE;
378 }
379
380 static void r300_set_clip_state(struct pipe_context* pipe,
381 const struct pipe_clip_state* state)
382 {
383 struct r300_context* r300 = r300_context(pipe);
384
385 r300->clip = *state;
386
387 if (r300_screen(pipe->screen)->caps->has_tcl) {
388 memcpy(r300->clip_state.state, state, sizeof(struct pipe_clip_state));
389 r300->clip_state.size = 29;
390 } else {
391 draw_flush(r300->draw);
392 draw_set_clip_state(r300->draw, state);
393 r300->clip_state.size = 2;
394 }
395
396 r300->clip_state.dirty = TRUE;
397 }
398
399 /* Create a new depth, stencil, and alpha state based on the CSO dsa state.
400 *
401 * This contains the depth buffer, stencil buffer, alpha test, and such.
402 * On the Radeon, depth and stencil buffer setup are intertwined, which is
403 * the reason for some of the strange-looking assignments across registers. */
404 static void*
405 r300_create_dsa_state(struct pipe_context* pipe,
406 const struct pipe_depth_stencil_alpha_state* state)
407 {
408 struct r300_capabilities *caps =
409 r300_screen(r300_context(pipe)->context.screen)->caps;
410 struct r300_dsa_state* dsa = CALLOC_STRUCT(r300_dsa_state);
411
412 /* Depth test setup. */
413 if (state->depth.enabled) {
414 dsa->z_buffer_control |= R300_Z_ENABLE;
415
416 if (state->depth.writemask) {
417 dsa->z_buffer_control |= R300_Z_WRITE_ENABLE;
418 }
419
420 dsa->z_stencil_control |=
421 (r300_translate_depth_stencil_function(state->depth.func) <<
422 R300_Z_FUNC_SHIFT);
423 }
424
425 /* Stencil buffer setup. */
426 if (state->stencil[0].enabled) {
427 dsa->z_buffer_control |= R300_STENCIL_ENABLE;
428 dsa->z_stencil_control |=
429 (r300_translate_depth_stencil_function(state->stencil[0].func) <<
430 R300_S_FRONT_FUNC_SHIFT) |
431 (r300_translate_stencil_op(state->stencil[0].fail_op) <<
432 R300_S_FRONT_SFAIL_OP_SHIFT) |
433 (r300_translate_stencil_op(state->stencil[0].zpass_op) <<
434 R300_S_FRONT_ZPASS_OP_SHIFT) |
435 (r300_translate_stencil_op(state->stencil[0].zfail_op) <<
436 R300_S_FRONT_ZFAIL_OP_SHIFT);
437
438 dsa->stencil_ref_mask =
439 (state->stencil[0].valuemask << R300_STENCILMASK_SHIFT) |
440 (state->stencil[0].writemask << R300_STENCILWRITEMASK_SHIFT);
441
442 if (state->stencil[1].enabled) {
443 dsa->z_buffer_control |= R300_STENCIL_FRONT_BACK;
444 dsa->z_stencil_control |=
445 (r300_translate_depth_stencil_function(state->stencil[1].func) <<
446 R300_S_BACK_FUNC_SHIFT) |
447 (r300_translate_stencil_op(state->stencil[1].fail_op) <<
448 R300_S_BACK_SFAIL_OP_SHIFT) |
449 (r300_translate_stencil_op(state->stencil[1].zpass_op) <<
450 R300_S_BACK_ZPASS_OP_SHIFT) |
451 (r300_translate_stencil_op(state->stencil[1].zfail_op) <<
452 R300_S_BACK_ZFAIL_OP_SHIFT);
453
454 if (caps->is_r500)
455 {
456 dsa->z_buffer_control |= R500_STENCIL_REFMASK_FRONT_BACK;
457 dsa->stencil_ref_bf =
458 (state->stencil[1].valuemask <<
459 R300_STENCILMASK_SHIFT) |
460 (state->stencil[1].writemask <<
461 R300_STENCILWRITEMASK_SHIFT);
462 }
463 }
464 }
465
466 /* Alpha test setup. */
467 if (state->alpha.enabled) {
468 dsa->alpha_function =
469 r300_translate_alpha_function(state->alpha.func) |
470 R300_FG_ALPHA_FUNC_ENABLE;
471
472 /* We could use 10bit alpha ref but who needs that? */
473 dsa->alpha_function |= float_to_ubyte(state->alpha.ref_value);
474
475 if (caps->is_r500)
476 dsa->alpha_function |= R500_FG_ALPHA_FUNC_8BIT;
477 }
478
479 return (void*)dsa;
480 }
481
482 /* Bind DSA state. */
483 static void r300_bind_dsa_state(struct pipe_context* pipe,
484 void* state)
485 {
486 struct r300_context* r300 = r300_context(pipe);
487
488 UPDATE_STATE(state, r300->dsa_state);
489 }
490
491 /* Free DSA state. */
492 static void r300_delete_dsa_state(struct pipe_context* pipe,
493 void* state)
494 {
495 FREE(state);
496 }
497
498 static void r300_set_stencil_ref(struct pipe_context* pipe,
499 const struct pipe_stencil_ref* sr)
500 {
501 struct r300_context* r300 = r300_context(pipe);
502 r300->stencil_ref = *sr;
503 r300->dsa_state.dirty = TRUE;
504 }
505
506 /* This switcheroo is needed just because of goddamned MACRO_SWITCH. */
507 static void r300_fb_update_tiling_flags(struct r300_context *r300,
508 const struct pipe_framebuffer_state *old_state,
509 const struct pipe_framebuffer_state *new_state)
510 {
511 struct r300_texture *tex;
512 unsigned i, j, level;
513
514 /* Reset tiling flags for old surfaces to default values. */
515 for (i = 0; i < old_state->nr_cbufs; i++) {
516 for (j = 0; j < new_state->nr_cbufs; j++) {
517 if (old_state->cbufs[i]->texture == new_state->cbufs[j]->texture) {
518 break;
519 }
520 }
521 /* If not binding the surface again... */
522 if (j != new_state->nr_cbufs) {
523 continue;
524 }
525
526 tex = (struct r300_texture*)old_state->cbufs[i]->texture;
527
528 if (tex) {
529 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
530 tex->pitch[0],
531 tex->microtile != 0,
532 tex->macrotile != 0);
533 }
534 }
535 if (old_state->zsbuf &&
536 (!new_state->zsbuf ||
537 old_state->zsbuf->texture != new_state->zsbuf->texture)) {
