r600: fix buffer resinfo opcode translation.
[mesa.git] / src / gallium / drivers / r600 / r600_asm.c
1 /*
2 * Copyright 2010 Jerome Glisse <glisse@freedesktop.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 */
23 #include "r600_sq.h"
24 #include "r600_opcodes.h"
25 #include "r600_formats.h"
26 #include "r600_shader.h"
27 #include "r600d.h"
28
29 #include <errno.h>
30 #include "util/u_bitcast.h"
31 #include "util/u_dump.h"
32 #include "util/u_memory.h"
33 #include "util/u_math.h"
34 #include "pipe/p_shader_tokens.h"
35
36 #include "sb/sb_public.h"
37
38 #define NUM_OF_CYCLES 3
39 #define NUM_OF_COMPONENTS 4
40
41 static inline bool alu_writes(struct r600_bytecode_alu *alu)
42 {
43 return alu->dst.write || alu->is_op3;
44 }
45
46 static inline unsigned int r600_bytecode_get_num_operands(const struct r600_bytecode_alu *alu)
47 {
48 return r600_isa_alu(alu->op)->src_count;
49 }
50
51 static struct r600_bytecode_cf *r600_bytecode_cf(void)
52 {
53 struct r600_bytecode_cf *cf = CALLOC_STRUCT(r600_bytecode_cf);
54
55 if (!cf)
56 return NULL;
57 LIST_INITHEAD(&cf->list);
58 LIST_INITHEAD(&cf->alu);
59 LIST_INITHEAD(&cf->vtx);
60 LIST_INITHEAD(&cf->tex);
61 LIST_INITHEAD(&cf->gds);
62 return cf;
63 }
64
65 static struct r600_bytecode_alu *r600_bytecode_alu(void)
66 {
67 struct r600_bytecode_alu *alu = CALLOC_STRUCT(r600_bytecode_alu);
68
69 if (!alu)
70 return NULL;
71 LIST_INITHEAD(&alu->list);
72 return alu;
73 }
74
75 static struct r600_bytecode_vtx *r600_bytecode_vtx(void)
76 {
77 struct r600_bytecode_vtx *vtx = CALLOC_STRUCT(r600_bytecode_vtx);
78
79 if (!vtx)
80 return NULL;
81 LIST_INITHEAD(&vtx->list);
82 return vtx;
83 }
84
85 static struct r600_bytecode_tex *r600_bytecode_tex(void)
86 {
87 struct r600_bytecode_tex *tex = CALLOC_STRUCT(r600_bytecode_tex);
88
89 if (!tex)
90 return NULL;
91 LIST_INITHEAD(&tex->list);
92 return tex;
93 }
94
95 static struct r600_bytecode_gds *r600_bytecode_gds(void)
96 {
97 struct r600_bytecode_gds *gds = CALLOC_STRUCT(r600_bytecode_gds);
98
99 if (gds == NULL)
100 return NULL;
101 LIST_INITHEAD(&gds->list);
102 return gds;
103 }
104
105 static unsigned stack_entry_size(enum radeon_family chip) {
106 /* Wavefront size:
107 * 64: R600/RV670/RV770/Cypress/R740/Barts/Turks/Caicos/
108 * Aruba/Sumo/Sumo2/redwood/juniper
109 * 32: R630/R730/R710/Palm/Cedar
110 * 16: R610/Rs780
111 *
112 * Stack row size:
113 * Wavefront Size 16 32 48 64
114 * Columns per Row (R6xx/R7xx/R8xx only) 8 8 4 4
115 * Columns per Row (R9xx+) 8 4 4 4 */
116
117 switch (chip) {
118 /* FIXME: are some chips missing here? */
119 /* wavefront size 16 */
120 case CHIP_RV610:
121 case CHIP_RS780:
122 case CHIP_RV620:
123 case CHIP_RS880:
124 /* wavefront size 32 */
125 case CHIP_RV630:
126 case CHIP_RV635:
127 case CHIP_RV730:
128 case CHIP_RV710:
129 case CHIP_PALM:
130 case CHIP_CEDAR:
131 return 8;
132
133 /* wavefront size 64 */
134 default:
135 return 4;
136 }
137 }
138
139 void r600_bytecode_init(struct r600_bytecode *bc,
140 enum chip_class chip_class,
141 enum radeon_family family,
142 bool has_compressed_msaa_texturing)
143 {
144 static unsigned next_shader_id = 0;
145
146 bc->debug_id = ++next_shader_id;
147
148 if ((chip_class == R600) &&
149 (family != CHIP_RV670 && family != CHIP_RS780 && family != CHIP_RS880)) {
150 bc->ar_handling = AR_HANDLE_RV6XX;
151 bc->r6xx_nop_after_rel_dst = 1;
152 } else {
153 bc->ar_handling = AR_HANDLE_NORMAL;
154 bc->r6xx_nop_after_rel_dst = 0;
155 }
156
157 LIST_INITHEAD(&bc->cf);
158 bc->chip_class = chip_class;
159 bc->family = family;
160 bc->has_compressed_msaa_texturing = has_compressed_msaa_texturing;
161 bc->stack.entry_size = stack_entry_size(family);
162 }
163
164 int r600_bytecode_add_cf(struct r600_bytecode *bc)
165 {
166 struct r600_bytecode_cf *cf = r600_bytecode_cf();
167
168 if (!cf)
169 return -ENOMEM;
170 LIST_ADDTAIL(&cf->list, &bc->cf);
171 if (bc->cf_last) {
172 cf->id = bc->cf_last->id + 2;
173 if (bc->cf_last->eg_alu_extended) {
174 /* take into account extended alu size */
175 cf->id += 2;
176 bc->ndw += 2;
177 }
178 }
179 bc->cf_last = cf;
180 bc->ncf++;
181 bc->ndw += 2;
182 bc->force_add_cf = 0;
183 bc->ar_loaded = 0;
184 return 0;
185 }
186
187 int r600_bytecode_add_output(struct r600_bytecode *bc,
188 const struct r600_bytecode_output *output)
189 {
190 int r;
191
192 if (output->gpr >= bc->ngpr)
193 bc->ngpr = output->gpr + 1;
194
195 if (bc->cf_last && (bc->cf_last->op == output->op ||
196 (bc->cf_last->op == CF_OP_EXPORT &&
197 output->op == CF_OP_EXPORT_DONE)) &&
198 output->type == bc->cf_last->output.type &&
199 output->elem_size == bc->cf_last->output.elem_size &&
200 output->swizzle_x == bc->cf_last->output.swizzle_x &&
201 output->swizzle_y == bc->cf_last->output.swizzle_y &&
202 output->swizzle_z == bc->cf_last->output.swizzle_z &&
203 output->swizzle_w == bc->cf_last->output.swizzle_w &&
204 output->comp_mask == bc->cf_last->output.comp_mask &&
205 (output->burst_count + bc->cf_last->output.burst_count) <= 16) {
206
207 if ((output->gpr + output->burst_count) == bc->cf_last->output.gpr &&
208 (output->array_base + output->burst_count) == bc->cf_last->output.array_base) {
209
210 bc->cf_last->op = bc->cf_last->output.op = output->op;
211 bc->cf_last->output.gpr = output->gpr;
212 bc->cf_last->output.array_base = output->array_base;
213 bc->cf_last->output.burst_count += output->burst_count;
214 return 0;
215
216 } else if (output->gpr == (bc->cf_last->output.gpr + bc->cf_last->output.burst_count) &&
217 output->array_base == (bc->cf_last->output.array_base + bc->cf_last->output.burst_count)) {
218
219 bc->cf_last->op = bc->cf_last->output.op = output->op;
220 bc->cf_last->output.burst_count += output->burst_count;
221 return 0;
222 }
223 }
224
225 r = r600_bytecode_add_cf(bc);
226 if (r)
227 return r;
228 bc->cf_last->op = output->op;
229 memcpy(&bc->cf_last->output, output, sizeof(struct r600_bytecode_output));
230 bc->cf_last->barrier = 1;
231 return 0;
232 }
233
234 /* alu instructions that can ony exits once per group */
235 static int is_alu_once_inst(struct r600_bytecode_alu *alu)
236 {
237 return r600_isa_alu(alu->op)->flags & (AF_KILL | AF_PRED) || alu->is_lds_idx_op || alu->op == ALU_OP0_GROUP_BARRIER;
238 }
239
240 static int is_alu_reduction_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
241 {
242 return (r600_isa_alu(alu->op)->flags & AF_REPL) &&
243 (r600_isa_alu_slots(bc->isa->hw_class, alu->op) == AF_4V);
244 }
245
246 static int is_alu_mova_inst(struct r600_bytecode_alu *alu)
247 {
248 return r600_isa_alu(alu->op)->flags & AF_MOVA;
249 }
250
251 static int alu_uses_rel(struct r600_bytecode_alu *alu)
252 {
253 unsigned num_src = r600_bytecode_get_num_operands(alu);
254 unsigned src;
255
256 if (alu->dst.rel) {
257 return 1;
258 }
259
260 for (src = 0; src < num_src; ++src) {
261 if (alu->src[src].rel) {
262 return 1;
263 }
264 }
265 return 0;
266 }
267
268 static int is_lds_read(int sel)
269 {
270 return sel == EG_V_SQ_ALU_SRC_LDS_OQ_A_POP || sel == EG_V_SQ_ALU_SRC_LDS_OQ_B_POP;
271 }
272
273 static int alu_uses_lds(struct r600_bytecode_alu *alu)
274 {
275 unsigned num_src = r600_bytecode_get_num_operands(alu);
276 unsigned src;
277
278 for (src = 0; src < num_src; ++src) {
279 if (is_lds_read(alu->src[src].sel)) {
280 return 1;
281 }
282 }
283 return 0;
284 }
285
286 static int is_alu_64bit_inst(struct r600_bytecode_alu *alu)
287 {
288 const struct alu_op_info *op = r600_isa_alu(alu->op);
289 return (op->flags & AF_64);
290 }
291
292 static int is_alu_vec_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
293 {
294 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
295 return !(slots & AF_S);
296 }
297
298 static int is_alu_trans_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
299 {
300 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
301 return !(slots & AF_V);
302 }
303
304 /* alu instructions that can execute on any unit */
305 static int is_alu_any_unit_inst(struct r600_bytecode *bc, struct r600_bytecode_alu *alu)
306 {
307 unsigned slots = r600_isa_alu_slots(bc->isa->hw_class, alu->op);
308 return slots == AF_VS;
309 }
310
311 static int is_nop_inst(struct r600_bytecode_alu *alu)
312 {
313 return alu->op == ALU_OP0_NOP;
314 }
315
316 static int assign_alu_units(struct r600_bytecode *bc, struct r600_bytecode_alu *alu_first,
317 struct r600_bytecode_alu *assignment[5])
318 {
319 struct r600_bytecode_alu *alu;
320 unsigned i, chan, trans;
321 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
322
323 for (i = 0; i < max_slots; i++)
324 assignment[i] = NULL;
325
326 for (alu = alu_first; alu; alu = LIST_ENTRY(struct r600_bytecode_alu, alu->list.next, list)) {
327 chan = alu->dst.chan;
328 if (max_slots == 4)
329 trans = 0;
330 else if (is_alu_trans_unit_inst(bc, alu))
331 trans = 1;
332 else if (is_alu_vec_unit_inst(bc, alu))
333 trans = 0;
334 else if (assignment[chan])
335 trans = 1; /* Assume ALU_INST_PREFER_VECTOR. */
336 else
337 trans = 0;
338
339 if (trans) {
340 if (assignment[4]) {
341 assert(0); /* ALU.Trans has already been allocated. */
342 return -1;
343 }
344 assignment[4] = alu;
345 } else {
346 if (assignment[chan]) {
347 assert(0); /* ALU.chan has already been allocated. */
348 return -1;
349 }
350 assignment[chan] = alu;
351 }
352
353 if (alu->last)
354 break;
355 }
356 return 0;
357 }
358
359 struct alu_bank_swizzle {
360 int hw_gpr[NUM_OF_CYCLES][NUM_OF_COMPONENTS];
361 int hw_cfile_addr[4];
362 int hw_cfile_elem[4];
363 };
364
365 static const unsigned cycle_for_bank_swizzle_vec[][3] = {
366 [SQ_ALU_VEC_012] = { 0, 1, 2 },
367 [SQ_ALU_VEC_021] = { 0, 2, 1 },
368 [SQ_ALU_VEC_120] = { 1, 2, 0 },
369 [SQ_ALU_VEC_102] = { 1, 0, 2 },
370 [SQ_ALU_VEC_201] = { 2, 0, 1 },
371 [SQ_ALU_VEC_210] = { 2, 1, 0 }
372 };
373
374 static const unsigned cycle_for_bank_swizzle_scl[][3] = {
375 [SQ_ALU_SCL_210] = { 2, 1, 0 },
376 [SQ_ALU_SCL_122] = { 1, 2, 2 },
377 [SQ_ALU_SCL_212] = { 2, 1, 2 },
378 [SQ_ALU_SCL_221] = { 2, 2, 1 }
379 };
380
381 static void init_bank_swizzle(struct alu_bank_swizzle *bs)
382 {
383 int i, cycle, component;
384 /* set up gpr use */
385 for (cycle = 0; cycle < NUM_OF_CYCLES; cycle++)
386 for (component = 0; component < NUM_OF_COMPONENTS; component++)
387 bs->hw_gpr[cycle][component] = -1;
388 for (i = 0; i < 4; i++)
