radeonsi: move a few r600_can_dump_shader calls to where they're needed
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * on the rights to use, copy, modify, merge, publish, distribute, sub
8 * license, and/or sell copies of the Software, and to permit persons to whom
9 * the Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
19 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
20 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Tom Stellard <thomas.stellard@amd.com>
25 * Michel Dänzer <michel.daenzer@amd.com>
26 * Christian König <christian.koenig@amd.com>
27 */
28
29 #include "gallivm/lp_bld_const.h"
30 #include "gallivm/lp_bld_gather.h"
31 #include "gallivm/lp_bld_intr.h"
32 #include "gallivm/lp_bld_logic.h"
33 #include "gallivm/lp_bld_arit.h"
34 #include "gallivm/lp_bld_bitarit.h"
35 #include "gallivm/lp_bld_flow.h"
36 #include "radeon/r600_cs.h"
37 #include "radeon/radeon_llvm.h"
38 #include "radeon/radeon_elf_util.h"
39 #include "radeon/radeon_llvm_emit.h"
40 #include "util/u_memory.h"
41 #include "util/u_pstipple.h"
42 #include "tgsi/tgsi_parse.h"
43 #include "tgsi/tgsi_util.h"
44 #include "tgsi/tgsi_dump.h"
45
46 #include "si_pipe.h"
47 #include "si_shader.h"
48 #include "sid.h"
49
50 #include <errno.h>
51
52 static const char *scratch_rsrc_dword0_symbol =
53 "SCRATCH_RSRC_DWORD0";
54
55 static const char *scratch_rsrc_dword1_symbol =
56 "SCRATCH_RSRC_DWORD1";
57
58 struct si_shader_output_values
59 {
60 LLVMValueRef values[4];
61 unsigned name;
62 unsigned sid;
63 };
64
65 struct si_shader_context
66 {
67 struct radeon_llvm_context radeon_bld;
68 struct si_shader *shader;
69 struct si_screen *screen;
70 unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */
71 bool is_gs_copy_shader;
72 int param_streamout_config;
73 int param_streamout_write_index;
74 int param_streamout_offset[4];
75 int param_vertex_id;
76 int param_rel_auto_id;
77 int param_vs_prim_id;
78 int param_instance_id;
79 int param_tes_u;
80 int param_tes_v;
81 int param_tes_rel_patch_id;
82 int param_tes_patch_id;
83 int param_es2gs_offset;
84 LLVMTargetMachineRef tm;
85 LLVMValueRef const_md;
86 LLVMValueRef const_buffers[SI_NUM_CONST_BUFFERS];
87 LLVMValueRef lds;
88 LLVMValueRef *constants[SI_NUM_CONST_BUFFERS];
89 LLVMValueRef sampler_views[SI_NUM_SAMPLER_VIEWS];
90 LLVMValueRef sampler_states[SI_NUM_SAMPLER_STATES];
91 LLVMValueRef so_buffers[4];
92 LLVMValueRef esgs_ring;
93 LLVMValueRef gsvs_ring[4];
94 LLVMValueRef gs_next_vertex[4];
95 };
96
97 static struct si_shader_context * si_shader_context(
98 struct lp_build_tgsi_context * bld_base)
99 {
100 return (struct si_shader_context *)bld_base;
101 }
102
103
104 #define PERSPECTIVE_BASE 0
105 #define LINEAR_BASE 9
106
107 #define SAMPLE_OFFSET 0
108 #define CENTER_OFFSET 2
109 #define CENTROID_OFSET 4
110
111 #define USE_SGPR_MAX_SUFFIX_LEN 5
112 #define CONST_ADDR_SPACE 2
113 #define LOCAL_ADDR_SPACE 3
114 #define USER_SGPR_ADDR_SPACE 8
115
116
117 #define SENDMSG_GS 2
118 #define SENDMSG_GS_DONE 3
119
120 #define SENDMSG_GS_OP_NOP (0 << 4)
121 #define SENDMSG_GS_OP_CUT (1 << 4)
122 #define SENDMSG_GS_OP_EMIT (2 << 4)
123 #define SENDMSG_GS_OP_EMIT_CUT (3 << 4)
124
125 /**
126 * Returns a unique index for a semantic name and index. The index must be
127 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
128 * calculated.
129 */
130 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
131 {
132 switch (semantic_name) {
133 case TGSI_SEMANTIC_POSITION:
134 return 0;
135 case TGSI_SEMANTIC_PSIZE:
136 return 1;
137 case TGSI_SEMANTIC_CLIPDIST:
138 assert(index <= 1);
139 return 2 + index;
140 case TGSI_SEMANTIC_GENERIC:
141 if (index <= 63-4)
142 return 4 + index;
143 else
144 /* same explanation as in the default statement,
145 * the only user hitting this is st/nine.
146 */
147 return 0;
148
149 /* patch indices are completely separate and thus start from 0 */
150 case TGSI_SEMANTIC_TESSOUTER:
151 return 0;
152 case TGSI_SEMANTIC_TESSINNER:
153 return 1;
154 case TGSI_SEMANTIC_PATCH:
155 return 2 + index;
156
157 default:
158 /* Don't fail here. The result of this function is only used
159 * for LS, TCS, TES, and GS, where legacy GL semantics can't
160 * occur, but this function is called for all vertex shaders
161 * before it's known whether LS will be compiled or not.
162 */
163 return 0;
164 }
165 }
166
167 /**
168 * Get the value of a shader input parameter and extract a bitfield.
169 */
170 static LLVMValueRef unpack_param(struct si_shader_context *si_shader_ctx,
171 unsigned param, unsigned rshift,
172 unsigned bitwidth)
173 {
174 struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
175 LLVMValueRef value = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
176 param);
177
178 if (rshift)
179 value = LLVMBuildLShr(gallivm->builder, value,
180 lp_build_const_int32(gallivm, rshift), "");
181
182 if (rshift + bitwidth < 32) {
183 unsigned mask = (1 << bitwidth) - 1;
184 value = LLVMBuildAnd(gallivm->builder, value,
185 lp_build_const_int32(gallivm, mask), "");
186 }
187
188 return value;
189 }
190
191 static LLVMValueRef get_rel_patch_id(struct si_shader_context *si_shader_ctx)
192 {
193 switch (si_shader_ctx->type) {
194 case TGSI_PROCESSOR_TESS_CTRL:
195 return unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 0, 8);
196
197 case TGSI_PROCESSOR_TESS_EVAL:
198 return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
199 si_shader_ctx->param_tes_rel_patch_id);
200
201 default:
202 assert(0);
203 return NULL;
204 }
205 }
206
207 /* Tessellation shaders pass outputs to the next shader using LDS.
208 *
209 * LS outputs = TCS inputs
210 * TCS outputs = TES inputs
211 *
212 * The LDS layout is:
213 * - TCS inputs for patch 0
214 * - TCS inputs for patch 1
215 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
216 * - ...
217 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
218 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
219 * - TCS outputs for patch 1
220 * - Per-patch TCS outputs for patch 1
221 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
222 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
223 * - ...
224 *
225 * All three shaders VS(LS), TCS, TES share the same LDS space.
226 */
227
228 static LLVMValueRef
229 get_tcs_in_patch_stride(struct si_shader_context *si_shader_ctx)
230 {
231 if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX)
232 return unpack_param(si_shader_ctx, SI_PARAM_LS_OUT_LAYOUT, 0, 13);
233 else if (si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL)
234 return unpack_param(si_shader_ctx, SI_PARAM_TCS_IN_LAYOUT, 0, 13);
235 else {
236 assert(0);
237 return NULL;
238 }
239 }
240
241 static LLVMValueRef
242 get_tcs_out_patch_stride(struct si_shader_context *si_shader_ctx)
243 {
244 return unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 0, 13);
245 }
246
247 static LLVMValueRef
248 get_tcs_out_patch0_offset(struct si_shader_context *si_shader_ctx)
249 {
250 return lp_build_mul_imm(&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld,
251 unpack_param(si_shader_ctx,
252 SI_PARAM_TCS_OUT_OFFSETS,
253 0, 16),
254 4);
255 }
256
257 static LLVMValueRef
258 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *si_shader_ctx)
259 {
260 return lp_build_mul_imm(&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld,
261 unpack_param(si_shader_ctx,
262 SI_PARAM_TCS_OUT_OFFSETS,
263 16, 16),
264 4);
265 }
266
267 static LLVMValueRef
268 get_tcs_in_current_patch_offset(struct si_shader_context *si_shader_ctx)
269 {
270 struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
271 LLVMValueRef patch_stride = get_tcs_in_patch_stride(si_shader_ctx);
272 LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx);
273
274 return LLVMBuildMul(gallivm->builder, patch_stride, rel_patch_id, "");
275 }
276
277 static LLVMValueRef
278 get_tcs_out_current_patch_offset(struct si_shader_context *si_shader_ctx)
279 {
280 struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
281 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(si_shader_ctx);
282 LLVMValueRef patch_stride = get_tcs_out_patch_stride(si_shader_ctx);
283 LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx);
284
285 return LLVMBuildAdd(gallivm->builder, patch0_offset,
286 LLVMBuildMul(gallivm->builder, patch_stride,
287 rel_patch_id, ""),
288 "");
289 }
290
291 static LLVMValueRef
292 get_tcs_out_current_patch_data_offset(struct si_shader_context *si_shader_ctx)
293 {
294 struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
295 LLVMValueRef patch0_patch_data_offset =
296 get_tcs_out_patch0_patch_data_offset(si_shader_ctx);
297 LLVMValueRef patch_stride = get_tcs_out_patch_stride(si_shader_ctx);
298 LLVMValueRef rel_patch_id = get_rel_patch_id(si_shader_ctx);
299
300 return LLVMBuildAdd(gallivm->builder, patch0_patch_data_offset,
301 LLVMBuildMul(gallivm->builder, patch_stride,
302 rel_patch_id, ""),
303 "");
304 }
305
306 static void build_indexed_store(struct si_shader_context *si_shader_ctx,
307 LLVMValueRef base_ptr, LLVMValueRef index,
308 LLVMValueRef value)
309 {
310 struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
311 struct gallivm_state *gallivm = bld_base->base.gallivm;
312 LLVMValueRef indices[2], pointer;
313
314 indices[0] = bld_base->uint_bld.zero;
315 indices[1] = index;
316
317 pointer = LLVMBuildGEP(gallivm->builder, base_ptr, indices, 2, "");
318 LLVMBuildStore(gallivm->builder, value, pointer);
319 }
320
321 /**
322 * Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
323 * It's equivalent to doing a load from &base_ptr[index].
324 *
325 * \param base_ptr Where the array starts.
326 * \param index The element index into the array.
327 */
328 static LLVMValueRef build_indexed_load(struct si_shader_context *si_shader_ctx,
329 LLVMValueRef base_ptr, LLVMValueRef index)
330 {
331 struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
332 struct gallivm_state *gallivm = bld_base->base.gallivm;
333 LLVMValueRef indices[2], pointer;
334
335 indices[0] = bld_base->uint_bld.zero;
336 indices[1] = index;
337
338 pointer = LLVMBuildGEP(gallivm->builder, base_ptr, indices, 2, "");
339 return LLVMBuildLoad(gallivm->builder, pointer, "");
340 }
341
342 /**
343 * Do a load from &base_ptr[index], but also add a flag that it's loading
344 * a constant.
345 */
346 static LLVMValueRef build_indexed_load_const(
347 struct si_shader_context * si_shader_ctx,
348 LLVMValueRef base_ptr, LLVMValueRef index)
349 {
350 LLVMValueRef result = build_indexed_load(si_shader_ctx, base_ptr, index);
351 LLVMSetMetadata(result, 1, si_shader_ctx->const_md);
352 return result;
353 }
354
355 static LLVMValueRef get_instance_index_for_fetch(
356 struct radeon_llvm_context * radeon_bld,
357 unsigned divisor)
358 {
359 struct si_shader_context *si_shader_ctx =
360 si_shader_context(&radeon_bld->soa.bld_base);
361 struct gallivm_state * gallivm = radeon_bld->soa.bld_base.base.gallivm;
362
363 LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn,
364 si_shader_ctx->param_instance_id);
365
366 /* The division must be done before START_INSTANCE is added. */
367 if (divisor > 1)
368 result = LLVMBuildUDiv(gallivm->builder, result,
369 lp_build_const_int32(gallivm, divisor), "");
370
371 return LLVMBuildAdd(gallivm->builder, result, LLVMGetParam(
372 radeon_bld->main_fn, SI_PARAM_START_INSTANCE), "");
373 }
374
375 static void declare_input_vs(
376 struct radeon_llvm_context *radeon_bld,
377 unsigned input_index,
378 const struct tgsi_full_declaration *decl)
379 {
380 struct lp_build_context *base = &radeon_bld->soa.bld_base.base;
381 struct gallivm_state *gallivm = base->gallivm;
382 struct si_shader_context *si_shader_ctx =
383 si_shader_context(&radeon_bld->soa.bld_base);
384 unsigned divisor = si_shader_ctx->shader->key.vs.instance_divisors[input_index];
385
386 unsigned chan;
387
388 LLVMValueRef t_list_ptr;
389 LLVMValueRef t_offset;
390 LLVMValueRef t_list;
391 LLVMValueRef attribute_offset;
392 LLVMValueRef buffer_index;
393 LLVMValueRef args[3];
394 LLVMTypeRef vec4_type;
395 LLVMValueRef input;
396
397 /* Load the T list */
398 t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_VERTEX_BUFFERS);
399
400 t_offset = lp_build_const_int32(gallivm, input_index);
401
402 t_list = build_indexed_load_const(si_shader_ctx, t_list_ptr, t_offset);
403
404 /* Build the attribute offset */
405 attribute_offset = lp_build_const_int32(gallivm, 0);
406
407 if (divisor) {
408 /* Build index from instance ID, start instance and divisor */
409 si_shader_ctx->shader->uses_instanceid = true;
410 buffer_index = get_instance_index_for_fetch(&si_shader_ctx->radeon_bld, divisor);
411 } else {
412 /* Load the buffer index for vertices. */
413 LLVMValueRef vertex_id = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
414 si_shader_ctx->param_vertex_id);
415 LLVMValueRef base_vertex = LLVMGetParam(radeon_bld->main_fn,
416 SI_PARAM_BASE_VERTEX);
417 buffer_index = LLVMBuildAdd(gallivm->builder, base_vertex, vertex_id, "");
418 }
419
420 vec4_type = LLVMVectorType(base->elem_type, 4);
421 args[0] = t_list;
422 args[1] = attribute_offset;
423 args[2] = buffer_index;
424 input = lp_build_intrinsic(gallivm->builder,
425 "llvm.SI.vs.load.input", vec4_type, args, 3,
426 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
427
428 /* Break up the vec4 into individual components */
429 for (chan = 0; chan < 4; chan++) {
430 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
431 /* XXX: Use a helper function for this. There is one in
432 * tgsi_llvm.c. */
433 si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] =
434 LLVMBuildExtractElement(gallivm->builder,
435 input, llvm_chan, "");
436 }
437 }
438
439 static LLVMValueRef get_primitive_id(struct lp_build_tgsi_context *bld_base,
440 unsigned swizzle)
441 {
442 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
443
444 if (swizzle > 0)
445 return bld_base->uint_bld.zero;
446
447 switch (si_shader_ctx->type) {
448 case TGSI_PROCESSOR_VERTEX:
449 return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
450 si_shader_ctx->param_vs_prim_id);
451 case TGSI_PROCESSOR_TESS_CTRL:
452 return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
453 SI_PARAM_PATCH_ID);
454 case TGSI_PROCESSOR_TESS_EVAL:
455 return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
456 si_shader_ctx->param_tes_patch_id);
457 case TGSI_PROCESSOR_GEOMETRY:
458 return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
459 SI_PARAM_PRIMITIVE_ID);
460 default:
461 assert(0);
462 return bld_base->uint_bld.zero;
463 }
464 }
465
466 /**
467 * Return the value of tgsi_ind_register for indexing.
468 * This is the indirect index with the constant offset added to it.
469 */
470 static LLVMValueRef get_indirect_index(struct si_shader_context *si_shader_ctx,
471 const struct tgsi_ind_register *ind,
472 int rel_index)
473 {
474 struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
475 LLVMValueRef result;
476
477 result = si_shader_ctx->radeon_bld.soa.addr[ind->Index][ind->Swizzle];
478 result = LLVMBuildLoad(gallivm->builder, result, "");
479 result = LLVMBuildAdd(gallivm->builder, result,
480 lp_build_const_int32(gallivm, rel_index), "");
481 return result;
482 }
483
484 /**
485 * Calculate a dword address given an input or output register and a stride.
486 */
487 static LLVMValueRef get_dw_address(struct si_shader_context *si_shader_ctx,
488 const struct tgsi_full_dst_register *dst,
489 const struct tgsi_full_src_register *src,
490 LLVMValueRef vertex_dw_stride,
491 LLVMValueRef base_addr)
492 {
493 struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
494 struct tgsi_shader_info *info = &si_shader_ctx->shader->selector->info;
495 ubyte *name, *index, *array_first;
496 int first, param;
497 struct tgsi_full_dst_register reg;
498
499 /* Set the register description. The address computation is the same
500 * for sources and destinations. */
501 if (src) {
502 reg.Register.File = src->Register.File;
503 reg.Register.Index = src->Register.Index;
504 reg.Register.Indirect = src->Register.Indirect;
505 reg.Register.Dimension = src->Register.Dimension;
506 reg.Indirect = src->Indirect;
507 reg.Dimension = src->Dimension;
508 reg.DimIndirect = src->DimIndirect;
509 } else
510 reg = *dst;
511
512 /* If the register is 2-dimensional (e.g. an array of vertices
513 * in a primitive), calculate the base address of the vertex. */
514 if (reg.Register.Dimension) {
515 LLVMValueRef index;
516
517 if (reg.Dimension.Indirect)
518 index = get_indirect_index(si_shader_ctx, &reg.DimIndirect,
519 reg.Dimension.Index);
520 else
521 index = lp_build_const_int32(gallivm, reg.Dimension.Index);
522
523 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
524 LLVMBuildMul(gallivm->builder, index,
525 vertex_dw_stride, ""), "");
526 }
527
528 /* Get information about the register. */
529 if (reg.Register.File == TGSI_FILE_INPUT) {
530 name = info->input_semantic_name;
531 index = info->input_semantic_index;
532 array_first = info->input_array_first;
533 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
534 name = info->output_semantic_name;
535 index = info->output_semantic_index;
536 array_first = info->output_array_first;
537 } else {
538 assert(0);
539 return NULL;
540 }
541
542 if (reg.Register.Indirect) {
543 /* Add the relative address of the element. */
544 LLVMValueRef ind_index;
545
546 if (reg.Indirect.ArrayID)
547 first = array_first[reg.Indirect.ArrayID];
548 else
549 first = reg.Register.Index;
550
551 ind_index = get_indirect_index(si_shader_ctx, &reg.Indirect,
552 reg.Register.Index - first);
553
554 base_addr = LLVMBuildAdd(gallivm->builder, base_addr,
555 LLVMBuildMul(gallivm->builder, ind_index,
556 lp_build_const_int32(gallivm, 4), ""), "");
557
558 param = si_shader_io_get_unique_index(name[first], index[first]);
559 } else {
560 param = si_shader_io_get_unique_index(name[reg.Register.Index],
561 index[reg.Register.Index]);
562 }
563
564 /* Add the base address of the element. */
565 return LLVMBuildAdd(gallivm->builder, base_addr,
566 lp_build_const_int32(gallivm, param * 4), "");
567 }
568
569 /**
570 * Load from LDS.
571 *
572 * \param type output value type
573 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
574 * \param dw_addr address in dwords
575 */
576 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
577 enum tgsi_opcode_type type, unsigned swizzle,
578 LLVMValueRef dw_addr)
579 {
580 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
581 struct gallivm_state *gallivm = bld_base->base.gallivm;
582 LLVMValueRef value;
583
584 if (swizzle == ~0) {
585 LLVMValueRef values[TGSI_NUM_CHANNELS];
586
587 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
588 values[chan] = lds_load(bld_base, type, chan, dw_addr);
589
590 return lp_build_gather_values(bld_base->base.gallivm, values,
591 TGSI_NUM_CHANNELS);
592 }
593
594 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
595 lp_build_const_int32(gallivm, swizzle));
596
597 value = build_indexed_load(si_shader_ctx, si_shader_ctx->lds, dw_addr);
598 if (type == TGSI_TYPE_DOUBLE) {
599 LLVMValueRef value2;
600 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
601 lp_build_const_int32(gallivm, swizzle + 1));
602 value2 = build_indexed_load(si_shader_ctx, si_shader_ctx->lds, dw_addr);
603 return radeon_llvm_emit_fetch_double(bld_base, value, value2);
604 }
605
606 return LLVMBuildBitCast(gallivm->builder, value,
607 tgsi2llvmtype(bld_base, type), "");
608 }
609
610 /**
611 * Store to LDS.