538 tex = (struct r300_texture*)old_state->zsbuf->texture;
539
540 if (tex) {
541 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
542 tex->pitch[0],
543 tex->microtile != 0,
544 tex->macrotile != 0);
545 }
546 }
547
548 /* Set tiling flags for new surfaces. */
549 for (i = 0; i < new_state->nr_cbufs; i++) {
550 tex = (struct r300_texture*)new_state->cbufs[i]->texture;
551 level = new_state->cbufs[i]->level;
552
553 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
554 tex->pitch[level],
555 tex->microtile != 0,
556 tex->mip_macrotile[level] != 0);
557 }
558 if (new_state->zsbuf) {
559 tex = (struct r300_texture*)new_state->zsbuf->texture;
560 level = new_state->zsbuf->level;
561
562 r300->rws->buffer_set_tiling(r300->rws, tex->buffer,
563 tex->pitch[level],
564 tex->microtile != 0,
565 tex->mip_macrotile[level] != 0);
566 }
567 }
568
569 static void
570 r300_set_framebuffer_state(struct pipe_context* pipe,
571 const struct pipe_framebuffer_state* state)
572 {
573 struct r300_context* r300 = r300_context(pipe);
574 struct r300_screen* r300screen = r300_screen(pipe->screen);
575 struct pipe_framebuffer_state *old_state = r300->fb_state.state;
576 unsigned max_width, max_height;
577 uint32_t zbuffer_bpp = 0;
578
579
580 if (state->nr_cbufs > 4) {
581 debug_printf("r300: Implementation error: Too many MRTs in %s, "
582 "refusing to bind framebuffer state!\n", __FUNCTION__);
583 return;
584 }
585
586 if (r300screen->caps->is_r500) {
587 max_width = max_height = 4096;
588 } else if (r300screen->caps->is_r400) {
589 max_width = max_height = 4021;
590 } else {
591 max_width = max_height = 2560;
592 }
593
594 if (state->width > max_width || state->height > max_height) {
595 debug_printf("r300: Implementation error: Render targets are too "
596 "big in %s, refusing to bind framebuffer state!\n", __FUNCTION__);
597 return;
598 }
599
600 if (r300->draw) {
601 draw_flush(r300->draw);
602 }
603
604 r300->fb_state.dirty = TRUE;
605
606 /* If nr_cbufs is changed from zero to non-zero or vice versa... */
607 if (!!old_state->nr_cbufs != !!state->nr_cbufs) {
608 r300->blend_state.dirty = TRUE;
609 }
610 /* If zsbuf is set from NULL to non-NULL or vice versa.. */
611 if (!!old_state->zsbuf != !!state->zsbuf) {
612 r300->dsa_state.dirty = TRUE;
613 }
614 if (!r300->scissor_enabled) {
615 r300->scissor_state.dirty = TRUE;
616 }
617
618 r300_fb_update_tiling_flags(r300, r300->fb_state.state, state);
619
620 memcpy(r300->fb_state.state, state, sizeof(struct pipe_framebuffer_state));
621
622 r300->fb_state.size = (10 * state->nr_cbufs) + (2 * (4 - state->nr_cbufs)) +
623 (state->zsbuf ? 10 : 0) + 8;
624
625 /* Polygon offset depends on the zbuffer bit depth. */
626 if (state->zsbuf && r300->polygon_offset_enabled) {
627 switch (util_format_get_blocksize(state->zsbuf->texture->format)) {
628 case 2:
629 zbuffer_bpp = 16;
630 break;
631 case 4:
632 zbuffer_bpp = 24;
633 break;
634 }
635
636 if (r300->zbuffer_bpp != zbuffer_bpp) {
637 r300->zbuffer_bpp = zbuffer_bpp;
638 r300->rs_state.dirty = TRUE;
639 }
640 }
641 }
642
643 /* Create fragment shader state. */
644 static void* r300_create_fs_state(struct pipe_context* pipe,
645 const struct pipe_shader_state* shader)
646 {
647 struct r300_fragment_shader* fs = NULL;
648
649 fs = (struct r300_fragment_shader*)CALLOC_STRUCT(r300_fragment_shader);
650
651 /* Copy state directly into shader. */
652 fs->state = *shader;
653 fs->state.tokens = tgsi_dup_tokens(shader->tokens);
654
655 tgsi_scan_shader(shader->tokens, &fs->info);
656 r300_shader_read_fs_inputs(&fs->info, &fs->inputs);
657
658 return (void*)fs;
659 }
660
661 /* Bind fragment shader state. */
662 static void r300_bind_fs_state(struct pipe_context* pipe, void* shader)
663 {
664 struct r300_context* r300 = r300_context(pipe);
665 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
666
667 if (fs == NULL) {
668 r300->fs = NULL;
669 return;
670 }
671
672 r300->fs = fs;
673 r300_pick_fragment_shader(r300);
674
675 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
676
677 if (r300->vs_state.state && r300_vertex_shader_setup_wpos(r300)) {
678 r300->vap_output_state.dirty = TRUE;
679 }
680
681 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER | R300_NEW_FRAGMENT_SHADER_CONSTANTS;
682 }
683
684 /* Delete fragment shader state. */
685 static void r300_delete_fs_state(struct pipe_context* pipe, void* shader)
686 {
687 struct r300_fragment_shader* fs = (struct r300_fragment_shader*)shader;
688 struct r300_fragment_shader_code *tmp, *ptr = fs->first;
689
690 while (ptr) {
691 tmp = ptr;
692 ptr = ptr->next;
693 rc_constants_destroy(&tmp->code.constants);
694 FREE(tmp);
695 }
696 FREE((void*)fs->state.tokens);
697 FREE(shader);
698 }
699
700 static void r300_set_polygon_stipple(struct pipe_context* pipe,
701 const struct pipe_poly_stipple* state)
702 {
703 /* XXX no idea how to set this up, but not terribly important */
704 }
705
706 /* Create a new rasterizer state based on the CSO rasterizer state.
