radeonsi: store compute local_size into tgsi_shader_info
[mesa.git] / src / gallium / drivers / radeonsi / si_shader.c
1 /*
2 * Copyright 2012 Advanced Micro Devices, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * on the rights to use, copy, modify, merge, publish, distribute, sub
9 * license, and/or sell copies of the Software, and to permit persons to whom
10 * the Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
20 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
21 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
22 * USE OR OTHER DEALINGS IN THE SOFTWARE.
23 */
24
25 #include "util/u_memory.h"
26 #include "util/u_string.h"
27 #include "tgsi/tgsi_build.h"
28 #include "tgsi/tgsi_util.h"
29 #include "tgsi/tgsi_dump.h"
30
31 #include "ac_exp_param.h"
32 #include "ac_shader_util.h"
33 #include "ac_llvm_util.h"
34 #include "si_shader_internal.h"
35 #include "si_pipe.h"
36 #include "sid.h"
37
38 #include "compiler/nir/nir.h"
39
40 static const char *scratch_rsrc_dword0_symbol =
41 "SCRATCH_RSRC_DWORD0";
42
43 static const char *scratch_rsrc_dword1_symbol =
44 "SCRATCH_RSRC_DWORD1";
45
46 struct si_shader_output_values
47 {
48 LLVMValueRef values[4];
49 unsigned semantic_name;
50 unsigned semantic_index;
51 ubyte vertex_stream[4];
52 };
53
54 /**
55 * Used to collect types and other info about arguments of the LLVM function
56 * before the function is created.
57 */
58 struct si_function_info {
59 LLVMTypeRef types[100];
60 LLVMValueRef *assign[100];
61 unsigned num_sgpr_params;
62 unsigned num_params;
63 };
64
65 enum si_arg_regfile {
66 ARG_SGPR,
67 ARG_VGPR
68 };
69
70 static void si_init_shader_ctx(struct si_shader_context *ctx,
71 struct si_screen *sscreen,
72 struct si_compiler *compiler);
73
74 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
75 struct lp_build_tgsi_context *bld_base,
76 struct lp_build_emit_data *emit_data);
77
78 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
79 FILE *f);
80
81 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
82 union si_shader_part_key *key);
83 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
84 union si_shader_part_key *key);
85 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
86 union si_shader_part_key *key);
87 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
88 union si_shader_part_key *key);
89
90 /* Ideally pass the sample mask input to the PS epilog as v14, which
91 * is its usual location, so that the shader doesn't have to add v_mov.
92 */
93 #define PS_EPILOG_SAMPLEMASK_MIN_LOC 14
94
95 static bool llvm_type_is_64bit(struct si_shader_context *ctx,
96 LLVMTypeRef type)
97 {
98 if (type == ctx->ac.i64 || type == ctx->ac.f64)
99 return true;
100
101 return false;
102 }
103
104 static bool is_merged_shader(struct si_shader *shader)
105 {
106 if (shader->selector->screen->info.chip_class <= VI)
107 return false;
108
109 return shader->key.as_ls ||
110 shader->key.as_es ||
111 shader->selector->type == PIPE_SHADER_TESS_CTRL ||
112 shader->selector->type == PIPE_SHADER_GEOMETRY;
113 }
114
115 static void si_init_function_info(struct si_function_info *fninfo)
116 {
117 fninfo->num_params = 0;
118 fninfo->num_sgpr_params = 0;
119 }
120
121 static unsigned add_arg_assign(struct si_function_info *fninfo,
122 enum si_arg_regfile regfile, LLVMTypeRef type,
123 LLVMValueRef *assign)
124 {
125 assert(regfile != ARG_SGPR || fninfo->num_sgpr_params == fninfo->num_params);
126
127 unsigned idx = fninfo->num_params++;
128 assert(idx < ARRAY_SIZE(fninfo->types));
129
130 if (regfile == ARG_SGPR)
131 fninfo->num_sgpr_params = fninfo->num_params;
132
133 fninfo->types[idx] = type;
134 fninfo->assign[idx] = assign;
135 return idx;
136 }
137
138 static unsigned add_arg(struct si_function_info *fninfo,
139 enum si_arg_regfile regfile, LLVMTypeRef type)
140 {
141 return add_arg_assign(fninfo, regfile, type, NULL);
142 }
143
144 static void add_arg_assign_checked(struct si_function_info *fninfo,
145 enum si_arg_regfile regfile, LLVMTypeRef type,
146 LLVMValueRef *assign, unsigned idx)
147 {
148 MAYBE_UNUSED unsigned actual = add_arg_assign(fninfo, regfile, type, assign);
149 assert(actual == idx);
150 }
151
152 static void add_arg_checked(struct si_function_info *fninfo,
153 enum si_arg_regfile regfile, LLVMTypeRef type,
154 unsigned idx)
155 {
156 add_arg_assign_checked(fninfo, regfile, type, NULL, idx);
157 }
158
159 /**
160 * Returns a unique index for a per-patch semantic name and index. The index
161 * must be less than 32, so that a 32-bit bitmask of used inputs or outputs
162 * can be calculated.