612 *
613 * \param swizzle offset (typically 0..3)
614 * \param dw_addr address in dwords
615 * \param value value to store
616 */
617 static void lds_store(struct lp_build_tgsi_context * bld_base,
618 unsigned swizzle, LLVMValueRef dw_addr,
619 LLVMValueRef value)
620 {
621 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
622 struct gallivm_state *gallivm = bld_base->base.gallivm;
623
624 dw_addr = lp_build_add(&bld_base->uint_bld, dw_addr,
625 lp_build_const_int32(gallivm, swizzle));
626
627 value = LLVMBuildBitCast(gallivm->builder, value,
628 LLVMInt32TypeInContext(gallivm->context), "");
629 build_indexed_store(si_shader_ctx, si_shader_ctx->lds,
630 dw_addr, value);
631 }
632
633 static LLVMValueRef fetch_input_tcs(
634 struct lp_build_tgsi_context *bld_base,
635 const struct tgsi_full_src_register *reg,
636 enum tgsi_opcode_type type, unsigned swizzle)
637 {
638 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
639 LLVMValueRef dw_addr, stride;
640
641 stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_IN_LAYOUT, 13, 8);
642 dw_addr = get_tcs_in_current_patch_offset(si_shader_ctx);
643 dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr);
644
645 return lds_load(bld_base, type, swizzle, dw_addr);
646 }
647
648 static LLVMValueRef fetch_output_tcs(
649 struct lp_build_tgsi_context *bld_base,
650 const struct tgsi_full_src_register *reg,
651 enum tgsi_opcode_type type, unsigned swizzle)
652 {
653 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
654 LLVMValueRef dw_addr, stride;
655
656 if (reg->Register.Dimension) {
657 stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
658 dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx);
659 dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr);
660 } else {
661 dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx);
662 dw_addr = get_dw_address(si_shader_ctx, NULL, reg, NULL, dw_addr);
663 }
664
665 return lds_load(bld_base, type, swizzle, dw_addr);
666 }
667
668 static LLVMValueRef fetch_input_tes(
669 struct lp_build_tgsi_context *bld_base,
670 const struct tgsi_full_src_register *reg,
671 enum tgsi_opcode_type type, unsigned swizzle)
672 {
673 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
674 LLVMValueRef dw_addr, stride;
675
676 if (reg->Register.Dimension) {
677 stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
678 dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx);
679 dw_addr = get_dw_address(si_shader_ctx, NULL, reg, stride, dw_addr);
680 } else {
681 dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx);
682 dw_addr = get_dw_address(si_shader_ctx, NULL, reg, NULL, dw_addr);
683 }
684
685 return lds_load(bld_base, type, swizzle, dw_addr);
686 }
687
688 static void store_output_tcs(struct lp_build_tgsi_context * bld_base,
689 const struct tgsi_full_instruction * inst,
690 const struct tgsi_opcode_info * info,
691 LLVMValueRef dst[4])
692 {
693 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
694 const struct tgsi_full_dst_register *reg = &inst->Dst[0];
695 unsigned chan_index;
696 LLVMValueRef dw_addr, stride;
697
698 /* Only handle per-patch and per-vertex outputs here.
699 * Vectors will be lowered to scalars and this function will be called again.
700 */
701 if (reg->Register.File != TGSI_FILE_OUTPUT ||
702 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
703 radeon_llvm_emit_store(bld_base, inst, info, dst);
704 return;
705 }
706
707 if (reg->Register.Dimension) {
708 stride = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 13, 8);
709 dw_addr = get_tcs_out_current_patch_offset(si_shader_ctx);
710 dw_addr = get_dw_address(si_shader_ctx, reg, NULL, stride, dw_addr);
711 } else {
712 dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx);
713 dw_addr = get_dw_address(si_shader_ctx, reg, NULL, NULL, dw_addr);
714 }
715
716 TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
717 LLVMValueRef value = dst[chan_index];
718
719 if (inst->Instruction.Saturate)
720 value = radeon_llvm_saturate(bld_base, value);
721
722 lds_store(bld_base, chan_index, dw_addr, value);
723 }
724 }
725
726 static LLVMValueRef fetch_input_gs(
727 struct lp_build_tgsi_context *bld_base,
728 const struct tgsi_full_src_register *reg,
729 enum tgsi_opcode_type type,
730 unsigned swizzle)
731 {
732 struct lp_build_context *base = &bld_base->base;
733 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
734 struct si_shader *shader = si_shader_ctx->shader;
735 struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
736 struct gallivm_state *gallivm = base->gallivm;
737 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
738 LLVMValueRef vtx_offset;
739 LLVMValueRef args[9];
740 unsigned vtx_offset_param;
741 struct tgsi_shader_info *info = &shader->selector->info;
742 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
743 unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
744 unsigned param;
745 LLVMValueRef value;
746
747 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
748 return get_primitive_id(bld_base, swizzle);
749
750 if (!reg->Register.Dimension)
751 return NULL;
752
753 if (swizzle == ~0) {
754 LLVMValueRef values[TGSI_NUM_CHANNELS];
755 unsigned chan;
756 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
757 values[chan] = fetch_input_gs(bld_base, reg, type, chan);
758 }
759 return lp_build_gather_values(bld_base->base.gallivm, values,
760 TGSI_NUM_CHANNELS);
761 }
762
763 /* Get the vertex offset parameter */
764 vtx_offset_param = reg->Dimension.Index;
765 if (vtx_offset_param < 2) {
766 vtx_offset_param += SI_PARAM_VTX0_OFFSET;
767 } else {
768 assert(vtx_offset_param < 6);
769 vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
770 }
771 vtx_offset = lp_build_mul_imm(uint,
772 LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
773 vtx_offset_param),
774 4);
775
776 param = si_shader_io_get_unique_index(semantic_name, semantic_index);
777 args[0] = si_shader_ctx->esgs_ring;
778 args[1] = vtx_offset;
779 args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle) * 256);
780 args[3] = uint->zero;
781 args[4] = uint->one; /* OFFEN */
782 args[5] = uint->zero; /* IDXEN */
783 args[6] = uint->one; /* GLC */
784 args[7] = uint->zero; /* SLC */
785 args[8] = uint->zero; /* TFE */
786
787 value = lp_build_intrinsic(gallivm->builder,
788 "llvm.SI.buffer.load.dword.i32.i32",
789 i32, args, 9,
790 LLVMReadOnlyAttribute | LLVMNoUnwindAttribute);
791 if (type == TGSI_TYPE_DOUBLE) {
792 LLVMValueRef value2;
793 args[2] = lp_build_const_int32(gallivm, (param * 4 + swizzle + 1) * 256);
794 value2 = lp_build_intrinsic(gallivm->builder,
795 "llvm.SI.buffer.load.dword.i32.i32",
796 i32, args, 9,
797 LLVMReadOnlyAttribute | LLVMNoUnwindAttribute);
798 return radeon_llvm_emit_fetch_double(bld_base,
799 value, value2);
800 }
801 return LLVMBuildBitCast(gallivm->builder,
802 value,
803 tgsi2llvmtype(bld_base, type), "");
804 }
805
806 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
807 {
808 switch (interpolate) {
809 case TGSI_INTERPOLATE_CONSTANT:
810 return 0;
811
812 case TGSI_INTERPOLATE_LINEAR:
813 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
814 return SI_PARAM_LINEAR_SAMPLE;
815 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
816 return SI_PARAM_LINEAR_CENTROID;
817 else
818 return SI_PARAM_LINEAR_CENTER;
819 break;
820 case TGSI_INTERPOLATE_COLOR:
821 case TGSI_INTERPOLATE_PERSPECTIVE:
822 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
823 return SI_PARAM_PERSP_SAMPLE;
824 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
825 return SI_PARAM_PERSP_CENTROID;
826 else
827 return SI_PARAM_PERSP_CENTER;
828 break;
829 default:
830 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
831 return -1;
832 }
833 }
834
835 /* This shouldn't be used by explicit INTERP opcodes. */
836 static unsigned select_interp_param(struct si_shader_context *si_shader_ctx,
837 unsigned param)
838 {
839 if (!si_shader_ctx->shader->key.ps.force_persample_interp)
840 return param;
841
842 /* If the shader doesn't use center/centroid, just return the parameter.
843 *
844 * If the shader only uses one set of (i,j), "si_emit_spi_ps_input" can
845 * switch between center/centroid and sample without shader changes.
846 */
847 switch (param) {
848 case SI_PARAM_PERSP_CENTROID:
849 case SI_PARAM_PERSP_CENTER:
850 return SI_PARAM_PERSP_SAMPLE;
851
852 case SI_PARAM_LINEAR_CENTROID:
853 case SI_PARAM_LINEAR_CENTER:
854 return SI_PARAM_LINEAR_SAMPLE;
855
856 default:
857 return param;
858 }
859 }
860
861 /**
862 * Interpolate a fragment shader input.
863 *
864 * @param si_shader_ctx context
865 * @param input_index index of the input in hardware
866 * @param semantic_name TGSI_SEMANTIC_*
867 * @param semantic_index semantic index
868 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
869 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
870 * @param interp_param interpolation weights (i,j)
871 * @param prim_mask SI_PARAM_PRIM_MASK
872 * @param face SI_PARAM_FRONT_FACE
873 * @param result the return value (4 components)
874 */
875 static void interp_fs_input(struct si_shader_context *si_shader_ctx,
876 unsigned input_index,
877 unsigned semantic_name,
878 unsigned semantic_index,
879 unsigned num_interp_inputs,
880 unsigned colors_read_mask,
881 LLVMValueRef interp_param,
882 LLVMValueRef prim_mask,
883 LLVMValueRef face,
884 LLVMValueRef result[4])
885 {
886 struct lp_build_context *base = &si_shader_ctx->radeon_bld.soa.bld_base.base;
887 struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
888 struct gallivm_state *gallivm = base->gallivm;
889 LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context);
890 const char * intr_name;
891 LLVMValueRef attr_number;
892
893 unsigned chan;
894
895 attr_number = lp_build_const_int32(gallivm, input_index);
896
897 /* fs.constant returns the param from the middle vertex, so it's not
898 * really useful for flat shading. It's meant to be used for custom
899 * interpolation (but the intrinsic can't fetch from the other two
900 * vertices).
901 *
902 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
903 * to do the right thing. The only reason we use fs.constant is that
904 * fs.interp cannot be used on integers, because they can be equal
905 * to NaN.
906 */
907 intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
908
909 if (semantic_name == TGSI_SEMANTIC_COLOR &&
910 si_shader_ctx->shader->key.ps.color_two_side) {
911 LLVMValueRef args[4];
912 LLVMValueRef is_face_positive;
913 LLVMValueRef back_attr_number;
914
915 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
916 * otherwise it's at offset "num_inputs".
917 */
918 unsigned back_attr_offset = num_interp_inputs;
919 if (semantic_index == 1 && colors_read_mask & 0xf)
920 back_attr_offset += 1;
921
922 back_attr_number = lp_build_const_int32(gallivm, back_attr_offset);
923
924 is_face_positive = LLVMBuildICmp(gallivm->builder, LLVMIntNE,
925 face, uint->zero, "");
926
927 args[2] = prim_mask;
928 args[3] = interp_param;
929 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
930 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
931 LLVMValueRef front, back;
932
933 args[0] = llvm_chan;
934 args[1] = attr_number;
935 front = lp_build_intrinsic(gallivm->builder, intr_name,
936 input_type, args, args[3] ? 4 : 3,
937 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
938
939 args[1] = back_attr_number;
940 back = lp_build_intrinsic(gallivm->builder, intr_name,
941 input_type, args, args[3] ? 4 : 3,
942 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
943
944 result[chan] = LLVMBuildSelect(gallivm->builder,
945 is_face_positive,
946 front,
947 back,
948 "");
949 }
950 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
951 LLVMValueRef args[4];
952
953 args[0] = uint->zero;
954 args[1] = attr_number;
955 args[2] = prim_mask;
956 args[3] = interp_param;
957 result[0] = lp_build_intrinsic(gallivm->builder, intr_name,
958 input_type, args, args[3] ? 4 : 3,
959 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
960 result[1] =
961 result[2] = lp_build_const_float(gallivm, 0.0f);
962 result[3] = lp_build_const_float(gallivm, 1.0f);
963 } else {
964 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
965 LLVMValueRef args[4];
966 LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
967
968 args[0] = llvm_chan;
969 args[1] = attr_number;
970 args[2] = prim_mask;
971 args[3] = interp_param;
972 result[chan] = lp_build_intrinsic(gallivm->builder, intr_name,
973 input_type, args, args[3] ? 4 : 3,
974 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
975 }
976 }
977 }
978
979 static void declare_input_fs(
980 struct radeon_llvm_context *radeon_bld,
981 unsigned input_index,
982 const struct tgsi_full_declaration *decl)
983 {
984 struct si_shader_context *si_shader_ctx =
985 si_shader_context(&radeon_bld->soa.bld_base);
986 struct si_shader *shader = si_shader_ctx->shader;
987 LLVMValueRef main_fn = radeon_bld->main_fn;
988 LLVMValueRef interp_param = NULL;
989 int interp_param_idx;
990
991 interp_param_idx = lookup_interp_param_index(decl->Interp.Interpolate,
992 decl->Interp.Location);
993 if (interp_param_idx == -1)
994 return;
995 else if (interp_param_idx) {
996 interp_param_idx = select_interp_param(si_shader_ctx,
997 interp_param_idx);
998 interp_param = LLVMGetParam(main_fn, interp_param_idx);
999 }
1000
1001 interp_fs_input(si_shader_ctx, input_index, decl->Semantic.Name,
1002 decl->Semantic.Index, shader->selector->info.num_inputs,
1003 shader->selector->info.colors_read, interp_param,
1004 LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK),
1005 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1006 &radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)]);
1007 }
1008
1009 static LLVMValueRef get_sample_id(struct radeon_llvm_context *radeon_bld)
1010 {
1011 return unpack_param(si_shader_context(&radeon_bld->soa.bld_base),
1012 SI_PARAM_ANCILLARY, 8, 4);
1013 }
1014
1015 /**
1016 * Load a dword from a constant buffer.
1017 */
1018 static LLVMValueRef buffer_load_const(LLVMBuilderRef builder, LLVMValueRef resource,
1019 LLVMValueRef offset, LLVMTypeRef return_type)
1020 {
1021 LLVMValueRef args[2] = {resource, offset};
1022
1023 return lp_build_intrinsic(builder, "llvm.SI.load.const", return_type, args, 2,
1024 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
1025 }
1026
1027 static LLVMValueRef load_sample_position(struct radeon_llvm_context *radeon_bld, LLVMValueRef sample_id)
1028 {
1029 struct si_shader_context *si_shader_ctx =
1030 si_shader_context(&radeon_bld->soa.bld_base);
1031 struct lp_build_context *uint_bld = &radeon_bld->soa.bld_base.uint_bld;
1032 struct gallivm_state *gallivm = &radeon_bld->gallivm;
1033 LLVMBuilderRef builder = gallivm->builder;
1034 LLVMValueRef desc = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST_BUFFERS);
1035 LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_DRIVER_STATE_CONST_BUF);
1036 LLVMValueRef resource = build_indexed_load_const(si_shader_ctx, desc, buf_index);
1037
1038 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
1039 LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, sample_id, 8);
1040 LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), "");
1041
1042 LLVMValueRef pos[4] = {
1043 buffer_load_const(builder, resource, offset0, radeon_bld->soa.bld_base.base.elem_type),
1044 buffer_load_const(builder, resource, offset1, radeon_bld->soa.bld_base.base.elem_type),
1045 lp_build_const_float(gallivm, 0),
1046 lp_build_const_float(gallivm, 0)
1047 };
1048
1049 return lp_build_gather_values(gallivm, pos, 4);
1050 }
1051
1052 static void declare_system_value(
1053 struct radeon_llvm_context * radeon_bld,
1054 unsigned index,
1055 const struct tgsi_full_declaration *decl)
1056 {
1057 struct si_shader_context *si_shader_ctx =
1058 si_shader_context(&radeon_bld->soa.bld_base);
1059 struct lp_build_context *bld = &radeon_bld->soa.bld_base.base;
1060 struct gallivm_state *gallivm = &radeon_bld->gallivm;
1061 LLVMValueRef value = 0;
1062
1063 switch (decl->Semantic.Name) {
1064 case TGSI_SEMANTIC_INSTANCEID:
1065 value = LLVMGetParam(radeon_bld->main_fn,
1066 si_shader_ctx->param_instance_id);
1067 break;
1068
1069 case TGSI_SEMANTIC_VERTEXID:
1070 value = LLVMBuildAdd(gallivm->builder,
1071 LLVMGetParam(radeon_bld->main_fn,
1072 si_shader_ctx->param_vertex_id),
1073 LLVMGetParam(radeon_bld->main_fn,
1074 SI_PARAM_BASE_VERTEX), "");
1075 break;
1076
1077 case TGSI_SEMANTIC_VERTEXID_NOBASE:
1078 value = LLVMGetParam(radeon_bld->main_fn,
1079 si_shader_ctx->param_vertex_id);
1080 break;
1081
1082 case TGSI_SEMANTIC_BASEVERTEX:
1083 value = LLVMGetParam(radeon_bld->main_fn,
1084 SI_PARAM_BASE_VERTEX);
1085 break;
1086
1087 case TGSI_SEMANTIC_INVOCATIONID:
1088 if (si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL)
1089 value = unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 8, 5);
1090 else if (si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY)
1091 value = LLVMGetParam(radeon_bld->main_fn,
1092 SI_PARAM_GS_INSTANCE_ID);
1093 else
1094 assert(!"INVOCATIONID not implemented");
1095 break;
1096
1097 case TGSI_SEMANTIC_POSITION:
1098 {
1099 LLVMValueRef pos[4] = {
1100 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1101 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1102 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Z_FLOAT),
1103 lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base, TGSI_OPCODE_RCP,
1104 LLVMGetParam(radeon_bld->main_fn,
1105 SI_PARAM_POS_W_FLOAT)),
1106 };
1107 value = lp_build_gather_values(gallivm, pos, 4);
1108 break;
1109 }
1110
1111 case TGSI_SEMANTIC_FACE:
1112 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_FRONT_FACE);
1113 break;
1114
1115 case TGSI_SEMANTIC_SAMPLEID:
1116 value = get_sample_id(radeon_bld);
1117 break;
1118
1119 case TGSI_SEMANTIC_SAMPLEPOS: {
1120 LLVMValueRef pos[4] = {
1121 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_X_FLOAT),
1122 LLVMGetParam(radeon_bld->main_fn, SI_PARAM_POS_Y_FLOAT),
1123 lp_build_const_float(gallivm, 0),
1124 lp_build_const_float(gallivm, 0)
1125 };
1126 pos[0] = lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base,
1127 TGSI_OPCODE_FRC, pos[0]);
1128 pos[1] = lp_build_emit_llvm_unary(&radeon_bld->soa.bld_base,
1129 TGSI_OPCODE_FRC, pos[1]);
1130 value = lp_build_gather_values(gallivm, pos, 4);
1131 break;
1132 }
1133
1134 case TGSI_SEMANTIC_SAMPLEMASK:
1135 /* This can only occur with the OpenGL Core profile, which
1136 * doesn't support smoothing.
