3d23597413c6f17683f0dbb417e71b6414fb3752
[mesa.git] / src / gallium / drivers / radeonsi / si_fence.c
1 /*
2 * Copyright 2013-2017 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 *
24 */
25
26 #include <libsync.h>
27
28 #include "util/os_time.h"
29 #include "util/u_memory.h"
30 #include "util/u_queue.h"
31 #include "util/u_upload_mgr.h"
32
33 #include "si_build_pm4.h"
34
35 struct si_fine_fence {
36 struct si_resource *buf;
37 unsigned offset;
38 };
39
40 struct si_multi_fence {
41 struct pipe_reference reference;
42 struct pipe_fence_handle *gfx;
43 struct pipe_fence_handle *sdma;
44 struct tc_unflushed_batch_token *tc_token;
45 struct util_queue_fence ready;
46
47 /* If the context wasn't flushed at fence creation, this is non-NULL. */
48 struct {
49 struct si_context *ctx;
50 unsigned ib_index;
51 } gfx_unflushed;
52
53 struct si_fine_fence fine;
54 };
55
56 /**
57 * Write an EOP event.
58 *
59 * \param event EVENT_TYPE_*
60 * \param event_flags Optional cache flush flags (TC)
61 * \param dst_sel MEM or TC_L2
62 * \param int_sel NONE or SEND_DATA_AFTER_WR_CONFIRM
63 * \param data_sel DISCARD, VALUE_32BIT, TIMESTAMP, or GDS
64 * \param buf Buffer
65 * \param va GPU address
66 * \param old_value Previous fence value (for a bug workaround)
67 * \param new_value Fence value to write for this event.
68 */
69 void si_cp_release_mem(struct si_context *ctx,
70 unsigned event, unsigned event_flags,
71 unsigned dst_sel, unsigned int_sel, unsigned data_sel,
72 struct si_resource *buf, uint64_t va,
73 uint32_t new_fence, unsigned query_type)
74 {
75 struct radeon_cmdbuf *cs = ctx->gfx_cs;
76 unsigned op = EVENT_TYPE(event) |
77 EVENT_INDEX(event == V_028A90_CS_DONE ||
78 event == V_028A90_PS_DONE ? 6 : 5) |
79 event_flags;
80 unsigned sel = EOP_DST_SEL(dst_sel) |
81 EOP_INT_SEL(int_sel) |
82 EOP_DATA_SEL(data_sel);
83
84 if (ctx->chip_class >= GFX9) {
85 /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
86 * counters) must immediately precede every timestamp event to
87 * prevent a GPU hang on GFX9.
88 *
89 * Occlusion queries don't need to do it here, because they
90 * always do ZPASS_DONE before the timestamp.
91 */
92 if (ctx->chip_class == GFX9 &&
93 query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
94 query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
95 query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
96 struct si_resource *scratch = ctx->eop_bug_scratch;
97
98 assert(16 * ctx->screen->info.num_render_backends <=
99 scratch->b.b.width0);
100 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
101 radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
102 radeon_emit(cs, scratch->gpu_address);
103 radeon_emit(cs, scratch->gpu_address >> 32);
104
105 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
106 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
107 }
108
109 radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
110 radeon_emit(cs, op);
111 radeon_emit(cs, sel);
112 radeon_emit(cs, va); /* address lo */
113 radeon_emit(cs, va >> 32); /* address hi */
114 radeon_emit(cs, new_fence); /* immediate data lo */
115 radeon_emit(cs, 0); /* immediate data hi */
116 radeon_emit(cs, 0); /* unused */
117 } else {
118 if (ctx->chip_class == CIK ||
119 ctx->chip_class == VI) {
120 struct si_resource *scratch = ctx->eop_bug_scratch;
121 uint64_t va = scratch->gpu_address;
122
123 /* Two EOP events are required to make all engines go idle
124 * (and optional cache flushes executed) before the timestamp
125 * is written.