707 *
708 * This is a very large chunk of state, and covers most of the graphics
709 * backend (GB), geometry assembly (GA), and setup unit (SU) blocks.
710 *
711 * In a not entirely unironic sidenote, this state has nearly nothing to do
712 * with the actual block on the Radeon called the rasterizer (RS). */
713 static void* r300_create_rs_state(struct pipe_context* pipe,
714 const struct pipe_rasterizer_state* state)
715 {
716 struct r300_screen* r300screen = r300_screen(pipe->screen);
717 struct r300_rs_state* rs = CALLOC_STRUCT(r300_rs_state);
718
719 /* Copy rasterizer state for Draw. */
720 rs->rs = *state;
721
722 #ifdef PIPE_ARCH_LITTLE_ENDIAN
723 rs->vap_control_status = R300_VC_NO_SWAP;
724 #else
725 rs->vap_control_status = R300_VC_32BIT_SWAP;
726 #endif
727
728 /* If no TCL engine is present, turn off the HW TCL. */
729 if (!r300screen->caps->has_tcl) {
730 rs->vap_control_status |= R300_VAP_TCL_BYPASS;
731 }
732
733 rs->point_size = pack_float_16_6x(state->point_size) |
734 (pack_float_16_6x(state->point_size) << R300_POINTSIZE_X_SHIFT);
735
736 rs->line_control = pack_float_16_6x(state->line_width) |
737 R300_GA_LINE_CNTL_END_TYPE_COMP;
738
739 /* Enable polygon mode */
740 if (state->fill_cw != PIPE_POLYGON_MODE_FILL ||
741 state->fill_ccw != PIPE_POLYGON_MODE_FILL) {
742 rs->polygon_mode = R300_GA_POLY_MODE_DUAL;
743 }
744
745 /* Radeons don't think in "CW/CCW", they think in "front/back". */
746 if (state->front_winding == PIPE_WINDING_CW) {
747 rs->cull_mode = R300_FRONT_FACE_CW;
748
749 /* Polygon offset */
750 if (state->offset_cw) {
751 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
752 }
753 if (state->offset_ccw) {
754 rs->polygon_offset_enable |= R300_BACK_ENABLE;
755 }
756
757 /* Polygon mode */
758 if (rs->polygon_mode) {
759 rs->polygon_mode |=
760 r300_translate_polygon_mode_front(state->fill_cw);
761 rs->polygon_mode |=
762 r300_translate_polygon_mode_back(state->fill_ccw);
763 }
764 } else {
765 rs->cull_mode = R300_FRONT_FACE_CCW;
766
767 /* Polygon offset */
768 if (state->offset_ccw) {
769 rs->polygon_offset_enable |= R300_FRONT_ENABLE;
770 }
771 if (state->offset_cw) {
772 rs->polygon_offset_enable |= R300_BACK_ENABLE;
773 }
774
775 /* Polygon mode */
776 if (rs->polygon_mode) {
777 rs->polygon_mode |=
778 r300_translate_polygon_mode_front(state->fill_ccw);
779 rs->polygon_mode |=
780 r300_translate_polygon_mode_back(state->fill_cw);
781 }
782 }
783 if (state->front_winding & state->cull_mode) {
784 rs->cull_mode |= R300_CULL_FRONT;
785 }
786 if (~(state->front_winding) & state->cull_mode) {
787 rs->cull_mode |= R300_CULL_BACK;
788 }
789
790 if (rs->polygon_offset_enable) {
791 rs->depth_offset = state->offset_units;
792 rs->depth_scale = state->offset_scale;
793 }
794
795 if (state->line_stipple_enable) {
796 rs->line_stipple_config =
797 R300_GA_LINE_STIPPLE_CONFIG_LINE_RESET_LINE |
798 (fui((float)state->line_stipple_factor) &
799 R300_GA_LINE_STIPPLE_CONFIG_STIPPLE_SCALE_MASK);
800 /* XXX this might need to be scaled up */
801 rs->line_stipple_value = state->line_stipple_pattern;
802 }
803
804 if (state->flatshade) {
805 rs->color_control = R300_SHADE_MODEL_FLAT;
806 } else {
807 rs->color_control = R300_SHADE_MODEL_SMOOTH;
808 }
809
810 return (void*)rs;
811 }
812
813 /* Bind rasterizer state. */
814 static void r300_bind_rs_state(struct pipe_context* pipe, void* state)
815 {
816 struct r300_context* r300 = r300_context(pipe);
817 struct r300_rs_state* rs = (struct r300_rs_state*)state;
818 boolean scissor_was_enabled = r300->scissor_enabled;
819
820 if (r300->draw) {
821 draw_flush(r300->draw);
822 draw_set_rasterizer_state(r300->draw, &rs->rs);
823 }
824
825 if (rs) {
826 r300->polygon_offset_enabled = rs->rs.offset_cw || rs->rs.offset_ccw;
827 r300->scissor_enabled = rs->rs.scissor;
828 } else {
829 r300->polygon_offset_enabled = FALSE;
830 r300->scissor_enabled = FALSE;
831 }
832
833 UPDATE_STATE(state, r300->rs_state);
834 r300->rs_state.size = 17 + (r300->polygon_offset_enabled ? 5 : 0);
835
836 if (scissor_was_enabled != r300->scissor_enabled) {
837 r300->scissor_state.dirty = TRUE;
838 }
839 }
840
841 /* Free rasterizer state. */
842 static void r300_delete_rs_state(struct pipe_context* pipe, void* state)
843 {
844 FREE(state);
845 }
846
847 static void*
848 r300_create_sampler_state(struct pipe_context* pipe,
