r600g: move streamout state to drivers/radeon
[mesa.git] / src / gallium / drivers / r600 / r600_asm.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28
29 #include <errno.h>
30 #include "util/u_dump.h"
31 #include "util/u_memory.h"
32 #include "util/u_math.h"
33 #include "pipe/p_shader_tokens.h"
34
35 #include "sb/sb_public.h"
36
37 #define NUM_OF_CYCLES 3
38 #define NUM_OF_COMPONENTS 4
39
40 static inline unsigned int r600_bytecode_get_num_operands(
41 struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
42 {
43 return r600_isa_alu(alu->op)->src_count;
44 }
45
46 int r700_bytecode_alu_build(struct r600_bytecode *bc,
47 struct r600_bytecode_alu *alu, unsigned id);
48
49 static struct r600_bytecode_cf *r600_bytecode_cf(void)
50 {
51 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
52
53 if (cf == NULL)
54 return NULL;
55 LIST_INITHEAD(&cf->list);
56 LIST_INITHEAD(&cf->alu);
57 LIST_INITHEAD(&cf->vtx);
58 LIST_INITHEAD(&cf->tex);
59 return cf;
60 }
61
62 static struct r600_bytecode_alu *r600_bytecode_alu(void)
63 {
64 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
65
66 if (alu == NULL)
67 return NULL;
68 LIST_INITHEAD(&alu->list);
69 return alu;
70 }
71
72 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
73 {
74 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
75
76 if (vtx == NULL)
77 return NULL;
78 LIST_INITHEAD(&vtx->list);
79 return vtx;
80 }
81
82 static struct r600_bytecode_tex *r600_bytecode_tex(void)
83 {
84 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
85
86 if (tex == NULL)
87 return NULL;
88 LIST_INITHEAD(&tex->list);
89 return tex;
90 }
91
92 static unsigned stack_entry_size(enum radeon_family chip) {
93 /* Wavefront size:
94 * 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
95 * Aruba/Sumo/Sumo2/redwood/juniper
96 * 32: R630/R730/R710/Palm/Cedar
97 * 16: R610/Rs780
98 *
99 * Stack row size:
100 * Wavefront Size 16 32 48 64
101 * Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4
102 * Columns per Row (R9xx+) 8 4 4 4 */
103
104 switch (chip) {
105 /* FIXME: are some chips missing here? */
106 /* wavefront size 16 */
107 case CHIP_RV610:
108 case CHIP_RS780:
109 case CHIP_RV620:
110 case CHIP_RS880:
111 /* wavefront size 32 */
112 case CHIP_RV630:
113 case CHIP_RV635:
114 case CHIP_RV730:
115 case CHIP_RV710:
116 case CHIP_PALM:
117 case CHIP_CEDAR:
118 return 8;
119
120 /* wavefront size 64 */
121 default:
122 return 4;
123 }
124 }
125
126 void r600_bytecode_init(struct r600_bytecode *bc,
127 enum chip_class chip_class,
128 enum radeon_family family,
129 bool has_compressed_msaa_texturing)
130 {
131 static unsigned next_shader_id = 0;
132
133 bc->debug_id = ++next_shader_id;
134
135 if ((chip_class == R600) &&
136 (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
137 bc->ar_handling = AR_HANDLE_RV6XX;
138 bc->r6xx_nop_after_rel_dst = 1;
139 } else {
140 bc->ar_handling = AR_HANDLE_NORMAL;
141 bc->r6xx_nop_after_rel_dst = 0;
142 }
143
144 LIST_INITHEAD(&bc->cf);
145 bc->chip_class = chip_class;
146 bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
147 bc->stack.entry_size = stack_entry_size(family);
148 }
149
150 int r600_bytecode_add_cf(struct r600_bytecode *bc)
151 {
152 struct r600_bytecode_cf *cf = r600_bytecode_cf();
153
154 if (cf == NULL)
155 return -ENOMEM;
156 LIST_ADDTAIL(&cf->list, &bc->cf);
157 if (bc->cf_last) {
158 cf->id = bc->cf_last->id + 2;
159 if (bc->cf_last->eg_alu_extended) {
160 /* take into account extended alu size */
161 cf->id += 2;
162 bc->ndw += 2;
163 }
164 }
165 bc->cf_last = cf;
166 bc->ncf++;
167 bc->ndw += 2;
168 bc->force_add_cf = 0;
169 bc->ar_loaded = 0;
170 return 0;
171 }
172
173 int r600_bytecode_add_output(struct r600_bytecode *bc,
174 const struct r600_bytecode_output *output)
175 {
176 int r;
177
178 if (output->gpr >= bc->ngpr)
179 bc->ngpr = output->gpr + 1;
180
181 if (bc->cf_last && (bc->cf_last->op == output->op ||
182 (bc->cf_last->op == CF_OP_EXPORT &&
183 output->op == CF_OP_EXPORT_DONE)) &&
184 output->type == bc->cf_last->output.type &&
185 output->elem_size == bc->cf_last->output.elem_size &&
186 output->swizzle_x == bc->cf_last->output.swizzle_x &&
187 output->swizzle_y == bc->cf_last->output.swizzle_y &&
188 output->swizzle_z == bc->cf_last->output.swizzle_z &&
189 output->swizzle_w == bc->cf_last->output.swizzle_w &&
190 output->comp_mask == bc->cf_last->output.comp_mask &&
191 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
192
193 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
194 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
195
196 bc->cf_last->output.end_of_program |= output->end_of_program;
197 bc->cf_last->op = bc->cf_last->output.op = output->op;
198 bc->cf_last->output.gpr = output->gpr;
199 bc->cf_last->output.array_base = output->array_base;
200 bc->cf_last->output.burst_count += output->burst_count;
201 return 0;
202
203 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
204 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
205
206 bc->cf_last->output.end_of_program |= output->end_of_program;
207 bc->cf_last->op = bc->cf_last->output.op = output->op;
208 bc->cf_last->output.burst_count += output->burst_count;
209 return 0;
210 }
211 }
212
213 r = r600_bytecode_add_cf(bc);
214 if (r)
215 return r;
216 bc->cf_last->op = output->op;
217 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
218 return 0;
219 }
220
221 /* alu instructions that can ony exits once per group */
222 static int is_alu_once_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
223 {
224 return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED);
225 }
226
227 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
228 {
229 return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
230 (r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
231 }
232
233 static int is_alu_mova_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
234 {
235 return r600_isa_alu(alu->op)->flags & AF_MOVA;
236 }
237
238 static int alu_uses_rel(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
239 {
240 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
241 unsigned src;
242
243 if (alu->dst.rel) {
244 return 1;
245 }
246
247 for (src = 0; src < num_src; ++src) {
248 if (alu->src[src].rel) {
249 return 1;
250 }
251 }
252 return 0;
253 }
254
255 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
256 {
257 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
258 return !(slots & AF_S);
259 }
260
261 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
262 {
263 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
264 return !(slots & AF_V);
265 }
266
267 /* alu instructions that can execute on any unit */
268 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
269 {
270 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
271 return slots == AF_VS;
272 }
273
274 static int is_nop_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
275 {
276 return alu->op == ALU_OP0_NOP;
277 }
278
279 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
280 struct r600_bytecode_alu *assignment[5])
281 {
282 struct r600_bytecode_alu *alu;
283 unsigned i, chan, trans;
284 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
285
286 for (i = 0; i < max_slots; i++)
287 assignment[i] = NULL;
288
289 for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
290 chan = alu->dst.chan;
291 if (max_slots == 4)
292 trans = 0;
293 else if (is_alu_trans_unit_inst(bc, alu))
294 trans = 1;
295 else if (is_alu_vec_unit_inst(bc, alu))
296 trans = 0;
297 else if (assignment[chan])
298 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
299 else
300 trans = 0;
301
302 if (trans) {
303 if (assignment[4]) {
304 assert(0); /* ALU.Trans has already been allocated. */
305 return -1;
306 }
307 assignment[4] = alu;
308 } else {
309 if (assignment[chan]) {
310 assert(0); /* ALU.chan has already been allocated. */
311 return -1;
312 }
313 assignment[chan] = alu;
314 }
315
316 if (alu->last)
317 break;
318 }
319 return 0;
320 }
321
322 struct alu_bank_swizzle {
323 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
324 int hw_cfile_addr[4];
325 int hw_cfile_elem[4];
326 };
327
328 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
329 [SQ_ALU_VEC_012] = { 0, 1, 2 },
330 [SQ_ALU_VEC_021] = { 0, 2, 1 },
331 [SQ_ALU_VEC_120] = { 1, 2, 0 },
332 [SQ_ALU_VEC_102] = { 1, 0, 2 },
333 [SQ_ALU_VEC_201] = { 2, 0, 1 },
334 [SQ_ALU_VEC_210] = { 2, 1, 0 }
335 };
336
337 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
338 [SQ_ALU_SCL_210] = { 2, 1, 0 },
339 [SQ_ALU_SCL_122] = { 1, 2, 2 },
340 [SQ_ALU_SCL_212] = { 2, 1, 2 },
341 [SQ_ALU_SCL_221] = { 2, 2, 1 }
342 };
343
344 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
345 {
346 int i, cycle, component;
347 /* set up gpr use */
348 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
349 for (component = 0; component < NUM_OF_COMPONENTS; component++)
350 bs->hw_gpr[cycle][component] = -1;
351 for (i = 0; i < 4; i++)
352 bs->hw_cfile_addr[i] = -1;
353 for (i = 0; i < 4; i++)