1137 */
1138 value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE);
1139 break;
1140
1141 case TGSI_SEMANTIC_TESSCOORD:
1142 {
1143 LLVMValueRef coord[4] = {
1144 LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_tes_u),
1145 LLVMGetParam(radeon_bld->main_fn, si_shader_ctx->param_tes_v),
1146 bld->zero,
1147 bld->zero
1148 };
1149
1150 /* For triangles, the vector should be (u, v, 1-u-v). */
1151 if (si_shader_ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
1152 PIPE_PRIM_TRIANGLES)
1153 coord[2] = lp_build_sub(bld, bld->one,
1154 lp_build_add(bld, coord[0], coord[1]));
1155
1156 value = lp_build_gather_values(gallivm, coord, 4);
1157 break;
1158 }
1159
1160 case TGSI_SEMANTIC_VERTICESIN:
1161 value = unpack_param(si_shader_ctx, SI_PARAM_TCS_OUT_LAYOUT, 26, 6);
1162 break;
1163
1164 case TGSI_SEMANTIC_TESSINNER:
1165 case TGSI_SEMANTIC_TESSOUTER:
1166 {
1167 LLVMValueRef dw_addr;
1168 int param = si_shader_io_get_unique_index(decl->Semantic.Name, 0);
1169
1170 dw_addr = get_tcs_out_current_patch_data_offset(si_shader_ctx);
1171 dw_addr = LLVMBuildAdd(gallivm->builder, dw_addr,
1172 lp_build_const_int32(gallivm, param * 4), "");
1173
1174 value = lds_load(&radeon_bld->soa.bld_base, TGSI_TYPE_FLOAT,
1175 ~0, dw_addr);
1176 break;
1177 }
1178
1179 case TGSI_SEMANTIC_PRIMID:
1180 value = get_primitive_id(&radeon_bld->soa.bld_base, 0);
1181 break;
1182
1183 default:
1184 assert(!"unknown system value");
1185 return;
1186 }
1187
1188 radeon_bld->system_values[index] = value;
1189 }
1190
1191 static LLVMValueRef fetch_constant(
1192 struct lp_build_tgsi_context * bld_base,
1193 const struct tgsi_full_src_register *reg,
1194 enum tgsi_opcode_type type,
1195 unsigned swizzle)
1196 {
1197 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1198 struct lp_build_context * base = &bld_base->base;
1199 const struct tgsi_ind_register *ireg = &reg->Indirect;
1200 unsigned buf, idx;
1201
1202 LLVMValueRef addr, bufp;
1203 LLVMValueRef result;
1204
1205 if (swizzle == LP_CHAN_ALL) {
1206 unsigned chan;
1207 LLVMValueRef values[4];
1208 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
1209 values[chan] = fetch_constant(bld_base, reg, type, chan);
1210
1211 return lp_build_gather_values(bld_base->base.gallivm, values, 4);
1212 }
1213
1214 buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
1215 idx = reg->Register.Index * 4 + swizzle;
1216
1217 if (!reg->Register.Indirect && !reg->Dimension.Indirect) {
1218 if (type != TGSI_TYPE_DOUBLE)
1219 return bitcast(bld_base, type, si_shader_ctx->constants[buf][idx]);
1220 else {
1221 return radeon_llvm_emit_fetch_double(bld_base,
1222 si_shader_ctx->constants[buf][idx],
1223 si_shader_ctx->constants[buf][idx + 1]);
1224 }
1225 }
1226
1227 if (reg->Register.Dimension && reg->Dimension.Indirect) {
1228 LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST_BUFFERS);
1229 LLVMValueRef index;
1230 index = get_indirect_index(si_shader_ctx, &reg->DimIndirect,
1231 reg->Dimension.Index);
1232 bufp = build_indexed_load_const(si_shader_ctx, ptr, index);
1233 } else
1234 bufp = si_shader_ctx->const_buffers[buf];
1235
1236 addr = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle];
1237 addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
1238 addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
1239 addr = lp_build_add(&bld_base->uint_bld, addr,
1240 lp_build_const_int32(base->gallivm, idx * 4));
1241
1242 result = buffer_load_const(base->gallivm->builder, bufp,
1243 addr, bld_base->base.elem_type);
1244
1245 if (type != TGSI_TYPE_DOUBLE)
1246 result = bitcast(bld_base, type, result);
1247 else {
1248 LLVMValueRef addr2, result2;
1249 addr2 = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle + 1];
1250 addr2 = LLVMBuildLoad(base->gallivm->builder, addr2, "load addr reg2");
1251 addr2 = lp_build_mul_imm(&bld_base->uint_bld, addr2, 16);
1252 addr2 = lp_build_add(&bld_base->uint_bld, addr2,
1253 lp_build_const_int32(base->gallivm, idx * 4));
1254
1255 result2 = buffer_load_const(base->gallivm->builder, si_shader_ctx->const_buffers[buf],
1256 addr2, bld_base->base.elem_type);
1257
1258 result = radeon_llvm_emit_fetch_double(bld_base,
1259 result, result2);
1260 }
1261 return result;
1262 }
1263
1264 /* Upper 16 bits must be zero. */
1265 static LLVMValueRef si_llvm_pack_two_int16(struct gallivm_state *gallivm,
1266 LLVMValueRef val[2])
1267 {
1268 return LLVMBuildOr(gallivm->builder, val[0],
1269 LLVMBuildShl(gallivm->builder, val[1],
1270 lp_build_const_int32(gallivm, 16),
1271 ""), "");
1272 }
1273
1274 /* Upper 16 bits are ignored and will be dropped. */
1275 static LLVMValueRef si_llvm_pack_two_int32_as_int16(struct gallivm_state *gallivm,
1276 LLVMValueRef val[2])
1277 {
1278 LLVMValueRef v[2] = {
1279 LLVMBuildAnd(gallivm->builder, val[0],
1280 lp_build_const_int32(gallivm, 0xffff), ""),
1281 val[1],
1282 };
1283 return si_llvm_pack_two_int16(gallivm, v);
1284 }
1285
1286 /* Initialize arguments for the shader export intrinsic */
1287 static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
1288 LLVMValueRef *values,
1289 unsigned target,
1290 LLVMValueRef *args)
1291 {
1292 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1293 struct lp_build_context *uint =
1294 &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
1295 struct lp_build_context *base = &bld_base->base;
1296 struct gallivm_state *gallivm = base->gallivm;
1297 LLVMBuilderRef builder = base->gallivm->builder;
1298 LLVMValueRef val[4];
1299 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
1300 unsigned chan;
1301 bool is_int8;
1302
1303 /* Default is 0xf. Adjusted below depending on the format. */
1304 args[0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
1305
1306 /* Specify whether the EXEC mask represents the valid mask */
1307 args[1] = uint->zero;
1308
1309 /* Specify whether this is the last export */
1310 args[2] = uint->zero;
1311
1312 /* Specify the target we are exporting */
1313 args[3] = lp_build_const_int32(base->gallivm, target);
1314
1315 if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) {
1316 const union si_shader_key *key = &si_shader_ctx->shader->key;
1317 unsigned col_formats = key->ps.spi_shader_col_format;
1318 int cbuf = target - V_008DFC_SQ_EXP_MRT;
1319
1320 assert(cbuf >= 0 && cbuf < 8);
1321 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
1322 is_int8 = (key->ps.color_is_int8 >> cbuf) & 0x1;
1323 }
1324
1325 args[4] = uint->zero; /* COMPR flag */
1326 args[5] = base->undef;
1327 args[6] = base->undef;
1328 args[7] = base->undef;
1329 args[8] = base->undef;
1330
1331 switch (spi_shader_col_format) {
1332 case V_028714_SPI_SHADER_ZERO:
1333 args[0] = uint->zero; /* writemask */
1334 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
1335 break;
1336
1337 case V_028714_SPI_SHADER_32_R:
1338 args[0] = uint->one; /* writemask */
1339 args[5] = values[0];
1340 break;
1341
1342 case V_028714_SPI_SHADER_32_GR:
1343 args[0] = lp_build_const_int32(base->gallivm, 0x3); /* writemask */
1344 args[5] = values[0];
1345 args[6] = values[1];
1346 break;
1347
1348 case V_028714_SPI_SHADER_32_AR:
1349 args[0] = lp_build_const_int32(base->gallivm, 0x9); /* writemask */
1350 args[5] = values[0];
1351 args[8] = values[3];
1352 break;
1353
1354 case V_028714_SPI_SHADER_FP16_ABGR:
1355 args[4] = uint->one; /* COMPR flag */
1356
1357 for (chan = 0; chan < 2; chan++) {
1358 LLVMValueRef pack_args[2] = {
1359 values[2 * chan],
1360 values[2 * chan + 1]
1361 };
1362 LLVMValueRef packed;
1363
1364 packed = lp_build_intrinsic(base->gallivm->builder,
1365 "llvm.SI.packf16",
1366 uint->elem_type, pack_args, 2,
1367 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
1368 args[chan + 5] =
1369 LLVMBuildBitCast(base->gallivm->builder,
1370 packed, base->elem_type, "");
1371 }
1372 break;
1373
1374 case V_028714_SPI_SHADER_UNORM16_ABGR:
1375 for (chan = 0; chan < 4; chan++) {
1376 val[chan] = radeon_llvm_saturate(bld_base, values[chan]);
1377 val[chan] = LLVMBuildFMul(builder, val[chan],
1378 lp_build_const_float(gallivm, 65535), "");
1379 val[chan] = LLVMBuildFAdd(builder, val[chan],
1380 lp_build_const_float(gallivm, 0.5), "");
1381 val[chan] = LLVMBuildFPToUI(builder, val[chan],
1382 uint->elem_type, "");
1383 }
1384
1385 args[4] = uint->one; /* COMPR flag */
1386 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1387 si_llvm_pack_two_int16(gallivm, val));
1388 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1389 si_llvm_pack_two_int16(gallivm, val+2));
1390 break;
1391
1392 case V_028714_SPI_SHADER_SNORM16_ABGR:
1393 for (chan = 0; chan < 4; chan++) {
1394 /* Clamp between [-1, 1]. */
1395 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MIN,
1396 values[chan],
1397 lp_build_const_float(gallivm, 1));
1398 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_MAX,
1399 val[chan],
1400 lp_build_const_float(gallivm, -1));
1401 /* Convert to a signed integer in [-32767, 32767]. */
1402 val[chan] = LLVMBuildFMul(builder, val[chan],
1403 lp_build_const_float(gallivm, 32767), "");
1404 /* If positive, add 0.5, else add -0.5. */
1405 val[chan] = LLVMBuildFAdd(builder, val[chan],
1406 LLVMBuildSelect(builder,
1407 LLVMBuildFCmp(builder, LLVMRealOGE,
1408 val[chan], base->zero, ""),
1409 lp_build_const_float(gallivm, 0.5),
1410 lp_build_const_float(gallivm, -0.5), ""), "");
1411 val[chan] = LLVMBuildFPToSI(builder, val[chan], uint->elem_type, "");
1412 }
1413
1414 args[4] = uint->one; /* COMPR flag */
1415 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1416 si_llvm_pack_two_int32_as_int16(gallivm, val));
1417 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1418 si_llvm_pack_two_int32_as_int16(gallivm, val+2));
1419 break;
1420
1421 case V_028714_SPI_SHADER_UINT16_ABGR: {
1422 LLVMValueRef max = lp_build_const_int32(gallivm, is_int8 ?
1423 255 : 65535);
1424 /* Clamp. */
1425 for (chan = 0; chan < 4; chan++) {
1426 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
1427 val[chan] = lp_build_emit_llvm_binary(bld_base, TGSI_OPCODE_UMIN,
1428 val[chan], max);
1429 }
1430
1431 args[4] = uint->one; /* COMPR flag */
1432 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1433 si_llvm_pack_two_int16(gallivm, val));
1434 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1435 si_llvm_pack_two_int16(gallivm, val+2));
1436 break;
1437 }
1438
1439 case V_028714_SPI_SHADER_SINT16_ABGR: {
1440 LLVMValueRef max = lp_build_const_int32(gallivm, is_int8 ?
1441 127 : 32767);
1442 LLVMValueRef min = lp_build_const_int32(gallivm, is_int8 ?
1443 -128 : -32768);
1444 /* Clamp. */
1445 for (chan = 0; chan < 4; chan++) {
1446 val[chan] = bitcast(bld_base, TGSI_TYPE_UNSIGNED, values[chan]);
1447 val[chan] = lp_build_emit_llvm_binary(bld_base,
1448 TGSI_OPCODE_IMIN,
1449 val[chan], max);
1450 val[chan] = lp_build_emit_llvm_binary(bld_base,
1451 TGSI_OPCODE_IMAX,
1452 val[chan], min);
1453 }
1454
1455 args[4] = uint->one; /* COMPR flag */
1456 args[5] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1457 si_llvm_pack_two_int32_as_int16(gallivm, val));
1458 args[6] = bitcast(bld_base, TGSI_TYPE_FLOAT,
1459 si_llvm_pack_two_int32_as_int16(gallivm, val+2));
1460 break;
1461 }
1462
1463 case V_028714_SPI_SHADER_32_ABGR:
1464 memcpy(&args[5], values, sizeof(values[0]) * 4);
1465 break;
1466 }
1467 }
1468
1469 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
1470 LLVMValueRef alpha)
1471 {
1472 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1473 struct gallivm_state *gallivm = bld_base->base.gallivm;
1474
1475 if (si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_NEVER) {
1476 LLVMValueRef alpha_ref = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
1477 SI_PARAM_ALPHA_REF);
1478
1479 LLVMValueRef alpha_pass =
1480 lp_build_cmp(&bld_base->base,
1481 si_shader_ctx->shader->key.ps.alpha_func,
1482 alpha, alpha_ref);
1483 LLVMValueRef arg =
1484 lp_build_select(&bld_base->base,
1485 alpha_pass,
1486 lp_build_const_float(gallivm, 1.0f),
1487 lp_build_const_float(gallivm, -1.0f));
1488
1489 lp_build_intrinsic(gallivm->builder,
1490 "llvm.AMDGPU.kill",
1491 LLVMVoidTypeInContext(gallivm->context),
1492 &arg, 1, 0);
1493 } else {
1494 lp_build_intrinsic(gallivm->builder,
1495 "llvm.AMDGPU.kilp",
1496 LLVMVoidTypeInContext(gallivm->context),
1497 NULL, 0, 0);
1498 }
1499 }
1500
1501 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
1502 LLVMValueRef alpha)
1503 {
1504 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1505 struct gallivm_state *gallivm = bld_base->base.gallivm;
1506 LLVMValueRef coverage;
1507
1508 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
1509 coverage = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
1510 SI_PARAM_SAMPLE_COVERAGE);
1511 coverage = bitcast(bld_base, TGSI_TYPE_SIGNED, coverage);
1512
1513 coverage = lp_build_intrinsic(gallivm->builder, "llvm.ctpop.i32",
1514 bld_base->int_bld.elem_type,
1515 &coverage, 1, LLVMReadNoneAttribute);
1516
1517 coverage = LLVMBuildUIToFP(gallivm->builder, coverage,
1518 bld_base->base.elem_type, "");
1519
1520 coverage = LLVMBuildFMul(gallivm->builder, coverage,
1521 lp_build_const_float(gallivm,
1522 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
1523
1524 return LLVMBuildFMul(gallivm->builder, alpha, coverage, "");
1525 }
1526
1527 static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context * bld_base,
1528 LLVMValueRef (*pos)[9], LLVMValueRef *out_elts)
1529 {
1530 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1531 struct lp_build_context *base = &bld_base->base;
1532 struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
1533 unsigned reg_index;
1534 unsigned chan;
1535 unsigned const_chan;
1536 LLVMValueRef base_elt;
1537 LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST_BUFFERS);
1538 LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm, SI_DRIVER_STATE_CONST_BUF);
1539 LLVMValueRef const_resource = build_indexed_load_const(si_shader_ctx, ptr, constbuf_index);
1540
1541 for (reg_index = 0; reg_index < 2; reg_index ++) {
1542 LLVMValueRef *args = pos[2 + reg_index];
1543
1544 args[5] =
1545 args[6] =
1546 args[7] =
1547 args[8] = lp_build_const_float(base->gallivm, 0.0f);
1548
1549 /* Compute dot products of position and user clip plane vectors */
1550 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1551 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
1552 args[1] = lp_build_const_int32(base->gallivm,
1553 ((reg_index * 4 + chan) * 4 +
1554 const_chan) * 4);
1555 base_elt = buffer_load_const(base->gallivm->builder, const_resource,
1556 args[1], base->elem_type);
1557 args[5 + chan] =
1558 lp_build_add(base, args[5 + chan],
1559 lp_build_mul(base, base_elt,
1560 out_elts[const_chan]));
1561 }
1562 }
1563
1564 args[0] = lp_build_const_int32(base->gallivm, 0xf);
1565 args[1] = uint->zero;
1566 args[2] = uint->zero;
1567 args[3] = lp_build_const_int32(base->gallivm,
1568 V_008DFC_SQ_EXP_POS + 2 + reg_index);
1569 args[4] = uint->zero;
1570 }
1571 }
1572
1573 static void si_dump_streamout(struct pipe_stream_output_info *so)
1574 {
1575 unsigned i;
1576
1577 if (so->num_outputs)
1578 fprintf(stderr, "STREAMOUT\n");
1579
1580 for (i = 0; i < so->num_outputs; i++) {
1581 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
1582 so->output[i].start_component;
1583 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
1584 i, so->output[i].output_buffer,
1585 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
1586 so->output[i].register_index,
1587 mask & 1 ? "x" : "",
1588 mask & 2 ? "y" : "",
1589 mask & 4 ? "z" : "",
1590 mask & 8 ? "w" : "");
1591 }
1592 }
1593
1594 /* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
1595 * The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
1596 * or v4i32 (num_channels=3,4). */
1597 static void build_tbuffer_store(struct si_shader_context *shader,
1598 LLVMValueRef rsrc,
1599 LLVMValueRef vdata,
1600 unsigned num_channels,
1601 LLVMValueRef vaddr,
1602 LLVMValueRef soffset,
1603 unsigned inst_offset,
1604 unsigned dfmt,
1605 unsigned nfmt,
1606 unsigned offen,
1607 unsigned idxen,
1608 unsigned glc,
1609 unsigned slc,
1610 unsigned tfe)
1611 {
1612 struct gallivm_state *gallivm = &shader->radeon_bld.gallivm;
1613 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
1614 LLVMValueRef args[] = {
1615 rsrc,
1616 vdata,
1617 LLVMConstInt(i32, num_channels, 0),
1618 vaddr,
1619 soffset,
1620 LLVMConstInt(i32, inst_offset, 0),
1621 LLVMConstInt(i32, dfmt, 0),
1622 LLVMConstInt(i32, nfmt, 0),
1623 LLVMConstInt(i32, offen, 0),
1624 LLVMConstInt(i32, idxen, 0),
1625 LLVMConstInt(i32, glc, 0),
1626 LLVMConstInt(i32, slc, 0),
1627 LLVMConstInt(i32, tfe, 0)
1628 };
1629
1630 /* The instruction offset field has 12 bits */
1631 assert(offen || inst_offset < (1 << 12));
1632
1633 /* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
1634 unsigned func = CLAMP(num_channels, 1, 3) - 1;
1635 const char *types[] = {"i32", "v2i32", "v4i32"};
1636 char name[256];
1637 snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
1638
1639 lp_build_intrinsic(gallivm->builder, name,
1640 LLVMVoidTypeInContext(gallivm->context),
1641 args, Elements(args), 0);
1642 }
1643
1644 static void build_tbuffer_store_dwords(struct si_shader_context *shader,
1645 LLVMValueRef rsrc,
1646 LLVMValueRef vdata,
1647 unsigned num_channels,
1648 LLVMValueRef vaddr,
1649 LLVMValueRef soffset,
1650 unsigned inst_offset)
1651 {
1652 static unsigned dfmt[] = {
1653 V_008F0C_BUF_DATA_FORMAT_32,
1654 V_008F0C_BUF_DATA_FORMAT_32_32,
1655 V_008F0C_BUF_DATA_FORMAT_32_32_32,
1656 V_008F0C_BUF_DATA_FORMAT_32_32_32_32
1657 };
1658 assert(num_channels >= 1 && num_channels <= 4);
1659
1660 build_tbuffer_store(shader, rsrc, vdata, num_channels, vaddr, soffset,
1661 inst_offset, dfmt[num_channels-1],
1662 V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
1663 }
1664
1665 /* On SI, the vertex shader is responsible for writing streamout data
1666 * to buffers. */
1667 static void si_llvm_emit_streamout(struct si_shader_context *shader,
1668 struct si_shader_output_values *outputs,
1669 unsigned noutput)
1670 {
1671 struct pipe_stream_output_info *so = &shader->shader->selector->so;
1672 struct gallivm_state *gallivm = &shader->radeon_bld.gallivm;
1673 LLVMBuilderRef builder = gallivm->builder;
1674 int i, j;
1675 struct lp_build_if_state if_ctx;
1676
1677 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
1678
1679 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
1680 LLVMValueRef so_vtx_count =
1681 unpack_param(shader, shader->param_streamout_config, 16, 7);
1682
1683 LLVMValueRef tid = lp_build_intrinsic(builder, "llvm.SI.tid", i32,
1684 NULL, 0, LLVMReadNoneAttribute);
1685
1686 /* can_emit = tid < so_vtx_count; */
1687 LLVMValueRef can_emit =
1688 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
1689
1690 LLVMValueRef stream_id =
1691 unpack_param(shader, shader->param_streamout_config, 24, 2);
1692
1693 /* Emit the streamout code conditionally. This actually avoids
1694 * out-of-bounds buffer access. The hw tells us via the SGPR
1695 * (so_vtx_count) which threads are allowed to emit streamout data. */
1696 lp_build_if(&if_ctx, gallivm, can_emit);
1697 {
1698 /* The buffer offset is computed as follows:
1699 * ByteOffset = streamout_offset[buffer_id]*4 +
1700 * (streamout_write_index + thread_id)*stride[buffer_id] +
1701 * attrib_offset
1702 */
1703
1704 LLVMValueRef so_write_index =
1705 LLVMGetParam(shader->radeon_bld.main_fn,
1706 shader->param_streamout_write_index);
1707
1708 /* Compute (streamout_write_index + thread_id). */
1709 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
1710
1711 /* Compute the write offset for each enabled buffer. */
1712 LLVMValueRef so_write_offset[4] = {};
1713 for (i = 0; i < 4; i++) {
1714 if (!so->stride[i])
1715 continue;
1716
1717 LLVMValueRef so_offset = LLVMGetParam(shader->radeon_bld.main_fn,
1718 shader->param_streamout_offset[i]);
1719 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(i32, 4, 0), "");
1720
1721 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
1722 LLVMConstInt(i32, so->stride[i]*4, 0), "");
1723 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
1724 }
1725
1726 /* Write streamout data. */
1727 for (i = 0; i < so->num_outputs; i++) {
1728 unsigned buf_idx = so->output[i].output_buffer;
1729 unsigned reg = so->output[i].register_index;
1730 unsigned start = so->output[i].start_component;
1731 unsigned num_comps = so->output[i].num_components;
1732 unsigned stream = so->output[i].stream;
1733 LLVMValueRef out[4];
1734 struct lp_build_if_state if_ctx_stream;
1735
1736 assert(num_comps && num_comps <= 4);
1737 if (!num_comps || num_comps > 4)
1738 continue;
1739
1740 if (reg >= noutput)
1741 continue;
1742
1743 /* Load the output as int. */
1744 for (j = 0; j < num_comps; j++) {
1745 out[j] = LLVMBuildBitCast(builder,
1746 outputs[reg].values[start+j],
1747 i32, "");
1748 }
1749
1750 /* Pack the output. */
1751 LLVMValueRef vdata = NULL;
1752
1753 switch (num_comps) {
1754 case 1: /* as i32 */
1755 vdata = out[0];
1756 break;
1757 case 2: /* as v2i32 */
1758 case 3: /* as v4i32 (aligned to 4) */
1759 case 4: /* as v4i32 */