163 */
164 unsigned si_shader_io_get_unique_index_patch(unsigned semantic_name, unsigned index)
165 {
166 switch (semantic_name) {
167 case TGSI_SEMANTIC_TESSOUTER:
168 return 0;
169 case TGSI_SEMANTIC_TESSINNER:
170 return 1;
171 case TGSI_SEMANTIC_PATCH:
172 assert(index < 30);
173 return 2 + index;
174
175 default:
176 assert(!"invalid semantic name");
177 return 0;
178 }
179 }
180
181 /**
182 * Returns a unique index for a semantic name and index. The index must be
183 * less than 64, so that a 64-bit bitmask of used inputs or outputs can be
184 * calculated.
185 */
186 unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index,
187 unsigned is_varying)
188 {
189 switch (semantic_name) {
190 case TGSI_SEMANTIC_POSITION:
191 return 0;
192 case TGSI_SEMANTIC_GENERIC:
193 /* Since some shader stages use the the highest used IO index
194 * to determine the size to allocate for inputs/outputs
195 * (in LDS, tess and GS rings). GENERIC should be placed right
196 * after POSITION to make that size as small as possible.
197 */
198 if (index < SI_MAX_IO_GENERIC)
199 return 1 + index;
200
201 assert(!"invalid generic index");
202 return 0;
203 case TGSI_SEMANTIC_PSIZE:
204 return SI_MAX_IO_GENERIC + 1;
205 case TGSI_SEMANTIC_CLIPDIST:
206 assert(index <= 1);
207 return SI_MAX_IO_GENERIC + 2 + index;
208 case TGSI_SEMANTIC_FOG:
209 return SI_MAX_IO_GENERIC + 4;
210 case TGSI_SEMANTIC_LAYER:
211 return SI_MAX_IO_GENERIC + 5;
212 case TGSI_SEMANTIC_VIEWPORT_INDEX:
213 return SI_MAX_IO_GENERIC + 6;
214 case TGSI_SEMANTIC_PRIMID:
215 return SI_MAX_IO_GENERIC + 7;
216 case TGSI_SEMANTIC_COLOR:
217 assert(index < 2);
218 return SI_MAX_IO_GENERIC + 8 + index;
219 case TGSI_SEMANTIC_BCOLOR:
220 assert(index < 2);
221 /* If it's a varying, COLOR and BCOLOR alias. */
222 if (is_varying)
223 return SI_MAX_IO_GENERIC + 8 + index;
224 else
225 return SI_MAX_IO_GENERIC + 10 + index;
226 case TGSI_SEMANTIC_TEXCOORD:
227 assert(index < 8);
228 STATIC_ASSERT(SI_MAX_IO_GENERIC + 12 + 8 <= 63);
229 return SI_MAX_IO_GENERIC + 12 + index;
230 case TGSI_SEMANTIC_CLIPVERTEX:
231 return 63;
232 default:
233 fprintf(stderr, "invalid semantic name = %u\n", semantic_name);
234 assert(!"invalid semantic name");
235 return 0;
236 }
237 }
238
239 /**
240 * Get the value of a shader input parameter and extract a bitfield.