354 bs->hw_cfile_elem[i] = -1;
355 }
356
357 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
358 {
359 if (bs->hw_gpr[cycle][chan] == -1)
360 bs->hw_gpr[cycle][chan] = sel;
361 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
362 /* Another scalar operation has already used the GPR read port for the channel. */
363 return -1;
364 }
365 return 0;
366 }
367
368 static int reserve_cfile(struct r600_bytecode *bc, struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
369 {
370 int res, num_res = 4;
371 if (bc->chip_class >= R700) {
372 num_res = 2;
373 chan /= 2;
374 }
375 for (res = 0; res < num_res; ++res) {
376 if (bs->hw_cfile_addr[res] == -1) {
377 bs->hw_cfile_addr[res] = sel;
378 bs->hw_cfile_elem[res] = chan;
379 return 0;
380 } else if (bs->hw_cfile_addr[res] == sel &&
381 bs->hw_cfile_elem[res] == chan)
382 return 0; /* Read for this scalar element already reserved, nothing to do here. */
383 }
384 /* All cfile read ports are used, cannot reference vector element. */
385 return -1;
386 }
387
388 static int is_gpr(unsigned sel)
389 {
390 return (sel >= 0 && sel <= 127);
391 }
392
393 /* CB constants start at 512, and get translated to a kcache index when ALU
394 * clauses are constructed. Note that we handle kcache constants the same way
395 * as (the now gone) cfile constants, is that really required? */
396 static int is_cfile(unsigned sel)
397 {
398 return (sel > 255 && sel < 512) ||
399 (sel > 511 && sel < 4607) || /* Kcache before translation. */
400 (sel > 127 && sel < 192); /* Kcache after translation. */
401 }
402
403 static int is_const(int sel)
404 {
405 return is_cfile(sel) ||
406 (sel >= V_SQ_ALU_SRC_0 &&
407 sel <= V_SQ_ALU_SRC_LITERAL);
408 }
409
410 static int check_vector(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
411 struct alu_bank_swizzle *bs, int bank_swizzle)
412 {
413 int r, src, num_src, sel, elem, cycle;
414
415 num_src = r600_bytecode_get_num_operands(bc, alu);
416 for (src = 0; src < num_src; src++) {
417 sel = alu->src[src].sel;
418 elem = alu->src[src].chan;
419 if (is_gpr(sel)) {
420 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
421 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
422 /* Nothing to do; special-case optimization,
423 * second source uses first source’s reservation. */
424 continue;
425 else {
426 r = reserve_gpr(bs, sel, elem, cycle);
427 if (r)
428 return r;
429 }
430 } else if (is_cfile(sel)) {
431 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
432 if (r)
433 return r;
434 }
435 /* No restrictions on PV, PS, literal or special constants. */
436 }
437 return 0;
438 }
439
440 static int check_scalar(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
441 struct alu_bank_swizzle *bs, int bank_swizzle)
442 {
443 int r, src, num_src, const_count, sel, elem, cycle;
444
445 num_src = r600_bytecode_get_num_operands(bc, alu);
446 for (const_count = 0, src = 0; src < num_src; ++src) {
447 sel = alu->src[src].sel;
448 elem = alu->src[src].chan;
449 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
450 if (const_count >= 2)
451 /* More than two references to a constant in
452 * transcendental operation. */
453 return -1;
454 else
455 const_count++;
456 }
457 if (is_cfile(sel)) {
458 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
459 if (r)
460 return r;
461 }
462 }
463 for (src = 0; src < num_src; ++src) {
464 sel = alu->src[src].sel;
465 elem = alu->src[src].chan;
466 if (is_gpr(sel)) {
467 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
468 if (cycle < const_count)
469 /* Cycle for GPR load conflicts with
470 * constant load in transcendental operation. */
471 return -1;
472 r = reserve_gpr(bs, sel, elem, cycle);
473 if (r)
474 return r;
475 }
476 /* PV PS restrictions */
477 if (const_count && (sel == 254 || sel == 255)) {
478 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
479 if (cycle < const_count)
480 return -1;
481 }
482 }
483 return 0;
484 }
485
486 static int check_and_set_bank_swizzle(struct r600_bytecode *bc,
487 struct r600_bytecode_alu *slots[5])
488 {
489 struct alu_bank_swizzle bs;
490 int bank_swizzle[5];
491 int i, r = 0, forced = 1;
492 boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
493 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
494
495 for (i = 0; i < max_slots; i++) {
496 if (slots[i]) {
497 if (slots[i]->bank_swizzle_force) {
498 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
499 } else {
500 forced = 0;
501 }
502 }
503
504 if (i < 4 && slots[i])
505 scalar_only = false;
506 }
507 if (forced)
508 return 0;
509
510 /* Just check every possible combination of bank swizzle.
511 * Not very efficent, but works on the first try in most of the cases. */
512 for (i = 0; i < 4; i++)
513 if (!slots[i] || !slots[i]->bank_swizzle_force)
514 bank_swizzle[i] = SQ_ALU_VEC_012;
515 else
516 bank_swizzle[i] = slots[i]->bank_swizzle;
517
518 bank_swizzle[4] = SQ_ALU_SCL_210;
519 while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
520
521 init_bank_swizzle(&bs);
522 if (scalar_only == false) {
523 for (i = 0; i < 4; i++) {
524 if (slots[i]) {
525 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
526 if (r)
527 break;
528 }
529 }
530 } else
531 r = 0;
532
533 if (!r && max_slots == 5 && slots[4]) {
534 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
535 }
536 if (!r) {
537 for (i = 0; i < max_slots; i++) {
538 if (slots[i])
539 slots[i]->bank_swizzle = bank_swizzle[i];
540 }
541 return 0;
542 }
543
544 if (scalar_only) {
545 bank_swizzle[4]++;
546 } else {
547 for (i = 0; i < max_slots; i++) {
548 if (!slots[i] || !slots[i]->bank_swizzle_force) {
549 bank_swizzle[i]++;
550 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
551 break;
552 else if (i < max_slots - 1)
553 bank_swizzle[i] = SQ_ALU_VEC_012;
554 else
555 return -1;
556 }
557 }
558 }
559 }
560
561 /* Couldn't find a working swizzle. */
562 return -1;
563 }
564
565 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
566 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
567 {
568 struct r600_bytecode_alu *prev[5];
569 int gpr[5], chan[5];
570 int i, j, r, src, num_src;
571 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
572
573 r = assign_alu_units(bc, alu_prev, prev);
574 if (r)
575 return r;
576
577 for (i = 0; i < max_slots; ++i) {
578 if (prev[i] && (prev[i]->dst.write || prev[i]->is_op3) && !prev[i]->dst.rel) {
579 gpr[i] = prev[i]->dst.sel;
580 /* cube writes more than PV.X */
581 if (is_alu_reduction_inst(bc, prev[i]))
582 chan[i] = 0;
583 else
584 chan[i] = prev[i]->dst.chan;
585 } else
586 gpr[i] = -1;
587 }
588
589 for (i = 0; i < max_slots; ++i) {
590 struct r600_bytecode_alu *alu = slots[i];
591 if(!alu)
592 continue;
593
594 num_src = r600_bytecode_get_num_operands(bc, alu);
595 for (src = 0; src < num_src; ++src) {
596 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
597 continue;
598
599 if (bc->chip_class < CAYMAN) {
600 if (alu->src[src].sel == gpr[4] &&
601 alu->src[src].chan == chan[4] &&
602 alu_prev->pred_sel == alu->pred_sel) {
603 alu->src[src].sel = V_SQ_ALU_SRC_PS;
604 alu->src[src].chan = 0;
605 continue;
606 }
607 }
608
609 for (j = 0; j < 4; ++j) {
610 if (alu->src[src].sel == gpr[j] &&
611 alu->src[src].chan == j &&
612 alu_prev->pred_sel == alu->pred_sel) {
613 alu->src[src].sel = V_SQ_ALU_SRC_PV;
614 alu->src[src].chan = chan[j];
615 break;
616 }
617 }
618 }
619 }
620
621 return 0;
622 }
623
624 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg)
625 {
626 switch(value) {
627 case 0:
628 *sel = V_SQ_ALU_SRC_0;
629 break;
630 case 1:
631 *sel = V_SQ_ALU_SRC_1_INT;
632 break;
633 case -1:
634 *sel = V_SQ_ALU_SRC_M_1_INT;
635 break;
636 case 0x3F800000: /* 1.0f */
637 *sel = V_SQ_ALU_SRC_1;
638 break;
639 case 0x3F000000: /* 0.5f */
640 *sel = V_SQ_ALU_SRC_0_5;
641 break;
642 case 0xBF800000: /* -1.0f */
643 *sel = V_SQ_ALU_SRC_1;
644 *neg ^= 1;
645 break;
646 case 0xBF000000: /* -0.5f */
647 *sel = V_SQ_ALU_SRC_0_5;
648 *neg ^= 1;
649 break;
650 default:
651 *sel = V_SQ_ALU_SRC_LITERAL;
652 break;
653 }
654 }
655
656 /* compute how many literal are needed */
657 static int r600_bytecode_alu_nliterals(struct r600_bytecode *bc, struct r600_bytecode_alu *alu,
658 uint32_t literal[4], unsigned *nliteral)
659 {
660 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
661 unsigned i, j;
662
663 for (i = 0; i < num_src; ++i) {
664 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
665 uint32_t value = alu->src[i].value;
666 unsigned found = 0;
667 for (j = 0; j < *nliteral; ++j) {
668 if (literal[j] == value) {
669 found = 1;
670 break;
671 }
672 }
673 if (!found) {
674 if (*nliteral >= 4)
675 return -EINVAL;
676 literal[(*nliteral)++] = value;
677 }
678 }
679 }
680 return 0;
681 }
682
683 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode *bc,
684 struct r600_bytecode_alu *alu,
685 uint32_t literal[4], unsigned nliteral)
686 {
687 unsigned num_src = r600_bytecode_get_num_operands(bc, alu);
688 unsigned i, j;
689
690 for (i = 0; i < num_src; ++i) {
691 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