849 const struct pipe_sampler_state* state)
850 {
851 struct r300_context* r300 = r300_context(pipe);
852 struct r300_sampler_state* sampler = CALLOC_STRUCT(r300_sampler_state);
853 boolean is_r500 = r300_screen(pipe->screen)->caps->is_r500;
854 int lod_bias;
855 union util_color uc;
856
857 sampler->state = *state;
858
859 sampler->filter0 |=
860 (r300_translate_wrap(state->wrap_s) << R300_TX_WRAP_S_SHIFT) |
861 (r300_translate_wrap(state->wrap_t) << R300_TX_WRAP_T_SHIFT) |
862 (r300_translate_wrap(state->wrap_r) << R300_TX_WRAP_R_SHIFT);
863
864 sampler->filter0 |= r300_translate_tex_filters(state->min_img_filter,
865 state->mag_img_filter,
866 state->min_mip_filter,
867 state->max_anisotropy > 0);
868
869 sampler->filter0 |= r300_anisotropy(state->max_anisotropy);
870
871 /* Unfortunately, r300-r500 don't support floating-point mipmap lods. */
872 /* We must pass these to the merge function to clamp them properly. */
873 sampler->min_lod = MAX2((unsigned)state->min_lod, 0);
874 sampler->max_lod = MAX2((unsigned)ceilf(state->max_lod), 0);
875
876 lod_bias = CLAMP((int)(state->lod_bias * 32), -(1 << 9), (1 << 9) - 1);
877
878 sampler->filter1 |= lod_bias << R300_LOD_BIAS_SHIFT;
879
880 /* This is very high quality anisotropic filtering for R5xx.
881 * It's good for benchmarking the performance of texturing but
882 * in practice we don't want to slow down the driver because it's
883 * a pretty good performance killer. Feel free to play with it. */
884 if (DBG_ON(r300, DBG_ANISOHQ) && is_r500) {
885 sampler->filter1 |= r500_anisotropy(state->max_anisotropy);
886 }
887
888 util_pack_color(state->border_color, PIPE_FORMAT_B8G8R8A8_UNORM, &uc);
889 sampler->border_color = uc.ui;
890
891 /* R500-specific fixups and optimizations */
892 if (r300_screen(r300->context.screen)->caps->is_r500) {
893 sampler->filter1 |= R500_BORDER_FIX;
894 }
895
896 return (void*)sampler;
897 }
898
899 static void r300_bind_sampler_states(struct pipe_context* pipe,
900 unsigned count,
901 void** states)
902 {
903 struct r300_context* r300 = r300_context(pipe);
904 struct r300_textures_state* state =
905 (struct r300_textures_state*)r300->textures_state.state;
906
907 if (count > 8) {
908 return;
909 }
910
911 memcpy(state->sampler_states, states, sizeof(void*) * count);
912 state->sampler_count = count;
913
914 r300->textures_state.dirty = TRUE;
915
916 /* Pick a fragment shader based on the texture compare state. */
917 if (r300->fs && count) {
918 if (r300_pick_fragment_shader(r300)) {
919 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER |
920 R300_NEW_FRAGMENT_SHADER_CONSTANTS;
921 }
922 }
923 }
924
925 static void r300_lacks_vertex_textures(struct pipe_context* pipe,
926 unsigned count,
927 void** states)
928 {
929 }
930
931 static void r300_delete_sampler_state(struct pipe_context* pipe, void* state)
932 {
933 FREE(state);
934 }
935
936 static void r300_set_fragment_sampler_views(struct pipe_context* pipe,
937 unsigned count,
938 struct pipe_sampler_view** views)
939 {
940 struct r300_context* r300 = r300_context(pipe);
941 struct r300_textures_state* state =
942 (struct r300_textures_state*)r300->textures_state.state;
943 unsigned i;
944 boolean is_r500 = r300_screen(r300->context.screen)->caps->is_r500;
945 boolean dirty_tex = FALSE;
946
947 /* XXX magic num */
948 if (count > 8) {
949 return;
950 }
951
952 for (i = 0; i < count; i++) {
953 if (state->fragment_sampler_views[i] != views[i]) {
954 struct r300_texture *texture;
955
956 pipe_sampler_view_reference(&state->fragment_sampler_views[i],
957 views[i]);
958 dirty_tex = TRUE;
959
960 texture = (struct r300_texture *)views[i]->texture;
961
962 /* R300-specific - set the texrect factor in the fragment shader */
963 if (!is_r500 && texture->is_npot) {
964 /* XXX It would be nice to re-emit just 1 constant,
965 * XXX not all of them */
966 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
967 }
968 }
969 }
970
971 for (i = count; i < 8; i++) {
972 if (state->fragment_sampler_views[i]) {
973 pipe_sampler_view_reference(&state->fragment_sampler_views[i],
974 NULL);
975 }
976 }
977
978 state->texture_count = count;
979
980 r300->textures_state.dirty = TRUE;
981
982 if (dirty_tex) {
983 r300->texture_cache_inval.dirty = TRUE;
984 }
985 }
986
987 static struct pipe_sampler_view *
988 r300_create_sampler_view(struct pipe_context *pipe,
989 struct pipe_texture *texture,