241 */
242 static LLVMValueRef unpack_llvm_param(struct si_shader_context *ctx,
243 LLVMValueRef value, unsigned rshift,
244 unsigned bitwidth)
245 {
246 if (LLVMGetTypeKind(LLVMTypeOf(value)) == LLVMFloatTypeKind)
247 value = ac_to_integer(&ctx->ac, value);
248
249 if (rshift)
250 value = LLVMBuildLShr(ctx->ac.builder, value,
251 LLVMConstInt(ctx->i32, rshift, 0), "");
252
253 if (rshift + bitwidth < 32) {
254 unsigned mask = (1 << bitwidth) - 1;
255 value = LLVMBuildAnd(ctx->ac.builder, value,
256 LLVMConstInt(ctx->i32, mask, 0), "");
257 }
258
259 return value;
260 }
261
262 LLVMValueRef si_unpack_param(struct si_shader_context *ctx,
263 unsigned param, unsigned rshift,
264 unsigned bitwidth)
265 {
266 LLVMValueRef value = LLVMGetParam(ctx->main_fn, param);
267
268 return unpack_llvm_param(ctx, value, rshift, bitwidth);
269 }
270
271 static LLVMValueRef get_rel_patch_id(struct si_shader_context *ctx)
272 {
273 switch (ctx->type) {
274 case PIPE_SHADER_TESS_CTRL:
275 return unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 0, 8);
276
277 case PIPE_SHADER_TESS_EVAL:
278 return LLVMGetParam(ctx->main_fn,
279 ctx->param_tes_rel_patch_id);
280
281 default:
282 assert(0);
283 return NULL;
284 }
285 }
286
287 /* Tessellation shaders pass outputs to the next shader using LDS.
288 *
289 * LS outputs = TCS inputs
290 * TCS outputs = TES inputs
291 *
292 * The LDS layout is:
293 * - TCS inputs for patch 0
294 * - TCS inputs for patch 1
295 * - TCS inputs for patch 2 = get_tcs_in_current_patch_offset (if RelPatchID==2)
296 * - ...
297 * - TCS outputs for patch 0 = get_tcs_out_patch0_offset
298 * - Per-patch TCS outputs for patch 0 = get_tcs_out_patch0_patch_data_offset
299 * - TCS outputs for patch 1
300 * - Per-patch TCS outputs for patch 1
301 * - TCS outputs for patch 2 = get_tcs_out_current_patch_offset (if RelPatchID==2)
302 * - Per-patch TCS outputs for patch 2 = get_tcs_out_current_patch_data_offset (if RelPatchID==2)
303 * - ...
304 *
305 * All three shaders VS(LS), TCS, TES share the same LDS space.
306 */
307
308 static LLVMValueRef
309 get_tcs_in_patch_stride(struct si_shader_context *ctx)
310 {
311 return si_unpack_param(ctx, ctx->param_vs_state_bits, 8, 13);
312 }
313
314 static unsigned get_tcs_out_vertex_dw_stride_constant(struct si_shader_context *ctx)
315 {
316 assert(ctx->type == PIPE_SHADER_TESS_CTRL);
317
318 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
319 return util_last_bit64(ctx->shader->key.mono.u.ff_tcs_inputs_to_copy) * 4;
320
321 return util_last_bit64(ctx->shader->selector->outputs_written) * 4;
322 }
323
324 static LLVMValueRef get_tcs_out_vertex_dw_stride(struct si_shader_context *ctx)
325 {
326 unsigned stride = get_tcs_out_vertex_dw_stride_constant(ctx);
327
328 return LLVMConstInt(ctx->i32, stride, 0);
329 }
330
331 static LLVMValueRef get_tcs_out_patch_stride(struct si_shader_context *ctx)
332 {
333 if (ctx->shader->key.mono.u.ff_tcs_inputs_to_copy)
334 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 0, 13);
335
336 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
337 unsigned tcs_out_vertices = info->properties[TGSI_PROPERTY_TCS_VERTICES_OUT];