389 bs->hw_cfile_addr[i] = -1;
390 for (i = 0; i < 4; i++)
391 bs->hw_cfile_elem[i] = -1;
392 }
393
394 static int reserve_gpr(struct alu_bank_swizzle *bs, unsigned sel, unsigned chan, unsigned cycle)
395 {
396 if (bs->hw_gpr[cycle][chan] == -1)
397 bs->hw_gpr[cycle][chan] = sel;
398 else if (bs->hw_gpr[cycle][chan] != (int)sel) {
399 /* Another scalar operation has already used the GPR read port for the channel. */
400 return -1;
401 }
402 return 0;
403 }
404
405 static int reserve_cfile(const struct r600_bytecode *bc,
406 struct alu_bank_swizzle *bs, unsigned sel, unsigned chan)
407 {
408 int res, num_res = 4;
409 if (bc->chip_class >= R700) {
410 num_res = 2;
411 chan /= 2;
412 }
413 for (res = 0; res < num_res; ++res) {
414 if (bs->hw_cfile_addr[res] == -1) {
415 bs->hw_cfile_addr[res] = sel;
416 bs->hw_cfile_elem[res] = chan;
417 return 0;
418 } else if (bs->hw_cfile_addr[res] == sel &&
419 bs->hw_cfile_elem[res] == chan)
420 return 0; /* Read for this scalar element already reserved, nothing to do here. */
421 }
422 /* All cfile read ports are used, cannot reference vector element. */
423 return -1;
424 }
425
426 static int is_gpr(unsigned sel)
427 {
428 return (sel <= 127);
429 }
430
431 /* CB constants start at 512, and get translated to a kcache index when ALU
432 * clauses are constructed. Note that we handle kcache constants the same way
433 * as (the now gone) cfile constants, is that really required? */
434 static int is_cfile(unsigned sel)
435 {
436 return (sel > 255 && sel < 512) ||
437 (sel > 511 && sel < 4607) || /* Kcache before translation. */
438 (sel > 127 && sel < 192); /* Kcache after translation. */
439 }
440
441 static int is_const(int sel)
442 {
443 return is_cfile(sel) ||
444 (sel >= V_SQ_ALU_SRC_0 &&
445 sel <= V_SQ_ALU_SRC_LITERAL);
446 }
447
448 static int check_vector(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
449 struct alu_bank_swizzle *bs, int bank_swizzle)
450 {
451 int r, src, num_src, sel, elem, cycle;
452
453 num_src = r600_bytecode_get_num_operands(alu);
454 for (src = 0; src < num_src; src++) {
455 sel = alu->src[src].sel;
456 elem = alu->src[src].chan;
457 if (is_gpr(sel)) {
458 cycle = cycle_for_bank_swizzle_vec[bank_swizzle][src];
459 if (src == 1 && sel == alu->src[0].sel && elem == alu->src[0].chan)
460 /* Nothing to do; special-case optimization,
461 * second source uses first source’s reservation. */
462 continue;
463 else {
464 r = reserve_gpr(bs, sel, elem, cycle);
465 if (r)
466 return r;
467 }
468 } else if (is_cfile(sel)) {
469 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
470 if (r)
471 return r;
472 }
473 /* No restrictions on PV, PS, literal or special constants. */
474 }
475 return 0;
476 }
477
478 static int check_scalar(const struct r600_bytecode *bc, const struct r600_bytecode_alu *alu,
479 struct alu_bank_swizzle *bs, int bank_swizzle)
480 {
481 int r, src, num_src, const_count, sel, elem, cycle;
482
483 num_src = r600_bytecode_get_num_operands(alu);
484 for (const_count = 0, src = 0; src < num_src; ++src) {
485 sel = alu->src[src].sel;
486 elem = alu->src[src].chan;
487 if (is_const(sel)) { /* Any constant, including literal and inline constants. */
488 if (const_count >= 2)
489 /* More than two references to a constant in
490 * transcendental operation. */
491 return -1;
492 else
493 const_count++;
494 }
495 if (is_cfile(sel)) {
496 r = reserve_cfile(bc, bs, (alu->src[src].kc_bank<<16) + sel, elem);
497 if (r)
498 return r;
499 }
500 }
501 for (src = 0; src < num_src; ++src) {
502 sel = alu->src[src].sel;
503 elem = alu->src[src].chan;
504 if (is_gpr(sel)) {
505 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
506 if (cycle < const_count)
507 /* Cycle for GPR load conflicts with
508 * constant load in transcendental operation. */
509 return -1;
510 r = reserve_gpr(bs, sel, elem, cycle);
511 if (r)
512 return r;
513 }
514 /* PV PS restrictions */
515 if (const_count && (sel == 254 || sel == 255)) {
516 cycle = cycle_for_bank_swizzle_scl[bank_swizzle][src];
517 if (cycle < const_count)
518 return -1;
519 }
520 }
521 return 0;
522 }
523
524 static int check_and_set_bank_swizzle(const struct r600_bytecode *bc,
525 struct r600_bytecode_alu *slots[5])
526 {
527 struct alu_bank_swizzle bs;
528 int bank_swizzle[5];
529 int i, r = 0, forced = 1;
530 boolean scalar_only = bc->chip_class == CAYMAN ? false : true;
531 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
532
533 for (i = 0; i < max_slots; i++) {
534 if (slots[i]) {
535 if (slots[i]->bank_swizzle_force) {
536 slots[i]->bank_swizzle = slots[i]->bank_swizzle_force;
537 } else {
538 forced = 0;
539 }
540 }
541
542 if (i < 4 && slots[i])
543 scalar_only = false;
544 }
545 if (forced)
546 return 0;
547
548 /* Just check every possible combination of bank swizzle.
549 * Not very efficent, but works on the first try in most of the cases. */
550 for (i = 0; i < 4; i++)
551 if (!slots[i] || !slots[i]->bank_swizzle_force)
552 bank_swizzle[i] = SQ_ALU_VEC_012;
553 else
554 bank_swizzle[i] = slots[i]->bank_swizzle;
555
556 bank_swizzle[4] = SQ_ALU_SCL_210;
557 while(bank_swizzle[4] <= SQ_ALU_SCL_221) {
558
559 init_bank_swizzle(&bs);
560 if (scalar_only == false) {
561 for (i = 0; i < 4; i++) {
562 if (slots[i]) {
563 r = check_vector(bc, slots[i], &bs, bank_swizzle[i]);
564 if (r)
565 break;
566 }
567 }
568 } else
569 r = 0;
570
571 if (!r && max_slots == 5 && slots[4]) {
572 r = check_scalar(bc, slots[4], &bs, bank_swizzle[4]);
573 }
574 if (!r) {
575 for (i = 0; i < max_slots; i++) {
576 if (slots[i])
577 slots[i]->bank_swizzle = bank_swizzle[i];
578 }
579 return 0;
580 }
581
582 if (scalar_only) {
583 bank_swizzle[4]++;
584 } else {
585 for (i = 0; i < max_slots; i++) {
586 if (!slots[i] || !slots[i]->bank_swizzle_force) {
587 bank_swizzle[i]++;
588 if (bank_swizzle[i] <= SQ_ALU_VEC_210)
589 break;
590 else if (i < max_slots - 1)
591 bank_swizzle[i] = SQ_ALU_VEC_012;
592 else
593 return -1;
594 }
595 }
596 }
597 }
598
599 /* Couldn't find a working swizzle. */
600 return -1;
601 }
602
603 static int replace_gpr_with_pv_ps(struct r600_bytecode *bc,
604 struct r600_bytecode_alu *slots[5], struct r600_bytecode_alu *alu_prev)
605 {
606 struct r600_bytecode_alu *prev[5];
607 int gpr[5], chan[5];
608 int i, j, r, src, num_src;
609 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
610
611 r = assign_alu_units(bc, alu_prev, prev);
612 if (r)
613 return r;
614
615 for (i = 0; i < max_slots; ++i) {
616 if (prev[i] && alu_writes(prev[i]) && !prev[i]->dst.rel) {
617
618 if (is_alu_64bit_inst(prev[i])) {
619 gpr[i] = -1;
620 continue;
621 }
622
623 gpr[i] = prev[i]->dst.sel;
624 /* cube writes more than PV.X */
625 if (is_alu_reduction_inst(bc, prev[i]))
626 chan[i] = 0;
627 else
628 chan[i] = prev[i]->dst.chan;
629 } else
630 gpr[i] = -1;
631 }
632
633 for (i = 0; i < max_slots; ++i) {
634 struct r600_bytecode_alu *alu = slots[i];
635 if (!alu)
636 continue;
637
638 if (is_alu_64bit_inst(alu))
639 continue;
640 num_src = r600_bytecode_get_num_operands(alu);
641 for (src = 0; src < num_src; ++src) {
642 if (!is_gpr(alu->src[src].sel) || alu->src[src].rel)
643 continue;
644
645 if (bc->chip_class < CAYMAN) {
646 if (alu->src[src].sel == gpr[4] &&
647 alu->src[src].chan == chan[4] &&
648 alu_prev->pred_sel == alu->pred_sel) {
649 alu->src[src].sel = V_SQ_ALU_SRC_PS;
650 alu->src[src].chan = 0;
651 continue;
652 }
653 }
654
655 for (j = 0; j < 4; ++j) {
656 if (alu->src[src].sel == gpr[j] &&
657 alu->src[src].chan == j &&
658 alu_prev->pred_sel == alu->pred_sel) {
659 alu->src[src].sel = V_SQ_ALU_SRC_PV;
660 alu->src[src].chan = chan[j];
661 break;
662 }
663 }
664 }
665 }
666
667 return 0;
668 }
669
670 void r600_bytecode_special_constants(uint32_t value, unsigned *sel, unsigned *neg, unsigned abs)
671 {
672 switch(value) {
673 case 0:
674 *sel = V_SQ_ALU_SRC_0;
675 break;
676 case 1:
677 *sel = V_SQ_ALU_SRC_1_INT;
678 break;
679 case -1:
680 *sel = V_SQ_ALU_SRC_M_1_INT;
681 break;
682 case 0x3F800000: /* 1.0f */
683 *sel = V_SQ_ALU_SRC_1;
684 break;
685 case 0x3F000000: /* 0.5f */
686 *sel = V_SQ_ALU_SRC_0_5;
687 break;
688 case 0xBF800000: /* -1.0f */
689 *sel = V_SQ_ALU_SRC_1;
690 *neg ^= !abs;
691 break;
692 case 0xBF000000: /* -0.5f */
693 *sel = V_SQ_ALU_SRC_0_5;
694 *neg ^= !abs;
695 break;
696 default:
697 *sel = V_SQ_ALU_SRC_LITERAL;
698 break;
699 }
700 }
701
702 /* compute how many literal are needed */
703 static int r600_bytecode_alu_nliterals(struct r600_bytecode_alu *alu,
704 uint32_t literal[4], unsigned *nliteral)
705 {
706 unsigned num_src = r600_bytecode_get_num_operands(alu);
707 unsigned i, j;
708
709 for (i = 0; i < num_src; ++i) {
710 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
711 uint32_t value = alu->src[i].value;
712 unsigned found = 0;
713 for (j = 0; j < *nliteral; ++j) {
714 if (literal[j] == value) {
715 found = 1;
716 break;
717 }
718 }
719 if (!found) {
720 if (*nliteral >= 4)
721 return -EINVAL;
722 literal[(*nliteral)++] = value;
723 }
724 }
725 }
726 return 0;
727 }
728
729 static void r600_bytecode_alu_adjust_literals(struct r600_bytecode_alu *alu,
730 uint32_t literal[4], unsigned nliteral)
731 {
732 unsigned num_src = r600_bytecode_get_num_operands(alu);
733 unsigned i, j;
734
735 for (i = 0; i < num_src; ++i) {
736 if (alu->src[i].sel == V_SQ_ALU_SRC_LITERAL) {
737 uint32_t value = alu->src[i].value;
738 for (j = 0; j < nliteral; ++j) {
739 if (literal[j] == value) {
740 alu->src[i].chan = j;
741 break;
742 }
743 }
744 }
745 }
746 }
747
748 static int merge_inst_groups(struct r600_bytecode *bc, struct r600_bytecode_alu *slots[5],
749 struct r600_bytecode_alu *alu_prev)
750 {
751 struct r600_bytecode_alu *prev[5];
752 struct r600_bytecode_alu *result[5] = { NULL };
753
754 uint32_t literal[4], prev_literal[4];
755 unsigned nliteral = 0, prev_nliteral = 0;
756
757 int i, j, r, src, num_src;
758 int num_once_inst = 0;
759 int have_mova = 0, have_rel = 0;
760 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
761
762 r = assign_alu_units(bc, alu_prev, prev);
763 if (r)
764 return r;
765
766 for (i = 0; i < max_slots; ++i) {
767 if (prev[i]) {
768 if (prev[i]->pred_sel)
769 return 0;
770 if (is_alu_once_inst(prev[i]))
771 return 0;
772 }
773 if (slots[i]) {
774 if (slots[i]->pred_sel)