692 uint32_t value = alu->src[i].value;
693 for (j = 0; j < nliteral; ++j) {
694 if (literal[j] == value) {
695 alu->src[i].chan = j;
696 break;
697 }
698 }
699 }
700 }
701 }
702
703 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
704 struct r600_bytecode_alu *alu_prev)
705 {
706 struct r600_bytecode_alu *prev[5];
707 struct r600_bytecode_alu *result[5] = { NULL };
708
709 uint32_t literal[4], prev_literal[4];
710 unsigned nliteral = 0, prev_nliteral = 0;
711
712 int i, j, r, src, num_src;
713 int num_once_inst = 0;
714 int have_mova = 0, have_rel = 0;
715 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
716
717 r = assign_alu_units(bc, alu_prev, prev);
718 if (r)
719 return r;
720
721 for (i = 0; i < max_slots; ++i) {
722 if (prev[i]) {
723 if (prev[i]->pred_sel)
724 return 0;
725 if (is_alu_once_inst(bc, prev[i]))
726 return 0;
727 }
728 if (slots[i]) {
729 if (slots[i]->pred_sel)
730 return 0;
731 if (is_alu_once_inst(bc, slots[i]))
732 return 0;
733 }
734 }
735
736 for (i = 0; i < max_slots; ++i) {
737 struct r600_bytecode_alu *alu;
738
739 if (num_once_inst > 0)
740 return 0;
741
742 /* check number of literals */
743 if (prev[i]) {
744 if (r600_bytecode_alu_nliterals(bc, prev[i], literal, &nliteral))
745 return 0;
746 if (r600_bytecode_alu_nliterals(bc, prev[i], prev_literal, &prev_nliteral))
747 return 0;
748 if (is_alu_mova_inst(bc, prev[i])) {
749 if (have_rel)
750 return 0;
751 have_mova = 1;
752 }
753
754 if (alu_uses_rel(bc, prev[i])) {
755 if (have_mova) {
756 return 0;
757 }
758 have_rel = 1;
759 }
760
761 num_once_inst += is_alu_once_inst(bc, prev[i]);
762 }
763 if (slots[i] && r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral))
764 return 0;
765
766 /* Let's check used slots. */
767 if (prev[i] && !slots[i]) {
768 result[i] = prev[i];
769 continue;
770 } else if (prev[i] && slots[i]) {
771 if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
772 /* Trans unit is still free try to use it. */
773 if (is_alu_any_unit_inst(bc, slots[i])) {
774 result[i] = prev[i];
775 result[4] = slots[i];
776 } else if (is_alu_any_unit_inst(bc, prev[i])) {
777 if (slots[i]->dst.sel == prev[i]->dst.sel &&
778 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
779 (prev[i]->dst.write == 1 || prev[i]->is_op3))
780 return 0;
781
782 result[i] = slots[i];
783 result[4] = prev[i];
784 } else
785 return 0;
786 } else
787 return 0;
788 } else if(!slots[i]) {
789 continue;
790 } else {
791 if (max_slots == 5 && slots[i] && prev[4] &&
792 slots[i]->dst.sel == prev[4]->dst.sel &&
793 slots[i]->dst.chan == prev[4]->dst.chan &&
794 (slots[i]->dst.write == 1 || slots[i]->is_op3) &&
795 (prev[4]->dst.write == 1 || prev[4]->is_op3))
796 return 0;
797
798 result[i] = slots[i];
799 }
800
801 alu = slots[i];
802 num_once_inst += is_alu_once_inst(bc, alu);
803
804 /* don't reschedule NOPs */
805 if (is_nop_inst(bc, alu))
806 return 0;
807
808 if (is_alu_mova_inst(bc, alu)) {
809 if (have_rel) {
810 return 0;
811 }
812 have_mova = 1;
813 }
814
815 if (alu_uses_rel(bc, alu)) {
816 if (have_mova) {
817 return 0;
818 }
819 have_rel = 1;
820 }
821
822 /* Let's check source gprs */
823 num_src = r600_bytecode_get_num_operands(bc, alu);
824 for (src = 0; src < num_src; ++src) {
825
826 /* Constants don't matter. */
827 if (!is_gpr(alu->src[src].sel))
828 continue;
829
830 for (j = 0; j < max_slots; ++j) {
831 if (!prev[j] || !(prev[j]->dst.write || prev[j]->is_op3))
832 continue;
833
834 /* If it's relative then we can't determin which gpr is really used. */
835 if (prev[j]->dst.chan == alu->src[src].chan &&
836 (prev[j]->dst.sel == alu->src[src].sel ||
837 prev[j]->dst.rel || alu->src[src].rel))
838 return 0;
839 }
840 }
841 }
842
843 /* more than one PRED_ or KILL_ ? */
844 if (num_once_inst > 1)
845 return 0;
846
847 /* check if the result can still be swizzlet */
848 r = check_and_set_bank_swizzle(bc, result);
849 if (r)
850 return 0;
851
852 /* looks like everything worked out right, apply the changes */
853
854 /* undo adding previus literals */
855 bc->cf_last->ndw -= align(prev_nliteral, 2);
856
857 /* sort instructions */
858 for (i = 0; i < max_slots; ++i) {
859 slots[i] = result[i];
860 if (result[i]) {
861 LIST_DEL(&result[i]->list);
862 result[i]->last = 0;
863 LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
864 }
865 }
866
867 /* determine new last instruction */
868 LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
869
870 /* determine new first instruction */
871 for (i = 0; i < max_slots; ++i) {
872 if (result[i]) {
873 bc->cf_last->curr_bs_head = result[i];
874 break;
875 }
876 }
877
878 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
879 bc->cf_last->prev2_bs_head = NULL;
880
881 return 0;
882 }
883
884 /* we'll keep kcache sets sorted by bank & addr */
885 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
886 struct r600_bytecode_kcache *kcache,
887 unsigned bank, unsigned line)
888 {
889 int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
890
891 for (i = 0; i < kcache_banks; i++) {
892 if (kcache[i].mode) {
893 int d;
894
895 if (kcache[i].bank < bank)
896 continue;
897
898 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
899 kcache[i].bank > bank) {
900 /* try to insert new line */
901 if (kcache[kcache_banks-1].mode) {
902 /* all sets are in use */
903 return -ENOMEM;
904 }
905
906 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
907 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
908 kcache[i].bank = bank;
909 kcache[i].addr = line;
910 return 0;
911 }
912
913 d = line - kcache[i].addr;
914
915 if (d == -1) {
916 kcache[i].addr--;
917 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
918 /* we are prepending the line to the current set,
919 * discarding the existing second line,
920 * so we'll have to insert line+2 after it */
921 line += 2;
922 continue;
923 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
924 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
925 return 0;
926 } else {
927 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
928 return -ENOMEM;
929 }
930 } else if (d == 1) {
931 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
932 return 0;
933 } else if (d == 0)
934 return 0;
935 } else { /* free kcache set - use it */
936 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
937 kcache[i].bank = bank;
938 kcache[i].addr = line;
939 return 0;
940 }
941 }
942 return -ENOMEM;
943 }
944
945 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
946 struct r600_bytecode_kcache *kcache,
947 struct r600_bytecode_alu *alu)
948 {
949 int i, r;
950
951 for (i = 0; i < 3; i++) {
952 unsigned bank, line, sel = alu->src[i].sel;
953
954 if (sel < 512)
955 continue;
956
957 bank = alu->src[i].kc_bank;
958 line = (sel-512)>>4;
959
960 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line)))
961 return r;
962 }
963 return 0;
964 }
965
966 static int r600_bytecode_assign_kcache_banks(struct r600_bytecode *bc,
967 struct r600_bytecode_alu *alu,
968 struct r600_bytecode_kcache * kcache)
969 {
970 int i, j;
971
972 /* Alter the src operands to refer to the kcache. */
973 for (i = 0; i < 3; ++i) {
974 static const unsigned int base[] = {128, 160, 256, 288};
975 unsigned int line, sel = alu->src[i].sel, found = 0;
976
977 if (sel < 512)
978 continue;
979
980 sel -= 512;
981 line = sel>>4;
982
983 for (j = 0; j < 4 && !found; ++j) {
984 switch (kcache[j].mode) {
985 case V_SQ_CF_KCACHE_NOP:
986 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
987 R600_ERR("unexpected kcache line mode\n");
988 return -ENOMEM;
989 default:
990 if (kcache[j].bank == alu->src[i].kc_bank &&
991 kcache[j].addr <= line &&
992 line < kcache[j].addr + kcache[j].mode) {
993 alu->src[i].sel = sel - (kcache[j].addr<<4);
994 alu->src[i].sel += base[j];
995 found=1;
996 }
997 }
998 }
999 }
1000 return 0;
1001 }
1002
1003 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1004 struct r600_bytecode_alu *alu,
1005 unsigned type)
1006 {
1007 struct r600_bytecode_kcache kcache_sets[4];
1008 struct r600_bytecode_kcache *kcache = kcache_sets;
1009 int r;
1010
1011 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1012
1013 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1014 /* can't alloc, need to start new clause */
1015 if ((r = r600_bytecode_add_cf(bc))) {
1016 return r;
1017 }
1018 bc->cf_last->op = type;
1019
1020 /* retry with the new clause */
1021 kcache = bc->cf_last->kcache;
1022 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1023 /* can't alloc again- should never happen */
1024 return r;
1025 }
1026 } else {
1027 /* update kcache sets */
1028 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1029 }
1030
1031 /* if we actually used more than 2 kcache sets - use ALU_EXTENDED on eg+ */
1032 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP) {
1033 if (bc->chip_class < EVERGREEN)
1034 return -ENOMEM;
1035 bc->cf_last->eg_alu_extended = 1;
1036 }
1037
1038 return 0;
1039 }
1040
1041 static int insert_nop_r6xx(struct r600_bytecode *bc)