338 unsigned vertex_dw_stride = get_tcs_out_vertex_dw_stride_constant(ctx);
339 unsigned num_patch_outputs = util_last_bit64(ctx->shader->selector->patch_outputs_written);
340 unsigned patch_dw_stride = tcs_out_vertices * vertex_dw_stride +
341 num_patch_outputs * 4;
342 return LLVMConstInt(ctx->i32, patch_dw_stride, 0);
343 }
344
345 static LLVMValueRef
346 get_tcs_out_patch0_offset(struct si_shader_context *ctx)
347 {
348 return LLVMBuildMul(ctx->ac.builder,
349 si_unpack_param(ctx,
350 ctx->param_tcs_out_lds_offsets,
351 0, 16),
352 LLVMConstInt(ctx->i32, 4, 0), "");
353 }
354
355 static LLVMValueRef
356 get_tcs_out_patch0_patch_data_offset(struct si_shader_context *ctx)
357 {
358 return LLVMBuildMul(ctx->ac.builder,
359 si_unpack_param(ctx,
360 ctx->param_tcs_out_lds_offsets,
361 16, 16),
362 LLVMConstInt(ctx->i32, 4, 0), "");
363 }
364
365 static LLVMValueRef
366 get_tcs_in_current_patch_offset(struct si_shader_context *ctx)
367 {
368 LLVMValueRef patch_stride = get_tcs_in_patch_stride(ctx);
369 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
370
371 return LLVMBuildMul(ctx->ac.builder, patch_stride, rel_patch_id, "");
372 }
373
374 static LLVMValueRef
375 get_tcs_out_current_patch_offset(struct si_shader_context *ctx)
376 {
377 LLVMValueRef patch0_offset = get_tcs_out_patch0_offset(ctx);
378 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
379 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
380
381 return LLVMBuildAdd(ctx->ac.builder, patch0_offset,
382 LLVMBuildMul(ctx->ac.builder, patch_stride,
383 rel_patch_id, ""),
384 "");
385 }
386
387 static LLVMValueRef
388 get_tcs_out_current_patch_data_offset(struct si_shader_context *ctx)
389 {
390 LLVMValueRef patch0_patch_data_offset =
391 get_tcs_out_patch0_patch_data_offset(ctx);
392 LLVMValueRef patch_stride = get_tcs_out_patch_stride(ctx);
393 LLVMValueRef rel_patch_id = get_rel_patch_id(ctx);
394
395 return LLVMBuildAdd(ctx->ac.builder, patch0_patch_data_offset,
396 LLVMBuildMul(ctx->ac.builder, patch_stride,
397 rel_patch_id, ""),
398 "");
399 }
400
401 static LLVMValueRef get_num_tcs_out_vertices(struct si_shader_context *ctx)
402 {
403 unsigned tcs_out_vertices =
404 ctx->shader->selector ?
405 ctx->shader->selector->info.properties[TGSI_PROPERTY_TCS_VERTICES_OUT] : 0;
406
407 /* If !tcs_out_vertices, it's either the fixed-func TCS or the TCS epilog. */
408 if (ctx->type == PIPE_SHADER_TESS_CTRL && tcs_out_vertices)
409 return LLVMConstInt(ctx->i32, tcs_out_vertices, 0);
410
411 return si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 6, 6);
412 }
413
414 static LLVMValueRef get_tcs_in_vertex_dw_stride(struct si_shader_context *ctx)
415 {
416 unsigned stride;
417
418 switch (ctx->type) {
419 case PIPE_SHADER_VERTEX:
420 stride = util_last_bit64(ctx->shader->selector->outputs_written);
421 return LLVMConstInt(ctx->i32, stride * 4, 0);
422
423 case PIPE_SHADER_TESS_CTRL:
424 if (ctx->screen->info.chip_class >= GFX9 &&
425 ctx->shader->is_monolithic) {
426 stride = util_last_bit64(ctx->shader->key.part.tcs.ls->outputs_written);
427 return LLVMConstInt(ctx->i32, stride * 4, 0);
428 }
429 return si_unpack_param(ctx, ctx->param_vs_state_bits, 24, 8);