1760 vdata = LLVMGetUndef(LLVMVectorType(i32, util_next_power_of_two(num_comps)));
1761 for (j = 0; j < num_comps; j++) {
1762 vdata = LLVMBuildInsertElement(builder, vdata, out[j],
1763 LLVMConstInt(i32, j, 0), "");
1764 }
1765 break;
1766 }
1767
1768 LLVMValueRef can_emit_stream =
1769 LLVMBuildICmp(builder, LLVMIntEQ,
1770 stream_id,
1771 lp_build_const_int32(gallivm, stream), "");
1772
1773 lp_build_if(&if_ctx_stream, gallivm, can_emit_stream);
1774 build_tbuffer_store_dwords(shader, shader->so_buffers[buf_idx],
1775 vdata, num_comps,
1776 so_write_offset[buf_idx],
1777 LLVMConstInt(i32, 0, 0),
1778 so->output[i].dst_offset*4);
1779 lp_build_endif(&if_ctx_stream);
1780 }
1781 }
1782 lp_build_endif(&if_ctx);
1783 }
1784
1785
1786 /* Generate export instructions for hardware VS shader stage */
1787 static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
1788 struct si_shader_output_values *outputs,
1789 unsigned noutput)
1790 {
1791 struct si_shader_context * si_shader_ctx = si_shader_context(bld_base);
1792 struct si_shader * shader = si_shader_ctx->shader;
1793 struct lp_build_context * base = &bld_base->base;
1794 struct lp_build_context * uint =
1795 &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
1796 LLVMValueRef args[9];
1797 LLVMValueRef pos_args[4][9] = { { 0 } };
1798 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
1799 unsigned semantic_name, semantic_index;
1800 unsigned target;
1801 unsigned param_count = 0;
1802 unsigned pos_idx;
1803 int i;
1804
1805 if (outputs && si_shader_ctx->shader->selector->so.num_outputs) {
1806 si_llvm_emit_streamout(si_shader_ctx, outputs, noutput);
1807 }
1808
1809 for (i = 0; i < noutput; i++) {
1810 semantic_name = outputs[i].name;
1811 semantic_index = outputs[i].sid;
1812
1813 handle_semantic:
1814 /* Select the correct target */
1815 switch(semantic_name) {
1816 case TGSI_SEMANTIC_PSIZE:
1817 psize_value = outputs[i].values[0];
1818 continue;
1819 case TGSI_SEMANTIC_EDGEFLAG:
1820 edgeflag_value = outputs[i].values[0];
1821 continue;
1822 case TGSI_SEMANTIC_LAYER:
1823 layer_value = outputs[i].values[0];
1824 semantic_name = TGSI_SEMANTIC_GENERIC;
1825 goto handle_semantic;
1826 case TGSI_SEMANTIC_VIEWPORT_INDEX:
1827 viewport_index_value = outputs[i].values[0];
1828 semantic_name = TGSI_SEMANTIC_GENERIC;
1829 goto handle_semantic;
1830 case TGSI_SEMANTIC_POSITION:
1831 target = V_008DFC_SQ_EXP_POS;
1832 break;
1833 case TGSI_SEMANTIC_COLOR:
1834 case TGSI_SEMANTIC_BCOLOR:
1835 target = V_008DFC_SQ_EXP_PARAM + param_count;
1836 shader->vs_output_param_offset[i] = param_count;
1837 param_count++;
1838 break;
1839 case TGSI_SEMANTIC_CLIPDIST:
1840 target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
1841 break;
1842 case TGSI_SEMANTIC_CLIPVERTEX:
1843 si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
1844 continue;
1845 case TGSI_SEMANTIC_PRIMID:
1846 case TGSI_SEMANTIC_FOG:
1847 case TGSI_SEMANTIC_TEXCOORD:
1848 case TGSI_SEMANTIC_GENERIC:
1849 target = V_008DFC_SQ_EXP_PARAM + param_count;
1850 shader->vs_output_param_offset[i] = param_count;
1851 param_count++;
1852 break;
1853 default:
1854 target = 0;
1855 fprintf(stderr,
1856 "Warning: SI unhandled vs output type:%d\n",
1857 semantic_name);
1858 }
1859
1860 si_llvm_init_export_args(bld_base, outputs[i].values, target, args);
1861
1862 if (target >= V_008DFC_SQ_EXP_POS &&
1863 target <= (V_008DFC_SQ_EXP_POS + 3)) {
1864 memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
1865 args, sizeof(args));
1866 } else {
1867 lp_build_intrinsic(base->gallivm->builder,
1868 "llvm.SI.export",
1869 LLVMVoidTypeInContext(base->gallivm->context),
1870 args, 9, 0);
1871 }
1872
1873 if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
1874 semantic_name = TGSI_SEMANTIC_GENERIC;
1875 goto handle_semantic;
1876 }
1877 }
1878
1879 shader->nr_param_exports = param_count;
1880
1881 /* We need to add the position output manually if it's missing. */
1882 if (!pos_args[0][0]) {
1883 pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
1884 pos_args[0][1] = uint->zero; /* EXEC mask */
1885 pos_args[0][2] = uint->zero; /* last export? */
1886 pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS);
1887 pos_args[0][4] = uint->zero; /* COMPR flag */
1888 pos_args[0][5] = base->zero; /* X */
1889 pos_args[0][6] = base->zero; /* Y */
1890 pos_args[0][7] = base->zero; /* Z */
1891 pos_args[0][8] = base->one; /* W */
1892 }
1893
1894 /* Write the misc vector (point size, edgeflag, layer, viewport). */
1895 if (shader->selector->info.writes_psize ||
1896 shader->selector->info.writes_edgeflag ||
1897 shader->selector->info.writes_viewport_index ||
1898 shader->selector->info.writes_layer) {
1899 pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */
1900 shader->selector->info.writes_psize |
1901 (shader->selector->info.writes_edgeflag << 1) |
1902 (shader->selector->info.writes_layer << 2) |
1903 (shader->selector->info.writes_viewport_index << 3));
1904 pos_args[1][1] = uint->zero; /* EXEC mask */
1905 pos_args[1][2] = uint->zero; /* last export? */
1906 pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1);
1907 pos_args[1][4] = uint->zero; /* COMPR flag */
1908 pos_args[1][5] = base->zero; /* X */
1909 pos_args[1][6] = base->zero; /* Y */
1910 pos_args[1][7] = base->zero; /* Z */
1911 pos_args[1][8] = base->zero; /* W */
1912
1913 if (shader->selector->info.writes_psize)
1914 pos_args[1][5] = psize_value;
1915
1916 if (shader->selector->info.writes_edgeflag) {
1917 /* The output is a float, but the hw expects an integer
1918 * with the first bit containing the edge flag. */
1919 edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder,
1920 edgeflag_value,
1921 bld_base->uint_bld.elem_type, "");
1922 edgeflag_value = lp_build_min(&bld_base->int_bld,
1923 edgeflag_value,
1924 bld_base->int_bld.one);
1925
1926 /* The LLVM intrinsic expects a float. */
1927 pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder,
1928 edgeflag_value,
1929 base->elem_type, "");
1930 }
1931
1932 if (shader->selector->info.writes_layer)
1933 pos_args[1][7] = layer_value;
1934
1935 if (shader->selector->info.writes_viewport_index)
1936 pos_args[1][8] = viewport_index_value;
1937 }
1938
1939 for (i = 0; i < 4; i++)
1940 if (pos_args[i][0])
1941 shader->nr_pos_exports++;
1942
1943 pos_idx = 0;
1944 for (i = 0; i < 4; i++) {
1945 if (!pos_args[i][0])
1946 continue;
1947
1948 /* Specify the target we are exporting */
1949 pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++);
1950
1951 if (pos_idx == shader->nr_pos_exports)
1952 /* Specify that this is the last export */
1953 pos_args[i][2] = uint->one;
1954
1955 lp_build_intrinsic(base->gallivm->builder,
1956 "llvm.SI.export",
1957 LLVMVoidTypeInContext(base->gallivm->context),
1958 pos_args[i], 9, 0);
1959 }
1960 }
1961
1962 /* This only writes the tessellation factor levels. */
1963 static void si_llvm_emit_tcs_epilogue(struct lp_build_tgsi_context *bld_base)
1964 {
1965 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
1966 struct gallivm_state *gallivm = bld_base->base.gallivm;
1967 struct si_shader *shader = si_shader_ctx->shader;
1968 unsigned tess_inner_index, tess_outer_index;
1969 LLVMValueRef lds_base, lds_inner, lds_outer;
1970 LLVMValueRef tf_base, rel_patch_id, byteoffset, buffer, rw_buffers;
1971 LLVMValueRef out[6], vec0, vec1, invocation_id;
1972 unsigned stride, outer_comps, inner_comps, i;
1973 struct lp_build_if_state if_ctx;
1974
1975 invocation_id = unpack_param(si_shader_ctx, SI_PARAM_REL_IDS, 8, 5);
1976
1977 /* Do this only for invocation 0, because the tess levels are per-patch,
1978 * not per-vertex.
1979 *
1980 * This can't jump, because invocation 0 executes this. It should
1981 * at least mask out the loads and stores for other invocations.
1982 */
1983 lp_build_if(&if_ctx, gallivm,
1984 LLVMBuildICmp(gallivm->builder, LLVMIntEQ,
1985 invocation_id, bld_base->uint_bld.zero, ""));
1986
1987 /* Determine the layout of one tess factor element in the buffer. */
1988 switch (shader->key.tcs.prim_mode) {
1989 case PIPE_PRIM_LINES:
1990 stride = 2; /* 2 dwords, 1 vec2 store */
1991 outer_comps = 2;
1992 inner_comps = 0;
1993 break;
1994 case PIPE_PRIM_TRIANGLES:
1995 stride = 4; /* 4 dwords, 1 vec4 store */
1996 outer_comps = 3;
1997 inner_comps = 1;
1998 break;
1999 case PIPE_PRIM_QUADS:
2000 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
2001 outer_comps = 4;
2002 inner_comps = 2;
2003 break;
2004 default:
2005 assert(0);
2006 return;
2007 }
2008
2009 /* Load tess_inner and tess_outer from LDS.
2010 * Any invocation can write them, so we can't get them from a temporary.
2011 */
2012 tess_inner_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSINNER, 0);
2013 tess_outer_index = si_shader_io_get_unique_index(TGSI_SEMANTIC_TESSOUTER, 0);
2014
2015 lds_base = get_tcs_out_current_patch_data_offset(si_shader_ctx);
2016 lds_inner = LLVMBuildAdd(gallivm->builder, lds_base,
2017 lp_build_const_int32(gallivm,
2018 tess_inner_index * 4), "");
2019 lds_outer = LLVMBuildAdd(gallivm->builder, lds_base,
2020 lp_build_const_int32(gallivm,
2021 tess_outer_index * 4), "");
2022
2023 for (i = 0; i < outer_comps; i++)
2024 out[i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_outer);
2025 for (i = 0; i < inner_comps; i++)
2026 out[outer_comps+i] = lds_load(bld_base, TGSI_TYPE_SIGNED, i, lds_inner);
2027
2028 /* Convert the outputs to vectors for stores. */
2029 vec0 = lp_build_gather_values(gallivm, out, MIN2(stride, 4));
2030 vec1 = NULL;
2031
2032 if (stride > 4)
2033 vec1 = lp_build_gather_values(gallivm, out+4, stride - 4);
2034
2035 /* Get the buffer. */
2036 rw_buffers = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
2037 SI_PARAM_RW_BUFFERS);
2038 buffer = build_indexed_load_const(si_shader_ctx, rw_buffers,
2039 lp_build_const_int32(gallivm, SI_RING_TESS_FACTOR));
2040
2041 /* Get the offset. */
2042 tf_base = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
2043 SI_PARAM_TESS_FACTOR_OFFSET);
2044 rel_patch_id = get_rel_patch_id(si_shader_ctx);
2045 byteoffset = LLVMBuildMul(gallivm->builder, rel_patch_id,
2046 lp_build_const_int32(gallivm, 4 * stride), "");
2047
2048 /* Store the outputs. */
2049 build_tbuffer_store_dwords(si_shader_ctx, buffer, vec0,
2050 MIN2(stride, 4), byteoffset, tf_base, 0);
2051 if (vec1)
2052 build_tbuffer_store_dwords(si_shader_ctx, buffer, vec1,
2053 stride - 4, byteoffset, tf_base, 16);
2054 lp_build_endif(&if_ctx);
2055 }
2056
2057 static void si_llvm_emit_ls_epilogue(struct lp_build_tgsi_context * bld_base)
2058 {
2059 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2060 struct si_shader *shader = si_shader_ctx->shader;
2061 struct tgsi_shader_info *info = &shader->selector->info;
2062 struct gallivm_state *gallivm = bld_base->base.gallivm;
2063 unsigned i, chan;
2064 LLVMValueRef vertex_id = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
2065 si_shader_ctx->param_rel_auto_id);
2066 LLVMValueRef vertex_dw_stride =
2067 unpack_param(si_shader_ctx, SI_PARAM_LS_OUT_LAYOUT, 13, 8);
2068 LLVMValueRef base_dw_addr = LLVMBuildMul(gallivm->builder, vertex_id,
2069 vertex_dw_stride, "");
2070
2071 /* Write outputs to LDS. The next shader (TCS aka HS) will read
2072 * its inputs from it. */
2073 for (i = 0; i < info->num_outputs; i++) {
2074 LLVMValueRef *out_ptr = si_shader_ctx->radeon_bld.soa.outputs[i];
2075 unsigned name = info->output_semantic_name[i];
2076 unsigned index = info->output_semantic_index[i];
2077 int param = si_shader_io_get_unique_index(name, index);
2078 LLVMValueRef dw_addr = LLVMBuildAdd(gallivm->builder, base_dw_addr,
2079 lp_build_const_int32(gallivm, param * 4), "");
2080
2081 for (chan = 0; chan < 4; chan++) {
2082 lds_store(bld_base, chan, dw_addr,
2083 LLVMBuildLoad(gallivm->builder, out_ptr[chan], ""));
2084 }
2085 }
2086 }
2087
2088 static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context * bld_base)
2089 {
2090 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2091 struct gallivm_state *gallivm = bld_base->base.gallivm;
2092 struct si_shader *es = si_shader_ctx->shader;
2093 struct tgsi_shader_info *info = &es->selector->info;
2094 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
2095 LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
2096 si_shader_ctx->param_es2gs_offset);
2097 unsigned chan;
2098 int i;
2099
2100 for (i = 0; i < info->num_outputs; i++) {
2101 LLVMValueRef *out_ptr =
2102 si_shader_ctx->radeon_bld.soa.outputs[i];
2103 int param_index;
2104
2105 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
2106 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
2107 continue;
2108
2109 param_index = si_shader_io_get_unique_index(info->output_semantic_name[i],
2110 info->output_semantic_index[i]);
2111
2112 for (chan = 0; chan < 4; chan++) {
2113 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
2114 out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, "");
2115
2116 build_tbuffer_store(si_shader_ctx,
2117 si_shader_ctx->esgs_ring,
2118 out_val, 1,
2119 LLVMGetUndef(i32), soffset,
2120 (4 * param_index + chan) * 4,
2121 V_008F0C_BUF_DATA_FORMAT_32,
2122 V_008F0C_BUF_NUM_FORMAT_UINT,
2123 0, 0, 1, 1, 0);
2124 }
2125 }
2126 }
2127
2128 static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
2129 {
2130 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2131 struct gallivm_state *gallivm = bld_base->base.gallivm;
2132 LLVMValueRef args[2];
2133
2134 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE);
2135 args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
2136 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
2137 LLVMVoidTypeInContext(gallivm->context), args, 2,
2138 LLVMNoUnwindAttribute);
2139 }
2140
2141 static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context * bld_base)
2142 {
2143 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2144 struct gallivm_state *gallivm = bld_base->base.gallivm;
2145 struct tgsi_shader_info *info = &si_shader_ctx->shader->selector->info;
2146 struct si_shader_output_values *outputs = NULL;
2147 int i,j;
2148
2149 assert(!si_shader_ctx->is_gs_copy_shader);
2150
2151 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
2152
2153 /* Vertex color clamping.
2154 *
2155 * This uses a state constant loaded in a user data SGPR and
2156 * an IF statement is added that clamps all colors if the constant
2157 * is true.
2158 */
2159 if (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX) {
2160 struct lp_build_if_state if_ctx;
2161 LLVMValueRef cond = NULL;
2162 LLVMValueRef addr, val;
2163
2164 for (i = 0; i < info->num_outputs; i++) {
2165 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
2166 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
2167 continue;
2168
2169 /* We've found a color. */
2170 if (!cond) {
2171 /* The state is in the first bit of the user SGPR. */
2172 cond = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
2173 SI_PARAM_VS_STATE_BITS);
2174 cond = LLVMBuildTrunc(gallivm->builder, cond,
2175 LLVMInt1TypeInContext(gallivm->context), "");
2176 lp_build_if(&if_ctx, gallivm, cond);
2177 }
2178
2179 for (j = 0; j < 4; j++) {
2180 addr = si_shader_ctx->radeon_bld.soa.outputs[i][j];
2181 val = LLVMBuildLoad(gallivm->builder, addr, "");
2182 val = radeon_llvm_saturate(bld_base, val);
2183 LLVMBuildStore(gallivm->builder, val, addr);
2184 }
2185 }
2186
2187 if (cond)
2188 lp_build_endif(&if_ctx);
2189 }
2190
2191 for (i = 0; i < info->num_outputs; i++) {
2192 outputs[i].name = info->output_semantic_name[i];
2193 outputs[i].sid = info->output_semantic_index[i];
2194
2195 for (j = 0; j < 4; j++)
2196 outputs[i].values[j] =
2197 LLVMBuildLoad(gallivm->builder,
2198 si_shader_ctx->radeon_bld.soa.outputs[i][j],
2199 "");
2200 }
2201
2202 /* Export PrimitiveID when PS needs it. */
2203 if (si_vs_exports_prim_id(si_shader_ctx->shader)) {
2204 outputs[i].name = TGSI_SEMANTIC_PRIMID;
2205 outputs[i].sid = 0;
2206 outputs[i].values[0] = bitcast(bld_base, TGSI_TYPE_FLOAT,
2207 get_primitive_id(bld_base, 0));
2208 outputs[i].values[1] = bld_base->base.undef;
2209 outputs[i].values[2] = bld_base->base.undef;
2210 outputs[i].values[3] = bld_base->base.undef;
2211 i++;
2212 }
2213
2214 si_llvm_export_vs(bld_base, outputs, i);
2215 FREE(outputs);
2216 }
2217
2218 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
2219 LLVMValueRef depth, LLVMValueRef stencil,
2220 LLVMValueRef samplemask)
2221 {
2222 struct si_screen *sscreen = si_shader_context(bld_base)->screen;
2223 struct lp_build_context *base = &bld_base->base;
2224 struct lp_build_context *uint = &bld_base->uint_bld;
2225 LLVMValueRef args[9];
2226 unsigned mask = 0;
2227
2228 assert(depth || stencil || samplemask);
2229
2230 args[1] = uint->one; /* whether the EXEC mask is valid */
2231 args[2] = uint->one; /* DONE bit */
2232
2233 /* Specify the target we are exporting */
2234 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ);
2235
2236 args[4] = uint->zero; /* COMP flag */
2237 args[5] = base->undef; /* R, depth */
2238 args[6] = base->undef; /* G, stencil test value[0:7], stencil op value[8:15] */
2239 args[7] = base->undef; /* B, sample mask */
2240 args[8] = base->undef; /* A, alpha to mask */
2241
2242 if (depth) {
2243 args[5] = depth;
2244 mask |= 0x1;
2245 }
2246
2247 if (stencil) {
2248 args[6] = stencil;
2249 mask |= 0x2;
2250 }
2251
2252 if (samplemask) {
2253 args[7] = samplemask;
2254 mask |= 0x4;
2255 }
2256
2257 /* SI (except OLAND) has a bug that it only looks
2258 * at the X writemask component. */
2259 if (sscreen->b.chip_class == SI &&
2260 sscreen->b.family != CHIP_OLAND)
2261 mask |= 0x1;
2262
2263 /* Specify which components to enable */
2264 args[0] = lp_build_const_int32(base->gallivm, mask);
2265
2266 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2267 LLVMVoidTypeInContext(base->gallivm->context),
2268 args, 9, 0);
2269 }
2270
2271 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
2272 LLVMValueRef *color, unsigned index,
2273 bool is_last)
2274 {
2275 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2276 struct lp_build_context *base = &bld_base->base;
2277 LLVMValueRef args[9];
2278 int i;
2279
2280 /* Clamp color */
2281 if (si_shader_ctx->shader->key.ps.clamp_color)
2282 for (i = 0; i < 4; i++)
2283 color[i] = radeon_llvm_saturate(bld_base, color[i]);
2284
2285 /* Alpha to one */
2286 if (si_shader_ctx->shader->key.ps.alpha_to_one)
2287 color[3] = base->one;
2288
2289 /* Alpha test */
2290 if (index == 0 &&
2291 si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_ALWAYS)
2292 si_alpha_test(bld_base, color[3]);
2293
2294 /* Line & polygon smoothing */
2295 if (si_shader_ctx->shader->key.ps.poly_line_smoothing)
2296 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3]);
2297
2298 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
2299 if (index == 0 &&
2300 si_shader_ctx->shader->key.ps.last_cbuf > 0) {
2301 for (int c = 1; c <= si_shader_ctx->shader->key.ps.last_cbuf; c++) {
2302 si_llvm_init_export_args(bld_base, color,
2303 V_008DFC_SQ_EXP_MRT + c, args);
2304 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2305 LLVMVoidTypeInContext(base->gallivm->context),
2306 args, 9, 0);
2307 }
2308 }
2309
2310 /* Export */
2311 si_llvm_init_export_args(bld_base, color, V_008DFC_SQ_EXP_MRT + index,
2312 args);
2313 if (is_last) {
2314 args[1] = bld_base->uint_bld.one; /* whether the EXEC mask is valid */
2315 args[2] = bld_base->uint_bld.one; /* DONE bit */
2316 }
2317 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2318 LLVMVoidTypeInContext(base->gallivm->context),
2319 args, 9, 0);
2320 }
2321
2322 static void si_export_null(struct lp_build_tgsi_context *bld_base)
2323 {
2324 struct lp_build_context *base = &bld_base->base;
2325 struct lp_build_context *uint = &bld_base->uint_bld;
2326 LLVMValueRef args[9];
2327
2328 args[0] = lp_build_const_int32(base->gallivm, 0x0); /* enabled channels */
2329 args[1] = uint->one; /* whether the EXEC mask is valid */
2330 args[2] = uint->one; /* DONE bit */
2331 args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_NULL);
2332 args[4] = uint->zero; /* COMPR flag (0 = 32-bit export) */
2333 args[5] = uint->undef; /* R */
2334 args[6] = uint->undef; /* G */
2335 args[7] = uint->undef; /* B */
2336 args[8] = uint->undef; /* A */
2337
2338 lp_build_intrinsic(base->gallivm->builder, "llvm.SI.export",
2339 LLVMVoidTypeInContext(base->gallivm->context),
2340 args, 9, 0);
2341 }
2342
2343 static void si_llvm_emit_fs_epilogue(struct lp_build_tgsi_context * bld_base)
2344 {
2345 struct si_shader_context * si_shader_ctx = si_shader_context(bld_base);
2346 struct si_shader * shader = si_shader_ctx->shader;
2347 struct lp_build_context * base = &bld_base->base;
2348 struct tgsi_shader_info *info = &shader->selector->info;
2349 LLVMBuilderRef builder = base->gallivm->builder;
2350 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
2351 int last_color_export = -1;
2352 int i;
2353
2354 /* If there are no outputs, add a dummy export. */
2355 if (!info->num_outputs) {
2356 si_export_null(bld_base);
2357 return;
2358 }
2359
2360 /* Determine the last export. If MRTZ is present, it's always last.