126 */
127 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
128 radeon_emit(cs, op);
129 radeon_emit(cs, va);
130 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
131 radeon_emit(cs, 0); /* immediate data */
132 radeon_emit(cs, 0); /* unused */
133
134 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, scratch,
135 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
136 }
137
138 radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
139 radeon_emit(cs, op);
140 radeon_emit(cs, va);
141 radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
142 radeon_emit(cs, new_fence); /* immediate data */
143 radeon_emit(cs, 0); /* unused */
144 }
145
146 if (buf) {
147 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, buf, RADEON_USAGE_WRITE,
148 RADEON_PRIO_QUERY);
149 }
150 }
151
152 unsigned si_cp_write_fence_dwords(struct si_screen *screen)
153 {
154 unsigned dwords = 6;
155
156 if (screen->info.chip_class == CIK ||
157 screen->info.chip_class == VI)
158 dwords *= 2;
159
160 return dwords;
161 }
162
163 void si_cp_wait_mem(struct si_context *ctx, struct radeon_cmdbuf *cs,
164 uint64_t va, uint32_t ref, uint32_t mask, unsigned flags)
165 {
166 radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
167 radeon_emit(cs, WAIT_REG_MEM_MEM_SPACE(1) | flags);
168 radeon_emit(cs, va);
169 radeon_emit(cs, va >> 32);
170 radeon_emit(cs, ref); /* reference value */
171 radeon_emit(cs, mask); /* mask */
172 radeon_emit(cs, 4); /* poll interval */
173 }
174
175 static void si_add_fence_dependency(struct si_context *sctx,
176 struct pipe_fence_handle *fence)
177 {
178 struct radeon_winsys *ws = sctx->ws;
179
180 if (sctx->dma_cs)
181 ws->cs_add_fence_dependency(sctx->dma_cs, fence);
182 ws->cs_add_fence_dependency(sctx->gfx_cs, fence);
183 }
184
185 static void si_add_syncobj_signal(struct si_context *sctx,
186 struct pipe_fence_handle *fence)
187 {
188 sctx->ws->cs_add_syncobj_signal(sctx->gfx_cs, fence);
189 }
190
191 static void si_fence_reference(struct pipe_screen *screen,
192 struct pipe_fence_handle **dst,
193 struct pipe_fence_handle *src)
194 {
195 struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
196 struct si_multi_fence **sdst = (struct si_multi_fence **)dst;
197 struct si_multi_fence *ssrc = (struct si_multi_fence *)src;
198
199 if (pipe_reference(&(*sdst)->reference, &ssrc->reference)) {
200 ws->fence_reference(&(*sdst)->gfx, NULL);
201 ws->fence_reference(&(*sdst)->sdma, NULL);
202 tc_unflushed_batch_token_reference(&(*sdst)->tc_token, NULL);
203 si_resource_reference(&(*sdst)->fine.buf, NULL);
204 FREE(*sdst);
205 }
206 *sdst = ssrc;
207 }
208
209 static struct si_multi_fence *si_create_multi_fence()
210 {
211 struct si_multi_fence *fence = CALLOC_STRUCT(si_multi_fence);
212 if (!fence)
213 return NULL;
214
215 pipe_reference_init(&fence->reference, 1);
216 util_queue_fence_init(&fence->ready);
217
218 return fence;
219 }
220
221 struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
222 struct tc_unflushed_batch_token *tc_token)
223 {
224 struct si_multi_fence *fence = si_create_multi_fence();
225 if (!fence)
226 return NULL;
227
228 util_queue_fence_reset(&fence->ready);
229 tc_unflushed_batch_token_reference(&fence->tc_token, tc_token);
230
231 return (struct pipe_fence_handle *)fence;
232 }
233
234 static bool si_fine_fence_signaled(struct radeon_winsys *rws,
235 const struct si_fine_fence *fine)
236 {
237 char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
238 PIPE_TRANSFER_UNSYNCHRONIZED);
239 if (!map)
240 return false;
241
242 uint32_t *fence = (uint32_t*)(map + fine->offset);
243 return *fence != 0;
244 }
245
246 static void si_fine_fence_set(struct si_context *ctx,
247 struct si_fine_fence *fine,
248 unsigned flags)
249 {
250 uint32_t *fence_ptr;
251
252 assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
253
254 /* Use cached system memory for the fence. */
255 u_upload_alloc(ctx->cached_gtt_allocator, 0, 4, 4,
256 &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
257 if (!fine->buf)
258 return;
259
260 *fence_ptr = 0;
261
262 if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
263 uint32_t value = 0x80000000;
264
265 si_cp_write_data(ctx, fine->buf, fine->offset, 4,
266 V_370_MEM, V_370_PFP, &value);
267 } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
268 uint64_t fence_va = fine->buf->gpu_address + fine->offset;
269
270 radeon_add_to_buffer_list(ctx, ctx->gfx_cs, fine->buf,
271 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
272 si_cp_release_mem(ctx,
273 V_028A90_BOTTOM_OF_PIPE_TS, 0,
274 EOP_DST_SEL_MEM, EOP_INT_SEL_NONE,
275 EOP_DATA_SEL_VALUE_32BIT,
276 NULL, fence_va, 0x80000000,
277 PIPE_QUERY_GPU_FINISHED);
278 } else {
279 assert(false);
280 }
281 }
282
283 static boolean si_fence_finish(struct pipe_screen *screen,
284 struct pipe_context *ctx,
285 struct pipe_fence_handle *fence,
286 uint64_t timeout)
287 {
288 struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
289 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
290 struct si_context *sctx;
291 int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
292
293 ctx = threaded_context_unwrap_sync(ctx);
294 sctx = (struct si_context*)(ctx ? ctx : NULL);
295
296 if (!util_queue_fence_is_signalled(&sfence->ready)) {
297 if (sfence->tc_token) {
298 /* Ensure that si_flush_from_st will be called for
299 * this fence, but only if we're in the API thread
300 * where the context is current.