775 return 0;
776 if (is_alu_once_inst(slots[i]))
777 return 0;
778 }
779 }
780
781 for (i = 0; i < max_slots; ++i) {
782 struct r600_bytecode_alu *alu;
783
784 if (num_once_inst > 0)
785 return 0;
786
787 /* check number of literals */
788 if (prev[i]) {
789 if (r600_bytecode_alu_nliterals(prev[i], literal, &nliteral))
790 return 0;
791 if (r600_bytecode_alu_nliterals(prev[i], prev_literal, &prev_nliteral))
792 return 0;
793 if (is_alu_mova_inst(prev[i])) {
794 if (have_rel)
795 return 0;
796 have_mova = 1;
797 }
798
799 if (alu_uses_rel(prev[i])) {
800 if (have_mova) {
801 return 0;
802 }
803 have_rel = 1;
804 }
805 if (alu_uses_lds(prev[i]))
806 return 0;
807
808 num_once_inst += is_alu_once_inst(prev[i]);
809 }
810 if (slots[i] && r600_bytecode_alu_nliterals(slots[i], literal, &nliteral))
811 return 0;
812
813 /* Let's check used slots. */
814 if (prev[i] && !slots[i]) {
815 result[i] = prev[i];
816 continue;
817 } else if (prev[i] && slots[i]) {
818 if (max_slots == 5 && result[4] == NULL && prev[4] == NULL && slots[4] == NULL) {
819 /* Trans unit is still free try to use it. */
820 if (is_alu_any_unit_inst(bc, slots[i]) && !alu_uses_lds(slots[i])) {
821 result[i] = prev[i];
822 result[4] = slots[i];
823 } else if (is_alu_any_unit_inst(bc, prev[i])) {
824 if (slots[i]->dst.sel == prev[i]->dst.sel &&
825 alu_writes(slots[i]) &&
826 alu_writes(prev[i]))
827 return 0;
828
829 result[i] = slots[i];
830 result[4] = prev[i];
831 } else
832 return 0;
833 } else
834 return 0;
835 } else if(!slots[i]) {
836 continue;
837 } else {
838 if (max_slots == 5 && slots[i] && prev[4] &&
839 slots[i]->dst.sel == prev[4]->dst.sel &&
840 slots[i]->dst.chan == prev[4]->dst.chan &&
841 alu_writes(slots[i]) &&
842 alu_writes(prev[4]))
843 return 0;
844
845 result[i] = slots[i];
846 }
847
848 alu = slots[i];
849 num_once_inst += is_alu_once_inst(alu);
850
851 /* don't reschedule NOPs */
852 if (is_nop_inst(alu))
853 return 0;
854
855 if (is_alu_mova_inst(alu)) {
856 if (have_rel) {
857 return 0;
858 }
859 have_mova = 1;
860 }
861
862 if (alu_uses_rel(alu)) {
863 if (have_mova) {
864 return 0;
865 }
866 have_rel = 1;
867 }
868
869 if (alu->op == ALU_OP0_SET_CF_IDX0 ||
870 alu->op == ALU_OP0_SET_CF_IDX1)
871 return 0; /* data hazard with MOVA */
872
873 /* Let's check source gprs */
874 num_src = r600_bytecode_get_num_operands(alu);
875 for (src = 0; src < num_src; ++src) {
876
877 /* Constants don't matter. */
878 if (!is_gpr(alu->src[src].sel))
879 continue;
880
881 for (j = 0; j < max_slots; ++j) {
882 if (!prev[j] || !alu_writes(prev[j]))
883 continue;
884
885 /* If it's relative then we can't determin which gpr is really used. */
886 if (prev[j]->dst.chan == alu->src[src].chan &&
887 (prev[j]->dst.sel == alu->src[src].sel ||
888 prev[j]->dst.rel || alu->src[src].rel))
889 return 0;
890 }
891 }
892 }
893
894 /* more than one PRED_ or KILL_ ? */
895 if (num_once_inst > 1)
896 return 0;
897
898 /* check if the result can still be swizzlet */
899 r = check_and_set_bank_swizzle(bc, result);
900 if (r)
901 return 0;
902
903 /* looks like everything worked out right, apply the changes */
904
905 /* undo adding previus literals */
906 bc->cf_last->ndw -= align(prev_nliteral, 2);
907
908 /* sort instructions */
909 for (i = 0; i < max_slots; ++i) {
910 slots[i] = result[i];
911 if (result[i]) {
912 LIST_DEL(&result[i]->list);
913 result[i]->last = 0;
914 LIST_ADDTAIL(&result[i]->list, &bc->cf_last->alu);
915 }
916 }
917
918 /* determine new last instruction */
919 LIST_ENTRY(struct r600_bytecode_alu, bc->cf_last->alu.prev, list)->last = 1;
920
921 /* determine new first instruction */
922 for (i = 0; i < max_slots; ++i) {
923 if (result[i]) {
924 bc->cf_last->curr_bs_head = result[i];
925 break;
926 }
927 }
928
929 bc->cf_last->prev_bs_head = bc->cf_last->prev2_bs_head;
930 bc->cf_last->prev2_bs_head = NULL;
931
932 return 0;
933 }
934
935 /* we'll keep kcache sets sorted by bank & addr */
936 static int r600_bytecode_alloc_kcache_line(struct r600_bytecode *bc,
937 struct r600_bytecode_kcache *kcache,
938 unsigned bank, unsigned line, unsigned index_mode)
939 {
940 int i, kcache_banks = bc->chip_class >= EVERGREEN ? 4 : 2;
941
942 for (i = 0; i < kcache_banks; i++) {
943 if (kcache[i].mode) {
944 int d;
945
946 if (kcache[i].bank < bank)
947 continue;
948
949 if ((kcache[i].bank == bank && kcache[i].addr > line+1) ||
950 kcache[i].bank > bank) {
951 /* try to insert new line */
952 if (kcache[kcache_banks-1].mode) {
953 /* all sets are in use */
954 return -ENOMEM;
955 }
956
957 memmove(&kcache[i+1],&kcache[i], (kcache_banks-i-1)*sizeof(struct r600_bytecode_kcache));
958 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
959 kcache[i].bank = bank;
960 kcache[i].addr = line;
961 kcache[i].index_mode = index_mode;
962 return 0;
963 }
964
965 d = line - kcache[i].addr;
966
967 if (d == -1) {
968 kcache[i].addr--;
969 if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_2) {
970 /* we are prepending the line to the current set,
971 * discarding the existing second line,
972 * so we'll have to insert line+2 after it */
973 line += 2;
974 continue;
975 } else if (kcache[i].mode == V_SQ_CF_KCACHE_LOCK_1) {
976 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
977 return 0;
978 } else {
979 /* V_SQ_CF_KCACHE_LOCK_LOOP_INDEX is not supported */
980 return -ENOMEM;
981 }
982 } else if (d == 1) {
983 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_2;
984 return 0;
985 } else if (d == 0)
986 return 0;
987 } else { /* free kcache set - use it */
988 kcache[i].mode = V_SQ_CF_KCACHE_LOCK_1;
989 kcache[i].bank = bank;
990 kcache[i].addr = line;
991 kcache[i].index_mode = index_mode;
992 return 0;
993 }
994 }
995 return -ENOMEM;
996 }
997
998 static int r600_bytecode_alloc_inst_kcache_lines(struct r600_bytecode *bc,
999 struct r600_bytecode_kcache *kcache,
1000 struct r600_bytecode_alu *alu)
1001 {
1002 int i, r;
1003
1004 for (i = 0; i < 3; i++) {
1005 unsigned bank, line, sel = alu->src[i].sel, index_mode;
1006
1007 if (sel < 512)
1008 continue;
1009
1010 bank = alu->src[i].kc_bank;
1011 assert(bank < R600_MAX_HW_CONST_BUFFERS);
1012 line = (sel-512)>>4;
1013 index_mode = alu->src[i].kc_rel ? 1 : 0; // V_SQ_CF_INDEX_0 / V_SQ_CF_INDEX_NONE
1014
1015 if ((r = r600_bytecode_alloc_kcache_line(bc, kcache, bank, line, index_mode)))
1016 return r;
1017 }
1018 return 0;
1019 }
1020
1021 static int r600_bytecode_assign_kcache_banks(
1022 struct r600_bytecode_alu *alu,
1023 struct r600_bytecode_kcache * kcache)
1024 {
1025 int i, j;
1026
1027 /* Alter the src operands to refer to the kcache. */
1028 for (i = 0; i < 3; ++i) {
1029 static const unsigned int base[] = {128, 160, 256, 288};
1030 unsigned int line, sel = alu->src[i].sel, found = 0;
1031
1032 if (sel < 512)
1033 continue;
1034
1035 sel -= 512;
1036 line = sel>>4;
1037
1038 for (j = 0; j < 4 && !found; ++j) {
1039 switch (kcache[j].mode) {
1040 case V_SQ_CF_KCACHE_NOP:
1041 case V_SQ_CF_KCACHE_LOCK_LOOP_INDEX:
1042 R600_ERR("unexpected kcache line mode\n");
1043 return -ENOMEM;
1044 default:
1045 if (kcache[j].bank == alu->src[i].kc_bank &&
1046 kcache[j].addr <= line &&
1047 line < kcache[j].addr + kcache[j].mode) {
1048 alu->src[i].sel = sel - (kcache[j].addr<<4);
1049 alu->src[i].sel += base[j];
1050 found=1;
1051 }
1052 }
1053 }
1054 }
1055 return 0;
1056 }
1057
1058 static int r600_bytecode_alloc_kcache_lines(struct r600_bytecode *bc,
1059 struct r600_bytecode_alu *alu,
1060 unsigned type)
1061 {
1062 struct r600_bytecode_kcache kcache_sets[4];
1063 struct r600_bytecode_kcache *kcache = kcache_sets;
1064 int r;
1065
1066 memcpy(kcache, bc->cf_last->kcache, 4 * sizeof(struct r600_bytecode_kcache));
1067
1068 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1069 /* can't alloc, need to start new clause */
1070 if ((r = r600_bytecode_add_cf(bc))) {
1071 return r;
1072 }
1073 bc->cf_last->op = type;
1074
1075 /* retry with the new clause */
1076 kcache = bc->cf_last->kcache;
1077 if ((r = r600_bytecode_alloc_inst_kcache_lines(bc, kcache, alu))) {
1078 /* can't alloc again- should never happen */
1079 return r;
1080 }
1081 } else {
1082 /* update kcache sets */
1083 memcpy(bc->cf_last->kcache, kcache, 4 * sizeof(struct r600_bytecode_kcache));
1084 }
1085
1086 /* if we actually used more than 2 kcache sets, or have relative indexing - use ALU_EXTENDED on eg+ */
1087 if (kcache[2].mode != V_SQ_CF_KCACHE_NOP ||
1088 kcache[0].index_mode || kcache[1].index_mode || kcache[2].index_mode || kcache[3].index_mode) {
1089 if (bc->chip_class < EVERGREEN)
1090 return -ENOMEM;
1091 bc->cf_last->eg_alu_extended = 1;
1092 }
1093
1094 return 0;
1095 }
1096
1097 static int insert_nop_r6xx(struct r600_bytecode *bc)
1098 {
1099 struct r600_bytecode_alu alu;
1100 int r, i;
1101
1102 for (i = 0; i < 4; i++) {
1103 memset(&alu, 0, sizeof(alu));
1104 alu.op = ALU_OP0_NOP;
1105 alu.src[0].chan = i;
1106 alu.dst.chan = i;
1107 alu.last = (i == 3);
1108 r = r600_bytecode_add_alu(bc, &alu);
1109 if (r)
1110 return r;
1111 }
1112 return 0;
1113 }
1114
1115 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1116 static int load_ar_r6xx(struct r600_bytecode *bc)
1117 {
1118 struct r600_bytecode_alu alu;
1119 int r;
1120
1121 if (bc->ar_loaded)
1122 return 0;
1123
1124 /* hack to avoid making MOVA the last instruction in the clause */
1125 if ((bc->cf_last->ndw>>1) >= 110)
1126 bc->force_add_cf = 1;
1127
1128 memset(&alu, 0, sizeof(alu));
1129 alu.op = ALU_OP1_MOVA_GPR_INT;
1130 alu.src[0].sel = bc->ar_reg;
1131 alu.src[0].chan = bc->ar_chan;
1132 alu.last = 1;
1133 alu.index_mode = INDEX_MODE_LOOP;
1134 r = r600_bytecode_add_alu(bc, &alu);
1135 if (r)
1136 return r;
1137
1138 /* no requirement to set uses waterfall on MOVA_GPR_INT */
1139 bc->ar_loaded = 1;
1140 return 0;
1141 }
1142
1143 /* load AR register from gpr (bc->ar_reg) with MOVA_INT */
1144 static int load_ar(struct r600_bytecode *bc)
1145 {
1146 struct r600_bytecode_alu alu;
1147 int r;
1148
1149 if (bc->ar_handling)
1150 return load_ar_r6xx(bc);
1151
1152 if (bc->ar_loaded)
1153 return 0;
1154
1155 /* hack to avoid making MOVA the last instruction in the clause */
1156 if ((bc->cf_last->ndw>>1) >= 110)
1157 bc->force_add_cf = 1;
1158
1159 memset(&alu, 0, sizeof(alu));
1160 alu.op = ALU_OP1_MOVA_INT;