1042 {
1043 struct r600_bytecode_alu alu;
1044 int r, i;
1045
1046 for (i = 0; i < 4; i++) {
1047 memset(&alu, 0, sizeof(alu));
1048 alu.op = ALU_OP0_NOP;
1049 alu.src[0].chan = i;
1050 alu.dst.chan = i;
1051 alu.last = (i == 3);
1052 r = r600_bytecode_add_alu(bc, &alu);
1053 if (r)
1054 return r;
1055 }
1056 return 0;
1057 }
1058
1059 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1060 static int load_ar_r6xx(struct r600_bytecode *bc)
1061 {
1062 struct r600_bytecode_alu alu;
1063 int r;
1064
1065 if (bc->ar_loaded)
1066 return 0;
1067
1068 /* hack to avoid making MOVA the last instruction in the clause */
1069 if ((bc->cf_last->ndw>>1) >= 110)
1070 bc->force_add_cf = 1;
1071
1072 memset(&alu, 0, sizeof(alu));
1073 alu.op = ALU_OP1_MOVA_GPR_INT;
1074 alu.src[0].sel = bc->ar_reg;
1075 alu.src[0].chan = bc->ar_chan;
1076 alu.last = 1;
1077 alu.index_mode = INDEX_MODE_LOOP;
1078 r = r600_bytecode_add_alu(bc, &alu);
1079 if (r)
1080 return r;
1081
1082 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1083 bc->ar_loaded = 1;
1084 return 0;
1085 }
1086
1087 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1088 static int load_ar(struct r600_bytecode *bc)
1089 {
1090 struct r600_bytecode_alu alu;
1091 int r;
1092
1093 if (bc->ar_handling)
1094 return load_ar_r6xx(bc);
1095
1096 if (bc->ar_loaded)
1097 return 0;
1098
1099 /* hack to avoid making MOVA the last instruction in the clause */
1100 if ((bc->cf_last->ndw>>1) >= 110)
1101 bc->force_add_cf = 1;
1102
1103 memset(&alu, 0, sizeof(alu));
1104 alu.op = ALU_OP1_MOVA_INT;
1105 alu.src[0].sel = bc->ar_reg;
1106 alu.src[0].chan = bc->ar_chan;
1107 alu.last = 1;
1108 r = r600_bytecode_add_alu(bc, &alu);
1109 if (r)
1110 return r;
1111
1112 bc->cf_last->r6xx_uses_waterfall = 1;
1113 bc->ar_loaded = 1;
1114 return 0;
1115 }
1116
1117 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1118 const struct r600_bytecode_alu *alu, unsigned type)
1119 {
1120 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1121 struct r600_bytecode_alu *lalu;
1122 int i, r;
1123
1124 if (nalu == NULL)
1125 return -ENOMEM;
1126 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1127
1128 if (bc->cf_last != NULL && bc->cf_last->op != type) {
1129 /* check if we could add it anyway */
1130 if (bc->cf_last->op == CF_OP_ALU &&
1131 type == CF_OP_ALU_PUSH_BEFORE) {
1132 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1133 if (lalu->execute_mask) {
1134 bc->force_add_cf = 1;
1135 break;
1136 }
1137 }
1138 } else
1139 bc->force_add_cf = 1;
1140 }
1141
1142 /* cf can contains only alu or only vtx or only tex */
1143 if (bc->cf_last == NULL || bc->force_add_cf) {
1144 r = r600_bytecode_add_cf(bc);
1145 if (r) {
1146 free(nalu);
1147 return r;
1148 }
1149 }
1150 bc->cf_last->op = type;
1151
1152 /* Check AR usage and load it if required */
1153 for (i = 0; i < 3; i++)
1154 if (nalu->src[i].rel && !bc->ar_loaded)
1155 load_ar(bc);
1156
1157 if (nalu->dst.rel && !bc->ar_loaded)
1158 load_ar(bc);
1159
1160 /* Setup the kcache for this ALU instruction. This will start a new
1161 * ALU clause if needed. */
1162 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1163 free(nalu);
1164 return r;
1165 }
1166
1167 if (!bc->cf_last->curr_bs_head) {
1168 bc->cf_last->curr_bs_head = nalu;
1169 }
1170 /* number of gpr == the last gpr used in any alu */
1171 for (i = 0; i < 3; i++) {
1172 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1173 bc->ngpr = nalu->src[i].sel + 1;
1174 }
1175 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1176 r600_bytecode_special_constants(nalu->src[i].value,
1177 &nalu->src[i].sel, &nalu->src[i].neg);
1178 }
1179 if (nalu->dst.sel >= bc->ngpr) {
1180 bc->ngpr = nalu->dst.sel + 1;
1181 }
1182 LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1183 /* each alu use 2 dwords */
1184 bc->cf_last->ndw += 2;
1185 bc->ndw += 2;
1186
1187 /* process cur ALU instructions for bank swizzle */
1188 if (nalu->last) {
1189 uint32_t literal[4];
1190 unsigned nliteral;
1191 struct r600_bytecode_alu *slots[5];
1192 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1193 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1194 if (r)
1195 return r;
1196
1197 if (bc->cf_last->prev_bs_head) {
1198 r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1199 if (r)
1200 return r;
1201 }
1202
1203 if (bc->cf_last->prev_bs_head) {
1204 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1205 if (r)
1206 return r;
1207 }
1208
1209 r = check_and_set_bank_swizzle(bc, slots);
1210 if (r)
1211 return r;
1212
1213 for (i = 0, nliteral = 0; i < max_slots; i++) {
1214 if (slots[i]) {
1215 r = r600_bytecode_alu_nliterals(bc, slots[i], literal, &nliteral);
1216 if (r)
1217 return r;
1218 }
1219 }
1220 bc->cf_last->ndw += align(nliteral, 2);
1221
1222 /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1223 * worst case */
1224 if ((bc->cf_last->ndw >> 1) >= 120) {
1225 bc->force_add_cf = 1;
1226 }
1227
1228 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1229 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1230 bc->cf_last->curr_bs_head = NULL;
1231 }
1232
1233 if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1234 insert_nop_r6xx(bc);
1235
1236 return 0;
1237 }
1238
1239 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1240 {
1241 return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1242 }
1243
1244 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1245 {
1246 switch (bc->chip_class) {
1247 case R600:
1248 return 8;
1249
1250 case R700:
1251 case EVERGREEN:
1252 case CAYMAN:
1253 return 16;
1254
1255 default:
1256 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1257 return 8;
1258 }
1259 }
1260
1261 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1262 {
1263 return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1264 (bc->chip_class == CAYMAN ||
1265 bc->cf_last->op != CF_OP_TEX));
1266 }
1267
1268 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1269 {
1270 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1271 int r;
1272
1273 if (nvtx == NULL)
1274 return -ENOMEM;
1275 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1276
1277 /* cf can contains only alu or only vtx or only tex */
1278 if (bc->cf_last == NULL ||
1279 last_inst_was_not_vtx_fetch(bc) ||
1280 bc->force_add_cf) {
1281 r = r600_bytecode_add_cf(bc);
1282 if (r) {
1283 free(nvtx);
1284 return r;
1285 }
1286 switch (bc->chip_class) {
1287 case R600:
1288 case R700:
1289 case EVERGREEN:
1290 bc->cf_last->op = CF_OP_VTX;
1291 break;
1292 case CAYMAN:
1293 bc->cf_last->op = CF_OP_TEX;
1294 break;
1295 default:
1296 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1297 free(nvtx);
1298 return -EINVAL;
1299 }
1300 }
1301 LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1302 /* each fetch use 4 dwords */
1303 bc->cf_last->ndw += 4;
1304 bc->ndw += 4;
1305 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1306 bc->force_add_cf = 1;
1307
1308 bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1309 bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1310
1311 return 0;
1312 }
1313
1314 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1315 {
1316 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1317 int r;
1318
1319 if (ntex == NULL)
1320 return -ENOMEM;
1321 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1322
1323 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1324 if (bc->cf_last != NULL &&
1325 bc->cf_last->op == CF_OP_TEX) {
1326 struct r600_bytecode_tex *ttex;
1327 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1328 if (ttex->dst_gpr == ntex->src_gpr) {
1329 bc->force_add_cf = 1;
1330 break;
1331 }
1332 }
1333 /* slight hack to make gradients always go into same cf */
1334 if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1335 bc->force_add_cf = 1;
1336 }
1337
1338 /* cf can contains only alu or only vtx or only tex */
1339 if (bc->cf_last == NULL ||
1340 bc->cf_last->op != CF_OP_TEX ||
1341 bc->force_add_cf) {
1342 r = r600_bytecode_add_cf(bc);
1343 if (r) {
1344 free(ntex);
1345 return r;
1346 }
1347 bc->cf_last->op = CF_OP_TEX;
1348 }
1349 if (ntex->src_gpr >= bc->ngpr) {
1350 bc->ngpr = ntex->src_gpr + 1;
1351 }
1352 if (ntex->dst_gpr >= bc->ngpr) {
1353 bc->ngpr = ntex->dst_gpr + 1;
1354 }
1355 LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1356 /* each texture fetch use 4 dwords */
1357 bc->cf_last->ndw += 4;
1358 bc->ndw += 4;
1359 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1360 bc->force_add_cf = 1;
1361 return 0;
1362 }
1363
1364 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1365 {
1366 int r;
1367 r = r600_bytecode_add_cf(bc);
1368 if (r)
1369 return r;
1370
1371 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1372 bc->cf_last->op = op;
1373 return 0;
1374 }
1375
1376 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1377 {
1378 return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1379 }
1380
1381 /* common to all 3 families */
1382 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1383 {