990 const struct pipe_sampler_view *templ)
991 {
992 struct pipe_sampler_view *view = CALLOC_STRUCT(pipe_sampler_view);
993
994 if (view) {
995 *view = *templ;
996 view->reference.count = 1;
997 view->texture = NULL;
998 pipe_texture_reference(&view->texture, texture);
999 view->context = pipe;
1000 }
1001
1002 return view;
1003 }
1004
1005
1006 static void
1007 r300_sampler_view_destroy(struct pipe_context *pipe,
1008 struct pipe_sampler_view *view)
1009 {
1010 pipe_texture_reference(&view->texture, NULL);
1011 FREE(view);
1012 }
1013
1014 static void r300_set_scissor_state(struct pipe_context* pipe,
1015 const struct pipe_scissor_state* state)
1016 {
1017 struct r300_context* r300 = r300_context(pipe);
1018
1019 memcpy(r300->scissor_state.state, state,
1020 sizeof(struct pipe_scissor_state));
1021
1022 if (r300->scissor_enabled) {
1023 r300->scissor_state.dirty = TRUE;
1024 }
1025 }
1026
1027 static void r300_set_viewport_state(struct pipe_context* pipe,
1028 const struct pipe_viewport_state* state)
1029 {
1030 struct r300_context* r300 = r300_context(pipe);
1031 struct r300_viewport_state* viewport =
1032 (struct r300_viewport_state*)r300->viewport_state.state;
1033
1034 r300->viewport = *state;
1035
1036 /* Do the transform in HW. */
1037 viewport->vte_control = R300_VTX_W0_FMT;
1038
1039 if (state->scale[0] != 1.0f) {
1040 viewport->xscale = state->scale[0];
1041 viewport->vte_control |= R300_VPORT_X_SCALE_ENA;
1042 }
1043 if (state->scale[1] != 1.0f) {
1044 viewport->yscale = state->scale[1];
1045 viewport->vte_control |= R300_VPORT_Y_SCALE_ENA;
1046 }
1047 if (state->scale[2] != 1.0f) {
1048 viewport->zscale = state->scale[2];
1049 viewport->vte_control |= R300_VPORT_Z_SCALE_ENA;
1050 }
1051 if (state->translate[0] != 0.0f) {
1052 viewport->xoffset = state->translate[0];
1053 viewport->vte_control |= R300_VPORT_X_OFFSET_ENA;
1054 }
1055 if (state->translate[1] != 0.0f) {
1056 viewport->yoffset = state->translate[1];
1057 viewport->vte_control |= R300_VPORT_Y_OFFSET_ENA;
1058 }
1059 if (state->translate[2] != 0.0f) {
1060 viewport->zoffset = state->translate[2];
1061 viewport->vte_control |= R300_VPORT_Z_OFFSET_ENA;
1062 }
1063
1064 r300->viewport_state.dirty = TRUE;
1065 if (r300->fs && r300->fs->inputs.wpos != ATTR_UNUSED) {
1066 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
1067 }
1068 }
1069
1070 static void r300_set_vertex_buffers(struct pipe_context* pipe,
1071 unsigned count,
1072 const struct pipe_vertex_buffer* buffers)
1073 {
1074 struct r300_context* r300 = r300_context(pipe);
1075 int i;
1076 unsigned max_index = (1 << 24) - 1;
1077 boolean any_user_buffer = false;
1078
1079 if (count == r300->vertex_buffer_count &&
1080 memcmp(r300->vertex_buffer, buffers, count * sizeof(buffers[0])) == 0)
1081 return;
1082
1083 for (i = 0; i < count; i++) {
1084 pipe_buffer_reference(&r300->vertex_buffer[i].buffer, buffers[i].buffer);
1085 if (r300_buffer_is_user_buffer(buffers[i].buffer))
1086 any_user_buffer = true;
1087 max_index = MIN2(buffers[i].max_index, max_index);
1088 }
1089
1090 for ( ; i < r300->vertex_buffer_count; i++)
1091 pipe_buffer_reference(&r300->vertex_buffer[i].buffer, NULL);
1092
1093 memcpy(r300->vertex_buffer, buffers,
1094 sizeof(struct pipe_vertex_buffer) * count);
1095
1096 r300->vertex_buffer_count = count;
1097 r300->vertex_buffer_max_index = max_index;
1098 r300->any_user_vbs = any_user_buffer;
1099
1100 if (r300->draw) {
1101 draw_flush(r300->draw);
1102 draw_set_vertex_buffers(r300->draw, count, buffers);
1103 }
1104 }
1105
1106 static boolean r300_validate_aos(struct r300_context *r300)
1107 {
1108 struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
1109 struct pipe_vertex_element *velem = r300->velems->velem;
1110 int i;
1111
1112 /* Check if formats and strides are aligned to the size of DWORD. */
1113 for (i = 0; i < r300->velems->count; i++) {
1114 if (vbuf[velem[i].vertex_buffer_index].stride % 4 != 0 ||
1115 util_format_get_blocksize(velem[i].src_format) % 4 != 0) {
1116 return FALSE;
1117 }
1118 }
1119 return TRUE;
1120 }
1121
1122 static void r300_draw_emit_attrib(struct r300_context* r300,
1123 enum attrib_emit emit,
1124 enum interp_mode interp,
1125 int index)
1126 {
1127 struct r300_vertex_shader* vs = r300->vs_state.state;
1128 struct tgsi_shader_info* info = &vs->info;
1129 int output;
1130