430
431 default:
432 assert(0);
433 return NULL;
434 }
435 }
436
437 static LLVMValueRef get_instance_index_for_fetch(
438 struct si_shader_context *ctx,
439 unsigned param_start_instance, LLVMValueRef divisor)
440 {
441 LLVMValueRef result = ctx->abi.instance_id;
442
443 /* The division must be done before START_INSTANCE is added. */
444 if (divisor != ctx->i32_1)
445 result = LLVMBuildUDiv(ctx->ac.builder, result, divisor, "");
446
447 return LLVMBuildAdd(ctx->ac.builder, result,
448 LLVMGetParam(ctx->main_fn, param_start_instance), "");
449 }
450
451 /* Bitcast <4 x float> to <2 x double>, extract the component, and convert
452 * to float. */
453 static LLVMValueRef extract_double_to_float(struct si_shader_context *ctx,
454 LLVMValueRef vec4,
455 unsigned double_index)
456 {
457 LLVMBuilderRef builder = ctx->ac.builder;
458 LLVMTypeRef f64 = LLVMDoubleTypeInContext(ctx->ac.context);
459 LLVMValueRef dvec2 = LLVMBuildBitCast(builder, vec4,
460 LLVMVectorType(f64, 2), "");
461 LLVMValueRef index = LLVMConstInt(ctx->i32, double_index, 0);
462 LLVMValueRef value = LLVMBuildExtractElement(builder, dvec2, index, "");
463 return LLVMBuildFPTrunc(builder, value, ctx->f32, "");
464 }
465
466 static LLVMValueRef unpack_sint16(struct si_shader_context *ctx,
467 LLVMValueRef i32, unsigned index)
468 {
469 assert(index <= 1);
470
471 if (index == 1)
472 return LLVMBuildAShr(ctx->ac.builder, i32,
473 LLVMConstInt(ctx->i32, 16, 0), "");
474
475 return LLVMBuildSExt(ctx->ac.builder,
476 LLVMBuildTrunc(ctx->ac.builder, i32,
477 ctx->ac.i16, ""),
478 ctx->i32, "");
479 }
480
481 void si_llvm_load_input_vs(
482 struct si_shader_context *ctx,
483 unsigned input_index,
484 LLVMValueRef out[4])
485 {
486 const struct tgsi_shader_info *info = &ctx->shader->selector->info;
487 unsigned vs_blit_property = info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
488
489 if (vs_blit_property) {
490 LLVMValueRef vertex_id = ctx->abi.vertex_id;
491 LLVMValueRef sel_x1 = LLVMBuildICmp(ctx->ac.builder,
492 LLVMIntULE, vertex_id,
493 ctx->i32_1, "");
494 /* Use LLVMIntNE, because we have 3 vertices and only
495 * the middle one should use y2.
496 */
497 LLVMValueRef sel_y1 = LLVMBuildICmp(ctx->ac.builder,
498 LLVMIntNE, vertex_id,
499 ctx->i32_1, "");
500
501 if (input_index == 0) {
502 /* Position: */
503 LLVMValueRef x1y1 = LLVMGetParam(ctx->main_fn,
504 ctx->param_vs_blit_inputs);
505 LLVMValueRef x2y2 = LLVMGetParam(ctx->main_fn,
506 ctx->param_vs_blit_inputs + 1);
507
508 LLVMValueRef x1 = unpack_sint16(ctx, x1y1, 0);
509 LLVMValueRef y1 = unpack_sint16(ctx, x1y1, 1);
510 LLVMValueRef x2 = unpack_sint16(ctx, x2y2, 0);
511 LLVMValueRef y2 = unpack_sint16(ctx, x2y2, 1);
512
513 LLVMValueRef x = LLVMBuildSelect(ctx->ac.builder, sel_x1,
514 x1, x2, "");
515 LLVMValueRef y = LLVMBuildSelect(ctx->ac.builder, sel_y1,
516 y1, y2, "");
517
518 out[0] = LLVMBuildSIToFP(ctx->ac.builder, x, ctx->f32, "");
519 out[1] = LLVMBuildSIToFP(ctx->ac.builder, y, ctx->f32, "");
520 out[2] = LLVMGetParam(ctx->main_fn,
521 ctx->param_vs_blit_inputs + 2);
522 out[3] = ctx->ac.f32_1;
523 return;
524 }
525
526 /* Color or texture coordinates: */