2361 * Otherwise, find the last color export.
2362 */
2363 if (!info->writes_z && !info->writes_stencil && !info->writes_samplemask)
2364 for (i = 0; i < info->num_outputs; i++)
2365 if (info->output_semantic_name[i] == TGSI_SEMANTIC_COLOR)
2366 last_color_export = i;
2367
2368 for (i = 0; i < info->num_outputs; i++) {
2369 unsigned semantic_name = info->output_semantic_name[i];
2370 unsigned semantic_index = info->output_semantic_index[i];
2371 unsigned j;
2372 LLVMValueRef color[4] = {};
2373
2374 /* Select the correct target */
2375 switch (semantic_name) {
2376 case TGSI_SEMANTIC_POSITION:
2377 depth = LLVMBuildLoad(builder,
2378 si_shader_ctx->radeon_bld.soa.outputs[i][2], "");
2379 break;
2380 case TGSI_SEMANTIC_STENCIL:
2381 stencil = LLVMBuildLoad(builder,
2382 si_shader_ctx->radeon_bld.soa.outputs[i][1], "");
2383 break;
2384 case TGSI_SEMANTIC_SAMPLEMASK:
2385 samplemask = LLVMBuildLoad(builder,
2386 si_shader_ctx->radeon_bld.soa.outputs[i][0], "");
2387 break;
2388 case TGSI_SEMANTIC_COLOR:
2389 for (j = 0; j < 4; j++)
2390 color[j] = LLVMBuildLoad(builder,
2391 si_shader_ctx->radeon_bld.soa.outputs[i][j], "");
2392
2393 si_export_mrt_color(bld_base, color, semantic_index,
2394 last_color_export == i);
2395 break;
2396 default:
2397 fprintf(stderr,
2398 "Warning: SI unhandled fs output type:%d\n",
2399 semantic_name);
2400 }
2401 }
2402
2403 if (depth || stencil || samplemask)
2404 si_export_mrt_z(bld_base, depth, stencil, samplemask);
2405 }
2406
2407 static void build_tex_intrinsic(const struct lp_build_tgsi_action * action,
2408 struct lp_build_tgsi_context * bld_base,
2409 struct lp_build_emit_data * emit_data);
2410
2411 static bool tgsi_is_array_sampler(unsigned target)
2412 {
2413 return target == TGSI_TEXTURE_1D_ARRAY ||
2414 target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
2415 target == TGSI_TEXTURE_2D_ARRAY ||
2416 target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
2417 target == TGSI_TEXTURE_CUBE_ARRAY ||
2418 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
2419 target == TGSI_TEXTURE_2D_ARRAY_MSAA;
2420 }
2421
2422 static void set_tex_fetch_args(struct gallivm_state *gallivm,
2423 struct lp_build_emit_data *emit_data,
2424 unsigned opcode, unsigned target,
2425 LLVMValueRef res_ptr, LLVMValueRef samp_ptr,
2426 LLVMValueRef *param, unsigned count,
2427 unsigned dmask)
2428 {
2429 unsigned num_args;
2430 unsigned is_rect = target == TGSI_TEXTURE_RECT;
2431 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
2432
2433 /* Pad to power of two vector */
2434 while (count < util_next_power_of_two(count))
2435 param[count++] = LLVMGetUndef(i32);
2436
2437 /* Texture coordinates. */
2438 if (count > 1)
2439 emit_data->args[0] = lp_build_gather_values(gallivm, param, count);
2440 else
2441 emit_data->args[0] = param[0];
2442
2443 /* Resource. */
2444 emit_data->args[1] = res_ptr;
2445 num_args = 2;
2446
2447 if (opcode == TGSI_OPCODE_TXF || opcode == TGSI_OPCODE_TXQ)
2448 emit_data->dst_type = LLVMVectorType(i32, 4);
2449 else {
2450 emit_data->dst_type = LLVMVectorType(
2451 LLVMFloatTypeInContext(gallivm->context), 4);
2452
2453 emit_data->args[num_args++] = samp_ptr;
2454 }
2455
2456 emit_data->args[num_args++] = lp_build_const_int32(gallivm, dmask);
2457 emit_data->args[num_args++] = lp_build_const_int32(gallivm, is_rect); /* unorm */
2458 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* r128 */
2459 emit_data->args[num_args++] = lp_build_const_int32(gallivm,
2460 tgsi_is_array_sampler(target)); /* da */
2461 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* glc */
2462 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* slc */
2463 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* tfe */
2464 emit_data->args[num_args++] = lp_build_const_int32(gallivm, 0); /* lwe */
2465
2466 emit_data->arg_count = num_args;
2467 }
2468
2469 static const struct lp_build_tgsi_action tex_action;
2470
2471 static void tex_fetch_ptrs(
2472 struct lp_build_tgsi_context * bld_base,
2473 struct lp_build_emit_data * emit_data,
2474 LLVMValueRef *res_ptr, LLVMValueRef *samp_ptr, LLVMValueRef *fmask_ptr)
2475 {
2476 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2477 struct gallivm_state *gallivm = bld_base->base.gallivm;
2478 const struct tgsi_full_instruction * inst = emit_data->inst;
2479 unsigned target = inst->Texture.Texture;
2480 unsigned sampler_src;
2481 unsigned sampler_index;
2482
2483 sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
2484 sampler_index = emit_data->inst->Src[sampler_src].Register.Index;
2485
2486 if (emit_data->inst->Src[sampler_src].Register.Indirect) {
2487 const struct tgsi_full_src_register *reg = &emit_data->inst->Src[sampler_src];
2488 LLVMValueRef ind_index;
2489
2490 ind_index = get_indirect_index(si_shader_ctx, &reg->Indirect, reg->Register.Index);
2491
2492 *res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER_VIEWS);
2493 *res_ptr = build_indexed_load_const(si_shader_ctx, *res_ptr, ind_index);
2494
2495 *samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER_STATES);
2496 *samp_ptr = build_indexed_load_const(si_shader_ctx, *samp_ptr, ind_index);
2497
2498 if (target == TGSI_TEXTURE_2D_MSAA ||
2499 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
2500 ind_index = LLVMBuildAdd(gallivm->builder, ind_index,
2501 lp_build_const_int32(gallivm,
2502 SI_FMASK_TEX_OFFSET), "");
2503 *fmask_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER_VIEWS);
2504 *fmask_ptr = build_indexed_load_const(si_shader_ctx, *fmask_ptr, ind_index);
2505 }
2506 } else {
2507 *res_ptr = si_shader_ctx->sampler_views[sampler_index];
2508 *samp_ptr = si_shader_ctx->sampler_states[sampler_index];
2509 *fmask_ptr = si_shader_ctx->sampler_views[SI_FMASK_TEX_OFFSET + sampler_index];
2510 }
2511 }
2512
2513 static void tex_fetch_args(
2514 struct lp_build_tgsi_context * bld_base,
2515 struct lp_build_emit_data * emit_data)
2516 {
2517 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
2518 struct gallivm_state *gallivm = bld_base->base.gallivm;
2519 LLVMBuilderRef builder = gallivm->builder;
2520 const struct tgsi_full_instruction * inst = emit_data->inst;
2521 unsigned opcode = inst->Instruction.Opcode;
2522 unsigned target = inst->Texture.Texture;
2523 LLVMValueRef coords[5], derivs[6];
2524 LLVMValueRef address[16];
2525 int ref_pos;
2526 unsigned num_coords = tgsi_util_get_texture_coord_dim(target, &ref_pos);
2527 unsigned count = 0;
2528 unsigned chan;
2529 unsigned num_deriv_channels = 0;
2530 bool has_offset = inst->Texture.NumOffsets > 0;
2531 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
2532 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
2533 unsigned dmask = 0xf;
2534
2535 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
2536
2537 if (opcode == TGSI_OPCODE_TXQ) {
2538 if (target == TGSI_TEXTURE_BUFFER) {
2539 LLVMTypeRef v8i32 = LLVMVectorType(i32, 8);
2540
2541 /* Read the size from the buffer descriptor directly. */
2542 LLVMValueRef res = LLVMBuildBitCast(builder, res_ptr, v8i32, "");
2543 LLVMValueRef size = LLVMBuildExtractElement(builder, res,
2544 lp_build_const_int32(gallivm, 6), "");
2545
2546 if (si_shader_ctx->screen->b.chip_class >= VI) {
2547 /* On VI, the descriptor contains the size in bytes,
2548 * but TXQ must return the size in elements.
2549 * The stride is always non-zero for resources using TXQ.
2550 */
2551 LLVMValueRef stride =
2552 LLVMBuildExtractElement(builder, res,
2553 lp_build_const_int32(gallivm, 5), "");
2554 stride = LLVMBuildLShr(builder, stride,
2555 lp_build_const_int32(gallivm, 16), "");
2556 stride = LLVMBuildAnd(builder, stride,
2557 lp_build_const_int32(gallivm, 0x3FFF), "");
2558
2559 size = LLVMBuildUDiv(builder, size, stride, "");
2560 }
2561
2562 emit_data->args[0] = size;
2563 return;
2564 }
2565
2566 /* Textures - set the mip level. */
2567 address[count++] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
2568
2569 set_tex_fetch_args(gallivm, emit_data, opcode, target, res_ptr,
2570 NULL, address, count, 0xf);
2571 return;
2572 }
2573
2574 if (target == TGSI_TEXTURE_BUFFER) {
2575 LLVMTypeRef i128 = LLVMIntTypeInContext(gallivm->context, 128);
2576 LLVMTypeRef v2i128 = LLVMVectorType(i128, 2);
2577 LLVMTypeRef i8 = LLVMInt8TypeInContext(gallivm->context);
2578 LLVMTypeRef v16i8 = LLVMVectorType(i8, 16);
2579
2580 /* Bitcast and truncate v8i32 to v16i8. */
2581 LLVMValueRef res = res_ptr;
2582 res = LLVMBuildBitCast(gallivm->builder, res, v2i128, "");
2583 res = LLVMBuildExtractElement(gallivm->builder, res, bld_base->uint_bld.one, "");
2584 res = LLVMBuildBitCast(gallivm->builder, res, v16i8, "");
2585
2586 emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
2587 emit_data->args[0] = res;
2588 emit_data->args[1] = bld_base->uint_bld.zero;
2589 emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
2590 emit_data->arg_count = 3;
2591 return;
2592 }
2593
2594 /* Fetch and project texture coordinates */
2595 coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
2596 for (chan = 0; chan < 3; chan++ ) {
2597 coords[chan] = lp_build_emit_fetch(bld_base,
2598 emit_data->inst, 0,
2599 chan);
2600 if (opcode == TGSI_OPCODE_TXP)
2601 coords[chan] = lp_build_emit_llvm_binary(bld_base,
2602 TGSI_OPCODE_DIV,
2603 coords[chan],
2604 coords[3]);
2605 }
2606
2607 if (opcode == TGSI_OPCODE_TXP)
2608 coords[3] = bld_base->base.one;
2609
2610 /* Pack offsets. */
2611 if (has_offset && opcode != TGSI_OPCODE_TXF) {
2612 /* The offsets are six-bit signed integers packed like this:
2613 * X=[5:0], Y=[13:8], and Z=[21:16].
2614 */
2615 LLVMValueRef offset[3], pack;
2616
2617 assert(inst->Texture.NumOffsets == 1);
2618
2619 for (chan = 0; chan < 3; chan++) {
2620 offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
2621 emit_data->inst, 0, chan);
2622 offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
2623 lp_build_const_int32(gallivm, 0x3f), "");
2624 if (chan)
2625 offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
2626 lp_build_const_int32(gallivm, chan*8), "");
2627 }
2628
2629 pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
2630 pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
2631 address[count++] = pack;
2632 }
2633
2634 /* Pack LOD bias value */
2635 if (opcode == TGSI_OPCODE_TXB)
2636 address[count++] = coords[3];
2637 if (opcode == TGSI_OPCODE_TXB2)
2638 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
2639
2640 /* Pack depth comparison value */
2641 if (tgsi_is_shadow_target(target) && opcode != TGSI_OPCODE_LODQ) {
2642 if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
2643 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
2644 } else {
2645 assert(ref_pos >= 0);
2646 address[count++] = coords[ref_pos];
2647 }
2648 }
2649
2650 /* Pack user derivatives */
2651 if (opcode == TGSI_OPCODE_TXD) {
2652 int param, num_src_deriv_channels;
2653
2654 switch (target) {
2655 case TGSI_TEXTURE_3D:
2656 num_src_deriv_channels = 3;
2657 num_deriv_channels = 3;
2658 break;
2659 case TGSI_TEXTURE_2D:
2660 case TGSI_TEXTURE_SHADOW2D:
2661 case TGSI_TEXTURE_RECT:
2662 case TGSI_TEXTURE_SHADOWRECT:
2663 case TGSI_TEXTURE_2D_ARRAY:
2664 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2665 num_src_deriv_channels = 2;
2666 num_deriv_channels = 2;
2667 break;
2668 case TGSI_TEXTURE_CUBE:
2669 case TGSI_TEXTURE_SHADOWCUBE:
2670 case TGSI_TEXTURE_CUBE_ARRAY:
2671 case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
2672 /* Cube derivatives will be converted to 2D. */
2673 num_src_deriv_channels = 3;
2674 num_deriv_channels = 2;
2675 break;
2676 case TGSI_TEXTURE_1D:
2677 case TGSI_TEXTURE_SHADOW1D:
2678 case TGSI_TEXTURE_1D_ARRAY:
2679 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2680 num_src_deriv_channels = 1;
2681 num_deriv_channels = 1;
2682 break;
2683 default:
2684 unreachable("invalid target");
2685 }
2686
2687 for (param = 0; param < 2; param++)
2688 for (chan = 0; chan < num_src_deriv_channels; chan++)
2689 derivs[param * num_src_deriv_channels + chan] =
2690 lp_build_emit_fetch(bld_base, inst, param+1, chan);
2691 }
2692
2693 if (target == TGSI_TEXTURE_CUBE ||
2694 target == TGSI_TEXTURE_CUBE_ARRAY ||
2695 target == TGSI_TEXTURE_SHADOWCUBE ||
2696 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
2697 radeon_llvm_emit_prepare_cube_coords(bld_base, emit_data, coords, derivs);
2698
2699 if (opcode == TGSI_OPCODE_TXD)
2700 for (int i = 0; i < num_deriv_channels * 2; i++)
2701 address[count++] = derivs[i];
2702
2703 /* Pack texture coordinates */
2704 address[count++] = coords[0];
2705 if (num_coords > 1)
2706 address[count++] = coords[1];
2707 if (num_coords > 2)
2708 address[count++] = coords[2];
2709
2710 /* Pack LOD or sample index */
2711 if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
2712 address[count++] = coords[3];
2713 else if (opcode == TGSI_OPCODE_TXL2)
2714 address[count++] = lp_build_emit_fetch(bld_base, inst, 1, TGSI_CHAN_X);
2715
2716 if (count > 16) {
2717 assert(!"Cannot handle more than 16 texture address parameters");
2718 count = 16;
2719 }
2720
2721 for (chan = 0; chan < count; chan++ ) {
2722 address[chan] = LLVMBuildBitCast(gallivm->builder,
2723 address[chan], i32, "");
2724 }
2725
2726 /* Adjust the sample index according to FMASK.
2727 *
2728 * For uncompressed MSAA surfaces, FMASK should return 0x76543210,
2729 * which is the identity mapping. Each nibble says which physical sample
2730 * should be fetched to get that sample.
2731 *
2732 * For example, 0x11111100 means there are only 2 samples stored and
2733 * the second sample covers 3/4 of the pixel. When reading samples 0
2734 * and 1, return physical sample 0 (determined by the first two 0s
2735 * in FMASK), otherwise return physical sample 1.
2736 *
2737 * The sample index should be adjusted as follows:
2738 * sample_index = (fmask >> (sample_index * 4)) & 0xF;
2739 */
2740 if (target == TGSI_TEXTURE_2D_MSAA ||
2741 target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
2742 struct lp_build_context *uint_bld = &bld_base->uint_bld;
2743 struct lp_build_emit_data txf_emit_data = *emit_data;
2744 LLVMValueRef txf_address[4];
2745 unsigned txf_count = count;
2746 struct tgsi_full_instruction inst = {};
2747
2748 memcpy(txf_address, address, sizeof(txf_address));
2749
2750 if (target == TGSI_TEXTURE_2D_MSAA) {
2751 txf_address[2] = bld_base->uint_bld.zero;
2752 }
2753 txf_address[3] = bld_base->uint_bld.zero;
2754
2755 /* Read FMASK using TXF. */
2756 inst.Instruction.Opcode = TGSI_OPCODE_TXF;
2757 inst.Texture.Texture = target;
2758 txf_emit_data.inst = &inst;
2759 txf_emit_data.chan = 0;
2760 set_tex_fetch_args(gallivm, &txf_emit_data, TGSI_OPCODE_TXF,
2761 target, fmask_ptr, NULL,
2762 txf_address, txf_count, 0xf);
2763 build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
2764
2765 /* Initialize some constants. */
2766 LLVMValueRef four = LLVMConstInt(uint_bld->elem_type, 4, 0);
2767 LLVMValueRef F = LLVMConstInt(uint_bld->elem_type, 0xF, 0);
2768
2769 /* Apply the formula. */
2770 LLVMValueRef fmask =
2771 LLVMBuildExtractElement(gallivm->builder,
2772 txf_emit_data.output[0],
2773 uint_bld->zero, "");
2774
2775 unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
2776
2777 LLVMValueRef sample_index4 =
2778 LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
2779
2780 LLVMValueRef shifted_fmask =
2781 LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
2782
2783 LLVMValueRef final_sample =
2784 LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
2785
2786 /* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
2787 * resource descriptor is 0 (invalid),
2788 */
2789 LLVMValueRef fmask_desc =
2790 LLVMBuildBitCast(gallivm->builder, fmask_ptr,
2791 LLVMVectorType(uint_bld->elem_type, 8), "");
2792
2793 LLVMValueRef fmask_word1 =
2794 LLVMBuildExtractElement(gallivm->builder, fmask_desc,
2795 uint_bld->one, "");
2796
2797 LLVMValueRef word1_is_nonzero =
2798 LLVMBuildICmp(gallivm->builder, LLVMIntNE,
2799 fmask_word1, uint_bld->zero, "");
2800
2801 /* Replace the MSAA sample index. */
2802 address[sample_chan] =
2803 LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
2804 final_sample, address[sample_chan], "");
2805 }
2806
2807 if (opcode == TGSI_OPCODE_TXF) {
2808 /* add tex offsets */
2809 if (inst->Texture.NumOffsets) {
2810 struct lp_build_context *uint_bld = &bld_base->uint_bld;
2811 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
2812 const struct tgsi_texture_offset * off = inst->TexOffsets;
2813
2814 assert(inst->Texture.NumOffsets == 1);
2815
2816 switch (target) {
2817 case TGSI_TEXTURE_3D:
2818 address[2] = lp_build_add(uint_bld, address[2],
2819 bld->immediates[off->Index][off->SwizzleZ]);
2820 /* fall through */
2821 case TGSI_TEXTURE_2D:
2822 case TGSI_TEXTURE_SHADOW2D:
2823 case TGSI_TEXTURE_RECT:
2824 case TGSI_TEXTURE_SHADOWRECT:
2825 case TGSI_TEXTURE_2D_ARRAY:
2826 case TGSI_TEXTURE_SHADOW2D_ARRAY:
2827 address[1] =
2828 lp_build_add(uint_bld, address[1],
2829 bld->immediates[off->Index][off->SwizzleY]);
2830 /* fall through */
2831 case TGSI_TEXTURE_1D:
2832 case TGSI_TEXTURE_SHADOW1D:
2833 case TGSI_TEXTURE_1D_ARRAY:
2834 case TGSI_TEXTURE_SHADOW1D_ARRAY:
2835 address[0] =
2836 lp_build_add(uint_bld, address[0],
2837 bld->immediates[off->Index][off->SwizzleX]);
2838 break;
2839 /* texture offsets do not apply to other texture targets */
2840 }
2841 }
2842 }
2843
2844 if (opcode == TGSI_OPCODE_TG4) {
2845 unsigned gather_comp = 0;
2846
2847 /* DMASK was repurposed for GATHER4. 4 components are always
2848 * returned and DMASK works like a swizzle - it selects
2849 * the component to fetch. The only valid DMASK values are
2850 * 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
2851 * (red,red,red,red) etc.) The ISA document doesn't mention
2852 * this.