1161 alu.src[0].sel = bc->ar_reg;
1162 alu.src[0].chan = bc->ar_chan;
1163 alu.last = 1;
1164 r = r600_bytecode_add_alu(bc, &alu);
1165 if (r)
1166 return r;
1167
1168 bc->cf_last->r6xx_uses_waterfall = 1;
1169 bc->ar_loaded = 1;
1170 return 0;
1171 }
1172
1173 int r600_bytecode_add_alu_type(struct r600_bytecode *bc,
1174 const struct r600_bytecode_alu *alu, unsigned type)
1175 {
1176 struct r600_bytecode_alu *nalu = r600_bytecode_alu();
1177 struct r600_bytecode_alu *lalu;
1178 int i, r;
1179
1180 if (!nalu)
1181 return -ENOMEM;
1182 memcpy(nalu, alu, sizeof(struct r600_bytecode_alu));
1183
1184 if (alu->is_op3) {
1185 /* will fail later since alu does not support it. */
1186 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1187 }
1188
1189 if (bc->cf_last != NULL && bc->cf_last->op != type) {
1190 /* check if we could add it anyway */
1191 if (bc->cf_last->op == CF_OP_ALU &&
1192 type == CF_OP_ALU_PUSH_BEFORE) {
1193 LIST_FOR_EACH_ENTRY(lalu, &bc->cf_last->alu, list) {
1194 if (lalu->execute_mask) {
1195 bc->force_add_cf = 1;
1196 break;
1197 }
1198 }
1199 } else
1200 bc->force_add_cf = 1;
1201 }
1202
1203 /* cf can contains only alu or only vtx or only tex */
1204 if (bc->cf_last == NULL || bc->force_add_cf) {
1205 r = r600_bytecode_add_cf(bc);
1206 if (r) {
1207 free(nalu);
1208 return r;
1209 }
1210 }
1211 bc->cf_last->op = type;
1212
1213 /* Load index register if required */
1214 if (bc->chip_class >= EVERGREEN) {
1215 for (i = 0; i < 3; i++)
1216 if (nalu->src[i].kc_bank && nalu->src[i].kc_rel)
1217 egcm_load_index_reg(bc, 0, true);
1218 }
1219
1220 /* Check AR usage and load it if required */
1221 for (i = 0; i < 3; i++)
1222 if (nalu->src[i].rel && !bc->ar_loaded)
1223 load_ar(bc);
1224
1225 if (nalu->dst.rel && !bc->ar_loaded)
1226 load_ar(bc);
1227
1228 /* Setup the kcache for this ALU instruction. This will start a new
1229 * ALU clause if needed. */
1230 if ((r = r600_bytecode_alloc_kcache_lines(bc, nalu, type))) {
1231 free(nalu);
1232 return r;
1233 }
1234
1235 if (!bc->cf_last->curr_bs_head) {
1236 bc->cf_last->curr_bs_head = nalu;
1237 }
1238 /* number of gpr == the last gpr used in any alu */
1239 for (i = 0; i < 3; i++) {
1240 if (nalu->src[i].sel >= bc->ngpr && nalu->src[i].sel < 128) {
1241 bc->ngpr = nalu->src[i].sel + 1;
1242 }
1243 if (nalu->src[i].sel == V_SQ_ALU_SRC_LITERAL)
1244 r600_bytecode_special_constants(nalu->src[i].value,
1245 &nalu->src[i].sel, &nalu->src[i].neg, nalu->src[i].abs);
1246 }
1247 if (nalu->dst.sel >= bc->ngpr) {
1248 bc->ngpr = nalu->dst.sel + 1;
1249 }
1250 LIST_ADDTAIL(&nalu->list, &bc->cf_last->alu);
1251 /* each alu use 2 dwords */
1252 bc->cf_last->ndw += 2;
1253 bc->ndw += 2;
1254
1255 /* process cur ALU instructions for bank swizzle */
1256 if (nalu->last) {
1257 uint32_t literal[4];
1258 unsigned nliteral;
1259 struct r600_bytecode_alu *slots[5];
1260 int max_slots = bc->chip_class == CAYMAN ? 4 : 5;
1261 r = assign_alu_units(bc, bc->cf_last->curr_bs_head, slots);
1262 if (r)
1263 return r;
1264
1265 if (bc->cf_last->prev_bs_head) {
1266 r = merge_inst_groups(bc, slots, bc->cf_last->prev_bs_head);
1267 if (r)
1268 return r;
1269 }
1270
1271 if (bc->cf_last->prev_bs_head) {
1272 r = replace_gpr_with_pv_ps(bc, slots, bc->cf_last->prev_bs_head);
1273 if (r)
1274 return r;
1275 }
1276
1277 r = check_and_set_bank_swizzle(bc, slots);
1278 if (r)
1279 return r;
1280
1281 for (i = 0, nliteral = 0; i < max_slots; i++) {
1282 if (slots[i]) {
1283 r = r600_bytecode_alu_nliterals(slots[i], literal, &nliteral);
1284 if (r)
1285 return r;
1286 }
1287 }
1288 bc->cf_last->ndw += align(nliteral, 2);
1289
1290 /* at most 128 slots, one add alu can add 5 slots + 4 constants(2 slots)
1291 * worst case */
1292 if ((bc->cf_last->ndw >> 1) >= 120) {
1293 bc->force_add_cf = 1;
1294 }
1295
1296 bc->cf_last->prev2_bs_head = bc->cf_last->prev_bs_head;
1297 bc->cf_last->prev_bs_head = bc->cf_last->curr_bs_head;
1298 bc->cf_last->curr_bs_head = NULL;
1299 }
1300
1301 if (nalu->dst.rel && bc->r6xx_nop_after_rel_dst)
1302 insert_nop_r6xx(bc);
1303
1304 return 0;
1305 }
1306
1307 int r600_bytecode_add_alu(struct r600_bytecode *bc, const struct r600_bytecode_alu *alu)
1308 {
1309 return r600_bytecode_add_alu_type(bc, alu, CF_OP_ALU);
1310 }
1311
1312 static unsigned r600_bytecode_num_tex_and_vtx_instructions(const struct r600_bytecode *bc)
1313 {
1314 switch (bc->chip_class) {
1315 case R600:
1316 return 8;
1317
1318 case R700:
1319 case EVERGREEN:
1320 case CAYMAN:
1321 return 16;
1322
1323 default:
1324 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1325 return 8;
1326 }
1327 }
1328
1329 static inline boolean last_inst_was_not_vtx_fetch(struct r600_bytecode *bc)
1330 {
1331 return !((r600_isa_cf(bc->cf_last->op)->flags & CF_FETCH) &&
1332 bc->cf_last->op != CF_OP_GDS &&
1333 (bc->chip_class == CAYMAN ||
1334 bc->cf_last->op != CF_OP_TEX));
1335 }
1336
1337 static int r600_bytecode_add_vtx_internal(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx,
1338 bool use_tc)
1339 {
1340 struct r600_bytecode_vtx *nvtx = r600_bytecode_vtx();
1341 int r;
1342
1343 if (!nvtx)
1344 return -ENOMEM;
1345 memcpy(nvtx, vtx, sizeof(struct r600_bytecode_vtx));
1346
1347 /* Load index register if required */
1348 if (bc->chip_class >= EVERGREEN) {
1349 if (vtx->buffer_index_mode)
1350 egcm_load_index_reg(bc, vtx->buffer_index_mode - 1, false);
1351 }
1352
1353 /* cf can contains only alu or only vtx or only tex */
1354 if (bc->cf_last == NULL ||
1355 last_inst_was_not_vtx_fetch(bc) ||
1356 bc->force_add_cf) {
1357 r = r600_bytecode_add_cf(bc);
1358 if (r) {
1359 free(nvtx);
1360 return r;
1361 }
1362 switch (bc->chip_class) {
1363 case R600:
1364 case R700:
1365 bc->cf_last->op = CF_OP_VTX;
1366 break;
1367 case EVERGREEN:
1368 if (use_tc)
1369 bc->cf_last->op = CF_OP_TEX;
1370 else
1371 bc->cf_last->op = CF_OP_VTX;
1372 break;
1373 case CAYMAN:
1374 bc->cf_last->op = CF_OP_TEX;
1375 break;
1376 default:
1377 R600_ERR("Unknown chip class %d.\n", bc->chip_class);
1378 free(nvtx);
1379 return -EINVAL;
1380 }
1381 }
1382 LIST_ADDTAIL(&nvtx->list, &bc->cf_last->vtx);
1383 /* each fetch use 4 dwords */
1384 bc->cf_last->ndw += 4;
1385 bc->ndw += 4;
1386 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1387 bc->force_add_cf = 1;
1388
1389 bc->ngpr = MAX2(bc->ngpr, vtx->src_gpr + 1);
1390 bc->ngpr = MAX2(bc->ngpr, vtx->dst_gpr + 1);
1391
1392 return 0;
1393 }
1394
1395 int r600_bytecode_add_vtx(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1396 {
1397 return r600_bytecode_add_vtx_internal(bc, vtx, false);
1398 }
1399
1400 int r600_bytecode_add_vtx_tc(struct r600_bytecode *bc, const struct r600_bytecode_vtx *vtx)
1401 {
1402 return r600_bytecode_add_vtx_internal(bc, vtx, true);
1403 }
1404
1405 int r600_bytecode_add_tex(struct r600_bytecode *bc, const struct r600_bytecode_tex *tex)
1406 {
1407 struct r600_bytecode_tex *ntex = r600_bytecode_tex();
1408 int r;
1409
1410 if (!ntex)
1411 return -ENOMEM;
1412 memcpy(ntex, tex, sizeof(struct r600_bytecode_tex));
1413
1414 /* Load index register if required */
1415 if (bc->chip_class >= EVERGREEN) {
1416 if (tex->sampler_index_mode || tex->resource_index_mode)
1417 egcm_load_index_reg(bc, 1, false);
1418 }
1419
1420 /* we can't fetch data und use it as texture lookup address in the same TEX clause */
1421 if (bc->cf_last != NULL &&
1422 bc->cf_last->op == CF_OP_TEX) {
1423 struct r600_bytecode_tex *ttex;
1424 LIST_FOR_EACH_ENTRY(ttex, &bc->cf_last->tex, list) {
1425 if (ttex->dst_gpr == ntex->src_gpr) {
1426 bc->force_add_cf = 1;
1427 break;
1428 }
1429 }
1430 /* slight hack to make gradients always go into same cf */
1431 if (ntex->op == FETCH_OP_SET_GRADIENTS_H)
1432 bc->force_add_cf = 1;
1433 }
1434
1435 /* cf can contains only alu or only vtx or only tex */
1436 if (bc->cf_last == NULL ||
1437 bc->cf_last->op != CF_OP_TEX ||
1438 bc->force_add_cf) {
1439 r = r600_bytecode_add_cf(bc);
1440 if (r) {
1441 free(ntex);
1442 return r;
1443 }
1444 bc->cf_last->op = CF_OP_TEX;
1445 }
1446 if (ntex->src_gpr >= bc->ngpr) {
1447 bc->ngpr = ntex->src_gpr + 1;
1448 }
1449 if (ntex->dst_gpr >= bc->ngpr) {
1450 bc->ngpr = ntex->dst_gpr + 1;
1451 }
1452 LIST_ADDTAIL(&ntex->list, &bc->cf_last->tex);
1453 /* each texture fetch use 4 dwords */
1454 bc->cf_last->ndw += 4;
1455 bc->ndw += 4;
1456 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1457 bc->force_add_cf = 1;
1458 return 0;
1459 }
1460
1461 int r600_bytecode_add_gds(struct r600_bytecode *bc, const struct r600_bytecode_gds *gds)
1462 {
1463 struct r600_bytecode_gds *ngds = r600_bytecode_gds();
1464 int r;
1465
1466 if (ngds == NULL)
1467 return -ENOMEM;
1468 memcpy(ngds, gds, sizeof(struct r600_bytecode_gds));
1469
1470 if (bc->chip_class >= EVERGREEN) {
1471 if (gds->uav_index_mode)
1472 egcm_load_index_reg(bc, gds->uav_index_mode - 1, false);
1473 }
1474
1475 if (bc->cf_last == NULL ||
1476 bc->cf_last->op != CF_OP_GDS ||
1477 bc->force_add_cf) {
1478 r = r600_bytecode_add_cf(bc);
1479 if (r) {
1480 free(ngds);
1481 return r;
1482 }
1483 bc->cf_last->op = CF_OP_GDS;
1484 }
1485
1486 LIST_ADDTAIL(&ngds->list, &bc->cf_last->gds);
1487 bc->cf_last->ndw += 4; /* each GDS uses 4 dwords */
1488 if ((bc->cf_last->ndw / 4) >= r600_bytecode_num_tex_and_vtx_instructions(bc))
1489 bc->force_add_cf = 1;
1490 return 0;
1491 }
1492
1493 int r600_bytecode_add_cfinst(struct r600_bytecode *bc, unsigned op)
1494 {
1495 int r;
1496 r = r600_bytecode_add_cf(bc);
1497 if (r)
1498 return r;
1499
1500 bc->cf_last->cond = V_SQ_CF_COND_ACTIVE;
1501 bc->cf_last->op = op;
1502 return 0;
1503 }
1504
1505 int cm_bytecode_add_cf_end(struct r600_bytecode *bc)
1506 {
1507 return r600_bytecode_add_cfinst(bc, CF_OP_CF_END);
1508 }
1509
1510 /* common to all 3 families */
1511 static int r600_bytecode_vtx_build(struct r600_bytecode *bc, struct r600_bytecode_vtx *vtx, unsigned id)
1512 {
1513 bc->bytecode[id] = S_SQ_VTX_WORD0_VTX_INST(r600_isa_fetch_opcode(bc->isa->hw_class, vtx->op)) |
1514 S_SQ_VTX_WORD0_BUFFER_ID(vtx->buffer_id) |
1515 S_SQ_VTX_WORD0_FETCH_TYPE(vtx->fetch_type) |
1516 S_SQ_VTX_WORD0_SRC_GPR(vtx->src_gpr) |
1517 S_SQ_VTX_WORD0_SRC_SEL_X(vtx->src_sel_x);
1518 if (bc->chip_class < CAYMAN)
1519 bc->bytecode[id] |= S_SQ_VTX_WORD0_MEGA_FETCH_COUNT(vtx->mega_fetch_count);