1384 bc->bytecode[id] = S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1385 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1386 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1387 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1388 if (bc->chip_class < CAYMAN)
1389 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1390 id++;
1391 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1392 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1393 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1394 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1395 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1396 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1397 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1398 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1399 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1400 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1401 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1402 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1403 if (bc->chip_class < CAYMAN)
1404 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1405 id++;
1406 bc->bytecode[id++] = 0;
1407 return 0;
1408 }
1409
1410 /* common to all 3 families */
1411 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1412 {
1413 bc->bytecode[id++] = S_SQ_TEX_WORD0_TEX_INST(
1414 r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1415 EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1416 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1417 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1418 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1419 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1420 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1421 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1422 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1423 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1424 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1425 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1426 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1427 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1428 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1429 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1430 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1431 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1432 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1433 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1434 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1435 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1436 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1437 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1438 bc->bytecode[id++] = 0;
1439 return 0;
1440 }
1441
1442 /* r600 only, r700/eg bits in r700_asm.c */
1443 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1444 {
1445 unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1446
1447 /* don't replace gpr by pv or ps for destination register */
1448 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1449 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1450 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1451 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1452 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1453 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1454 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1455 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1456 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1457 S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1458 S_SQ_ALU_WORD0_LAST(alu->last);
1459
1460 if (alu->is_op3) {
1461 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1462 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1463 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1464 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1465 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1466 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1467 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1468 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1469 S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1470 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1471 } else {
1472 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1473 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1474 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1475 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1476 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1477 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1478 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1479 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1480 S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1481 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1482 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1483 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1484 }
1485 return 0;
1486 }
1487
1488 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1489 {
1490 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1491 *bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1492 S_SQ_CF_WORD1_BARRIER(1) |
1493 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1);
1494 }
1495
1496 /* common for r600/r700 - eg in eg_asm.c */
1497 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1498 {
1499 unsigned id = cf->id;
1500 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1501 unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1502
1503
1504 if (cf->op == CF_NATIVE) {
1505 bc->bytecode[id++] = cf->isa[0];
1506 bc->bytecode[id++] = cf->isa[1];
1507 } else if (cfop->flags & CF_ALU) {
1508 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1509 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1510 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1511 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1512
1513 bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1514 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1515 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1516 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1517 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1518 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1519 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1520 } else if (cfop->flags & CF_FETCH) {
1521 if (bc->chip_class == R700)
1522 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1523 else
1524 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1525 } else if (cfop->flags & CF_EXP) {
1526 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1527 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1528 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1529 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1530 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1531 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1532 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1533 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1534 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1535 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1536 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1537 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program);
1538 } else if (cfop->flags & CF_STRM) {
1539 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1540 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1541 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1542 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type);
1543 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1544 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->output.barrier) |
1545 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1546 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->output.end_of_program) |
1547 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1548 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1549 } else {
1550 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1551 bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1552 S_SQ_CF_WORD1_BARRIER(1) |
1553 S_SQ_CF_WORD1_COND(cf->cond) |
1554 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count);
1555 }
1556 return 0;
1557 }
1558
1559 int r600_bytecode_build(struct r600_bytecode *bc)
1560 {
1561 struct r600_bytecode_cf *cf;
1562 struct r600_bytecode_alu *alu;
1563 struct r600_bytecode_vtx *vtx;
1564 struct r600_bytecode_tex *tex;
1565 uint32_t literal[4];
1566 unsigned nliteral;
1567 unsigned addr;
1568 int i, r;
1569
1570 if (!bc->nstack) // If not 0, Stack_size already provided by llvm
1571 bc->nstack = bc->stack.max_entries;
1572
1573 if (bc->type == TGSI_PROCESSOR_VERTEX && !bc->nstack) {
1574 bc->nstack = 1;
1575 }
1576
1577 /* first path compute addr of each CF block */
1578 /* addr start after all the CF instructions */
1579 addr = bc->cf_last->id + 2;
1580 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1581 if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1582 addr += 3;