2853 */
2854
2855 /* Get the component index from src1.x for Gather4. */
2856 if (!tgsi_is_shadow_target(target)) {
2857 LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates;
2858 LLVMValueRef comp_imm;
2859 struct tgsi_src_register src1 = inst->Src[1].Register;
2860
2861 assert(src1.File == TGSI_FILE_IMMEDIATE);
2862
2863 comp_imm = imms[src1.Index][src1.SwizzleX];
2864 gather_comp = LLVMConstIntGetZExtValue(comp_imm);
2865 gather_comp = CLAMP(gather_comp, 0, 3);
2866 }
2867
2868 dmask = 1 << gather_comp;
2869 }
2870
2871 set_tex_fetch_args(gallivm, emit_data, opcode, target, res_ptr,
2872 samp_ptr, address, count, dmask);
2873 }
2874
2875 static void build_tex_intrinsic(const struct lp_build_tgsi_action * action,
2876 struct lp_build_tgsi_context * bld_base,
2877 struct lp_build_emit_data * emit_data)
2878 {
2879 struct lp_build_context * base = &bld_base->base;
2880 unsigned opcode = emit_data->inst->Instruction.Opcode;
2881 unsigned target = emit_data->inst->Texture.Texture;
2882 char intr_name[127];
2883 bool has_offset = emit_data->inst->Texture.NumOffsets > 0;
2884 bool is_shadow = tgsi_is_shadow_target(target);
2885 char type[64];
2886 const char *name = "llvm.SI.image.sample";
2887 const char *infix = "";
2888
2889 if (opcode == TGSI_OPCODE_TXQ && target == TGSI_TEXTURE_BUFFER) {
2890 /* Just return the buffer size. */
2891 emit_data->output[emit_data->chan] = emit_data->args[0];
2892 return;
2893 }
2894
2895 if (target == TGSI_TEXTURE_BUFFER) {
2896 emit_data->output[emit_data->chan] = lp_build_intrinsic(
2897 base->gallivm->builder,
2898 "llvm.SI.vs.load.input", emit_data->dst_type,
2899 emit_data->args, emit_data->arg_count,
2900 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
2901 return;
2902 }
2903
2904 switch (opcode) {
2905 case TGSI_OPCODE_TXF:
2906 name = target == TGSI_TEXTURE_2D_MSAA ||
2907 target == TGSI_TEXTURE_2D_ARRAY_MSAA ?
2908 "llvm.SI.image.load" :
2909 "llvm.SI.image.load.mip";
2910 is_shadow = false;
2911 has_offset = false;
2912 break;
2913 case TGSI_OPCODE_TXQ:
2914 name = "llvm.SI.getresinfo";
2915 is_shadow = false;
2916 has_offset = false;
2917 break;
2918 case TGSI_OPCODE_LODQ:
2919 name = "llvm.SI.getlod";
2920 is_shadow = false;
2921 has_offset = false;
2922 break;
2923 case TGSI_OPCODE_TEX:
2924 case TGSI_OPCODE_TEX2:
2925 case TGSI_OPCODE_TXP:
2926 break;
2927 case TGSI_OPCODE_TXB:
2928 case TGSI_OPCODE_TXB2:
2929 infix = ".b";
2930 break;
2931 case TGSI_OPCODE_TXL:
2932 case TGSI_OPCODE_TXL2:
2933 infix = ".l";
2934 break;
2935 case TGSI_OPCODE_TXD:
2936 infix = ".d";
2937 break;
2938 case TGSI_OPCODE_TG4:
2939 name = "llvm.SI.gather4";
2940 break;
2941 default:
2942 assert(0);
2943 return;
2944 }
2945
2946 if (LLVMGetTypeKind(LLVMTypeOf(emit_data->args[0])) == LLVMVectorTypeKind)
2947 sprintf(type, ".v%ui32",
2948 LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0])));
2949 else
2950 strcpy(type, ".i32");
2951
2952 /* Add the type and suffixes .c, .o if needed. */
2953 sprintf(intr_name, "%s%s%s%s%s",
2954 name, is_shadow ? ".c" : "", infix,
2955 has_offset ? ".o" : "", type);
2956
2957 emit_data->output[emit_data->chan] = lp_build_intrinsic(
2958 base->gallivm->builder, intr_name, emit_data->dst_type,
2959 emit_data->args, emit_data->arg_count,
2960 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
2961
2962 /* Divide the number of layers by 6 to get the number of cubes. */
2963 if (opcode == TGSI_OPCODE_TXQ &&
2964 (target == TGSI_TEXTURE_CUBE_ARRAY ||
2965 target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)) {
2966 LLVMBuilderRef builder = bld_base->base.gallivm->builder;
2967 LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2);
2968 LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6);
2969
2970 LLVMValueRef v4 = emit_data->output[emit_data->chan];
2971 LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, "");
2972 z = LLVMBuildSDiv(builder, z, six, "");
2973
2974 emit_data->output[emit_data->chan] =
2975 LLVMBuildInsertElement(builder, v4, z, two, "");
2976 }
2977 }
2978
2979 static void si_llvm_emit_txqs(
2980 const struct lp_build_tgsi_action * action,
2981 struct lp_build_tgsi_context * bld_base,
2982 struct lp_build_emit_data * emit_data)
2983 {
2984 struct gallivm_state *gallivm = bld_base->base.gallivm;
2985 LLVMBuilderRef builder = gallivm->builder;
2986 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
2987 LLVMTypeRef v8i32 = LLVMVectorType(i32, 8);
2988 LLVMValueRef res, samples;
2989 LLVMValueRef res_ptr, samp_ptr, fmask_ptr = NULL;
2990
2991 tex_fetch_ptrs(bld_base, emit_data, &res_ptr, &samp_ptr, &fmask_ptr);
2992
2993
2994 /* Read the samples from the descriptor directly. */
2995 res = LLVMBuildBitCast(builder, res_ptr, v8i32, "");
2996 samples = LLVMBuildExtractElement(
2997 builder, res,
2998 lp_build_const_int32(gallivm, 3), "");
2999 samples = LLVMBuildLShr(builder, samples,
3000 lp_build_const_int32(gallivm, 16), "");
3001 samples = LLVMBuildAnd(builder, samples,
3002 lp_build_const_int32(gallivm, 0xf), "");
3003 samples = LLVMBuildShl(builder, lp_build_const_int32(gallivm, 1),
3004 samples, "");
3005
3006 emit_data->output[emit_data->chan] = samples;
3007 }
3008
3009 /*
3010 * SI implements derivatives using the local data store (LDS)
3011 * All writes to the LDS happen in all executing threads at
3012 * the same time. TID is the Thread ID for the current
3013 * thread and is a value between 0 and 63, representing
3014 * the thread's position in the wavefront.
3015 *
3016 * For the pixel shader threads are grouped into quads of four pixels.
3017 * The TIDs of the pixels of a quad are:
3018 *
3019 * +------+------+
3020 * |4n + 0|4n + 1|
3021 * +------+------+
3022 * |4n + 2|4n + 3|
3023 * +------+------+
3024 *
3025 * So, masking the TID with 0xfffffffc yields the TID of the top left pixel
3026 * of the quad, masking with 0xfffffffd yields the TID of the top pixel of
3027 * the current pixel's column, and masking with 0xfffffffe yields the TID
3028 * of the left pixel of the current pixel's row.
3029 *
3030 * Adding 1 yields the TID of the pixel to the right of the left pixel, and
3031 * adding 2 yields the TID of the pixel below the top pixel.
3032 */
3033 /* masks for thread ID. */
3034 #define TID_MASK_TOP_LEFT 0xfffffffc
3035 #define TID_MASK_TOP 0xfffffffd
3036 #define TID_MASK_LEFT 0xfffffffe
3037
3038 static void si_llvm_emit_ddxy(
3039 const struct lp_build_tgsi_action * action,
3040 struct lp_build_tgsi_context * bld_base,
3041 struct lp_build_emit_data * emit_data)
3042 {
3043 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3044 struct gallivm_state *gallivm = bld_base->base.gallivm;
3045 struct lp_build_context * base = &bld_base->base;
3046 const struct tgsi_full_instruction *inst = emit_data->inst;
3047 unsigned opcode = inst->Instruction.Opcode;
3048 LLVMValueRef indices[2];
3049 LLVMValueRef store_ptr, load_ptr0, load_ptr1;
3050 LLVMValueRef tl, trbl, result[4];
3051 LLVMTypeRef i32;
3052 unsigned swizzle[4];
3053 unsigned c;
3054 int idx;
3055 unsigned mask;
3056
3057 i32 = LLVMInt32TypeInContext(gallivm->context);
3058
3059 indices[0] = bld_base->uint_bld.zero;
3060 indices[1] = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid", i32,
3061 NULL, 0, LLVMReadNoneAttribute);
3062 store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3063 indices, 2, "");
3064
3065 if (opcode == TGSI_OPCODE_DDX_FINE)
3066 mask = TID_MASK_LEFT;
3067 else if (opcode == TGSI_OPCODE_DDY_FINE)
3068 mask = TID_MASK_TOP;
3069 else
3070 mask = TID_MASK_TOP_LEFT;
3071
3072 indices[1] = LLVMBuildAnd(gallivm->builder, indices[1],
3073 lp_build_const_int32(gallivm, mask), "");
3074 load_ptr0 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3075 indices, 2, "");
3076
3077 /* for DDX we want to next X pixel, DDY next Y pixel. */
3078 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
3079 indices[1] = LLVMBuildAdd(gallivm->builder, indices[1],
3080 lp_build_const_int32(gallivm, idx), "");
3081 load_ptr1 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3082 indices, 2, "");
3083
3084 for (c = 0; c < 4; ++c) {
3085 unsigned i;
3086
3087 swizzle[c] = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], c);
3088 for (i = 0; i < c; ++i) {
3089 if (swizzle[i] == swizzle[c]) {
3090 result[c] = result[i];
3091 break;
3092 }
3093 }
3094 if (i != c)
3095 continue;
3096
3097 LLVMBuildStore(gallivm->builder,
3098 LLVMBuildBitCast(gallivm->builder,
3099 lp_build_emit_fetch(bld_base, inst, 0, c),
3100 i32, ""),
3101 store_ptr);
3102
3103 tl = LLVMBuildLoad(gallivm->builder, load_ptr0, "");
3104 tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, "");
3105
3106 trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, "");
3107 trbl = LLVMBuildBitCast(gallivm->builder, trbl, base->elem_type, "");
3108
3109 result[c] = LLVMBuildFSub(gallivm->builder, trbl, tl, "");
3110 }
3111
3112 emit_data->output[0] = lp_build_gather_values(gallivm, result, 4);
3113 }
3114
3115 /*
3116 * this takes an I,J coordinate pair,
3117 * and works out the X and Y derivatives.
3118 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
3119 */
3120 static LLVMValueRef si_llvm_emit_ddxy_interp(
3121 struct lp_build_tgsi_context *bld_base,
3122 LLVMValueRef interp_ij)
3123 {
3124 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3125 struct gallivm_state *gallivm = bld_base->base.gallivm;
3126 struct lp_build_context *base = &bld_base->base;
3127 LLVMValueRef indices[2];
3128 LLVMValueRef store_ptr, load_ptr_x, load_ptr_y, load_ptr_ddx, load_ptr_ddy, temp, temp2;
3129 LLVMValueRef tl, tr, bl, result[4];
3130 LLVMTypeRef i32;
3131 unsigned c;
3132
3133 i32 = LLVMInt32TypeInContext(gallivm->context);
3134
3135 indices[0] = bld_base->uint_bld.zero;
3136 indices[1] = lp_build_intrinsic(gallivm->builder, "llvm.SI.tid", i32,
3137 NULL, 0, LLVMReadNoneAttribute);
3138 store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3139 indices, 2, "");
3140
3141 temp = LLVMBuildAnd(gallivm->builder, indices[1],
3142 lp_build_const_int32(gallivm, TID_MASK_LEFT), "");
3143
3144 temp2 = LLVMBuildAnd(gallivm->builder, indices[1],
3145 lp_build_const_int32(gallivm, TID_MASK_TOP), "");
3146
3147 indices[1] = temp;
3148 load_ptr_x = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3149 indices, 2, "");
3150
3151 indices[1] = temp2;
3152 load_ptr_y = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3153 indices, 2, "");
3154
3155 indices[1] = LLVMBuildAdd(gallivm->builder, temp,
3156 lp_build_const_int32(gallivm, 1), "");
3157 load_ptr_ddx = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3158 indices, 2, "");
3159
3160 indices[1] = LLVMBuildAdd(gallivm->builder, temp2,
3161 lp_build_const_int32(gallivm, 2), "");
3162 load_ptr_ddy = LLVMBuildGEP(gallivm->builder, si_shader_ctx->lds,
3163 indices, 2, "");
3164
3165 for (c = 0; c < 2; ++c) {
3166 LLVMValueRef store_val;
3167 LLVMValueRef c_ll = lp_build_const_int32(gallivm, c);
3168
3169 store_val = LLVMBuildExtractElement(gallivm->builder,
3170 interp_ij, c_ll, "");
3171 LLVMBuildStore(gallivm->builder,
3172 store_val,
3173 store_ptr);
3174
3175 tl = LLVMBuildLoad(gallivm->builder, load_ptr_x, "");
3176 tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, "");
3177
3178 tr = LLVMBuildLoad(gallivm->builder, load_ptr_ddx, "");
3179 tr = LLVMBuildBitCast(gallivm->builder, tr, base->elem_type, "");
3180
3181 result[c] = LLVMBuildFSub(gallivm->builder, tr, tl, "");
3182
3183 tl = LLVMBuildLoad(gallivm->builder, load_ptr_y, "");
3184 tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, "");
3185
3186 bl = LLVMBuildLoad(gallivm->builder, load_ptr_ddy, "");
3187 bl = LLVMBuildBitCast(gallivm->builder, bl, base->elem_type, "");
3188
3189 result[c + 2] = LLVMBuildFSub(gallivm->builder, bl, tl, "");
3190 }
3191
3192 return lp_build_gather_values(gallivm, result, 4);
3193 }
3194
3195 static void interp_fetch_args(
3196 struct lp_build_tgsi_context *bld_base,
3197 struct lp_build_emit_data *emit_data)
3198 {
3199 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3200 struct gallivm_state *gallivm = bld_base->base.gallivm;
3201 const struct tgsi_full_instruction *inst = emit_data->inst;
3202
3203 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
3204 /* offset is in second src, first two channels */
3205 emit_data->args[0] = lp_build_emit_fetch(bld_base,
3206 emit_data->inst, 1,
3207 TGSI_CHAN_X);
3208 emit_data->args[1] = lp_build_emit_fetch(bld_base,
3209 emit_data->inst, 1,
3210 TGSI_CHAN_Y);
3211 emit_data->arg_count = 2;
3212 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3213 LLVMValueRef sample_position;
3214 LLVMValueRef sample_id;
3215 LLVMValueRef halfval = lp_build_const_float(gallivm, 0.5f);
3216
3217 /* fetch sample ID, then fetch its sample position,
3218 * and place into first two channels.
3219 */
3220 sample_id = lp_build_emit_fetch(bld_base,
3221 emit_data->inst, 1, TGSI_CHAN_X);
3222 sample_id = LLVMBuildBitCast(gallivm->builder, sample_id,
3223 LLVMInt32TypeInContext(gallivm->context),
3224 "");
3225 sample_position = load_sample_position(&si_shader_ctx->radeon_bld, sample_id);
3226
3227 emit_data->args[0] = LLVMBuildExtractElement(gallivm->builder,
3228 sample_position,
3229 lp_build_const_int32(gallivm, 0), "");
3230
3231 emit_data->args[0] = LLVMBuildFSub(gallivm->builder, emit_data->args[0], halfval, "");
3232 emit_data->args[1] = LLVMBuildExtractElement(gallivm->builder,
3233 sample_position,
3234 lp_build_const_int32(gallivm, 1), "");
3235 emit_data->args[1] = LLVMBuildFSub(gallivm->builder, emit_data->args[1], halfval, "");
3236 emit_data->arg_count = 2;
3237 }
3238 }
3239
3240 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
3241 struct lp_build_tgsi_context *bld_base,
3242 struct lp_build_emit_data *emit_data)
3243 {
3244 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3245 struct si_shader *shader = si_shader_ctx->shader;
3246 struct gallivm_state *gallivm = bld_base->base.gallivm;
3247 LLVMValueRef interp_param;
3248 const struct tgsi_full_instruction *inst = emit_data->inst;
3249 const char *intr_name;
3250 int input_index = inst->Src[0].Register.Index;
3251 int chan;
3252 int i;
3253 LLVMValueRef attr_number;
3254 LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context);
3255 LLVMValueRef params = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_PRIM_MASK);
3256 int interp_param_idx;
3257 unsigned interp = shader->selector->info.input_interpolate[input_index];
3258 unsigned location;
3259
3260 assert(inst->Src[0].Register.File == TGSI_FILE_INPUT);
3261
3262 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
3263 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
3264 location = TGSI_INTERPOLATE_LOC_CENTER;
3265 else
3266 location = TGSI_INTERPOLATE_LOC_CENTROID;
3267
3268 interp_param_idx = lookup_interp_param_index(interp, location);
3269 if (interp_param_idx == -1)
3270 return;
3271 else if (interp_param_idx)
3272 interp_param = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, interp_param_idx);
3273 else
3274 interp_param = NULL;
3275
3276 attr_number = lp_build_const_int32(gallivm, input_index);
3277
3278 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
3279 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
3280 LLVMValueRef ij_out[2];
3281 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
3282
3283 /*
3284 * take the I then J parameters, and the DDX/Y for it, and
3285 * calculate the IJ inputs for the interpolator.
3286 * temp1 = ddx * offset/sample.x + I;
3287 * interp_param.I = ddy * offset/sample.y + temp1;
3288 * temp1 = ddx * offset/sample.x + J;
3289 * interp_param.J = ddy * offset/sample.y + temp1;
3290 */
3291 for (i = 0; i < 2; i++) {
3292 LLVMValueRef ix_ll = lp_build_const_int32(gallivm, i);
3293 LLVMValueRef iy_ll = lp_build_const_int32(gallivm, i + 2);
3294 LLVMValueRef ddx_el = LLVMBuildExtractElement(gallivm->builder,
3295 ddxy_out, ix_ll, "");
3296 LLVMValueRef ddy_el = LLVMBuildExtractElement(gallivm->builder,
3297 ddxy_out, iy_ll, "");
3298 LLVMValueRef interp_el = LLVMBuildExtractElement(gallivm->builder,
3299 interp_param, ix_ll, "");
3300 LLVMValueRef temp1, temp2;
3301
3302 interp_el = LLVMBuildBitCast(gallivm->builder, interp_el,
3303 LLVMFloatTypeInContext(gallivm->context), "");
3304
3305 temp1 = LLVMBuildFMul(gallivm->builder, ddx_el, emit_data->args[0], "");
3306
3307 temp1 = LLVMBuildFAdd(gallivm->builder, temp1, interp_el, "");
3308
3309 temp2 = LLVMBuildFMul(gallivm->builder, ddy_el, emit_data->args[1], "");
3310
3311 temp2 = LLVMBuildFAdd(gallivm->builder, temp2, temp1, "");
3312
3313 ij_out[i] = LLVMBuildBitCast(gallivm->builder,
3314 temp2,
3315 LLVMIntTypeInContext(gallivm->context, 32), "");
3316 }
3317 interp_param = lp_build_gather_values(bld_base->base.gallivm, ij_out, 2);
3318 }
3319
3320 intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
3321 for (chan = 0; chan < 2; chan++) {
3322 LLVMValueRef args[4];
3323 LLVMValueRef llvm_chan;
3324 unsigned schan;
3325
3326 schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
3327 llvm_chan = lp_build_const_int32(gallivm, schan);
3328
3329 args[0] = llvm_chan;
3330 args[1] = attr_number;
3331 args[2] = params;
3332 args[3] = interp_param;
3333
3334 emit_data->output[chan] =
3335 lp_build_intrinsic(gallivm->builder, intr_name,
3336 input_type, args, args[3] ? 4 : 3,
3337 LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
3338 }
3339 }
3340
3341 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
3342 struct lp_build_emit_data *emit_data)
3343 {
3344 LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates;
3345 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
3346 unsigned stream;
3347
3348 assert(src0.File == TGSI_FILE_IMMEDIATE);
3349
3350 stream = LLVMConstIntGetZExtValue(imms[src0.Index][src0.SwizzleX]) & 0x3;
3351 return stream;
3352 }
3353
3354 /* Emit one vertex from the geometry shader */
3355 static void si_llvm_emit_vertex(
3356 const struct lp_build_tgsi_action *action,
3357 struct lp_build_tgsi_context *bld_base,
3358 struct lp_build_emit_data *emit_data)
3359 {
3360 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3361 struct lp_build_context *uint = &bld_base->uint_bld;
3362 struct si_shader *shader = si_shader_ctx->shader;
3363 struct tgsi_shader_info *info = &shader->selector->info;
3364 struct gallivm_state *gallivm = bld_base->base.gallivm;
3365 LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
3366 LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
3367 SI_PARAM_GS2VS_OFFSET);
3368 LLVMValueRef gs_next_vertex;
3369 LLVMValueRef can_emit, kill;
3370 LLVMValueRef args[2];
3371 unsigned chan;
3372 int i;
3373 unsigned stream;
3374
3375 stream = si_llvm_get_stream(bld_base, emit_data);
3376
3377 /* Write vertex attribute values to GSVS ring */
3378 gs_next_vertex = LLVMBuildLoad(gallivm->builder,
3379 si_shader_ctx->gs_next_vertex[stream],
3380 "");
3381
3382 /* If this thread has already emitted the declared maximum number of
3383 * vertices, kill it: excessive vertex emissions are not supposed to
3384 * have any effect, and GS threads have no externally observable
3385 * effects other than emitting vertices.