301 *
302 * Note that the batch containing the flush may already
303 * be in flight in the driver thread, so the fence
304 * may not be ready yet when this call returns.
305 */
306 threaded_context_flush(ctx, sfence->tc_token,
307 timeout == 0);
308 }
309
310 if (!timeout)
311 return false;
312
313 if (timeout == PIPE_TIMEOUT_INFINITE) {
314 util_queue_fence_wait(&sfence->ready);
315 } else {
316 if (!util_queue_fence_wait_timeout(&sfence->ready, abs_timeout))
317 return false;
318 }
319
320 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
321 int64_t time = os_time_get_nano();
322 timeout = abs_timeout > time ? abs_timeout - time : 0;
323 }
324 }
325
326 if (sfence->sdma) {
327 if (!rws->fence_wait(rws, sfence->sdma, timeout))
328 return false;
329
330 /* Recompute the timeout after waiting. */
331 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
332 int64_t time = os_time_get_nano();
333 timeout = abs_timeout > time ? abs_timeout - time : 0;
334 }
335 }
336
337 if (!sfence->gfx)
338 return true;
339
340 if (sfence->fine.buf &&
341 si_fine_fence_signaled(rws, &sfence->fine)) {
342 rws->fence_reference(&sfence->gfx, NULL);
343 si_resource_reference(&sfence->fine.buf, NULL);
344 return true;
345 }
346
347 /* Flush the gfx IB if it hasn't been flushed yet. */
348 if (sctx && sfence->gfx_unflushed.ctx == sctx &&
349 sfence->gfx_unflushed.ib_index == sctx->num_gfx_cs_flushes) {
350 /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
351 * spec says:
352 *
353 * "If the sync object being blocked upon will not be
354 * signaled in finite time (for example, by an associated
355 * fence command issued previously, but not yet flushed to
356 * the graphics pipeline), then ClientWaitSync may hang
357 * forever. To help prevent this behavior, if
358 * ClientWaitSync is called and all of the following are
359 * true:
360 *
361 * * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
362 * * sync is unsignaled when ClientWaitSync is called,
363 * * and the calls to ClientWaitSync and FenceSync were
364 * issued from the same context,
365 *
366 * then the GL will behave as if the equivalent of Flush
367 * were inserted immediately after the creation of sync."
368 *
369 * This means we need to flush for such fences even when we're
370 * not going to wait.