1583 addr &= 0xFFFFFFFCUL;
1584 }
1585 cf->addr = addr;
1586 addr += cf->ndw;
1587 bc->ndw = cf->addr + cf->ndw;
1588 }
1589 free(bc->bytecode);
1590 bc->bytecode = calloc(1, bc->ndw * 4);
1591 if (bc->bytecode == NULL)
1592 return -ENOMEM;
1593 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1594 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1595 addr = cf->addr;
1596 if (bc->chip_class >= EVERGREEN)
1597 r = eg_bytecode_cf_build(bc, cf);
1598 else
1599 r = r600_bytecode_cf_build(bc, cf);
1600 if (r)
1601 return r;
1602 if (cfop->flags & CF_ALU) {
1603 nliteral = 0;
1604 memset(literal, 0, sizeof(literal));
1605 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1606 r = r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
1607 if (r)
1608 return r;
1609 r600_bytecode_alu_adjust_literals(bc, alu, literal, nliteral);
1610 r600_bytecode_assign_kcache_banks(bc, alu, cf->kcache);
1611
1612 switch(bc->chip_class) {
1613 case R600:
1614 r = r600_bytecode_alu_build(bc, alu, addr);
1615 break;
1616 case R700:
1617 case EVERGREEN: /* eg alu is same encoding as r700 */
1618 case CAYMAN:
1619 r = r700_bytecode_alu_build(bc, alu, addr);
1620 break;
1621 default:
1622 R600_ERR("unknown chip class %d.\n", bc->chip_class);
1623 return -EINVAL;
1624 }
1625 if (r)
1626 return r;
1627 addr += 2;
1628 if (alu->last) {
1629 for (i = 0; i < align(nliteral, 2); ++i) {
1630 bc->bytecode[addr++] = literal[i];
1631 }
1632 nliteral = 0;
1633 memset(literal, 0, sizeof(literal));
1634 }
1635 }
1636 } else if (cf->op == CF_OP_VTX) {
1637 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1638 r = r600_bytecode_vtx_build(bc, vtx, addr);
1639 if (r)
1640 return r;
1641 addr += 4;
1642 }
1643 } else if (cf->op == CF_OP_TEX) {
1644 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1645 assert(bc->chip_class >= EVERGREEN);
1646 r = r600_bytecode_vtx_build(bc, vtx, addr);
1647 if (r)
1648 return r;
1649 addr += 4;
1650 }
1651 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1652 r = r600_bytecode_tex_build(bc, tex, addr);
1653 if (r)
1654 return r;
1655 addr += 4;
1656 }
1657 }
1658 }
1659 return 0;
1660 }
1661
1662 void r600_bytecode_clear(struct r600_bytecode *bc)
1663 {
1664 struct r600_bytecode_cf *cf = NULL, *next_cf;
1665
1666 free(bc->bytecode);
1667 bc->bytecode = NULL;
1668
1669 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1670 struct r600_bytecode_alu *alu = NULL, *next_alu;
1671 struct r600_bytecode_tex *tex = NULL, *next_tex;
1672 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1673
1674 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1675 free(alu);
1676 }
1677
1678 LIST_INITHEAD(&cf->alu);
1679
1680 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1681 free(tex);
1682 }
1683
1684 LIST_INITHEAD(&cf->tex);
1685
1686 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1687 free(vtx);
1688 }
1689
1690 LIST_INITHEAD(&cf->vtx);
1691
1692 free(cf);
1693 }
1694
1695 LIST_INITHEAD(&cf->list);
1696 }
1697
1698 static int print_swizzle(unsigned swz)
1699 {
1700 const char * swzchars = "xyzw01?_";
1701 assert(swz<8 && swz != 6);
1702 return fprintf(stderr, "%c", swzchars[swz]);
1703 }
1704
1705 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1706 unsigned need_brackets)
1707 {
1708 int o = 0;
1709 if (rel && index_mode >= 5 && sel < 128)
1710 o += fprintf(stderr, "G");
1711 if (rel || need_brackets) {
1712 o += fprintf(stderr, "[");
1713 }
1714 o += fprintf(stderr, "%d", sel);
1715 if (rel) {
1716 if (index_mode == 0 || index_mode == 6)
1717 o += fprintf(stderr, "+AR");
1718 else if (index_mode == 4)
1719 o += fprintf(stderr, "+AL");
1720 }
1721 if (rel || need_brackets) {
1722 o += fprintf(stderr, "]");
1723 }
1724 return o;
1725 }
1726
1727 static int print_dst(struct r600_bytecode_alu *alu)
1728 {
1729 int o = 0;
1730 unsigned sel = alu->dst.sel;
1731 char reg_char = 'R';
1732 if (sel > 128 - 4) { /* clause temporary gpr */
1733 sel -= 128 - 4;
1734 reg_char = 'T';
1735 }
1736
1737 if (alu->dst.write || alu->is_op3) {
1738 o += fprintf(stderr, "%c", reg_char);
1739 o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1740 } else {
1741 o += fprintf(stderr, "__");
1742 }
1743 o += fprintf(stderr, ".");
1744 o += print_swizzle(alu->dst.chan);
1745 return o;
1746 }
1747
1748 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1749 {
1750 int o = 0;
1751 struct r600_bytecode_alu_src *src = &alu->src[idx];
1752 unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1753
1754 if (src->neg)
1755 o += fprintf(stderr,"-");
1756 if (src->abs)
1757 o += fprintf(stderr,"|");
1758
1759 if (sel < 128 - 4) {
1760 o += fprintf(stderr, "R");
1761 } else if (sel < 128) {
1762 o += fprintf(stderr, "T");
1763 sel -= 128 - 4;
1764 } else if (sel < 160) {
1765 o += fprintf(stderr, "KC0");
1766 need_brackets = 1;
1767 sel -= 128;
1768 } else if (sel < 192) {
1769 o += fprintf(stderr, "KC1");
1770 need_brackets = 1;
1771 sel -= 160;
1772 } else if (sel >= 512) {
1773 o += fprintf(stderr, "C%d", src->kc_bank);
1774 need_brackets = 1;
1775 sel -= 512;
1776 } else if (sel >= 448) {
1777 o += fprintf(stderr, "Param");
1778 sel -= 448;
1779 need_chan = 0;
1780 } else if (sel >= 288) {
1781 o += fprintf(stderr, "KC3");
1782 need_brackets = 1;
1783 sel -= 288;
1784 } else if (sel >= 256) {
1785 o += fprintf(stderr, "KC2");
1786 need_brackets = 1;
1787 sel -= 256;
1788 } else {
1789 need_sel = 0;
1790 need_chan = 0;
1791 switch (sel) {
1792 case V_SQ_ALU_SRC_PS:
1793 o += fprintf(stderr, "PS");
1794 break;
1795 case V_SQ_ALU_SRC_PV:
1796 o += fprintf(stderr, "PV");
1797 need_chan = 1;
1798 break;
1799 case V_SQ_ALU_SRC_LITERAL:
1800 o += fprintf(stderr, "[0x%08X %f]", src->value, *(float*)&src->value);
1801 break;
1802 case V_SQ_ALU_SRC_0_5:
1803 o += fprintf(stderr, "0.5");
1804 break;
1805 case V_SQ_ALU_SRC_M_1_INT:
1806 o += fprintf(stderr, "-1");
1807 break;
1808 case V_SQ_ALU_SRC_1_INT:
1809 o += fprintf(stderr, "1");
1810 break;
1811 case V_SQ_ALU_SRC_1:
1812 o += fprintf(stderr, "1.0");
1813 break;
1814 case V_SQ_ALU_SRC_0:
1815 o += fprintf(stderr, "0");
1816 break;
1817 default:
1818 o += fprintf(stderr, "??IMM_%d", sel);
1819 break;
1820 }
1821 }
1822
1823 if (need_sel)
1824 o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
1825
1826 if (need_chan) {
1827 o += fprintf(stderr, ".");
1828 o += print_swizzle(src->chan);
1829 }
1830
1831 if (src->abs)
1832 o += fprintf(stderr,"|");
1833
1834 return o;
1835 }
1836
1837 static int print_indent(int p, int c)
1838 {
1839 int o = 0;
1840 while (p++ < c)
1841 o += fprintf(stderr, " ");
1842 return o;
1843 }
1844
1845 void r600_bytecode_disasm(struct r600_bytecode *bc)
1846 {
1847 static int index = 0;
1848 struct r600_bytecode_cf *cf = NULL;
1849 struct r600_bytecode_alu *alu = NULL;
1850 struct r600_bytecode_vtx *vtx = NULL;
1851 struct r600_bytecode_tex *tex = NULL;
1852
1853 unsigned i, id, ngr = 0, last;
1854 uint32_t literal[4];
1855 unsigned nliteral;
1856 char chip = '6';
1857
1858 switch (bc->chip_class) {
1859 case R700:
1860 chip = '7';
1861 break;
1862 case EVERGREEN:
1863 chip = 'E';
1864 break;
1865 case CAYMAN:
1866 chip = 'C';
1867 break;
1868 case R600:
1869 default:
1870 chip = '6';
1871 break;
1872 }
1873 fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
1874 bc->ndw, bc->ngpr, bc->nstack);
1875 fprintf(stderr, "shader %d -- %c\n", index++, chip);
1876
1877 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1878 id = cf->id;
1879 if (cf->op == CF_NATIVE) {
1880 fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
1881 bc->bytecode[id + 1]);
1882 } else {
1883 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1884 if (cfop->flags & CF_ALU) {
1885 if (cf->eg_alu_extended) {
1886 fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id],
1887 bc->bytecode[id + 1], "ALU_EXT");
1888 id += 2;
1889 }
1890 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
1891 bc->bytecode[id + 1], cfop->name);
1892 fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
1893 for (i = 0; i < 4; ++i) {
1894 if (cf->kcache[i].mode) {
1895 int c_start = (cf->kcache[i].addr << 4);
1896 int c_end = c_start + (cf->kcache[i].mode << 4);
1897 fprintf(stderr, "KC%d[CB%d:%d-%d] ",
1898 i, cf->kcache[i].bank, c_start, c_end);
1899 }
1900 }
1901 fprintf(stderr, "\n");
1902 } else if (cfop->flags & CF_FETCH) {
1903 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
1904 bc->bytecode[id + 1], cfop->name);
1905 fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
1906 fprintf(stderr, "\n");
1907 } else if (cfop->flags & CF_EXP) {
1908 int o = 0;
1909 const char *exp_type[] = {"PIXEL", "POS ", "PARAM"};
1910 o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
1911 bc->bytecode[id + 1], cfop->name);
1912 o += print_indent(o, 43);
1913 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
1914 if (cf->output.burst_count > 1) {
1915 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
1916 cf->output.array_base + cf->output.burst_count - 1);