1520 id++;
1521 bc->bytecode[id++] = S_SQ_VTX_WORD1_DST_SEL_X(vtx->dst_sel_x) |
1522 S_SQ_VTX_WORD1_DST_SEL_Y(vtx->dst_sel_y) |
1523 S_SQ_VTX_WORD1_DST_SEL_Z(vtx->dst_sel_z) |
1524 S_SQ_VTX_WORD1_DST_SEL_W(vtx->dst_sel_w) |
1525 S_SQ_VTX_WORD1_USE_CONST_FIELDS(vtx->use_const_fields) |
1526 S_SQ_VTX_WORD1_DATA_FORMAT(vtx->data_format) |
1527 S_SQ_VTX_WORD1_NUM_FORMAT_ALL(vtx->num_format_all) |
1528 S_SQ_VTX_WORD1_FORMAT_COMP_ALL(vtx->format_comp_all) |
1529 S_SQ_VTX_WORD1_SRF_MODE_ALL(vtx->srf_mode_all) |
1530 S_SQ_VTX_WORD1_GPR_DST_GPR(vtx->dst_gpr);
1531 bc->bytecode[id] = S_SQ_VTX_WORD2_OFFSET(vtx->offset)|
1532 S_SQ_VTX_WORD2_ENDIAN_SWAP(vtx->endian);
1533 if (bc->chip_class >= EVERGREEN)
1534 bc->bytecode[id] |= ((vtx->buffer_index_mode & 0x3) << 21); // S_SQ_VTX_WORD2_BIM(vtx->buffer_index_mode);
1535 if (bc->chip_class < CAYMAN)
1536 bc->bytecode[id] |= S_SQ_VTX_WORD2_MEGA_FETCH(1);
1537 id++;
1538 bc->bytecode[id++] = 0;
1539 return 0;
1540 }
1541
1542 /* common to all 3 families */
1543 static int r600_bytecode_tex_build(struct r600_bytecode *bc, struct r600_bytecode_tex *tex, unsigned id)
1544 {
1545 bc->bytecode[id] = S_SQ_TEX_WORD0_TEX_INST(
1546 r600_isa_fetch_opcode(bc->isa->hw_class, tex->op)) |
1547 EG_S_SQ_TEX_WORD0_INST_MOD(tex->inst_mod) |
1548 S_SQ_TEX_WORD0_RESOURCE_ID(tex->resource_id) |
1549 S_SQ_TEX_WORD0_SRC_GPR(tex->src_gpr) |
1550 S_SQ_TEX_WORD0_SRC_REL(tex->src_rel);
1551 if (bc->chip_class >= EVERGREEN)
1552 bc->bytecode[id] |= ((tex->sampler_index_mode & 0x3) << 27) | // S_SQ_TEX_WORD0_SIM(tex->sampler_index_mode);
1553 ((tex->resource_index_mode & 0x3) << 25); // S_SQ_TEX_WORD0_RIM(tex->resource_index_mode)
1554 id++;
1555 bc->bytecode[id++] = S_SQ_TEX_WORD1_DST_GPR(tex->dst_gpr) |
1556 S_SQ_TEX_WORD1_DST_REL(tex->dst_rel) |
1557 S_SQ_TEX_WORD1_DST_SEL_X(tex->dst_sel_x) |
1558 S_SQ_TEX_WORD1_DST_SEL_Y(tex->dst_sel_y) |
1559 S_SQ_TEX_WORD1_DST_SEL_Z(tex->dst_sel_z) |
1560 S_SQ_TEX_WORD1_DST_SEL_W(tex->dst_sel_w) |
1561 S_SQ_TEX_WORD1_LOD_BIAS(tex->lod_bias) |
1562 S_SQ_TEX_WORD1_COORD_TYPE_X(tex->coord_type_x) |
1563 S_SQ_TEX_WORD1_COORD_TYPE_Y(tex->coord_type_y) |
1564 S_SQ_TEX_WORD1_COORD_TYPE_Z(tex->coord_type_z) |
1565 S_SQ_TEX_WORD1_COORD_TYPE_W(tex->coord_type_w);
1566 bc->bytecode[id++] = S_SQ_TEX_WORD2_OFFSET_X(tex->offset_x) |
1567 S_SQ_TEX_WORD2_OFFSET_Y(tex->offset_y) |
1568 S_SQ_TEX_WORD2_OFFSET_Z(tex->offset_z) |
1569 S_SQ_TEX_WORD2_SAMPLER_ID(tex->sampler_id) |
1570 S_SQ_TEX_WORD2_SRC_SEL_X(tex->src_sel_x) |
1571 S_SQ_TEX_WORD2_SRC_SEL_Y(tex->src_sel_y) |
1572 S_SQ_TEX_WORD2_SRC_SEL_Z(tex->src_sel_z) |
1573 S_SQ_TEX_WORD2_SRC_SEL_W(tex->src_sel_w);
1574 bc->bytecode[id++] = 0;
1575 return 0;
1576 }
1577
1578 /* r600 only, r700/eg bits in r700_asm.c */
1579 static int r600_bytecode_alu_build(struct r600_bytecode *bc, struct r600_bytecode_alu *alu, unsigned id)
1580 {
1581 unsigned opcode = r600_isa_alu_opcode(bc->isa->hw_class, alu->op);
1582
1583 /* don't replace gpr by pv or ps for destination register */
1584 bc->bytecode[id++] = S_SQ_ALU_WORD0_SRC0_SEL(alu->src[0].sel) |
1585 S_SQ_ALU_WORD0_SRC0_REL(alu->src[0].rel) |
1586 S_SQ_ALU_WORD0_SRC0_CHAN(alu->src[0].chan) |
1587 S_SQ_ALU_WORD0_SRC0_NEG(alu->src[0].neg) |
1588 S_SQ_ALU_WORD0_SRC1_SEL(alu->src[1].sel) |
1589 S_SQ_ALU_WORD0_SRC1_REL(alu->src[1].rel) |
1590 S_SQ_ALU_WORD0_SRC1_CHAN(alu->src[1].chan) |
1591 S_SQ_ALU_WORD0_SRC1_NEG(alu->src[1].neg) |
1592 S_SQ_ALU_WORD0_INDEX_MODE(alu->index_mode) |
1593 S_SQ_ALU_WORD0_PRED_SEL(alu->pred_sel) |
1594 S_SQ_ALU_WORD0_LAST(alu->last);
1595
1596 if (alu->is_op3) {
1597 assert(!alu->src[0].abs && !alu->src[1].abs && !alu->src[2].abs);
1598 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1599 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1600 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1601 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1602 S_SQ_ALU_WORD1_OP3_SRC2_SEL(alu->src[2].sel) |
1603 S_SQ_ALU_WORD1_OP3_SRC2_REL(alu->src[2].rel) |
1604 S_SQ_ALU_WORD1_OP3_SRC2_CHAN(alu->src[2].chan) |
1605 S_SQ_ALU_WORD1_OP3_SRC2_NEG(alu->src[2].neg) |
1606 S_SQ_ALU_WORD1_OP3_ALU_INST(opcode) |
1607 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle);
1608 } else {
1609 bc->bytecode[id++] = S_SQ_ALU_WORD1_DST_GPR(alu->dst.sel) |
1610 S_SQ_ALU_WORD1_DST_CHAN(alu->dst.chan) |
1611 S_SQ_ALU_WORD1_DST_REL(alu->dst.rel) |
1612 S_SQ_ALU_WORD1_CLAMP(alu->dst.clamp) |
1613 S_SQ_ALU_WORD1_OP2_SRC0_ABS(alu->src[0].abs) |
1614 S_SQ_ALU_WORD1_OP2_SRC1_ABS(alu->src[1].abs) |
1615 S_SQ_ALU_WORD1_OP2_WRITE_MASK(alu->dst.write) |
1616 S_SQ_ALU_WORD1_OP2_OMOD(alu->omod) |
1617 S_SQ_ALU_WORD1_OP2_ALU_INST(opcode) |
1618 S_SQ_ALU_WORD1_BANK_SWIZZLE(alu->bank_swizzle) |
1619 S_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(alu->execute_mask) |
1620 S_SQ_ALU_WORD1_OP2_UPDATE_PRED(alu->update_pred);
1621 }
1622 return 0;
1623 }
1624
1625 static void r600_bytecode_cf_vtx_build(uint32_t *bytecode, const struct r600_bytecode_cf *cf)
1626 {
1627 *bytecode++ = S_SQ_CF_WORD0_ADDR(cf->addr >> 1);
1628 *bytecode++ = S_SQ_CF_WORD1_CF_INST(r600_isa_cf_opcode(ISA_CC_R600, cf->op)) |
1629 S_SQ_CF_WORD1_BARRIER(1) |
1630 S_SQ_CF_WORD1_COUNT((cf->ndw / 4) - 1)|
1631 S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1632 }
1633
1634 /* common for r600/r700 - eg in eg_asm.c */
1635 static int r600_bytecode_cf_build(struct r600_bytecode *bc, struct r600_bytecode_cf *cf)
1636 {
1637 unsigned id = cf->id;
1638 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1639 unsigned opcode = r600_isa_cf_opcode(bc->isa->hw_class, cf->op);
1640
1641
1642 if (cf->op == CF_NATIVE) {
1643 bc->bytecode[id++] = cf->isa[0];
1644 bc->bytecode[id++] = cf->isa[1];
1645 } else if (cfop->flags & CF_ALU) {
1646 bc->bytecode[id++] = S_SQ_CF_ALU_WORD0_ADDR(cf->addr >> 1) |
1647 S_SQ_CF_ALU_WORD0_KCACHE_MODE0(cf->kcache[0].mode) |
1648 S_SQ_CF_ALU_WORD0_KCACHE_BANK0(cf->kcache[0].bank) |
1649 S_SQ_CF_ALU_WORD0_KCACHE_BANK1(cf->kcache[1].bank);
1650
1651 bc->bytecode[id++] = S_SQ_CF_ALU_WORD1_CF_INST(opcode) |
1652 S_SQ_CF_ALU_WORD1_KCACHE_MODE1(cf->kcache[1].mode) |
1653 S_SQ_CF_ALU_WORD1_KCACHE_ADDR0(cf->kcache[0].addr) |
1654 S_SQ_CF_ALU_WORD1_KCACHE_ADDR1(cf->kcache[1].addr) |
1655 S_SQ_CF_ALU_WORD1_BARRIER(1) |
1656 S_SQ_CF_ALU_WORD1_USES_WATERFALL(bc->chip_class == R600 ? cf->r6xx_uses_waterfall : 0) |
1657 S_SQ_CF_ALU_WORD1_COUNT((cf->ndw / 2) - 1);
1658 } else if (cfop->flags & CF_FETCH) {
1659 if (bc->chip_class == R700)
1660 r700_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1661 else
1662 r600_bytecode_cf_vtx_build(&bc->bytecode[id], cf);
1663 } else if (cfop->flags & CF_EXP) {
1664 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1665 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1666 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1667 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1668 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1669 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1670 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(cf->output.swizzle_x) |
1671 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(cf->output.swizzle_y) |
1672 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(cf->output.swizzle_z) |
1673 S_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(cf->output.swizzle_w) |
1674 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1675 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1676 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program);
1677 } else if (cfop->flags & CF_MEM) {
1678 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(cf->output.gpr) |
1679 S_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(cf->output.elem_size) |
1680 S_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(cf->output.array_base) |
1681 S_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(cf->output.type) |
1682 S_SQ_CF_ALLOC_EXPORT_WORD0_INDEX_GPR(cf->output.index_gpr);
1683 bc->bytecode[id++] = S_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(cf->output.burst_count - 1) |
1684 S_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(cf->barrier) |
1685 S_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(opcode) |
1686 S_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(cf->end_of_program) |
1687 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(cf->output.array_size) |
1688 S_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(cf->output.comp_mask);
1689 } else {
1690 bc->bytecode[id++] = S_SQ_CF_WORD0_ADDR(cf->cf_addr >> 1);
1691 bc->bytecode[id++] = S_SQ_CF_WORD1_CF_INST(opcode) |
1692 S_SQ_CF_WORD1_BARRIER(1) |
1693 S_SQ_CF_WORD1_COND(cf->cond) |
1694 S_SQ_CF_WORD1_POP_COUNT(cf->pop_count) |
1695 S_SQ_CF_WORD1_END_OF_PROGRAM(cf->end_of_program);
1696 }
1697 return 0;
1698 }
1699
1700 int r600_bytecode_build(struct r600_bytecode *bc)
1701 {
1702 struct r600_bytecode_cf *cf;
1703 struct r600_bytecode_alu *alu;
1704 struct r600_bytecode_vtx *vtx;
1705 struct r600_bytecode_tex *tex;
1706 struct r600_bytecode_gds *gds;
1707 uint32_t literal[4];
1708 unsigned nliteral;
1709 unsigned addr;
1710 int i, r;
1711
1712 if (!bc->nstack) { // If not 0, Stack_size already provided by llvm
1713 if (bc->stack.max_entries)
1714 bc->nstack = bc->stack.max_entries;
1715 else if (bc->type == PIPE_SHADER_VERTEX ||
1716 bc->type == PIPE_SHADER_TESS_EVAL ||
1717 bc->type == PIPE_SHADER_TESS_CTRL)
1718 bc->nstack = 1;
1719 }
1720
1721 /* first path compute addr of each CF block */
1722 /* addr start after all the CF instructions */
1723 addr = bc->cf_last->id + 2;
1724 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1725 if (r600_isa_cf(cf->op)->flags & CF_FETCH) {
1726 addr += 3;
1727 addr &= 0xFFFFFFFCUL;
1728 }
1729 cf->addr = addr;
1730 addr += cf->ndw;
1731 bc->ndw = cf->addr + cf->ndw;
1732 }
1733 free(bc->bytecode);
1734 bc->bytecode = calloc(4, bc->ndw);
1735 if (bc->bytecode == NULL)
1736 return -ENOMEM;
1737 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
1738 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
1739 addr = cf->addr;
1740 if (bc->chip_class >= EVERGREEN)
1741 r = eg_bytecode_cf_build(bc, cf);
1742 else
1743 r = r600_bytecode_cf_build(bc, cf);
1744 if (r)
1745 return r;
1746 if (cfop->flags & CF_ALU) {