371 */
372 si_flush_gfx_cs(sctx,
373 (timeout ? 0 : PIPE_FLUSH_ASYNC) |
374 RADEON_FLUSH_START_NEXT_GFX_IB_NOW,
375 NULL);
376 sfence->gfx_unflushed.ctx = NULL;
377
378 if (!timeout)
379 return false;
380
381 /* Recompute the timeout after all that. */
382 if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
383 int64_t time = os_time_get_nano();
384 timeout = abs_timeout > time ? abs_timeout - time : 0;
385 }
386 }
387
388 if (rws->fence_wait(rws, sfence->gfx, timeout))
389 return true;
390
391 /* Re-check in case the GPU is slow or hangs, but the commands before
392 * the fine-grained fence have completed. */
393 if (sfence->fine.buf &&
394 si_fine_fence_signaled(rws, &sfence->fine))
395 return true;
396
397 return false;
398 }
399
400 static void si_create_fence_fd(struct pipe_context *ctx,
401 struct pipe_fence_handle **pfence, int fd,
402 enum pipe_fd_type type)
403 {
404 struct si_screen *sscreen = (struct si_screen*)ctx->screen;
405 struct radeon_winsys *ws = sscreen->ws;
406 struct si_multi_fence *sfence;
407
408 *pfence = NULL;
409
410 sfence = si_create_multi_fence();
411 if (!sfence)
412 return;
413
414 switch (type) {
415 case PIPE_FD_TYPE_NATIVE_SYNC:
416 if (!sscreen->info.has_fence_to_handle)
417 goto finish;
418
419 sfence->gfx = ws->fence_import_sync_file(ws, fd);
420 break;
421
422 case PIPE_FD_TYPE_SYNCOBJ:
423 if (!sscreen->info.has_syncobj)
424 goto finish;
425
426 sfence->gfx = ws->fence_import_syncobj(ws, fd);
427 break;
428
429 default:
430 unreachable("bad fence fd type when importing");
431 }
432
433 finish:
434 if (!sfence->gfx) {
435 FREE(sfence);
436 return;
437 }
438
439 *pfence = (struct pipe_fence_handle*)sfence;
440 }
441
442 static int si_fence_get_fd(struct pipe_screen *screen,
443 struct pipe_fence_handle *fence)
444 {
445 struct si_screen *sscreen = (struct si_screen*)screen;
446 struct radeon_winsys *ws = sscreen->ws;
447 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
448 int gfx_fd = -1, sdma_fd = -1;
449
450 if (!sscreen->info.has_fence_to_handle)
451 return -1;
452
453 util_queue_fence_wait(&sfence->ready);
454
455 /* Deferred fences aren't supported. */
456 assert(!sfence->gfx_unflushed.ctx);
457 if (sfence->gfx_unflushed.ctx)
458 return -1;
459
460 if (sfence->sdma) {
461 sdma_fd = ws->fence_export_sync_file(ws, sfence->sdma);
462 if (sdma_fd == -1)
463 return -1;
464 }
465 if (sfence->gfx) {
466 gfx_fd = ws->fence_export_sync_file(ws, sfence->gfx);
467 if (gfx_fd == -1) {
468 if (sdma_fd != -1)
469 close(sdma_fd);
470 return -1;
471 }
472 }
473
474 /* If we don't have FDs at this point, it means we don't have fences
475 * either. */
476 if (sdma_fd == -1 && gfx_fd == -1)
477 return ws->export_signalled_sync_file(ws);
478 if (sdma_fd == -1)
479 return gfx_fd;
480 if (gfx_fd == -1)
481 return sdma_fd;
482
483 /* Get a fence that will be a combination of both fences. */
484 sync_accumulate("radeonsi", &gfx_fd, sdma_fd);
485 close(sdma_fd);
486 return gfx_fd;
487 }
488
489 static void si_flush_from_st(struct pipe_context *ctx,
490 struct pipe_fence_handle **fence,
491 unsigned flags)
492 {
493 struct pipe_screen *screen = ctx->screen;
494 struct si_context *sctx = (struct si_context *)ctx;
495 struct radeon_winsys *ws = sctx->ws;
496 struct pipe_fence_handle *gfx_fence = NULL;
497 struct pipe_fence_handle *sdma_fence = NULL;
498 bool deferred_fence = false;
499 struct si_fine_fence fine = {};
500 unsigned rflags = PIPE_FLUSH_ASYNC;
501
502 if (flags & PIPE_FLUSH_END_OF_FRAME)
503 rflags |= PIPE_FLUSH_END_OF_FRAME;
504
505 if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
506 assert(flags & PIPE_FLUSH_DEFERRED);
507 assert(fence);
508
509 si_fine_fence_set(sctx, &fine, flags);
510 }
511
512 /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
513 if (sctx->dma_cs)
514 si_flush_dma_cs(sctx, rflags, fence ? &sdma_fence : NULL);
515
516 if (!radeon_emitted(sctx->gfx_cs, sctx->initial_gfx_cs_size)) {
517 if (fence)
518 ws->fence_reference(&gfx_fence, sctx->last_gfx_fence);
519 if (!(flags & PIPE_FLUSH_DEFERRED))
520 ws->cs_sync_flush(sctx->gfx_cs);
521 } else {
522 /* Instead of flushing, create a deferred fence. Constraints:
523 * - The state tracker must allow a deferred flush.
524 * - The state tracker must request a fence.
525 * - fence_get_fd is not allowed.
526 * Thread safety in fence_finish must be ensured by the state tracker.