3386 */
3387 can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULE, gs_next_vertex,
3388 lp_build_const_int32(gallivm,
3389 shader->selector->gs_max_out_vertices), "");
3390 kill = lp_build_select(&bld_base->base, can_emit,
3391 lp_build_const_float(gallivm, 1.0f),
3392 lp_build_const_float(gallivm, -1.0f));
3393
3394 lp_build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
3395 LLVMVoidTypeInContext(gallivm->context), &kill, 1, 0);
3396
3397 for (i = 0; i < info->num_outputs; i++) {
3398 LLVMValueRef *out_ptr =
3399 si_shader_ctx->radeon_bld.soa.outputs[i];
3400
3401 for (chan = 0; chan < 4; chan++) {
3402 LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
3403 LLVMValueRef voffset =
3404 lp_build_const_int32(gallivm, (i * 4 + chan) *
3405 shader->selector->gs_max_out_vertices);
3406
3407 voffset = lp_build_add(uint, voffset, gs_next_vertex);
3408 voffset = lp_build_mul_imm(uint, voffset, 4);
3409
3410 out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, "");
3411
3412 build_tbuffer_store(si_shader_ctx,
3413 si_shader_ctx->gsvs_ring[stream],
3414 out_val, 1,
3415 voffset, soffset, 0,
3416 V_008F0C_BUF_DATA_FORMAT_32,
3417 V_008F0C_BUF_NUM_FORMAT_UINT,
3418 1, 0, 1, 1, 0);
3419 }
3420 }
3421 gs_next_vertex = lp_build_add(uint, gs_next_vertex,
3422 lp_build_const_int32(gallivm, 1));
3423
3424 LLVMBuildStore(gallivm->builder, gs_next_vertex, si_shader_ctx->gs_next_vertex[stream]);
3425
3426 /* Signal vertex emission */
3427 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS | (stream << 8));
3428 args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
3429 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
3430 LLVMVoidTypeInContext(gallivm->context), args, 2,
3431 LLVMNoUnwindAttribute);
3432 }
3433
3434 /* Cut one primitive from the geometry shader */
3435 static void si_llvm_emit_primitive(
3436 const struct lp_build_tgsi_action *action,
3437 struct lp_build_tgsi_context *bld_base,
3438 struct lp_build_emit_data *emit_data)
3439 {
3440 struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
3441 struct gallivm_state *gallivm = bld_base->base.gallivm;
3442 LLVMValueRef args[2];
3443 unsigned stream;
3444
3445 /* Signal primitive cut */
3446 stream = si_llvm_get_stream(bld_base, emit_data);
3447 args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_CUT | SENDMSG_GS | (stream << 8));
3448 args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
3449 lp_build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
3450 LLVMVoidTypeInContext(gallivm->context), args, 2,
3451 LLVMNoUnwindAttribute);
3452 }
3453
3454 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
3455 struct lp_build_tgsi_context *bld_base,
3456 struct lp_build_emit_data *emit_data)
3457 {
3458 struct gallivm_state *gallivm = bld_base->base.gallivm;
3459
3460 lp_build_intrinsic(gallivm->builder,
3461 HAVE_LLVM >= 0x0309 ? "llvm.amdgcn.s.barrier"
3462 : "llvm.AMDGPU.barrier.local",
3463 LLVMVoidTypeInContext(gallivm->context), NULL, 0,
3464 LLVMNoUnwindAttribute);
3465 }
3466
3467 static const struct lp_build_tgsi_action tex_action = {
3468 .fetch_args = tex_fetch_args,
3469 .emit = build_tex_intrinsic,
3470 };
3471
3472 static const struct lp_build_tgsi_action interp_action = {
3473 .fetch_args = interp_fetch_args,
3474 .emit = build_interp_intrinsic,
3475 };
3476
3477 static void create_meta_data(struct si_shader_context *si_shader_ctx)
3478 {
3479 struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
3480 LLVMValueRef args[3];
3481
3482 args[0] = LLVMMDStringInContext(gallivm->context, "const", 5);
3483 args[1] = 0;
3484 args[2] = lp_build_const_int32(gallivm, 1);
3485
3486 si_shader_ctx->const_md = LLVMMDNodeInContext(gallivm->context, args, 3);
3487 }
3488
3489 static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
3490 {
3491 return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
3492 CONST_ADDR_SPACE);
3493 }
3494
3495 static void declare_streamout_params(struct si_shader_context *si_shader_ctx,
3496 struct pipe_stream_output_info *so,
3497 LLVMTypeRef *params, LLVMTypeRef i32,
3498 unsigned *num_params)
3499 {
3500 int i;
3501
3502 /* Streamout SGPRs. */
3503 if (so->num_outputs) {
3504 params[si_shader_ctx->param_streamout_config = (*num_params)++] = i32;
3505 params[si_shader_ctx->param_streamout_write_index = (*num_params)++] = i32;
3506 }
3507 /* A streamout buffer offset is loaded if the stride is non-zero. */
3508 for (i = 0; i < 4; i++) {
3509 if (!so->stride[i])
3510 continue;
3511
3512 params[si_shader_ctx->param_streamout_offset[i] = (*num_params)++] = i32;
3513 }
3514 }
3515
3516 static void create_function(struct si_shader_context *si_shader_ctx)
3517 {
3518 struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
3519 struct gallivm_state *gallivm = bld_base->base.gallivm;
3520 struct si_shader *shader = si_shader_ctx->shader;
3521 LLVMTypeRef params[SI_NUM_PARAMS], f32, i8, i32, v2i32, v3i32, v16i8, v4i32, v8i32;
3522 unsigned i, last_array_pointer, last_sgpr, num_params;
3523
3524 i8 = LLVMInt8TypeInContext(gallivm->context);
3525 i32 = LLVMInt32TypeInContext(gallivm->context);
3526 f32 = LLVMFloatTypeInContext(gallivm->context);
3527 v2i32 = LLVMVectorType(i32, 2);
3528 v3i32 = LLVMVectorType(i32, 3);
3529 v4i32 = LLVMVectorType(i32, 4);
3530 v8i32 = LLVMVectorType(i32, 8);
3531 v16i8 = LLVMVectorType(i8, 16);
3532
3533 params[SI_PARAM_RW_BUFFERS] = const_array(v16i8, SI_NUM_RW_BUFFERS);
3534 params[SI_PARAM_CONST_BUFFERS] = const_array(v16i8, SI_NUM_CONST_BUFFERS);
3535 params[SI_PARAM_SAMPLER_STATES] = const_array(v4i32, SI_NUM_SAMPLER_STATES);
3536 params[SI_PARAM_SAMPLER_VIEWS] = const_array(v8i32, SI_NUM_SAMPLER_VIEWS);
3537 last_array_pointer = SI_PARAM_SAMPLER_VIEWS;
3538
3539 switch (si_shader_ctx->type) {
3540 case TGSI_PROCESSOR_VERTEX:
3541 params[SI_PARAM_VERTEX_BUFFERS] = const_array(v16i8, SI_NUM_VERTEX_BUFFERS);
3542 last_array_pointer = SI_PARAM_VERTEX_BUFFERS;
3543 params[SI_PARAM_BASE_VERTEX] = i32;
3544 params[SI_PARAM_START_INSTANCE] = i32;
3545 num_params = SI_PARAM_START_INSTANCE+1;
3546
3547 if (shader->key.vs.as_es) {
3548 params[si_shader_ctx->param_es2gs_offset = num_params++] = i32;
3549 } else if (shader->key.vs.as_ls) {
3550 params[SI_PARAM_LS_OUT_LAYOUT] = i32;
3551 num_params = SI_PARAM_LS_OUT_LAYOUT+1;
3552 } else {
3553 if (si_shader_ctx->is_gs_copy_shader) {
3554 last_array_pointer = SI_PARAM_CONST_BUFFERS;
3555 num_params = SI_PARAM_CONST_BUFFERS+1;
3556 } else {
3557 params[SI_PARAM_VS_STATE_BITS] = i32;
3558 num_params = SI_PARAM_VS_STATE_BITS+1;
3559 }
3560
3561 /* The locations of the other parameters are assigned dynamically. */
3562 declare_streamout_params(si_shader_ctx, &shader->selector->so,
3563 params, i32, &num_params);
3564 }
3565
3566 last_sgpr = num_params-1;
3567
3568 /* VGPRs */
3569 params[si_shader_ctx->param_vertex_id = num_params++] = i32;
3570 params[si_shader_ctx->param_rel_auto_id = num_params++] = i32;
3571 params[si_shader_ctx->param_vs_prim_id = num_params++] = i32;
3572 params[si_shader_ctx->param_instance_id = num_params++] = i32;
3573 break;
3574
3575 case TGSI_PROCESSOR_TESS_CTRL:
3576 params[SI_PARAM_TCS_OUT_OFFSETS] = i32;
3577 params[SI_PARAM_TCS_OUT_LAYOUT] = i32;
3578 params[SI_PARAM_TCS_IN_LAYOUT] = i32;
3579 params[SI_PARAM_TESS_FACTOR_OFFSET] = i32;
3580 last_sgpr = SI_PARAM_TESS_FACTOR_OFFSET;
3581
3582 /* VGPRs */
3583 params[SI_PARAM_PATCH_ID] = i32;
3584 params[SI_PARAM_REL_IDS] = i32;
3585 num_params = SI_PARAM_REL_IDS+1;
3586 break;
3587
3588 case TGSI_PROCESSOR_TESS_EVAL:
3589 params[SI_PARAM_TCS_OUT_OFFSETS] = i32;
3590 params[SI_PARAM_TCS_OUT_LAYOUT] = i32;
3591 num_params = SI_PARAM_TCS_OUT_LAYOUT+1;
3592
3593 if (shader->key.tes.as_es) {
3594 params[si_shader_ctx->param_es2gs_offset = num_params++] = i32;
3595 } else {
3596 declare_streamout_params(si_shader_ctx, &shader->selector->so,
3597 params, i32, &num_params);
3598 }
3599 last_sgpr = num_params - 1;
3600
3601 /* VGPRs */
3602 params[si_shader_ctx->param_tes_u = num_params++] = f32;
3603 params[si_shader_ctx->param_tes_v = num_params++] = f32;
3604 params[si_shader_ctx->param_tes_rel_patch_id = num_params++] = i32;
3605 params[si_shader_ctx->param_tes_patch_id = num_params++] = i32;
3606 break;
3607
3608 case TGSI_PROCESSOR_GEOMETRY:
3609 params[SI_PARAM_GS2VS_OFFSET] = i32;
3610 params[SI_PARAM_GS_WAVE_ID] = i32;
3611 last_sgpr = SI_PARAM_GS_WAVE_ID;
3612
3613 /* VGPRs */
3614 params[SI_PARAM_VTX0_OFFSET] = i32;
3615 params[SI_PARAM_VTX1_OFFSET] = i32;
3616 params[SI_PARAM_PRIMITIVE_ID] = i32;
3617 params[SI_PARAM_VTX2_OFFSET] = i32;
3618 params[SI_PARAM_VTX3_OFFSET] = i32;
3619 params[SI_PARAM_VTX4_OFFSET] = i32;
3620 params[SI_PARAM_VTX5_OFFSET] = i32;
3621 params[SI_PARAM_GS_INSTANCE_ID] = i32;
3622 num_params = SI_PARAM_GS_INSTANCE_ID+1;
3623 break;
3624
3625 case TGSI_PROCESSOR_FRAGMENT:
3626 params[SI_PARAM_ALPHA_REF] = f32;
3627 params[SI_PARAM_PRIM_MASK] = i32;
3628 last_sgpr = SI_PARAM_PRIM_MASK;
3629 params[SI_PARAM_PERSP_SAMPLE] = v2i32;
3630 params[SI_PARAM_PERSP_CENTER] = v2i32;
3631 params[SI_PARAM_PERSP_CENTROID] = v2i32;
3632 params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
3633 params[SI_PARAM_LINEAR_SAMPLE] = v2i32;
3634 params[SI_PARAM_LINEAR_CENTER] = v2i32;
3635 params[SI_PARAM_LINEAR_CENTROID] = v2i32;
3636 params[SI_PARAM_LINE_STIPPLE_TEX] = f32;
3637 params[SI_PARAM_POS_X_FLOAT] = f32;
3638 params[SI_PARAM_POS_Y_FLOAT] = f32;
3639 params[SI_PARAM_POS_Z_FLOAT] = f32;
3640 params[SI_PARAM_POS_W_FLOAT] = f32;
3641 params[SI_PARAM_FRONT_FACE] = i32;
3642 params[SI_PARAM_ANCILLARY] = i32;
3643 params[SI_PARAM_SAMPLE_COVERAGE] = f32;
3644 params[SI_PARAM_POS_FIXED_PT] = f32;
3645 num_params = SI_PARAM_POS_FIXED_PT+1;
3646 break;
3647
3648 default:
3649 assert(0 && "unimplemented shader");
3650 return;
3651 }
3652
3653 assert(num_params <= Elements(params));
3654 radeon_llvm_create_func(&si_shader_ctx->radeon_bld, params, num_params);
3655 radeon_llvm_shader_type(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->type);
3656
3657 for (i = 0; i <= last_sgpr; ++i) {
3658 LLVMValueRef P = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, i);
3659
3660 /* We tell llvm that array inputs are passed by value to allow Sinking pass
3661 * to move load. Inputs are constant so this is fine. */
3662 if (i <= last_array_pointer)
3663 LLVMAddAttribute(P, LLVMByValAttribute);
3664 else
3665 LLVMAddAttribute(P, LLVMInRegAttribute);
3666 }
3667
3668 if (bld_base->info &&
3669 (bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
3670 bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0 ||
3671 bld_base->info->opcode_count[TGSI_OPCODE_DDX_FINE] > 0 ||
3672 bld_base->info->opcode_count[TGSI_OPCODE_DDY_FINE] > 0 ||
3673 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_OFFSET] > 0 ||
3674 bld_base->info->opcode_count[TGSI_OPCODE_INTERP_SAMPLE] > 0))
3675 si_shader_ctx->lds =
3676 LLVMAddGlobalInAddressSpace(gallivm->module,
3677 LLVMArrayType(i32, 64),
3678 "ddxy_lds",
3679 LOCAL_ADDR_SPACE);
3680
3681 if ((si_shader_ctx->type == TGSI_PROCESSOR_VERTEX && shader->key.vs.as_ls) ||
3682 si_shader_ctx->type == TGSI_PROCESSOR_TESS_CTRL ||
3683 si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL) {
3684 /* This is the upper bound, maximum is 32 inputs times 32 vertices */
3685 unsigned vertex_data_dw_size = 32*32*4;
3686 unsigned patch_data_dw_size = 32*4;
3687 /* The formula is: TCS inputs + TCS outputs + TCS patch outputs. */
3688 unsigned patch_dw_size = vertex_data_dw_size*2 + patch_data_dw_size;
3689 unsigned lds_dwords = patch_dw_size;
3690
3691 /* The actual size is computed outside of the shader to reduce
3692 * the number of shader variants. */
3693 si_shader_ctx->lds =
3694 LLVMAddGlobalInAddressSpace(gallivm->module,
3695 LLVMArrayType(i32, lds_dwords),
3696 "tess_lds",
3697 LOCAL_ADDR_SPACE);
3698 }
3699 }
3700
3701 static void preload_constants(struct si_shader_context *si_shader_ctx)
3702 {
3703 struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
3704 struct gallivm_state * gallivm = bld_base->base.gallivm;
3705 const struct tgsi_shader_info * info = bld_base->info;
3706 unsigned buf;
3707 LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST_BUFFERS);
3708
3709 for (buf = 0; buf < SI_NUM_CONST_BUFFERS; buf++) {
3710 unsigned i, num_const = info->const_file_max[buf] + 1;
3711
3712 if (num_const == 0)
3713 continue;
3714
3715 /* Allocate space for the constant values */
3716 si_shader_ctx->constants[buf] = CALLOC(num_const * 4, sizeof(LLVMValueRef));
3717
3718 /* Load the resource descriptor */
3719 si_shader_ctx->const_buffers[buf] =
3720 build_indexed_load_const(si_shader_ctx, ptr, lp_build_const_int32(gallivm, buf));
3721
3722 /* Load the constants, we rely on the code sinking to do the rest */
3723 for (i = 0; i < num_const * 4; ++i) {
3724 si_shader_ctx->constants[buf][i] =
3725 buffer_load_const(gallivm->builder,
3726 si_shader_ctx->const_buffers[buf],
3727 lp_build_const_int32(gallivm, i * 4),
3728 bld_base->base.elem_type);
3729 }
3730 }
3731 }
3732
3733 static void preload_samplers(struct si_shader_context *si_shader_ctx)
3734 {
3735 struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
3736 struct gallivm_state * gallivm = bld_base->base.gallivm;
3737 const struct tgsi_shader_info * info = bld_base->info;
3738
3739 unsigned i, num_samplers = info->file_max[TGSI_FILE_SAMPLER] + 1;
3740
3741 LLVMValueRef res_ptr, samp_ptr;
3742 LLVMValueRef offset;
3743
3744 if (num_samplers == 0)
3745 return;
3746
3747 res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER_VIEWS);
3748 samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER_STATES);
3749
3750 /* Load the resources and samplers, we rely on the code sinking to do the rest */
3751 for (i = 0; i < num_samplers; ++i) {
3752 /* Resource */
3753 offset = lp_build_const_int32(gallivm, i);
3754 si_shader_ctx->sampler_views[i] = build_indexed_load_const(si_shader_ctx, res_ptr, offset);
3755
3756 /* Sampler */
3757 offset = lp_build_const_int32(gallivm, i);
3758 si_shader_ctx->sampler_states[i] = build_indexed_load_const(si_shader_ctx, samp_ptr, offset);
3759
3760 /* FMASK resource */
3761 if (info->is_msaa_sampler[i]) {
3762 offset = lp_build_const_int32(gallivm, SI_FMASK_TEX_OFFSET + i);
3763 si_shader_ctx->sampler_views[SI_FMASK_TEX_OFFSET + i] =
3764 build_indexed_load_const(si_shader_ctx, res_ptr, offset);
3765 }
3766 }
3767 }
3768
3769 static void preload_streamout_buffers(struct si_shader_context *si_shader_ctx)
3770 {
3771 struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
3772 struct gallivm_state * gallivm = bld_base->base.gallivm;
3773 unsigned i;
3774
3775 /* Streamout can only be used if the shader is compiled as VS. */
3776 if (!si_shader_ctx->shader->selector->so.num_outputs ||
3777 (si_shader_ctx->type == TGSI_PROCESSOR_VERTEX &&
3778 (si_shader_ctx->shader->key.vs.as_es ||
3779 si_shader_ctx->shader->key.vs.as_ls)) ||
3780 (si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL &&
3781 si_shader_ctx->shader->key.tes.as_es))
3782 return;
3783
3784 LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
3785 SI_PARAM_RW_BUFFERS);
3786
3787 /* Load the resources, we rely on the code sinking to do the rest */
3788 for (i = 0; i < 4; ++i) {
3789 if (si_shader_ctx->shader->selector->so.stride[i]) {
3790 LLVMValueRef offset = lp_build_const_int32(gallivm,
3791 SI_SO_BUF_OFFSET + i);
3792
3793 si_shader_ctx->so_buffers[i] = build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
3794 }
3795 }
3796 }
3797
3798 /**
3799 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
3800 * for later use.
3801 */
3802 static void preload_ring_buffers(struct si_shader_context *si_shader_ctx)
3803 {
3804 struct gallivm_state *gallivm =
3805 si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
3806
3807 LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
3808 SI_PARAM_RW_BUFFERS);
3809
3810 if ((si_shader_ctx->type == TGSI_PROCESSOR_VERTEX &&
3811 si_shader_ctx->shader->key.vs.as_es) ||
3812 (si_shader_ctx->type == TGSI_PROCESSOR_TESS_EVAL &&
3813 si_shader_ctx->shader->key.tes.as_es) ||
3814 si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) {
3815 LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_ESGS);
3816
3817 si_shader_ctx->esgs_ring =
3818 build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
3819 }
3820
3821 if (si_shader_ctx->is_gs_copy_shader) {
3822 LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
3823
3824 si_shader_ctx->gsvs_ring[0] =
3825 build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
3826 }
3827 if (si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) {
3828 int i;
3829 for (i = 0; i < 4; i++) {
3830 LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS + i);
3831
3832 si_shader_ctx->gsvs_ring[i] =
3833 build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
3834 }
3835 }
3836 }
3837
3838 void si_shader_binary_read_config(struct radeon_shader_binary *binary,
3839 struct si_shader_config *conf,
3840 unsigned symbol_offset)
3841 {
3842 unsigned i;
3843 const unsigned char *config =
3844 radeon_shader_binary_config_start(binary, symbol_offset);
3845
3846 /* XXX: We may be able to emit some of these values directly rather than
3847 * extracting fields to be emitted later.