1747 nliteral = 0;
1748 memset(literal, 0, sizeof(literal));
1749 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
1750 r = r600_bytecode_alu_nliterals(alu, literal, &nliteral);
1751 if (r)
1752 return r;
1753 r600_bytecode_alu_adjust_literals(alu, literal, nliteral);
1754 r600_bytecode_assign_kcache_banks(alu, cf->kcache);
1755
1756 switch(bc->chip_class) {
1757 case R600:
1758 r = r600_bytecode_alu_build(bc, alu, addr);
1759 break;
1760 case R700:
1761 r = r700_bytecode_alu_build(bc, alu, addr);
1762 break;
1763 case EVERGREEN:
1764 case CAYMAN:
1765 r = eg_bytecode_alu_build(bc, alu, addr);
1766 break;
1767 default:
1768 R600_ERR("unknown chip class %d.\n", bc->chip_class);
1769 return -EINVAL;
1770 }
1771 if (r)
1772 return r;
1773 addr += 2;
1774 if (alu->last) {
1775 for (i = 0; i < align(nliteral, 2); ++i) {
1776 bc->bytecode[addr++] = literal[i];
1777 }
1778 nliteral = 0;
1779 memset(literal, 0, sizeof(literal));
1780 }
1781 }
1782 } else if (cf->op == CF_OP_VTX) {
1783 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1784 r = r600_bytecode_vtx_build(bc, vtx, addr);
1785 if (r)
1786 return r;
1787 addr += 4;
1788 }
1789 } else if (cf->op == CF_OP_GDS) {
1790 assert(bc->chip_class >= EVERGREEN);
1791 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
1792 r = eg_bytecode_gds_build(bc, gds, addr);
1793 if (r)
1794 return r;
1795 addr += 4;
1796 }
1797 } else if (cf->op == CF_OP_TEX) {
1798 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
1799 assert(bc->chip_class >= EVERGREEN);
1800 r = r600_bytecode_vtx_build(bc, vtx, addr);
1801 if (r)
1802 return r;
1803 addr += 4;
1804 }
1805 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
1806 r = r600_bytecode_tex_build(bc, tex, addr);
1807 if (r)
1808 return r;
1809 addr += 4;
1810 }
1811 }
1812 }
1813 return 0;
1814 }
1815
1816 void r600_bytecode_clear(struct r600_bytecode *bc)
1817 {
1818 struct r600_bytecode_cf *cf = NULL, *next_cf;
1819
1820 free(bc->bytecode);
1821 bc->bytecode = NULL;
1822
1823 LIST_FOR_EACH_ENTRY_SAFE(cf, next_cf, &bc->cf, list) {
1824 struct r600_bytecode_alu *alu = NULL, *next_alu;
1825 struct r600_bytecode_tex *tex = NULL, *next_tex;
1826 struct r600_bytecode_tex *vtx = NULL, *next_vtx;
1827 struct r600_bytecode_gds *gds = NULL, *next_gds;
1828
1829 LIST_FOR_EACH_ENTRY_SAFE(alu, next_alu, &cf->alu, list) {
1830 free(alu);
1831 }
1832
1833 LIST_INITHEAD(&cf->alu);
1834
1835 LIST_FOR_EACH_ENTRY_SAFE(tex, next_tex, &cf->tex, list) {
1836 free(tex);
1837 }
1838
1839 LIST_INITHEAD(&cf->tex);
1840
1841 LIST_FOR_EACH_ENTRY_SAFE(vtx, next_vtx, &cf->vtx, list) {
1842 free(vtx);
1843 }
1844
1845 LIST_INITHEAD(&cf->vtx);
1846
1847 LIST_FOR_EACH_ENTRY_SAFE(gds, next_gds, &cf->gds, list) {
1848 free(gds);
1849 }
1850
1851 LIST_INITHEAD(&cf->gds);
1852
1853 free(cf);
1854 }
1855
1856 LIST_INITHEAD(&cf->list);
1857 }
1858
1859 static int print_swizzle(unsigned swz)
1860 {
1861 const char * swzchars = "xyzw01?_";
1862 assert(swz<8 && swz != 6);
1863 return fprintf(stderr, "%c", swzchars[swz]);
1864 }
1865
1866 static int print_sel(unsigned sel, unsigned rel, unsigned index_mode,
1867 unsigned need_brackets)
1868 {
1869 int o = 0;
1870 if (rel && index_mode >= 5 && sel < 128)
1871 o += fprintf(stderr, "G");
1872 if (rel || need_brackets) {
1873 o += fprintf(stderr, "[");
1874 }
1875 o += fprintf(stderr, "%d", sel);
1876 if (rel) {
1877 if (index_mode == 0 || index_mode == 6)
1878 o += fprintf(stderr, "+AR");
1879 else if (index_mode == 4)
1880 o += fprintf(stderr, "+AL");
1881 }
1882 if (rel || need_brackets) {
1883 o += fprintf(stderr, "]");
1884 }
1885 return o;
1886 }
1887
1888 static int print_dst(struct r600_bytecode_alu *alu)
1889 {
1890 int o = 0;
1891 unsigned sel = alu->dst.sel;
1892 char reg_char = 'R';
1893 if (sel > 128 - 4) { /* clause temporary gpr */
1894 sel -= 128 - 4;
1895 reg_char = 'T';
1896 }
1897
1898 if (alu_writes(alu)) {
1899 o += fprintf(stderr, "%c", reg_char);
1900 o += print_sel(alu->dst.sel, alu->dst.rel, alu->index_mode, 0);
1901 } else {
1902 o += fprintf(stderr, "__");
1903 }
1904 o += fprintf(stderr, ".");
1905 o += print_swizzle(alu->dst.chan);
1906 return o;
1907 }
1908
1909 static int print_src(struct r600_bytecode_alu *alu, unsigned idx)
1910 {
1911 int o = 0;
1912 struct r600_bytecode_alu_src *src = &alu->src[idx];
1913 unsigned sel = src->sel, need_sel = 1, need_chan = 1, need_brackets = 0;
1914
1915 if (src->neg)
1916 o += fprintf(stderr,"-");
1917 if (src->abs)
1918 o += fprintf(stderr,"|");
1919
1920 if (sel < 128 - 4) {
1921 o += fprintf(stderr, "R");
1922 } else if (sel < 128) {
1923 o += fprintf(stderr, "T");
1924 sel -= 128 - 4;
1925 } else if (sel < 160) {
1926 o += fprintf(stderr, "KC0");
1927 need_brackets = 1;
1928 sel -= 128;
1929 } else if (sel < 192) {
1930 o += fprintf(stderr, "KC1");
1931 need_brackets = 1;
1932 sel -= 160;
1933 } else if (sel >= 512) {
1934 o += fprintf(stderr, "C%d", src->kc_bank);
1935 need_brackets = 1;
1936 sel -= 512;
1937 } else if (sel >= 448) {
1938 o += fprintf(stderr, "Param");
1939 sel -= 448;
1940 need_chan = 0;
1941 } else if (sel >= 288) {
1942 o += fprintf(stderr, "KC3");
1943 need_brackets = 1;
1944 sel -= 288;
1945 } else if (sel >= 256) {
1946 o += fprintf(stderr, "KC2");
1947 need_brackets = 1;
1948 sel -= 256;
1949 } else {
1950 need_sel = 0;
1951 need_chan = 0;
1952 switch (sel) {
1953 case EG_V_SQ_ALU_SRC_LDS_DIRECT_A:
1954 o += fprintf(stderr, "LDS_A[0x%08X]", src->value);
1955 break;
1956 case EG_V_SQ_ALU_SRC_LDS_DIRECT_B:
1957 o += fprintf(stderr, "LDS_B[0x%08X]", src->value);
1958 break;
1959 case EG_V_SQ_ALU_SRC_LDS_OQ_A:
1960 o += fprintf(stderr, "LDS_OQ_A");
1961 need_chan = 1;
1962 break;
1963 case EG_V_SQ_ALU_SRC_LDS_OQ_B:
1964 o += fprintf(stderr, "LDS_OQ_B");
1965 need_chan = 1;
1966 break;
1967 case EG_V_SQ_ALU_SRC_LDS_OQ_A_POP:
1968 o += fprintf(stderr, "LDS_OQ_A_POP");
1969 need_chan = 1;
1970 break;
1971 case EG_V_SQ_ALU_SRC_LDS_OQ_B_POP:
1972 o += fprintf(stderr, "LDS_OQ_B_POP");
1973 need_chan = 1;
1974 break;
1975 case EG_V_SQ_ALU_SRC_SE_ID:
1976 o += fprintf(stderr, "SE_ID");
1977 break;
1978 case EG_V_SQ_ALU_SRC_SIMD_ID:
1979 o += fprintf(stderr, "SIMD_ID");
1980 break;
1981 case EG_V_SQ_ALU_SRC_HW_WAVE_ID:
1982 o += fprintf(stderr, "HW_WAVE_ID");
1983 break;
1984 case V_SQ_ALU_SRC_PS:
1985 o += fprintf(stderr, "PS");
1986 break;
1987 case V_SQ_ALU_SRC_PV:
1988 o += fprintf(stderr, "PV");
1989 need_chan = 1;
1990 break;
1991 case V_SQ_ALU_SRC_LITERAL:
1992 o += fprintf(stderr, "[0x%08X %f]", src->value, u_bitcast_u2f(src->value));
1993 break;
1994 case V_SQ_ALU_SRC_0_5:
1995 o += fprintf(stderr, "0.5");
1996 break;
1997 case V_SQ_ALU_SRC_M_1_INT:
1998 o += fprintf(stderr, "-1");
1999 break;
2000 case V_SQ_ALU_SRC_1_INT:
2001 o += fprintf(stderr, "1");
2002 break;
2003 case V_SQ_ALU_SRC_1:
2004 o += fprintf(stderr, "1.0");
2005 break;
2006 case V_SQ_ALU_SRC_0:
2007 o += fprintf(stderr, "0");
2008 break;
2009 default:
2010 o += fprintf(stderr, "??IMM_%d", sel);
2011 break;
2012 }
2013 }
2014
2015 if (need_sel)
2016 o += print_sel(sel, src->rel, alu->index_mode, need_brackets);
2017
2018 if (need_chan) {
2019 o += fprintf(stderr, ".");
2020 o += print_swizzle(src->chan);
2021 }
2022
2023 if (src->abs)
2024 o += fprintf(stderr,"|");
2025
2026 return o;
2027 }
2028
2029 static int print_indent(int p, int c)
2030 {
2031 int o = 0;
2032 while (p++ < c)
2033 o += fprintf(stderr, " ");
2034 return o;
2035 }
2036
2037 void r600_bytecode_disasm(struct r600_bytecode *bc)
2038 {
2039 const char *index_mode[] = {"CF_INDEX_NONE", "CF_INDEX_0", "CF_INDEX_1"};
2040 static int index = 0;
2041 struct r600_bytecode_cf *cf = NULL;
2042 struct r600_bytecode_alu *alu = NULL;
2043 struct r600_bytecode_vtx *vtx = NULL;
2044 struct r600_bytecode_tex *tex = NULL;
2045 struct r600_bytecode_gds *gds = NULL;
2046
2047 unsigned i, id, ngr = 0, last;
2048 uint32_t literal[4];
2049 unsigned nliteral;
2050 char chip = '6';
2051
2052 switch (bc->chip_class) {
2053 case R700:
2054 chip = '7';
2055 break;
2056 case EVERGREEN:
2057 chip = 'E';
2058 break;
2059 case CAYMAN:
2060 chip = 'C';
2061 break;
2062 case R600:
2063 default:
2064 chip = '6';
2065 break;
2066 }
2067 fprintf(stderr, "bytecode %d dw -- %d gprs -- %d nstack -------------\n",
2068 bc->ndw, bc->ngpr, bc->nstack);
2069 fprintf(stderr, "shader %d -- %c\n", index++, chip);
2070
2071 LIST_FOR_EACH_ENTRY(cf, &bc->cf, list) {
2072 id = cf->id;
2073 if (cf->op == CF_NATIVE) {
2074 fprintf(stderr, "%04d %08X %08X CF_NATIVE\n", id, bc->bytecode[id],
2075 bc->bytecode[id + 1]);
2076 } else {
2077 const struct cf_op_info *cfop = r600_isa_cf(cf->op);
2078 if (cfop->flags & CF_ALU) {
2079 if (cf->eg_alu_extended) {
2080 fprintf(stderr, "%04d %08X %08X %s\n", id, bc->bytecode[id],
2081 bc->bytecode[id + 1], "ALU_EXT");
2082 id += 2;
2083 }
2084 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2085 bc->bytecode[id + 1], cfop->name);
2086 fprintf(stderr, "%d @%d ", cf->ndw / 2, cf->addr);
2087 for (i = 0; i < 4; ++i) {
2088 if (cf->kcache[i].mode) {
2089 int c_start = (cf->kcache[i].addr << 4);
2090 int c_end = c_start + (cf->kcache[i].mode << 4);
2091 fprintf(stderr, "KC%d[CB%d:%d-%d%s%s] ",
2092 i, cf->kcache[i].bank, c_start, c_end,
2093 cf->kcache[i].index_mode ? " " : "",
2094 cf->kcache[i].index_mode ? index_mode[cf->kcache[i].index_mode] : "");
2095 }
2096 }
2097 fprintf(stderr, "\n");
2098 } else if (cfop->flags & CF_FETCH) {
2099 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2100 bc->bytecode[id + 1], cfop->name);
2101 fprintf(stderr, "%d @%d ", cf->ndw / 4, cf->addr);
2102 fprintf(stderr, "\n");
2103 if (cf->end_of_program)
2104 fprintf(stderr, "EOP ");
2105 } else if (cfop->flags & CF_EXP) {
2106 int o = 0;
2107 const char *exp_type[] = {"PIXEL", "POS ", "PARAM"};
2108 o += fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2109 bc->bytecode[id + 1], cfop->name);
2110 o += print_indent(o, 43);
2111 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2112 if (cf->output.burst_count > 1) {
2113 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2114 cf->output.array_base + cf->output.burst_count - 1);
2115
2116 o += print_indent(o, 55);
2117 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2118 cf->output.gpr + cf->output.burst_count - 1);