527 */
528 if (flags & PIPE_FLUSH_DEFERRED &&
529 !(flags & PIPE_FLUSH_FENCE_FD) &&
530 fence) {
531 gfx_fence = sctx->ws->cs_get_next_fence(sctx->gfx_cs);
532 deferred_fence = true;
533 } else {
534 si_flush_gfx_cs(sctx, rflags, fence ? &gfx_fence : NULL);
535 }
536 }
537
538 /* Both engines can signal out of order, so we need to keep both fences. */
539 if (fence) {
540 struct si_multi_fence *multi_fence;
541
542 if (flags & TC_FLUSH_ASYNC) {
543 multi_fence = (struct si_multi_fence *)*fence;
544 assert(multi_fence);
545 } else {
546 multi_fence = si_create_multi_fence();
547 if (!multi_fence) {
548 ws->fence_reference(&sdma_fence, NULL);
549 ws->fence_reference(&gfx_fence, NULL);
550 goto finish;
551 }
552
553 screen->fence_reference(screen, fence, NULL);
554 *fence = (struct pipe_fence_handle*)multi_fence;
555 }
556
557 /* If both fences are NULL, fence_finish will always return true. */
558 multi_fence->gfx = gfx_fence;
559 multi_fence->sdma = sdma_fence;
560
561 if (deferred_fence) {
562 multi_fence->gfx_unflushed.ctx = sctx;
563 multi_fence->gfx_unflushed.ib_index = sctx->num_gfx_cs_flushes;
564 }
565
566 multi_fence->fine = fine;
567 fine.buf = NULL;
568
569 if (flags & TC_FLUSH_ASYNC) {
570 util_queue_fence_signal(&multi_fence->ready);
571 tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
572 }
573 }
574 assert(!fine.buf);
575 finish:
576 if (!(flags & PIPE_FLUSH_DEFERRED)) {
577 if (sctx->dma_cs)
578 ws->cs_sync_flush(sctx->dma_cs);
579 ws->cs_sync_flush(sctx->gfx_cs);
580 }
581 }
582
583 static void si_fence_server_signal(struct pipe_context *ctx,
584 struct pipe_fence_handle *fence)
585 {
586 struct si_context *sctx = (struct si_context *)ctx;
587 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
588
589 /* We should have at least one syncobj to signal */
590 assert(sfence->sdma || sfence->gfx);
591
592 if (sfence->sdma)
593 si_add_syncobj_signal(sctx, sfence->sdma);
594 if (sfence->gfx)
595 si_add_syncobj_signal(sctx, sfence->gfx);
596
597 /**
598 * The spec does not require a flush here. We insert a flush
599 * because syncobj based signals are not directly placed into
600 * the command stream. Instead the signal happens when the
601 * submission associated with the syncobj finishes execution.
602 *
603 * Therefore, we must make sure that we flush the pipe to avoid
604 * new work being emitted and getting executed before the signal
605 * operation.
606 */
607 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
608 }
609
610 static void si_fence_server_sync(struct pipe_context *ctx,
611 struct pipe_fence_handle *fence)
612 {
613 struct si_context *sctx = (struct si_context *)ctx;
614 struct si_multi_fence *sfence = (struct si_multi_fence *)fence;
615
616 util_queue_fence_wait(&sfence->ready);
617
618 /* Unflushed fences from the same context are no-ops. */
619 if (sfence->gfx_unflushed.ctx &&
620 sfence->gfx_unflushed.ctx == sctx)
621 return;
622
623 /* All unflushed commands will not start execution before
624 * this fence dependency is signalled.
625 *
626 * Therefore we must flush before inserting the dependency
627 */
628 si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
629
630 if (sfence->sdma)
631 si_add_fence_dependency(sctx, sfence->sdma);
632 if (sfence->gfx)
633 si_add_fence_dependency(sctx, sfence->gfx);
634 }
635
636 void si_init_fence_functions(struct si_context *ctx)
637 {
638 ctx->b.flush = si_flush_from_st;
639 ctx->b.create_fence_fd = si_create_fence_fd;
640 ctx->b.fence_server_sync = si_fence_server_sync;
641 ctx->b.fence_server_signal = si_fence_server_signal;
642 }
643
644 void si_init_screen_fence_functions(struct si_screen *screen)
645 {
646 screen->b.fence_finish = si_fence_finish;
647 screen->b.fence_reference = si_fence_reference;
648 screen->b.fence_get_fd = si_fence_get_fd;
649 }