1131 output = draw_find_shader_output(r300->draw,
1132 info->output_semantic_name[index],
1133 info->output_semantic_index[index]);
1134 draw_emit_vertex_attr(&r300->vertex_info, emit, interp, output);
1135 }
1136
1137 static void r300_draw_emit_all_attribs(struct r300_context* r300)
1138 {
1139 struct r300_vertex_shader* vs = r300->vs_state.state;
1140 struct r300_shader_semantics* vs_outputs = &vs->outputs;
1141 int i, gen_count;
1142
1143 /* Position. */
1144 if (vs_outputs->pos != ATTR_UNUSED) {
1145 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
1146 vs_outputs->pos);
1147 } else {
1148 assert(0);
1149 }
1150
1151 /* Point size. */
1152 if (vs_outputs->psize != ATTR_UNUSED) {
1153 r300_draw_emit_attrib(r300, EMIT_1F_PSIZE, INTERP_POS,
1154 vs_outputs->psize);
1155 }
1156
1157 /* Colors. */
1158 for (i = 0; i < ATTR_COLOR_COUNT; i++) {
1159 if (vs_outputs->color[i] != ATTR_UNUSED) {
1160 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_LINEAR,
1161 vs_outputs->color[i]);
1162 }
1163 }
1164
1165 /* XXX Back-face colors. */
1166
1167 /* Texture coordinates. */
1168 gen_count = 0;
1169 for (i = 0; i < ATTR_GENERIC_COUNT; i++) {
1170 if (vs_outputs->generic[i] != ATTR_UNUSED) {
1171 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
1172 vs_outputs->generic[i]);
1173 gen_count++;
1174 }
1175 }
1176
1177 /* Fog coordinates. */
1178 if (vs_outputs->fog != ATTR_UNUSED) {
1179 r300_draw_emit_attrib(r300, EMIT_4F, INTERP_PERSPECTIVE,
1180 vs_outputs->fog);
1181 gen_count++;
1182 }
1183
1184 /* XXX magic */
1185 assert(gen_count <= 8);
1186 }
1187
1188 /* Update the PSC tables. */
1189 static void r300_vertex_psc(struct r300_vertex_element_state *velems)
1190 {
1191 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1192 uint16_t type, swizzle;
1193 enum pipe_format format;
1194 unsigned i;
1195
1196 assert(velems->count <= 16);
1197
1198 /* Vertex shaders have no semantics on their inputs,
1199 * so PSC should just route stuff based on the vertex elements,
1200 * and not on attrib information. */
1201 for (i = 0; i < velems->count; i++) {
1202 format = velems->velem[i].src_format;
1203
1204 type = r300_translate_vertex_data_type(format) |
1205 (i << R300_DST_VEC_LOC_SHIFT);
1206 swizzle = r300_translate_vertex_data_swizzle(format);
1207
1208 if (i & 1) {
1209 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1210 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1211 } else {
1212 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1213 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1214 }
1215 }
1216
1217 /* Set the last vector in the PSC. */
1218 if (i) {
1219 i -= 1;
1220 }
1221 vstream->vap_prog_stream_cntl[i >> 1] |=
1222 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1223
1224 vstream->count = (i >> 1) + 1;
1225 }
1226
1227 /* Update the PSC tables for SW TCL, using Draw. */
1228 static void r300_swtcl_vertex_psc(struct r300_context *r300,
1229 struct r300_vertex_element_state *velems)
1230 {
1231 struct r300_vertex_stream_state *vstream = &velems->vertex_stream;
1232 struct r300_vertex_shader* vs = r300->vs_state.state;
1233 struct vertex_info* vinfo = &r300->vertex_info;
1234 uint16_t type, swizzle;
1235 enum pipe_format format;
1236 unsigned i, attrib_count;
1237 int* vs_output_tab = vs->stream_loc_notcl;
1238
1239 /* For each Draw attribute, route it to the fragment shader according
1240 * to the vs_output_tab. */
1241 attrib_count = vinfo->num_attribs;
1242 DBG(r300, DBG_DRAW, "r300: attrib count: %d\n", attrib_count);
1243 for (i = 0; i < attrib_count; i++) {
1244 DBG(r300, DBG_DRAW, "r300: attrib: offset %d, interp %d, size %d,"
1245 " vs_output_tab %d\n", vinfo->attrib[i].src_index,
1246 vinfo->attrib[i].interp_mode, vinfo->attrib[i].emit,
1247 vs_output_tab[i]);
1248 }
1249
1250 for (i = 0; i < attrib_count; i++) {
1251 /* Make sure we have a proper destination for our attribute. */
1252 assert(vs_output_tab[i] != -1);
1253
1254 format = draw_translate_vinfo_format(vinfo->attrib[i].emit);
1255
1256 /* Obtain the type of data in this attribute. */
1257 type = r300_translate_vertex_data_type(format) |
1258 vs_output_tab[i] << R300_DST_VEC_LOC_SHIFT;
1259
1260 /* Obtain the swizzle for this attribute. Note that the default
1261 * swizzle in the hardware is not XYZW! */
1262 swizzle = r300_translate_vertex_data_swizzle(format);
1263
1264 /* Add the attribute to the PSC table. */