2119 } else {
2120 o += fprintf(stderr, "%d ", cf->output.array_base);
2121 o += print_indent(o, 55);
2122 o += fprintf(stderr, "R%d.", cf->output.gpr);
2123 }
2124
2125 o += print_swizzle(cf->output.swizzle_x);
2126 o += print_swizzle(cf->output.swizzle_y);
2127 o += print_swizzle(cf->output.swizzle_z);
2128 o += print_swizzle(cf->output.swizzle_w);
2129
2130 print_indent(o, 67);
2131
2132 fprintf(stderr, " ES:%X ", cf->output.elem_size);
2133 if (cf->mark)
2134 fprintf(stderr, "MARK ");
2135 if (!cf->barrier)
2136 fprintf(stderr, "NO_BARRIER ");
2137 if (cf->end_of_program)
2138 fprintf(stderr, "EOP ");
2139 fprintf(stderr, "\n");
2140 } else if (r600_isa_cf(cf->op)->flags & CF_MEM) {
2141 int o = 0;
2142 const char *exp_type[] = {"WRITE", "WRITE_IND", "WRITE_ACK",
2143 "WRITE_IND_ACK"};
2144 o += fprintf(stderr, "%04d %08X %08X %s ", id,
2145 bc->bytecode[id], bc->bytecode[id + 1], cfop->name);
2146 o += print_indent(o, 43);
2147 o += fprintf(stderr, "%s ", exp_type[cf->output.type]);
2148
2149 if (r600_isa_cf(cf->op)->flags & CF_RAT) {
2150 o += fprintf(stderr, "RAT%d", cf->rat.id);
2151 if (cf->rat.index_mode) {
2152 o += fprintf(stderr, "[IDX%d]", cf->rat.index_mode - 1);
2153 }
2154 o += fprintf(stderr, " INST: %d ", cf->rat.inst);
2155 }
2156
2157 if (cf->output.burst_count > 1) {
2158 o += fprintf(stderr, "%d-%d ", cf->output.array_base,
2159 cf->output.array_base + cf->output.burst_count - 1);
2160 o += print_indent(o, 55);
2161 o += fprintf(stderr, "R%d-%d.", cf->output.gpr,
2162 cf->output.gpr + cf->output.burst_count - 1);
2163 } else {
2164 o += fprintf(stderr, "%d ", cf->output.array_base);
2165 o += print_indent(o, 55);
2166 o += fprintf(stderr, "R%d.", cf->output.gpr);
2167 }
2168 for (i = 0; i < 4; ++i) {
2169 if (cf->output.comp_mask & (1 << i))
2170 o += print_swizzle(i);
2171 else
2172 o += print_swizzle(7);
2173 }
2174
2175 if (cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_WRITE_IND ||
2176 cf->output.type == V_SQ_CF_ALLOC_EXPORT_WORD0_SQ_EXPORT_READ_IND)
2177 o += fprintf(stderr, " R%d", cf->output.index_gpr);
2178
2179 o += print_indent(o, 67);
2180
2181 fprintf(stderr, " ES:%i ", cf->output.elem_size);
2182 if (cf->output.array_size != 0xFFF)
2183 fprintf(stderr, "AS:%i ", cf->output.array_size);
2184 if (cf->mark)
2185 fprintf(stderr, "MARK ");
2186 if (!cf->barrier)
2187 fprintf(stderr, "NO_BARRIER ");
2188 if (cf->end_of_program)
2189 fprintf(stderr, "EOP ");
2190 fprintf(stderr, "\n");
2191 } else {
2192 fprintf(stderr, "%04d %08X %08X %s ", id, bc->bytecode[id],
2193 bc->bytecode[id + 1], cfop->name);
2194 fprintf(stderr, "@%d ", cf->cf_addr);
2195 if (cf->cond)
2196 fprintf(stderr, "CND:%X ", cf->cond);
2197 if (cf->pop_count)
2198 fprintf(stderr, "POP:%X ", cf->pop_count);
2199 if (cf->count && (cfop->flags & CF_EMIT))
2200 fprintf(stderr, "STREAM%d ", cf->count);
2201 if (cf->end_of_program)
2202 fprintf(stderr, "EOP ");
2203 fprintf(stderr, "\n");
2204 }
2205 }
2206
2207 id = cf->addr;
2208 nliteral = 0;
2209 last = 1;
2210 LIST_FOR_EACH_ENTRY(alu, &cf->alu, list) {
2211 const char *omod_str[] = {"","*2","*4","/2"};
2212 const struct alu_op_info *aop = r600_isa_alu(alu->op);
2213 int o = 0;
2214
2215 r600_bytecode_alu_nliterals(alu, literal, &nliteral);
2216 o += fprintf(stderr, " %04d %08X %08X ", id, bc->bytecode[id], bc->bytecode[id+1]);
2217 if (last)
2218 o += fprintf(stderr, "%4d ", ++ngr);
2219 else
2220 o += fprintf(stderr, " ");
2221 o += fprintf(stderr, "%c%c %c ", alu->execute_mask ? 'M':' ',
2222 alu->update_pred ? 'P':' ',
2223 alu->pred_sel ? alu->pred_sel==2 ? '0':'1':' ');
2224
2225 o += fprintf(stderr, "%s%s%s ", aop->name,
2226 omod_str[alu->omod], alu->dst.clamp ? "_sat":"");
2227
2228 o += print_indent(o,60);
2229 o += print_dst(alu);
2230 for (i = 0; i < aop->src_count; ++i) {
2231 o += fprintf(stderr, i == 0 ? ", ": ", ");
2232 o += print_src(alu, i);
2233 }
2234
2235 if (alu->bank_swizzle) {
2236 o += print_indent(o,75);
2237 o += fprintf(stderr, " BS:%d", alu->bank_swizzle);
2238 }
2239
2240 fprintf(stderr, "\n");
2241 id += 2;
2242
2243 if (alu->last) {
2244 for (i = 0; i < nliteral; i++, id++) {
2245 float *f = (float*)(bc->bytecode + id);
2246 o = fprintf(stderr, " %04d %08X", id, bc->bytecode[id]);
2247 print_indent(o, 60);
2248 fprintf(stderr, " %f (%d)\n", *f, *(bc->bytecode + id));
2249 }
2250 id += nliteral & 1;
2251 nliteral = 0;
2252 }
2253 last = alu->last;
2254 }
2255
2256 LIST_FOR_EACH_ENTRY(tex, &cf->tex, list) {
2257 int o = 0;
2258 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2259 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2260
2261 o += fprintf(stderr, "%s ", r600_isa_fetch(tex->op)->name);
2262
2263 o += print_indent(o, 50);
2264
2265 o += fprintf(stderr, "R%d.", tex->dst_gpr);
2266 o += print_swizzle(tex->dst_sel_x);
2267 o += print_swizzle(tex->dst_sel_y);
2268 o += print_swizzle(tex->dst_sel_z);
2269 o += print_swizzle(tex->dst_sel_w);
2270
2271 o += fprintf(stderr, ", R%d.", tex->src_gpr);
2272 o += print_swizzle(tex->src_sel_x);
2273 o += print_swizzle(tex->src_sel_y);
2274 o += print_swizzle(tex->src_sel_z);
2275 o += print_swizzle(tex->src_sel_w);
2276
2277 o += fprintf(stderr, ", RID:%d", tex->resource_id);
2278 o += fprintf(stderr, ", SID:%d ", tex->sampler_id);
2279
2280 if (tex->sampler_index_mode)
2281 fprintf(stderr, "SQ_%s ", index_mode[tex->sampler_index_mode]);
2282
2283 if (tex->lod_bias)
2284 fprintf(stderr, "LB:%d ", tex->lod_bias);
2285
2286 fprintf(stderr, "CT:%c%c%c%c ",
2287 tex->coord_type_x ? 'N' : 'U',
2288 tex->coord_type_y ? 'N' : 'U',
2289 tex->coord_type_z ? 'N' : 'U',
2290 tex->coord_type_w ? 'N' : 'U');
2291
2292 if (tex->offset_x)
2293 fprintf(stderr, "OX:%d ", tex->offset_x);
2294 if (tex->offset_y)
2295 fprintf(stderr, "OY:%d ", tex->offset_y);
2296 if (tex->offset_z)
2297 fprintf(stderr, "OZ:%d ", tex->offset_z);
2298
2299 id += 4;
2300 fprintf(stderr, "\n");
2301 }
2302
2303 LIST_FOR_EACH_ENTRY(vtx, &cf->vtx, list) {
2304 int o = 0;
2305 const char * fetch_type[] = {"VERTEX", "INSTANCE", ""};
2306 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2307 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2308
2309 o += fprintf(stderr, "%s ", r600_isa_fetch(vtx->op)->name);
2310
2311 o += print_indent(o, 50);
2312
2313 o += fprintf(stderr, "R%d.", vtx->dst_gpr);
2314 o += print_swizzle(vtx->dst_sel_x);
2315 o += print_swizzle(vtx->dst_sel_y);
2316 o += print_swizzle(vtx->dst_sel_z);
2317 o += print_swizzle(vtx->dst_sel_w);
2318
2319 o += fprintf(stderr, ", R%d.", vtx->src_gpr);
2320 o += print_swizzle(vtx->src_sel_x);
2321
2322 if (vtx->offset)
2323 fprintf(stderr, " +%db", vtx->offset);
2324
2325 o += print_indent(o, 55);
2326
2327 fprintf(stderr, ", RID:%d ", vtx->buffer_id);
2328
2329 fprintf(stderr, "%s ", fetch_type[vtx->fetch_type]);
2330
2331 if (bc->chip_class < CAYMAN && vtx->mega_fetch_count)
2332 fprintf(stderr, "MFC:%d ", vtx->mega_fetch_count);
2333
2334 if (bc->chip_class >= EVERGREEN && vtx->buffer_index_mode)
2335 fprintf(stderr, "SQ_%s ", index_mode[vtx->buffer_index_mode]);
2336
2337 fprintf(stderr, "UCF:%d ", vtx->use_const_fields);
2338 fprintf(stderr, "FMT(DTA:%d ", vtx->data_format);
2339 fprintf(stderr, "NUM:%d ", vtx->num_format_all);
2340 fprintf(stderr, "COMP:%d ", vtx->format_comp_all);
2341 fprintf(stderr, "MODE:%d)\n", vtx->srf_mode_all);
2342
2343 id += 4;
2344 }
2345
2346 LIST_FOR_EACH_ENTRY(gds, &cf->gds, list) {
2347 int o = 0;
2348 o += fprintf(stderr, " %04d %08X %08X %08X ", id, bc->bytecode[id],
2349 bc->bytecode[id + 1], bc->bytecode[id + 2]);
2350
2351 o += fprintf(stderr, "%s ", r600_isa_fetch(gds->op)->name);
2352
2353 if (gds->op != FETCH_OP_TF_WRITE) {
2354 o += fprintf(stderr, "R%d.", gds->dst_gpr);
2355 o += print_swizzle(gds->dst_sel_x);
2356 o += print_swizzle(gds->dst_sel_y);
2357 o += print_swizzle(gds->dst_sel_z);
2358 o += print_swizzle(gds->dst_sel_w);
2359 }
2360
2361 o += fprintf(stderr, ", R%d.", gds->src_gpr);
2362 o += print_swizzle(gds->src_sel_x);
2363 o += print_swizzle(gds->src_sel_y);
2364 o += print_swizzle(gds->src_sel_z);
2365
2366 if (gds->op != FETCH_OP_TF_WRITE) {
2367 o += fprintf(stderr, ", R%d.", gds->src_gpr2);
2368 }
2369 if (gds->alloc_consume) {
2370 o += fprintf(stderr, " UAV: %d", gds->uav_id);
2371 if (gds->uav_index_mode)
2372 o += fprintf(stderr, "[%s]", index_mode[gds->uav_index_mode]);
2373 }
2374 fprintf(stderr, "\n");
2375 id += 4;
2376 }
2377 }
2378
2379 fprintf(stderr, "--------------------------------------\n");
2380 }
2381
2382 void r600_vertex_data_type(enum pipe_format pformat,
2383 unsigned *format,
2384 unsigned *num_format, unsigned *format_comp, unsigned *endian)
2385 {
2386 const struct util_format_description *desc;
2387 unsigned i;
2388
2389 *format = 0;
2390 *num_format = 0;
2391 *format_comp = 0;
2392 *endian = ENDIAN_NONE;
2393
2394 if (pformat == PIPE_FORMAT_R11G11B10_FLOAT) {
2395 *format = FMT_10_11_11_FLOAT;
2396 *endian = r600_endian_swap(32);
2397 return;
2398 }
2399
2400 if (pformat == PIPE_FORMAT_B5G6R5_UNORM) {
2401 *format = FMT_5_6_5;
2402 *endian = r600_endian_swap(16);
2403 return;
2404 }
2405
2406 if (pformat == PIPE_FORMAT_B5G5R5A1_UNORM) {
2407 *format = FMT_1_5_5_5;
2408 *endian = r600_endian_swap(16);
2409 return;
2410 }
2411
2412 desc = util_format_description(pformat);
2413 if (desc->layout != UTIL_FORMAT_LAYOUT_PLAIN) {
2414 goto out_unknown;
2415 }
2416
2417 /* Find the first non-VOID channel. */
2418 for (i = 0; i < 4; i++) {
2419 if (desc->channel[i].type != UTIL_FORMAT_TYPE_VOID) {
2420 break;
2421 }
2422 }
2423
2424 *endian = r600_endian_swap(desc->channel[i].size);
2425
2426 switch (desc->channel[i].type) {
2427 /* Half-floats, floats, ints */
2428 case UTIL_FORMAT_TYPE_FLOAT:
2429 switch (desc->channel[i].size) {
2430 case 16:
2431 switch (desc->nr_channels) {
2432 case 1:
2433 *format = FMT_16_FLOAT;
2434 break;
2435 case 2:
2436 *format = FMT_16_16_FLOAT;
2437 break;
2438 case 3:
2439 case 4:
2440 *format = FMT_16_16_16_16_FLOAT;
2441 break;
2442 }
2443 break;
2444 case 32:
2445 switch (desc->nr_channels) {
2446 case 1:
2447 *format = FMT_32_FLOAT;
2448 break;
2449 case 2:
2450 *format = FMT_32_32_FLOAT;
2451 break;
2452 case 3:
2453 *format = FMT_32_32_32_FLOAT;