527 assert(input_index == 1);
528
529 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
530 for (int i = 0; i < 4; i++) {
531 out[i] = LLVMGetParam(ctx->main_fn,
532 ctx->param_vs_blit_inputs + 3 + i);
533 }
534 } else {
535 assert(vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD);
536 LLVMValueRef x1 = LLVMGetParam(ctx->main_fn,
537 ctx->param_vs_blit_inputs + 3);
538 LLVMValueRef y1 = LLVMGetParam(ctx->main_fn,
539 ctx->param_vs_blit_inputs + 4);
540 LLVMValueRef x2 = LLVMGetParam(ctx->main_fn,
541 ctx->param_vs_blit_inputs + 5);
542 LLVMValueRef y2 = LLVMGetParam(ctx->main_fn,
543 ctx->param_vs_blit_inputs + 6);
544
545 out[0] = LLVMBuildSelect(ctx->ac.builder, sel_x1,
546 x1, x2, "");
547 out[1] = LLVMBuildSelect(ctx->ac.builder, sel_y1,
548 y1, y2, "");
549 out[2] = LLVMGetParam(ctx->main_fn,
550 ctx->param_vs_blit_inputs + 7);
551 out[3] = LLVMGetParam(ctx->main_fn,
552 ctx->param_vs_blit_inputs + 8);
553 }
554 return;
555 }
556
557 unsigned chan;
558 unsigned fix_fetch;
559 unsigned num_fetches;
560 unsigned fetch_stride;
561 unsigned num_channels;
562
563 LLVMValueRef t_list_ptr;
564 LLVMValueRef t_offset;
565 LLVMValueRef t_list;
566 LLVMValueRef vertex_index;
567 LLVMValueRef input[3];
568
569 /* Load the T list */
570 t_list_ptr = LLVMGetParam(ctx->main_fn, ctx->param_vertex_buffers);
571
572 t_offset = LLVMConstInt(ctx->i32, input_index, 0);
573
574 t_list = ac_build_load_to_sgpr(&ctx->ac, t_list_ptr, t_offset);
575
576 vertex_index = LLVMGetParam(ctx->main_fn,
577 ctx->param_vertex_index0 +
578 input_index);
579
580 fix_fetch = ctx->shader->key.mono.vs_fix_fetch[input_index];
581
582 /* Do multiple loads for special formats. */
583 switch (fix_fetch) {
584 case SI_FIX_FETCH_RGB_64_FLOAT:
585 num_fetches = 3; /* 3 2-dword loads */
586 fetch_stride = 8;
587 num_channels = 2;
588 break;
589 case SI_FIX_FETCH_RGBA_64_FLOAT:
590 num_fetches = 2; /* 2 4-dword loads */
591 fetch_stride = 16;
592 num_channels = 4;
593 break;
594 case SI_FIX_FETCH_RGB_8:
595 case SI_FIX_FETCH_RGB_8_INT:
596 num_fetches = 3;
597 fetch_stride = 1;
598 num_channels = 1;
599 break;
600 case SI_FIX_FETCH_RGB_16:
601 case SI_FIX_FETCH_RGB_16_INT:
602 num_fetches = 3;
603 fetch_stride = 2;
604 num_channels = 1;
605 break;
606 default:
607 num_fetches = 1;
608 fetch_stride = 0;
609 num_channels = util_last_bit(info->input_usage_mask[input_index]);
610 }
611
612 for (unsigned i = 0; i < num_fetches; i++) {
613 LLVMValueRef voffset = LLVMConstInt(ctx->i32, fetch_stride * i, 0);
614
615 input[i] = ac_build_buffer_load_format(&ctx->ac, t_list,
616 vertex_index, voffset,
617 num_channels, false, true);
618 input[i] = ac_build_expand_to_vec4(&ctx->ac, input[i], num_channels);
619 }
620
621 /* Break up the vec4 into individual components */
622 for (chan = 0; chan < 4; chan++) {
623 LLVMValueRef llvm_chan = LLVMConstInt(ctx->i32, chan, 0);
624 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
625 input[0], llvm_chan, "");
626 }
627
628 switch (fix_fetch) {
629 case SI_FIX_FETCH_A2_SNORM:
630 case SI_FIX_FETCH_A2_SSCALED:
631 case SI_FIX_FETCH_A2_SINT: {
632 /* The hardware returns an unsigned value; convert it to a
633 * signed one.