1917
1918 o += print_indent(o, 55);
1919 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
1920 cf->output.gpr + cf->output.burst_count - 1);
1921 } else {
1922 o += fprintf(stderr, "%d ", cf->output.array_base);
1923 o += print_indent(o, 55);
1924 o += fprintf(stderr, "R%d.", cf->output.gpr);
1925 }
1926
1927 o += print_swizzle(cf->output.swizzle_x);
1928 o += print_swizzle(cf->output.swizzle_y);
1929 o += print_swizzle(cf->output.swizzle_z);
1930 o += print_swizzle(cf->output.swizzle_w);
1931
1932 print_indent(o, 67);
1933
1934 fprintf(stderr, " ES:%X ", cf->output.elem_size);
1935 if (!cf->output.barrier)
1936 fprintf(stderr, "NO_BARRIER ");
1937 if (cf->output.end_of_program)
1938 fprintf(stderr, "EOP ");
1939 fprintf(stderr, "\n");
1940 } else if (r600_isa_cf(cf->op)->flags & CF_STRM) {
1941 int o = 0;
1942 const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
1943 "WRITE_IND_ACK"};
1944 o += fprintf(stderr, "%04d %08X %08X %s ", id,
1945 bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
1946 o += print_indent(o, 43);
1947 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
1948 if (cf->output.burst_count > 1) {
1949 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
1950 cf->output.array_base + cf->output.burst_count - 1);
1951 o += print_indent(o, 55);
1952 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
1953 cf->output.gpr + cf->output.burst_count - 1);
1954 } else {
1955 o += fprintf(stderr, "%d ", cf->output.array_base);
1956 o += print_indent(o, 55);
1957 o += fprintf(stderr, "R%d.", cf->output.gpr);
1958 }
1959 for (i = 0; i < 4; ++i) {
1960 if (cf->output.comp_mask & (1 << i))
1961 o += print_swizzle(i);
1962 else
1963 o += print_swizzle(7);
1964 }
1965
1966 o += print_indent(o, 67);
1967
1968 fprintf(stderr, " ES:%i ", cf->output.elem_size);
1969 if (cf->output.array_size != 0xFFF)
1970 fprintf(stderr, "AS:%i ", cf->output.array_size);
1971 if (!cf->output.barrier)
1972 fprintf(stderr, "NO_BARRIER ");
1973 if (cf->output.end_of_program)
1974 fprintf(stderr, "EOP ");
1975 fprintf(stderr, "\n");
1976 } else {
1977 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
1978 bc->bytecode[id + 1], cfop->name);
1979 fprintf(stderr, "@%d ", cf->cf_addr);
1980 if (cf->cond)
1981 fprintf(stderr, "CND:%X ", cf->cond);
1982 if (cf->pop_count)
1983 fprintf(stderr, "POP:%X ", cf->pop_count);
1984 fprintf(stderr, "\n");
1985 }
1986 }
1987
1988 id = cf->addr;
1989 nliteral = 0;
1990 last = 1;
1991 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1992 const char *omod_str[] = {"","*2","*4","/2"};
1993 const struct alu_op_info *aop = r600_isa_alu(alu->op);
1994 int o = 0;
1995
1996 r600_bytecode_alu_nliterals(bc, alu, literal, &nliteral);
1997 o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]);
1998 if (last)
1999 o += fprintf(stderr, "%4d ", ++ngr);
2000 else
2001 o += fprintf(stderr, " ");
2002 o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2003 alu->update_pred ? 'P':' ',
2004 alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2005
2006 o += fprintf(stderr, "%s%s%s ", aop->name,
2007 omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2008
2009 o += print_indent(o,60);
2010 o += print_dst(alu);
2011 for (i = 0; i < aop->src_count; ++i) {
2012 o += fprintf(stderr, i == 0 ? ", ": ", ");
2013 o += print_src(alu, i);
2014 }
2015
2016 if (alu->bank_swizzle) {
2017 o += print_indent(o,75);
2018 o += fprintf(stderr, " BS:%d", alu->bank_swizzle);
2019 }
2020
2021 fprintf(stderr, "\n");
2022 id += 2;
2023
2024 if (alu->last) {
2025 for (i = 0; i < nliteral; i++, id++) {
2026 float *f = (float*)(bc->bytecode + id);
2027 o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2028 print_indent(o, 60);
2029 fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2030 }
2031 id += nliteral & 1;
2032 nliteral = 0;
2033 }
2034 last = alu->last;
2035 }
2036
2037 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2038 int o = 0;
2039 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2040 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2041
2042 o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2043
2044 o += print_indent(o, 50);
2045
2046 o += fprintf(stderr, "R%d.", tex->dst_gpr);
2047 o += print_swizzle(tex->dst_sel_x);
2048 o += print_swizzle(tex->dst_sel_y);
2049 o += print_swizzle(tex->dst_sel_z);
2050 o += print_swizzle(tex->dst_sel_w);
2051
2052 o += fprintf(stderr, ", R%d.", tex->src_gpr);
2053 o += print_swizzle(tex->src_sel_x);
2054 o += print_swizzle(tex->src_sel_y);
2055 o += print_swizzle(tex->src_sel_z);
2056 o += print_swizzle(tex->src_sel_w);
2057
2058 o += fprintf(stderr, ", RID:%d", tex->resource_id);
2059 o += fprintf(stderr, ", SID:%d ", tex->sampler_id);
2060
2061 if (tex->lod_bias)
2062 fprintf(stderr, "LB:%d ", tex->lod_bias);
2063
2064 fprintf(stderr, "CT:%c%c%c%c ",
2065 tex->coord_type_x ? 'N' : 'U',
2066 tex->coord_type_y ? 'N' : 'U',
2067 tex->coord_type_z ? 'N' : 'U',
2068 tex->coord_type_w ? 'N' : 'U');
2069
2070 if (tex->offset_x)
2071 fprintf(stderr, "OX:%d ", tex->offset_x);
2072 if (tex->offset_y)
2073 fprintf(stderr, "OY:%d ", tex->offset_y);
2074 if (tex->offset_z)
2075 fprintf(stderr, "OZ:%d ", tex->offset_z);
2076
2077 id += 4;
2078 fprintf(stderr, "\n");
2079 }
2080
2081 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2082 int o = 0;
2083 const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2084 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2085 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2086
2087 o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2088
2089 o += print_indent(o, 50);
2090
2091 o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2092 o += print_swizzle(vtx->dst_sel_x);
2093 o += print_swizzle(vtx->dst_sel_y);
2094 o += print_swizzle(vtx->dst_sel_z);
2095 o += print_swizzle(vtx->dst_sel_w);
2096
2097 o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2098 o += print_swizzle(vtx->src_sel_x);
2099
2100 if (vtx->offset)
2101 fprintf(stderr, " +%db", vtx->offset);
2102
2103 o += print_indent(o, 55);
2104
2105 fprintf(stderr, ", RID:%d ", vtx->buffer_id);
2106
2107 fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2108
2109 if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2110 fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2111
2112 fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2113 fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2114 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2115 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2116 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2117
2118 id += 4;
2119 }
2120 }
2121
2122 fprintf(stderr, "--------------------------------------\n");
2123 }
2124
2125 void r600_vertex_data_type(enum pipe_format pformat,
2126 unsigned *format,
2127 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2128 {
2129 const struct util_format_description *desc;
2130 unsigned i;
2131
2132 *format = 0;
2133 *num_format = 0;
2134 *format_comp = 0;
2135 *endian = ENDIAN_NONE;
2136
2137 desc = util_format_description(pformat);
2138 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2139 goto out_unknown;
2140 }
2141
2142 /* Find the first non-VOID channel. */
2143 for (i = 0; i < 4; i++) {
2144 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2145 break;
2146 }
2147 }
2148
2149 *endian = r600_endian_swap(desc->channel[i].size);
2150
2151 switch (desc->channel[i].type) {
2152 /* Half-floats, floats, ints */
2153 case UTIL_FORMAT_TYPE_FLOAT:
2154 switch (desc->channel[i].size) {
2155 case 16:
2156 switch (desc->nr_channels) {
2157 case 1:
2158 *format = FMT_16_FLOAT;
2159 break;
2160 case 2:
2161 *format = FMT_16_16_FLOAT;
2162 break;
2163 case 3:
2164 case 4:
2165 *format = FMT_16_16_16_16_FLOAT;
2166 break;
2167 }
2168 break;
2169 case 32:
2170 switch (desc->nr_channels) {
2171 case 1:
2172 *format = FMT_32_FLOAT;
2173 break;
2174 case 2:
2175 *format = FMT_32_32_FLOAT;
2176 break;
2177 case 3:
2178 *format = FMT_32_32_32_FLOAT;
2179 break;
2180 case 4:
2181 *format = FMT_32_32_32_32_FLOAT;
2182 break;
2183 }
2184 break;
2185 default:
2186 goto out_unknown;
2187 }
2188 break;
2189 /* Unsigned ints */
2190 case UTIL_FORMAT_TYPE_UNSIGNED:
2191 /* Signed ints */
2192 case UTIL_FORMAT_TYPE_SIGNED:
2193 switch (desc->channel[i].size) {
2194 case 8:
2195 switch (desc->nr_channels) {
2196 case 1:
2197 *format = FMT_8;
2198 break;
2199 case 2:
2200 *format = FMT_8_8;
2201 break;
2202 case 3:
2203 case 4:
2204 *format = FMT_8_8_8_8;
2205 break;
2206 }
2207 break;
2208 case 10:
2209 if (desc->nr_channels != 4)
2210 goto out_unknown;
2211
2212 *format = FMT_2_10_10_10;
2213 break;
2214 case 16:
2215 switch (desc->nr_channels) {
2216 case 1:
2217 *format = FMT_16;
2218 break;
2219 case 2:
2220 *format = FMT_16_16;
2221 break;
2222 case 3:
2223 case 4:
2224 *format = FMT_16_16_16_16;
2225 break;
2226 }
2227 break;
2228 case 32:
2229 switch (desc->nr_channels) {
2230 case 1:
2231 *format = FMT_32;
2232 break;
2233 case 2:
2234 *format = FMT_32_32;