1265 if (i & 1) {
1266 vstream->vap_prog_stream_cntl[i >> 1] |= type << 16;
1267 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle << 16;
1268 } else {
1269 vstream->vap_prog_stream_cntl[i >> 1] |= type;
1270 vstream->vap_prog_stream_cntl_ext[i >> 1] |= swizzle;
1271 }
1272 }
1273
1274 /* Set the last vector in the PSC. */
1275 if (i) {
1276 i -= 1;
1277 }
1278 vstream->vap_prog_stream_cntl[i >> 1] |=
1279 (R300_LAST_VEC << (i & 1 ? 16 : 0));
1280
1281 vstream->count = (i >> 1) + 1;
1282 }
1283
1284 static void* r300_create_vertex_elements_state(struct pipe_context* pipe,
1285 unsigned count,
1286 const struct pipe_vertex_element* attribs)
1287 {
1288 struct r300_context *r300 = r300_context(pipe);
1289 struct r300_screen* r300screen = r300_screen(pipe->screen);
1290 struct r300_vertex_element_state *velems;
1291
1292 assert(count <= PIPE_MAX_ATTRIBS);
1293 velems = CALLOC_STRUCT(r300_vertex_element_state);
1294 if (velems != NULL) {
1295 velems->count = count;
1296 memcpy(velems->velem, attribs, sizeof(struct pipe_vertex_element) * count);
1297
1298 if (r300screen->caps->has_tcl) {
1299 r300_vertex_psc(velems);
1300 } else {
1301 memset(&r300->vertex_info, 0, sizeof(struct vertex_info));
1302 r300_draw_emit_all_attribs(r300);
1303 draw_compute_vertex_size(&r300->vertex_info);
1304 r300_swtcl_vertex_psc(r300, velems);
1305 }
1306 }
1307 return velems;
1308 }
1309
1310 static void r300_bind_vertex_elements_state(struct pipe_context *pipe,
1311 void *state)
1312 {
1313 struct r300_context *r300 = r300_context(pipe);
1314 struct r300_vertex_element_state *velems = state;
1315
1316 if (velems == NULL) {
1317 return;
1318 }
1319
1320 r300->velems = velems;
1321
1322 if (r300->draw) {
1323 draw_flush(r300->draw);
1324 draw_set_vertex_elements(r300->draw, velems->count, velems->velem);
1325 }
1326
1327 if (!r300_validate_aos(r300)) {
1328 /* XXX We should fallback using draw. */
1329 assert(0);
1330 abort();
1331 }
1332
1333 UPDATE_STATE(&velems->vertex_stream, r300->vertex_stream_state);
1334 r300->vertex_stream_state.size = (1 + velems->vertex_stream.count) * 2;
1335 }
1336
1337 static void r300_delete_vertex_elements_state(struct pipe_context *pipe, void *state)
1338 {
1339 FREE(state);
1340 }
1341
1342 static void* r300_create_vs_state(struct pipe_context* pipe,
1343 const struct pipe_shader_state* shader)
1344 {
1345 struct r300_context* r300 = r300_context(pipe);
1346
1347 struct r300_vertex_shader* vs = CALLOC_STRUCT(r300_vertex_shader);
1348 r300_vertex_shader_common_init(vs, shader);
1349
1350 if (r300_screen(pipe->screen)->caps->has_tcl) {
1351 r300_translate_vertex_shader(r300, vs);
1352 } else {
1353 vs->draw_vs = draw_create_vertex_shader(r300->draw, shader);
1354 }
1355
1356 return vs;
1357 }
1358
1359 static void r300_bind_vs_state(struct pipe_context* pipe, void* shader)
1360 {
1361 struct r300_context* r300 = r300_context(pipe);
1362 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1363
1364 if (vs == NULL) {
1365 r300->vs_state.state = NULL;
1366 return;
1367 }
1368 if (vs == r300->vs_state.state) {
1369 return;
1370 }
1371 r300->vs_state.state = vs;
1372
1373 // VS output mapping for HWTCL or stream mapping for SWTCL to the RS block
1374 if (r300->fs) {
1375 r300_vertex_shader_setup_wpos(r300);
1376 }
1377 memcpy(r300->vap_output_state.state, &vs->vap_out,
1378 sizeof(struct r300_vap_output_state));
1379 r300->vap_output_state.dirty = TRUE;
1380
1381 /* The majority of the RS block bits is dependent on the vertex shader. */
1382 r300->rs_block_state.dirty = TRUE; /* Will be updated before the emission. */
1383
1384 if (r300_screen(pipe->screen)->caps->has_tcl) {
1385 r300->vs_state.dirty = TRUE;
1386 r300->vs_state.size = vs->code.length + 9;
1387
1388 r300->pvs_flush.dirty = TRUE;
1389
1390 r300->dirty_state |= R300_NEW_VERTEX_SHADER_CONSTANTS;
1391 } else {
1392 draw_flush(r300->draw);
1393 draw_bind_vertex_shader(r300->draw,
1394 (struct draw_vertex_shader*)vs->draw_vs);
1395 }
1396 }
1397
1398 static void r300_delete_vs_state(struct pipe_context* pipe, void* shader)
1399 {
1400 struct r300_context* r300 = r300_context(pipe);
1401 struct r300_vertex_shader* vs = (struct r300_vertex_shader*)shader;
1402
1403 if (r300_screen(pipe->screen)->caps->has_tcl) {
1404 rc_constants_destroy(&vs->code.constants);
1405 } else {
1406 draw_delete_vertex_shader(r300->draw,