2454 break;
2455 case 4:
2456 *format = FMT_32_32_32_32_FLOAT;
2457 break;
2458 }
2459 break;
2460 default:
2461 goto out_unknown;
2462 }
2463 break;
2464 /* Unsigned ints */
2465 case UTIL_FORMAT_TYPE_UNSIGNED:
2466 /* Signed ints */
2467 case UTIL_FORMAT_TYPE_SIGNED:
2468 switch (desc->channel[i].size) {
2469 case 8:
2470 switch (desc->nr_channels) {
2471 case 1:
2472 *format = FMT_8;
2473 break;
2474 case 2:
2475 *format = FMT_8_8;
2476 break;
2477 case 3:
2478 case 4:
2479 *format = FMT_8_8_8_8;
2480 break;
2481 }
2482 break;
2483 case 10:
2484 if (desc->nr_channels != 4)
2485 goto out_unknown;
2486
2487 *format = FMT_2_10_10_10;
2488 break;
2489 case 16:
2490 switch (desc->nr_channels) {
2491 case 1:
2492 *format = FMT_16;
2493 break;
2494 case 2:
2495 *format = FMT_16_16;
2496 break;
2497 case 3:
2498 case 4:
2499 *format = FMT_16_16_16_16;
2500 break;
2501 }
2502 break;
2503 case 32:
2504 switch (desc->nr_channels) {
2505 case 1:
2506 *format = FMT_32;
2507 break;
2508 case 2:
2509 *format = FMT_32_32;
2510 break;
2511 case 3:
2512 *format = FMT_32_32_32;
2513 break;
2514 case 4:
2515 *format = FMT_32_32_32_32;
2516 break;
2517 }
2518 break;
2519 default:
2520 goto out_unknown;
2521 }
2522 break;
2523 default:
2524 goto out_unknown;
2525 }
2526
2527 if (desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2528 *format_comp = 1;
2529 }
2530
2531 *num_format = 0;
2532 if (desc->channel[i].type == UTIL_FORMAT_TYPE_UNSIGNED ||
2533 desc->channel[i].type == UTIL_FORMAT_TYPE_SIGNED) {
2534 if (!desc->channel[i].normalized) {
2535 if (desc->channel[i].pure_integer)
2536 *num_format = 1;
2537 else
2538 *num_format = 2;
2539 }
2540 }
2541 return;
2542 out_unknown:
2543 R600_ERR("unsupported vertex format %s\n", util_format_name(pformat));
2544 }
2545
2546 void *r600_create_vertex_fetch_shader(struct pipe_context *ctx,
2547 unsigned count,
2548 const struct pipe_vertex_element *elements)
2549 {
2550 struct r600_context *rctx = (struct r600_context *)ctx;
2551 struct r600_bytecode bc;
2552 struct r600_bytecode_vtx vtx;
2553 const struct util_format_description *desc;
2554 unsigned fetch_resource_start = rctx->b.chip_class >= EVERGREEN ? 0 : 160;
2555 unsigned format, num_format, format_comp, endian;
2556 uint32_t *bytecode;
2557 int i, j, r, fs_size;
2558 struct r600_fetch_shader *shader;
2559 unsigned no_sb = rctx->screen->b.debug_flags & DBG_NO_SB;
2560 unsigned sb_disasm = !no_sb || (rctx->screen->b.debug_flags & DBG_SB_DISASM);
2561
2562 assert(count < 32);
2563
2564 memset(&bc, 0, sizeof(bc));
2565 r600_bytecode_init(&bc, rctx->b.chip_class, rctx->b.family,
2566 rctx->screen->has_compressed_msaa_texturing);
2567
2568 bc.isa = rctx->isa;
2569
2570 for (i = 0; i < count; i++) {
2571 if (elements[i].instance_divisor > 1) {
2572 if (rctx->b.chip_class == CAYMAN) {
2573 for (j = 0; j < 4; j++) {
2574 struct r600_bytecode_alu alu;
2575 memset(&alu, 0, sizeof(alu));
2576 alu.op = ALU_OP2_MULHI_UINT;
2577 alu.src[0].sel = 0;
2578 alu.src[0].chan = 3;
2579 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2580 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2581 alu.dst.sel = i + 1;
2582 alu.dst.chan = j;
2583 alu.dst.write = j == 3;
2584 alu.last = j == 3;
2585 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2586 r600_bytecode_clear(&bc);
2587 return NULL;
2588 }
2589 }
2590 } else {
2591 struct r600_bytecode_alu alu;
2592 memset(&alu, 0, sizeof(alu));
2593 alu.op = ALU_OP2_MULHI_UINT;
2594 alu.src[0].sel = 0;
2595 alu.src[0].chan = 3;
2596 alu.src[1].sel = V_SQ_ALU_SRC_LITERAL;
2597 alu.src[1].value = (1ll << 32) / elements[i].instance_divisor + 1;
2598 alu.dst.sel = i + 1;
2599 alu.dst.chan = 3;
2600 alu.dst.write = 1;
2601 alu.last = 1;
2602 if ((r = r600_bytecode_add_alu(&bc, &alu))) {
2603 r600_bytecode_clear(&bc);
2604 return NULL;
2605 }
2606 }
2607 }
2608 }
2609
2610 for (i = 0; i < count; i++) {
2611 r600_vertex_data_type(elements[i].src_format,
2612 &format, &num_format, &format_comp, &endian);
2613
2614 desc = util_format_description(elements[i].src_format);
2615 if (!desc) {
2616 r600_bytecode_clear(&bc);
2617 R600_ERR("unknown format %d\n", elements[i].src_format);
2618 return NULL;
2619 }
2620
2621 if (elements[i].src_offset > 65535) {
2622 r600_bytecode_clear(&bc);
2623 R600_ERR("too big src_offset: %u\n", elements[i].src_offset);
2624 return NULL;
2625 }
2626
2627 memset(&vtx, 0, sizeof(vtx));
2628 vtx.buffer_id = elements[i].vertex_buffer_index + fetch_resource_start;
2629 vtx.fetch_type = elements[i].instance_divisor ? SQ_VTX_FETCH_INSTANCE_DATA : SQ_VTX_FETCH_VERTEX_DATA;
2630 vtx.src_gpr = elements[i].instance_divisor > 1 ? i + 1 : 0;
2631 vtx.src_sel_x = elements[i].instance_divisor ? 3 : 0;
2632 vtx.mega_fetch_count = 0x1F;
2633 vtx.dst_gpr = i + 1;
2634 vtx.dst_sel_x = desc->swizzle[0];
2635 vtx.dst_sel_y = desc->swizzle[1];
2636 vtx.dst_sel_z = desc->swizzle[2];
2637 vtx.dst_sel_w = desc->swizzle[3];
2638 vtx.data_format = format;
2639 vtx.num_format_all = num_format;
2640 vtx.format_comp_all = format_comp;
2641 vtx.offset = elements[i].src_offset;
2642 vtx.endian = endian;
2643
2644 if ((r = r600_bytecode_add_vtx(&bc, &vtx))) {
2645 r600_bytecode_clear(&bc);
2646 return NULL;
2647 }
2648 }
2649
2650 r600_bytecode_add_cfinst(&bc, CF_OP_RET);
2651
2652 if ((r = r600_bytecode_build(&bc))) {
2653 r600_bytecode_clear(&bc);
2654 return NULL;
2655 }
2656
2657 if (rctx->screen->b.debug_flags & DBG_FS) {
2658 fprintf(stderr, "--------------------------------------------------------------\n");
2659 fprintf(stderr, "Vertex elements state:\n");
2660 for (i = 0; i < count; i++) {
2661 fprintf(stderr, " ");
2662 util_dump_vertex_element(stderr, elements+i);
2663 fprintf(stderr, "\n");
2664 }
2665
2666 if (!sb_disasm) {
2667 r600_bytecode_disasm(&bc);
2668
2669 fprintf(stderr, "______________________________________________________________\n");
2670 } else {
2671 r600_sb_bytecode_process(rctx, &bc, NULL, 1 /*dump*/, 0 /*optimize*/);
2672 }
2673 }
2674
2675 fs_size = bc.ndw*4;
2676
2677 /* Allocate the CSO. */
2678 shader = CALLOC_STRUCT(r600_fetch_shader);
2679 if (!shader) {
2680 r600_bytecode_clear(&bc);
2681 return NULL;
2682 }
2683
2684 u_suballocator_alloc(rctx->allocator_fetch_shader, fs_size, 256,
2685 &shader->offset,
2686 (struct pipe_resource**)&shader->buffer);
2687 if (!shader->buffer) {
2688 r600_bytecode_clear(&bc);
2689 FREE(shader);
2690 return NULL;
2691 }
2692
2693 bytecode = r600_buffer_map_sync_with_rings(&rctx->b, shader->buffer, PIPE_TRANSFER_WRITE | PIPE_TRANSFER_UNSYNCHRONIZED);
2694 bytecode += shader->offset / 4;
2695
2696 if (R600_BIG_ENDIAN) {
2697 for (i = 0; i < fs_size / 4; ++i) {
2698 bytecode[i] = util_cpu_to_le32(bc.bytecode[i]);
2699 }
2700 } else {
2701 memcpy(bytecode, bc.bytecode, fs_size);
2702 }
2703 rctx->b.ws->buffer_unmap(shader->buffer->buf);
2704
2705 r600_bytecode_clear(&bc);
2706 return shader;
2707 }
2708
2709 void r600_bytecode_alu_read(struct r600_bytecode *bc,
2710 struct r600_bytecode_alu *alu, uint32_t word0, uint32_t word1)
2711 {
2712 /* WORD0 */
2713 alu->src[0].sel = G_SQ_ALU_WORD0_SRC0_SEL(word0);
2714 alu->src[0].rel = G_SQ_ALU_WORD0_SRC0_REL(word0);
2715 alu->src[0].chan = G_SQ_ALU_WORD0_SRC0_CHAN(word0);
2716 alu->src[0].neg = G_SQ_ALU_WORD0_SRC0_NEG(word0);
2717 alu->src[1].sel = G_SQ_ALU_WORD0_SRC1_SEL(word0);
2718 alu->src[1].rel = G_SQ_ALU_WORD0_SRC1_REL(word0);
2719 alu->src[1].chan = G_SQ_ALU_WORD0_SRC1_CHAN(word0);
2720 alu->src[1].neg = G_SQ_ALU_WORD0_SRC1_NEG(word0);
2721 alu->index_mode = G_SQ_ALU_WORD0_INDEX_MODE(word0);
2722 alu->pred_sel = G_SQ_ALU_WORD0_PRED_SEL(word0);
2723 alu->last = G_SQ_ALU_WORD0_LAST(word0);
2724
2725 /* WORD1 */
2726 alu->bank_swizzle = G_SQ_ALU_WORD1_BANK_SWIZZLE(word1);
2727 if (alu->bank_swizzle)
2728 alu->bank_swizzle_force = alu->bank_swizzle;
2729 alu->dst.sel = G_SQ_ALU_WORD1_DST_GPR(word1);
2730 alu->dst.rel = G_SQ_ALU_WORD1_DST_REL(word1);
2731 alu->dst.chan = G_SQ_ALU_WORD1_DST_CHAN(word1);
2732 alu->dst.clamp = G_SQ_ALU_WORD1_CLAMP(word1);
2733 if (G_SQ_ALU_WORD1_ENCODING(word1)) /*ALU_DWORD1_OP3*/
2734 {
2735 alu->is_op3 = 1;
2736 alu->src[2].sel = G_SQ_ALU_WORD1_OP3_SRC2_SEL(word1);
2737 alu->src[2].rel = G_SQ_ALU_WORD1_OP3_SRC2_REL(word1);
2738 alu->src[2].chan = G_SQ_ALU_WORD1_OP3_SRC2_CHAN(word1);
2739 alu->src[2].neg = G_SQ_ALU_WORD1_OP3_SRC2_NEG(word1);
2740 alu->op = r600_isa_alu_by_opcode(bc->isa,
2741 G_SQ_ALU_WORD1_OP3_ALU_INST(word1), /* is_op3 = */ 1);
2742
2743 }
2744 else /*ALU_DWORD1_OP2*/
2745 {
2746 alu->src[0].abs = G_SQ_ALU_WORD1_OP2_SRC0_ABS(word1);
2747 alu->src[1].abs = G_SQ_ALU_WORD1_OP2_SRC1_ABS(word1);
2748 alu->op = r600_isa_alu_by_opcode(bc->isa,
2749 G_SQ_ALU_WORD1_OP2_ALU_INST(word1), /* is_op3 = */ 0);
2750 alu->omod = G_SQ_ALU_WORD1_OP2_OMOD(word1);
2751 alu->dst.write = G_SQ_ALU_WORD1_OP2_WRITE_MASK(word1);
2752 alu->update_pred = G_SQ_ALU_WORD1_OP2_UPDATE_PRED(word1);
2753 alu->execute_mask =
2754 G_SQ_ALU_WORD1_OP2_UPDATE_EXECUTE_MASK(word1);
2755 }
2756 }
2757
2758 #if 0
2759 void r600_bytecode_export_read(struct r600_bytecode *bc,
2760 struct r600_bytecode_output *output, uint32_t word0, uint32_t word1)
2761 {
2762 output->array_base = G_SQ_CF_ALLOC_EXPORT_WORD0_ARRAY_BASE(word0);
2763 output->type = G_SQ_CF_ALLOC_EXPORT_WORD0_TYPE(word0);
2764 output->gpr = G_SQ_CF_ALLOC_EXPORT_WORD0_RW_GPR(word0);
2765 output->elem_size = G_SQ_CF_ALLOC_EXPORT_WORD0_ELEM_SIZE(word0);
2766
2767 output->swizzle_x = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_X(word1);
2768 output->swizzle_y = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Y(word1);
2769 output->swizzle_z = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_Z(word1);
2770 output->swizzle_w = G_SQ_CF_ALLOC_EXPORT_WORD1_SWIZ_SEL_W(word1);
2771 output->burst_count = G_SQ_CF_ALLOC_EXPORT_WORD1_BURST_COUNT(word1);
2772 output->end_of_program = G_SQ_CF_ALLOC_EXPORT_WORD1_END_OF_PROGRAM(word1);
2773 output->op = r600_isa_cf_by_opcode(bc->isa,
2774 G_SQ_CF_ALLOC_EXPORT_WORD1_CF_INST(word1), 0);
2775 output->barrier = G_SQ_CF_ALLOC_EXPORT_WORD1_BARRIER(word1);
2776 output->array_size = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_ARRAY_SIZE(word1);
2777 output->comp_mask = G_SQ_CF_ALLOC_EXPORT_WORD1_BUF_COMP_MASK(word1);
2778 }
2779 #endif