2235 break;
2236 case 3:
2237 *format = FMT_32_32_32;
2238 break;
2239 case 4:
2240 *format = FMT_32_32_32_32;
2241 break;
2242 }
2243 break;
2244 default:
2245 goto out_unknown;
2246 }
2247 break;
2248 default:
2249 goto out_unknown;
2250 }
2251
2252 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2253 *format_comp = 1;
2254 }
2255
2256 *num_format = 0;
2257 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2258 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2259 if (!desc->channel[i].normalized) {
2260 if (desc->channel[i].pure_integer)
2261 *num_format = 1;
2262 else
2263 *num_format = 2;
2264 }
2265 }
2266 return;
2267 out_unknown:
2268 R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2269 }
2270
2271 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2272 unsigned count,
2273 const struct pipe_vertex_element *elements)
2274 {
2275 struct r600_context *rctx = (struct r600_context *)ctx;
2276 struct r600_bytecode bc;
2277 struct r600_bytecode_vtx vtx;
2278 const struct util_format_description *desc;
2279 unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2280 unsigned format, num_format, format_comp, endian;
2281 uint32_t *bytecode;
2282 int i, j, r, fs_size;
2283 struct r600_fetch_shader *shader;
2284 unsigned no_sb = rctx->screen->debug_flags & DBG_NO_SB;
2285 unsigned sb_disasm = !no_sb || (rctx->screen->debug_flags & DBG_SB_DISASM);
2286
2287 assert(count < 32);
2288
2289 memset(&bc, 0, sizeof(bc));
2290 r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2291 rctx->screen->has_compressed_msaa_texturing);
2292
2293 bc.isa = rctx->isa;
2294
2295 for (i = 0; i < count; i++) {
2296 if (elements[i].instance_divisor > 1) {
2297 if (rctx->b.chip_class == CAYMAN) {
2298 for (j = 0; j < 4; j++) {
2299 struct r600_bytecode_alu alu;
2300 memset(&alu, 0, sizeof(alu));
2301 alu.op = ALU_OP2_MULHI_UINT;
2302 alu.src[0].sel = 0;
2303 alu.src[0].chan = 3;
2304 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2305 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2306 alu.dst.sel = i + 1;
2307 alu.dst.chan = j;
2308 alu.dst.write = j == 3;
2309 alu.last = j == 3;
2310 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2311 r600_bytecode_clear(&bc);
2312 return NULL;
2313 }
2314 }
2315 } else {
2316 struct r600_bytecode_alu alu;
2317 memset(&alu, 0, sizeof(alu));
2318 alu.op = ALU_OP2_MULHI_UINT;
2319 alu.src[0].sel = 0;
2320 alu.src[0].chan = 3;
2321 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2322 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2323 alu.dst.sel = i + 1;
2324 alu.dst.chan = 3;
2325 alu.dst.write = 1;
2326 alu.last = 1;
2327 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2328 r600_bytecode_clear(&bc);
2329 return NULL;
2330 }
2331 }
2332 }
2333 }
2334
2335 for (i = 0; i < count; i++) {
2336 r600_vertex_data_type(elements[i].src_format,
2337 &format, &num_format, &format_comp, &endian);
2338
2339 desc = util_format_description(elements[i].src_format);
2340 if (desc == NULL) {
2341 r600_bytecode_clear(&bc);
2342 R600_ERR("unknown format %d\n", elements[i].src_format);
2343 return NULL;
2344 }
2345
2346 if (elements[i].src_offset > 65535) {
2347 r600_bytecode_clear(&bc);
2348 R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2349 return NULL;
2350 }
2351
2352 memset(&vtx, 0, sizeof(vtx));
2353 vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2354 vtx.fetch_type = elements[i].instance_divisor ? 1 : 0;
2355 vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2356 vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2357 vtx.mega_fetch_count = 0x1F;
2358 vtx.dst_gpr = i + 1;
2359 vtx.dst_sel_x = desc->swizzle[0];
2360 vtx.dst_sel_y = desc->swizzle[1];
2361 vtx.dst_sel_z = desc->swizzle[2];
2362 vtx.dst_sel_w = desc->swizzle[3];
2363 vtx.data_format = format;
2364 vtx.num_format_all = num_format;
2365 vtx.format_comp_all = format_comp;
2366 vtx.srf_mode_all = 1;
2367 vtx.offset = elements[i].src_offset;
2368 vtx.endian = endian;
2369
2370 if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2371 r600_bytecode_clear(&bc);
2372 return NULL;
2373 }
2374 }
2375
2376 r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2377
2378 if ((r = r600_bytecode_build(&bc))) {
2379 r600_bytecode_clear(&bc);
2380 return NULL;
2381 }
2382
2383 if (rctx->screen->debug_flags & DBG_FS) {
2384 fprintf(stderr, "--------------------------------------------------------------\n");
2385 fprintf(stderr, "Vertex elements state:\n");
2386 for (i = 0; i < count; i++) {
2387 fprintf(stderr, " ");
2388 util_dump_vertex_element(stderr, elements+i);
2389 fprintf(stderr, "\n");
2390 }
2391
2392 if (!sb_disasm) {
2393 r600_bytecode_disasm(&bc);
2394
2395 fprintf(stderr, "______________________________________________________________\n");
2396 } else {
2397 r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2398 }
2399 }
2400
2401 fs_size = bc.ndw*4;
2402
2403 /* Allocate the CSO. */
2404 shader = CALLOC_STRUCT(r600_fetch_shader);
2405 if (!shader) {
2406 r600_bytecode_clear(&bc);
2407 return NULL;
2408 }
2409
2410 u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, &shader->offset,
2411 (struct pipe_resource**)&shader->buffer);
2412 if (!shader->buffer) {
2413 r600_bytecode_clear(&bc);
2414 FREE(shader);
2415 return NULL;
2416 }
2417
2418 bytecode = r600_buffer_mmap_sync_with_rings(rctx, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
2419 bytecode += shader->offset / 4;
2420
2421 if (R600_BIG_ENDIAN) {
2422 for (i = 0; i < fs_size / 4; ++i) {
2423 bytecode[i] = util_bswap32(bc.bytecode[i]);
2424 }
2425 } else {
2426 memcpy(bytecode, bc.bytecode, fs_size);
2427 }
2428 rctx->b.ws->buffer_unmap(shader->buffer->cs_buf);
2429
2430 r600_bytecode_clear(&bc);
2431 return shader;
2432 }
2433
2434 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2435 struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2436 {
2437 /* WORD0 */
2438 alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2439 alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2440 alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2441 alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2442 alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2443 alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2444 alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2445 alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2446 alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2447 alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2448 alu->last = G_SQ_ALU_WORD0_LAST(word0);
2449
2450 /* WORD1 */
2451 alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2452 if (alu->bank_swizzle)
2453 alu->bank_swizzle_force = alu->bank_swizzle;
2454 alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2455 alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2456 alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2457 alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2458 if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2459 {
2460 alu->is_op3 = 1;
2461 alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2462 alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2463 alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2464 alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2465 alu->op = r600_isa_alu_by_opcode(bc->isa,
2466 G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2467
2468 }
2469 else /*ALU_DWORD1_OP2*/
2470 {
2471 alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2472 alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2473 alu->op = r600_isa_alu_by_opcode(bc->isa,
2474 G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2475 alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2476 alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2477 alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2478 alu->execute_mask =
2479 G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2480 }
2481 }
2482
2483 void r600_bytecode_export_read(struct r600_bytecode *bc,
2484 struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2485 {
2486 output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2487 output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2488 output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2489 output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2490
2491 output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2492 output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2493 output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2494 output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2495 output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2496 output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2497 output->op = r600_isa_cf_by_opcode(bc->isa,
2498 G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2499 output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2500 output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2501 output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2502 }