1407 (struct draw_vertex_shader*)vs->draw_vs);
1408 }
1409
1410 FREE((void*)vs->state.tokens);
1411 FREE(shader);
1412 }
1413
1414 static void r300_set_constant_buffer(struct pipe_context *pipe,
1415 uint shader, uint index,
1416 struct pipe_buffer *buf)
1417 {
1418 struct r300_context* r300 = r300_context(pipe);
1419 struct r300_screen *r300screen = r300_screen(pipe->screen);
1420 void *mapped;
1421 int max_size = 0;
1422
1423 if (buf == NULL || buf->size == 0 ||
1424 (mapped = pipe_buffer_map(pipe->screen, buf, PIPE_BUFFER_USAGE_CPU_READ)) == NULL)
1425 {
1426 r300->shader_constants[shader].count = 0;
1427 return;
1428 }
1429
1430 assert((buf->size % 4 * sizeof(float)) == 0);
1431
1432 /* Check the size of the constant buffer. */
1433 switch (shader) {
1434 case PIPE_SHADER_VERTEX:
1435 max_size = 256;
1436 break;
1437 case PIPE_SHADER_FRAGMENT:
1438 if (r300screen->caps->is_r500) {
1439 max_size = 256;
1440 /* XXX Implement emission of r400's extended constant buffer. */
1441 /*} else if (r300screen->caps->is_r400) {
1442 max_size = 64;*/
1443 } else {
1444 max_size = 32;
1445 }
1446 break;
1447 default:
1448 assert(0);
1449 }
1450
1451 /* XXX Subtract immediates and RC_STATE_* variables. */
1452 if (buf->size > (sizeof(float) * 4 * max_size)) {
1453 debug_printf("r300: Max size of the constant buffer is "
1454 "%i*4 floats.\n", max_size);
1455 abort();
1456 }
1457
1458 memcpy(r300->shader_constants[shader].constants, mapped, buf->size);
1459 r300->shader_constants[shader].count = buf->size / (4 * sizeof(float));
1460 pipe_buffer_unmap(pipe->screen, buf);
1461
1462 if (shader == PIPE_SHADER_VERTEX) {
1463 if (r300screen->caps->has_tcl) {
1464 r300->dirty_state |= R300_NEW_VERTEX_SHADER_CONSTANTS;
1465 r300->pvs_flush.dirty = TRUE;
1466 }
1467 }
1468 else if (shader == PIPE_SHADER_FRAGMENT)
1469 r300->dirty_state |= R300_NEW_FRAGMENT_SHADER_CONSTANTS;
1470 }
1471
1472 void r300_init_state_functions(struct r300_context* r300)
1473 {
1474 r300->context.create_blend_state = r300_create_blend_state;
1475 r300->context.bind_blend_state = r300_bind_blend_state;
1476 r300->context.delete_blend_state = r300_delete_blend_state;
1477
1478 r300->context.set_blend_color = r300_set_blend_color;
1479
1480 r300->context.set_clip_state = r300_set_clip_state;
1481
1482 r300->context.set_constant_buffer = r300_set_constant_buffer;
1483
1484 r300->context.create_depth_stencil_alpha_state = r300_create_dsa_state;
1485 r300->context.bind_depth_stencil_alpha_state = r300_bind_dsa_state;
1486 r300->context.delete_depth_stencil_alpha_state = r300_delete_dsa_state;
1487
1488 r300->context.set_stencil_ref = r300_set_stencil_ref;
1489
1490 r300->context.set_framebuffer_state = r300_set_framebuffer_state;
1491
1492 r300->context.create_fs_state = r300_create_fs_state;
1493 r300->context.bind_fs_state = r300_bind_fs_state;
1494 r300->context.delete_fs_state = r300_delete_fs_state;
1495
1496 r300->context.set_polygon_stipple = r300_set_polygon_stipple;
1497
1498 r300->context.create_rasterizer_state = r300_create_rs_state;
1499 r300->context.bind_rasterizer_state = r300_bind_rs_state;
1500 r300->context.delete_rasterizer_state = r300_delete_rs_state;
1501
1502 r300->context.create_sampler_state = r300_create_sampler_state;
1503 r300->context.bind_fragment_sampler_states = r300_bind_sampler_states;
1504 r300->context.bind_vertex_sampler_states = r300_lacks_vertex_textures;
1505 r300->context.delete_sampler_state = r300_delete_sampler_state;
1506
1507 r300->context.set_fragment_sampler_views = r300_set_fragment_sampler_views;
1508 r300->context.create_sampler_view = r300_create_sampler_view;
1509 r300->context.sampler_view_destroy = r300_sampler_view_destroy;
1510
1511 r300->context.set_scissor_state = r300_set_scissor_state;
1512
1513 r300->context.set_viewport_state = r300_set_viewport_state;
1514
1515 r300->context.set_vertex_buffers = r300_set_vertex_buffers;
1516
1517 r300->context.create_vertex_elements_state = r300_create_vertex_elements_state;
1518 r300->context.bind_vertex_elements_state = r300_bind_vertex_elements_state;
1519 r300->context.delete_vertex_elements_state = r300_delete_vertex_elements_state;
1520
1521 r300->context.create_vs_state = r300_create_vs_state;
1522 r300->context.bind_vs_state = r300_bind_vs_state;
1523 r300->context.delete_vs_state = r300_delete_vs_state;
1524 }