3848 */
3849
3850 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
3851 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
3852 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
3853 switch (reg) {
3854 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
3855 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
3856 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
3857 case R_00B848_COMPUTE_PGM_RSRC1:
3858 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
3859 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
3860 conf->float_mode = G_00B028_FLOAT_MODE(value);
3861 conf->rsrc1 = value;
3862 break;
3863 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
3864 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
3865 break;
3866 case R_00B84C_COMPUTE_PGM_RSRC2:
3867 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
3868 conf->rsrc2 = value;
3869 break;
3870 case R_0286CC_SPI_PS_INPUT_ENA:
3871 conf->spi_ps_input_ena = value;
3872 break;
3873 case R_0286D0_SPI_PS_INPUT_ADDR:
3874 conf->spi_ps_input_addr = value;
3875 break;
3876 case R_0286E8_SPI_TMPRING_SIZE:
3877 case R_00B860_COMPUTE_TMPRING_SIZE:
3878 /* WAVESIZE is in units of 256 dwords. */
3879 conf->scratch_bytes_per_wave =
3880 G_00B860_WAVESIZE(value) * 256 * 4 * 1;
3881 break;
3882 default:
3883 {
3884 static bool printed;
3885
3886 if (!printed) {
3887 fprintf(stderr, "Warning: LLVM emitted unknown "
3888 "config register: 0x%x\n", reg);
3889 printed = true;
3890 }
3891 }
3892 break;
3893 }
3894
3895 if (!conf->spi_ps_input_addr)
3896 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
3897 }
3898 }
3899
3900 void si_shader_apply_scratch_relocs(struct si_context *sctx,
3901 struct si_shader *shader,
3902 uint64_t scratch_va)
3903 {
3904 unsigned i;
3905 uint32_t scratch_rsrc_dword0 = scratch_va;
3906 uint32_t scratch_rsrc_dword1 =
3907 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32)
3908 | S_008F04_STRIDE(shader->config.scratch_bytes_per_wave / 64);
3909
3910 for (i = 0 ; i < shader->binary.reloc_count; i++) {
3911 const struct radeon_shader_reloc *reloc =
3912 &shader->binary.relocs[i];
3913 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
3914 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
3915 &scratch_rsrc_dword0, 4);
3916 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
3917 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
3918 &scratch_rsrc_dword1, 4);
3919 }
3920 }
3921 }
3922
3923 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
3924 {
3925 const struct radeon_shader_binary *binary = &shader->binary;
3926 unsigned code_size = binary->code_size + binary->rodata_size;
3927 unsigned char *ptr;
3928
3929 r600_resource_reference(&shader->bo, NULL);
3930 shader->bo = si_resource_create_custom(&sscreen->b.b,
3931 PIPE_USAGE_IMMUTABLE,
3932 code_size);
3933 if (!shader->bo)
3934 return -ENOMEM;
3935
3936 ptr = sscreen->b.ws->buffer_map(shader->bo->buf, NULL,
3937 PIPE_TRANSFER_READ_WRITE);
3938 util_memcpy_cpu_to_le32(ptr, binary->code, binary->code_size);
3939 if (binary->rodata_size > 0) {
3940 ptr += binary->code_size;
3941 util_memcpy_cpu_to_le32(ptr, binary->rodata,
3942 binary->rodata_size);
3943 }
3944
3945 sscreen->b.ws->buffer_unmap(shader->bo->buf);
3946 return 0;
3947 }
3948
3949 static void si_shader_dump_disassembly(const struct radeon_shader_binary *binary,
3950 struct pipe_debug_callback *debug)
3951 {
3952 char *line, *p;
3953 unsigned i, count;
3954
3955 if (binary->disasm_string) {
3956 fprintf(stderr, "\nShader Disassembly:\n\n");
3957 fprintf(stderr, "%s\n", binary->disasm_string);
3958
3959 if (debug && debug->debug_message) {
3960 /* Very long debug messages are cut off, so send the
3961 * disassembly one line at a time. This causes more
3962 * overhead, but on the plus side it simplifies
3963 * parsing of resulting logs.
3964 */
3965 pipe_debug_message(debug, SHADER_INFO,
3966 "Shader Disassembly Begin");
3967
3968 line = binary->disasm_string;
3969 while (*line) {
3970 p = strchrnul(line, '\n');
3971 count = p - line;
3972
3973 if (count) {
3974 pipe_debug_message(debug, SHADER_INFO,
3975 "%.*s", count, line);
3976 }
3977
3978 if (!*p)
3979 break;
3980 line = p + 1;
3981 }
3982
3983 pipe_debug_message(debug, SHADER_INFO,
3984 "Shader Disassembly End");
3985 }
3986 } else {
3987 fprintf(stderr, "SI CODE:\n");
3988 for (i = 0; i < binary->code_size; i += 4) {
3989 fprintf(stderr, "@0x%x: %02x%02x%02x%02x\n", i,
3990 binary->code[i + 3], binary->code[i + 2],
3991 binary->code[i + 1], binary->code[i]);
3992 }
3993 }
3994 }
3995
3996 static void si_shader_dump_stats(struct si_screen *sscreen,
3997 struct si_shader_config *conf,
3998 unsigned num_inputs,
3999 unsigned code_size,
4000 struct pipe_debug_callback *debug,
4001 unsigned processor)
4002 {
4003 unsigned lds_increment = sscreen->b.chip_class >= CIK ? 512 : 256;
4004 unsigned lds_per_wave = 0;
4005 unsigned max_simd_waves = 10;
4006
4007 /* Compute LDS usage for PS. */
4008 if (processor == TGSI_PROCESSOR_FRAGMENT) {
4009 /* The minimum usage per wave is (num_inputs * 36). The maximum
4010 * usage is (num_inputs * 36 * 16).
4011 * We can get anything in between and it varies between waves.
4012 *
4013 * Other stages don't know the size at compile time or don't
4014 * allocate LDS per wave, but instead they do it per thread group.
4015 */
4016 lds_per_wave = conf->lds_size * lds_increment +
4017 align(num_inputs * 36, lds_increment);
4018 }
4019
4020 /* Compute the per-SIMD wave counts. */
4021 if (conf->num_sgprs) {
4022 if (sscreen->b.chip_class >= VI)
4023 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
4024 else
4025 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
4026 }
4027
4028 if (conf->num_vgprs)
4029 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
4030
4031 /* LDS is 64KB per CU (4 SIMDs), divided into 16KB blocks per SIMD
4032 * that PS can use.
4033 */
4034 if (lds_per_wave)
4035 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
4036
4037 if (r600_can_dump_shader(&sscreen->b, processor)) {
4038 if (processor == TGSI_PROCESSOR_FRAGMENT) {
4039 fprintf(stderr, "*** SHADER CONFIG ***\n"
4040 "SPI_PS_INPUT_ADDR = 0x%04x\n"
4041 "SPI_PS_INPUT_ENA = 0x%04x\n",
4042 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
4043 }
4044
4045 fprintf(stderr, "*** SHADER STATS ***\n"
4046 "SGPRS: %d\n"
4047 "VGPRS: %d\n"
4048 "Code Size: %d bytes\n"
4049 "LDS: %d blocks\n"
4050 "Scratch: %d bytes per wave\n"
4051 "Max Waves: %d\n"
4052 "********************\n",
4053 conf->num_sgprs, conf->num_vgprs, code_size,
4054 conf->lds_size, conf->scratch_bytes_per_wave,
4055 max_simd_waves);
4056 }
4057
4058 pipe_debug_message(debug, SHADER_INFO,
4059 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
4060 "LDS: %d Scratch: %d Max Waves: %d",
4061 conf->num_sgprs, conf->num_vgprs, code_size,
4062 conf->lds_size, conf->scratch_bytes_per_wave,
4063 max_simd_waves);
4064 }
4065
4066 void si_shader_dump(struct si_screen *sscreen, struct si_shader *shader,
4067 struct pipe_debug_callback *debug, unsigned processor)
4068 {
4069 if (r600_can_dump_shader(&sscreen->b, processor))
4070 if (!(sscreen->b.debug_flags & DBG_NO_ASM))
4071 si_shader_dump_disassembly(&shader->binary, debug);
4072
4073 si_shader_dump_stats(sscreen, &shader->config,
4074 shader->selector ? shader->selector->info.num_inputs : 0,
4075 shader->binary.code_size, debug, processor);
4076 }
4077
4078 int si_compile_llvm(struct si_screen *sscreen,
4079 struct radeon_shader_binary *binary,
4080 struct si_shader_config *conf,
4081 LLVMTargetMachineRef tm,
4082 LLVMModuleRef mod,
4083 struct pipe_debug_callback *debug,
4084 unsigned processor)
4085 {
4086 int r = 0;
4087 unsigned count = p_atomic_inc_return(&sscreen->b.num_compilations);
4088
4089 if (r600_can_dump_shader(&sscreen->b, processor)) {
4090 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
4091
4092 if (!(sscreen->b.debug_flags & (DBG_NO_IR | DBG_PREOPT_IR)))
4093 LLVMDumpModule(mod);
4094 }
4095
4096 if (!si_replace_shader(count, binary)) {
4097 r = radeon_llvm_compile(mod, binary,
4098 r600_get_llvm_processor_name(sscreen->b.family), tm,
4099 debug);
4100 if (r)
4101 return r;
4102 }
4103
4104 si_shader_binary_read_config(binary, conf, 0);
4105
4106 FREE(binary->config);
4107 FREE(binary->global_symbol_offsets);
4108 binary->config = NULL;
4109 binary->global_symbol_offsets = NULL;
4110 return r;
4111 }
4112
4113 /* Generate code for the hardware VS shader stage to go with a geometry shader */
4114 static int si_generate_gs_copy_shader(struct si_screen *sscreen,
4115 struct si_shader_context *si_shader_ctx,
4116 struct si_shader *gs,
4117 struct pipe_debug_callback *debug)
4118 {
4119 struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
4120 struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
4121 struct lp_build_context *base = &bld_base->base;
4122 struct lp_build_context *uint = &bld_base->uint_bld;
4123 struct si_shader_output_values *outputs;
4124 struct tgsi_shader_info *gsinfo = &gs->selector->info;
4125 LLVMValueRef args[9];
4126 int i, r;
4127
4128 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
4129
4130 si_shader_ctx->type = TGSI_PROCESSOR_VERTEX;
4131 si_shader_ctx->is_gs_copy_shader = true;
4132
4133 radeon_llvm_context_init(&si_shader_ctx->radeon_bld);
4134
4135 create_meta_data(si_shader_ctx);
4136 create_function(si_shader_ctx);
4137 preload_streamout_buffers(si_shader_ctx);
4138 preload_ring_buffers(si_shader_ctx);
4139
4140 args[0] = si_shader_ctx->gsvs_ring[0];
4141 args[1] = lp_build_mul_imm(uint,
4142 LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
4143 si_shader_ctx->param_vertex_id),
4144 4);
4145 args[3] = uint->zero;
4146 args[4] = uint->one; /* OFFEN */
4147 args[5] = uint->zero; /* IDXEN */
4148 args[6] = uint->one; /* GLC */
4149 args[7] = uint->one; /* SLC */
4150 args[8] = uint->zero; /* TFE */
4151
4152 /* Fetch vertex data from GSVS ring */
4153 for (i = 0; i < gsinfo->num_outputs; ++i) {
4154 unsigned chan;
4155
4156 outputs[i].name = gsinfo->output_semantic_name[i];
4157 outputs[i].sid = gsinfo->output_semantic_index[i];
4158
4159 for (chan = 0; chan < 4; chan++) {
4160 args[2] = lp_build_const_int32(gallivm,
4161 (i * 4 + chan) *
4162 gs->selector->gs_max_out_vertices * 16 * 4);
4163
4164 outputs[i].values[chan] =
4165 LLVMBuildBitCast(gallivm->builder,
4166 lp_build_intrinsic(gallivm->builder,
4167 "llvm.SI.buffer.load.dword.i32.i32",
4168 LLVMInt32TypeInContext(gallivm->context),
4169 args, 9,
4170 LLVMReadOnlyAttribute | LLVMNoUnwindAttribute),
4171 base->elem_type, "");
4172 }
4173 }
4174
4175 si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
4176
4177 LLVMBuildRetVoid(bld_base->base.gallivm->builder);
4178
4179 /* Dump LLVM IR before any optimization passes */
4180 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
4181 r600_can_dump_shader(&sscreen->b, TGSI_PROCESSOR_GEOMETRY))
4182 LLVMDumpModule(bld_base->base.gallivm->module);
4183
4184 radeon_llvm_finalize_module(&si_shader_ctx->radeon_bld);
4185
4186 if (r600_can_dump_shader(&sscreen->b, TGSI_PROCESSOR_GEOMETRY))
4187 fprintf(stderr, "Copy Vertex Shader for Geometry Shader:\n\n");
4188
4189 r = si_compile_llvm(sscreen, &si_shader_ctx->shader->binary,
4190 &si_shader_ctx->shader->config, si_shader_ctx->tm,
4191 bld_base->base.gallivm->module,
4192 debug, TGSI_PROCESSOR_GEOMETRY);
4193 if (!r) {
4194 si_shader_dump(sscreen, si_shader_ctx->shader, debug,
4195 TGSI_PROCESSOR_GEOMETRY);
4196 r = si_shader_binary_upload(sscreen, si_shader_ctx->shader);
4197 }
4198
4199 radeon_llvm_dispose(&si_shader_ctx->radeon_bld);
4200
4201 FREE(outputs);
4202 return r;
4203 }
4204
4205 void si_dump_shader_key(unsigned shader, union si_shader_key *key, FILE *f)
4206 {
4207 int i;
4208
4209 fprintf(f, "SHADER KEY\n");
4210
4211 switch (shader) {
4212 case PIPE_SHADER_VERTEX:
4213 fprintf(f, " instance_divisors = {");
4214 for (i = 0; i < Elements(key->vs.instance_divisors); i++)
4215 fprintf(f, !i ? "%u" : ", %u",
4216 key->vs.instance_divisors[i]);
4217 fprintf(f, "}\n");
4218 fprintf(f, " as_es = %u\n", key->vs.as_es);
4219 fprintf(f, " as_ls = %u\n", key->vs.as_ls);
4220 fprintf(f, " export_prim_id = %u\n", key->vs.export_prim_id);
4221 break;
4222
4223 case PIPE_SHADER_TESS_CTRL:
4224 fprintf(f, " prim_mode = %u\n", key->tcs.prim_mode);
4225 break;
4226
4227 case PIPE_SHADER_TESS_EVAL:
4228 fprintf(f, " as_es = %u\n", key->tes.as_es);
4229 fprintf(f, " export_prim_id = %u\n", key->tes.export_prim_id);
4230 break;
4231
4232 case PIPE_SHADER_GEOMETRY:
4233 break;
4234
4235 case PIPE_SHADER_FRAGMENT:
4236 fprintf(f, " spi_shader_col_format = 0x%x\n", key->ps.spi_shader_col_format);
4237 fprintf(f, " last_cbuf = %u\n", key->ps.last_cbuf);
4238 fprintf(f, " color_two_side = %u\n", key->ps.color_two_side);
4239 fprintf(f, " alpha_func = %u\n", key->ps.alpha_func);
4240 fprintf(f, " alpha_to_one = %u\n", key->ps.alpha_to_one);
4241 fprintf(f, " poly_stipple = %u\n", key->ps.poly_stipple);
4242 fprintf(f, " clamp_color = %u\n", key->ps.clamp_color);
4243 break;
4244
4245 default:
4246 assert(0);
4247 }
4248 }
4249
4250 static void si_init_shader_ctx(struct si_shader_context *ctx,
4251 struct si_screen *sscreen,
4252 struct si_shader *shader,
4253 LLVMTargetMachineRef tm,
4254 struct tgsi_shader_info *info)
4255 {
4256 struct lp_build_tgsi_context *bld_base;
4257
4258 memset(ctx, 0, sizeof(*ctx));
4259 radeon_llvm_context_init(&ctx->radeon_bld);
4260 ctx->tm = tm;
4261 ctx->screen = sscreen;
4262 if (shader && shader->selector)
4263 ctx->type = shader->selector->info.processor;
4264 else
4265 ctx->type = -1;
4266 ctx->shader = shader;
4267
4268 bld_base = &ctx->radeon_bld.soa.bld_base;
4269 bld_base->info = info;
4270 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
4271
4272 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
4273 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
4274 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
4275
4276 bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
4277 bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
4278 bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
4279 bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
4280 bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
4281 bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
4282 bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
4283 bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
4284 bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
4285 bld_base->op_actions[TGSI_OPCODE_TXQ] = tex_action;
4286 bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
4287 bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
4288 bld_base->op_actions[TGSI_OPCODE_TXQS].emit = si_llvm_emit_txqs;
4289
4290 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
4291 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
4292 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
4293 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
4294
4295 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
4296 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
4297 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
4298
4299 if (HAVE_LLVM >= 0x0306) {
4300 bld_base->op_actions[TGSI_OPCODE_MAX].emit = build_tgsi_intrinsic_nomem;
4301 bld_base->op_actions[TGSI_OPCODE_MAX].intr_name = "llvm.maxnum.f32";
4302 bld_base->op_actions[TGSI_OPCODE_MIN].emit = build_tgsi_intrinsic_nomem;
4303 bld_base->op_actions[TGSI_OPCODE_MIN].intr_name = "llvm.minnum.f32";
4304 }
4305 }
4306
4307 int si_shader_create(struct si_screen *sscreen, LLVMTargetMachineRef tm,
4308 struct si_shader *shader,
4309 struct pipe_debug_callback *debug)
4310 {
4311 struct si_shader_selector *sel = shader->selector;
4312 struct tgsi_token *tokens = sel->tokens;
4313 struct si_shader_context si_shader_ctx;
4314 struct lp_build_tgsi_context * bld_base;
4315 struct tgsi_shader_info stipple_shader_info;
4316 LLVMModuleRef mod;
4317 int r = 0;
4318 bool poly_stipple = sel->type == PIPE_SHADER_FRAGMENT &&
4319 shader->key.ps.poly_stipple;
4320
4321 if (poly_stipple) {
4322 tokens = util_pstipple_create_fragment_shader(tokens, NULL,
4323 SI_POLY_STIPPLE_SAMPLER,
4324 TGSI_FILE_SYSTEM_VALUE);
4325 tgsi_scan_shader(tokens, &stipple_shader_info);
4326 }
4327
4328 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
4329 * conversion fails. */
4330 if (r600_can_dump_shader(&sscreen->b, sel->info.processor) &&
4331 !(sscreen->b.debug_flags & DBG_NO_TGSI)) {
4332 si_dump_shader_key(sel->type, &shader->key, stderr);
4333 tgsi_dump(tokens, 0);
4334 si_dump_streamout(&sel->so);
4335 }
4336
4337 si_init_shader_ctx(&si_shader_ctx, sscreen, shader, tm,
4338 poly_stipple ? &stipple_shader_info : &sel->info);
4339
4340 shader->uses_instanceid = sel->info.uses_instanceid;
4341
4342 bld_base = &si_shader_ctx.radeon_bld.soa.bld_base;
4343 si_shader_ctx.radeon_bld.load_system_value = declare_system_value;
4344
4345 switch (si_shader_ctx.type) {
4346 case TGSI_PROCESSOR_VERTEX:
4347 si_shader_ctx.radeon_bld.load_input = declare_input_vs;
4348 if (shader->key.vs.as_ls)
4349 bld_base->emit_epilogue = si_llvm_emit_ls_epilogue;
4350 else if (shader->key.vs.as_es)
4351 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
4352 else
4353 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
4354 break;
4355 case TGSI_PROCESSOR_TESS_CTRL:
4356 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
4357 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
4358 bld_base->emit_store = store_output_tcs;
4359 bld_base->emit_epilogue = si_llvm_emit_tcs_epilogue;
4360 break;
4361 case TGSI_PROCESSOR_TESS_EVAL:
4362 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
4363 if (shader->key.tes.as_es)
4364 bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
4365 else
4366 bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
4367 break;
4368 case TGSI_PROCESSOR_GEOMETRY:
4369 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
4370 bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
4371 break;
4372 case TGSI_PROCESSOR_FRAGMENT:
4373 si_shader_ctx.radeon_bld.load_input = declare_input_fs;
4374 bld_base->emit_epilogue = si_llvm_emit_fs_epilogue;
4375 break;
4376 default:
4377 assert(!"Unsupported shader type");
4378 return -1;
4379 }
4380
4381 create_meta_data(&si_shader_ctx);
4382 create_function(&si_shader_ctx);
4383 preload_constants(&si_shader_ctx);
4384 preload_samplers(&si_shader_ctx);
4385 preload_streamout_buffers(&si_shader_ctx);
4386 preload_ring_buffers(&si_shader_ctx);
4387
4388 if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) {
4389 int i;
4390 for (i = 0; i < 4; i++) {
4391 si_shader_ctx.gs_next_vertex[i] =
4392 lp_build_alloca(bld_base->base.gallivm,
4393 bld_base->uint_bld.elem_type, "");
4394 }
4395 }
4396
4397 if (!lp_build_tgsi_llvm(bld_base, tokens)) {
4398 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
4399 goto out;
4400 }
4401
4402 LLVMBuildRetVoid(bld_base->base.gallivm->builder);
4403 mod = bld_base->base.gallivm->module;
4404
4405 /* Dump LLVM IR before any optimization passes */
4406 if (sscreen->b.debug_flags & DBG_PREOPT_IR &&
4407 r600_can_dump_shader(&sscreen->b, si_shader_ctx.type))
4408 LLVMDumpModule(mod);
4409
4410 radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld);
4411
4412 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, tm,
4413 mod, debug, si_shader_ctx.type);
4414 if (r) {
4415 fprintf(stderr, "LLVM failed to compile shader\n");
4416 goto out;
4417 }
4418
4419 si_shader_dump(sscreen, shader, debug, si_shader_ctx.type);
4420
4421 r = si_shader_binary_upload(sscreen, shader);
4422 if (r) {
4423 fprintf(stderr, "LLVM failed to upload shader\n");
4424 goto out;
4425 }
4426
4427 radeon_llvm_dispose(&si_shader_ctx.radeon_bld);
4428
4429 if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) {
4430 shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
4431 shader->gs_copy_shader->selector = shader->selector;
4432 si_shader_ctx.shader = shader->gs_copy_shader;
4433 if ((r = si_generate_gs_copy_shader(sscreen, &si_shader_ctx,
4434 shader, debug))) {
4435 free(shader->gs_copy_shader);
4436 shader->gs_copy_shader = NULL;
4437 goto out;
4438 }
4439 }
4440
4441 out:
4442 for (int i = 0; i < SI_NUM_CONST_BUFFERS; i++)
4443 FREE(si_shader_ctx.constants[i]);
4444 if (poly_stipple)
4445 tgsi_free_tokens(tokens);
4446 return r;
4447 }
4448
4449 void si_shader_destroy(struct si_shader *shader)
4450 {
4451 if (shader->gs_copy_shader) {
4452 si_shader_destroy(shader->gs_copy_shader);
4453 FREE(shader->gs_copy_shader);
4454 }
4455
4456 if (shader->scratch_bo)
4457 r600_resource_reference(&shader->scratch_bo, NULL);
4458
4459 r600_resource_reference(&shader->bo, NULL);
4460
4461 radeon_shader_binary_clean(&shader->binary);
4462 }