634 */
635 LLVMValueRef tmp = out[3];
636 LLVMValueRef c30 = LLVMConstInt(ctx->i32, 30, 0);
637
638 /* First, recover the sign-extended signed integer value. */
639 if (fix_fetch == SI_FIX_FETCH_A2_SSCALED)
640 tmp = LLVMBuildFPToUI(ctx->ac.builder, tmp, ctx->i32, "");
641 else
642 tmp = ac_to_integer(&ctx->ac, tmp);
643
644 /* For the integer-like cases, do a natural sign extension.
645 *
646 * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0
647 * and happen to contain 0, 1, 2, 3 as the two LSBs of the
648 * exponent.
649 */
650 tmp = LLVMBuildShl(ctx->ac.builder, tmp,
651 fix_fetch == SI_FIX_FETCH_A2_SNORM ?
652 LLVMConstInt(ctx->i32, 7, 0) : c30, "");
653 tmp = LLVMBuildAShr(ctx->ac.builder, tmp, c30, "");
654
655 /* Convert back to the right type. */
656 if (fix_fetch == SI_FIX_FETCH_A2_SNORM) {
657 LLVMValueRef clamp;
658 LLVMValueRef neg_one = LLVMConstReal(ctx->f32, -1.0);
659 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
660 clamp = LLVMBuildFCmp(ctx->ac.builder, LLVMRealULT, tmp, neg_one, "");
661 tmp = LLVMBuildSelect(ctx->ac.builder, clamp, neg_one, tmp, "");
662 } else if (fix_fetch == SI_FIX_FETCH_A2_SSCALED) {
663 tmp = LLVMBuildSIToFP(ctx->ac.builder, tmp, ctx->f32, "");
664 }
665
666 out[3] = tmp;
667 break;
668 }
669 case SI_FIX_FETCH_RGBA_32_UNORM:
670 case SI_FIX_FETCH_RGBX_32_UNORM:
671 for (chan = 0; chan < 4; chan++) {
672 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
673 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
674 out[chan], ctx->f32, "");
675 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
676 LLVMConstReal(ctx->f32, 1.0 / UINT_MAX), "");
677 }
678 /* RGBX UINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
679 if (fix_fetch == SI_FIX_FETCH_RGBX_32_UNORM)
680 out[3] = LLVMConstReal(ctx->f32, 1);
681 break;
682 case SI_FIX_FETCH_RGBA_32_SNORM:
683 case SI_FIX_FETCH_RGBX_32_SNORM:
684 case SI_FIX_FETCH_RGBA_32_FIXED:
685 case SI_FIX_FETCH_RGBX_32_FIXED: {
686 double scale;
687 if (fix_fetch >= SI_FIX_FETCH_RGBA_32_FIXED)
688 scale = 1.0 / 0x10000;
689 else
690 scale = 1.0 / INT_MAX;
691
692 for (chan = 0; chan < 4; chan++) {
693 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
694 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
695 out[chan], ctx->f32, "");
696 out[chan] = LLVMBuildFMul(ctx->ac.builder, out[chan],
697 LLVMConstReal(ctx->f32, scale), "");
698 }
699 /* RGBX SINT returns 1 in alpha, which would be rounded to 0 by normalizing. */
700 if (fix_fetch == SI_FIX_FETCH_RGBX_32_SNORM ||
701 fix_fetch == SI_FIX_FETCH_RGBX_32_FIXED)
702 out[3] = LLVMConstReal(ctx->f32, 1);
703 break;
704 }
705 case SI_FIX_FETCH_RGBA_32_USCALED:
706 for (chan = 0; chan < 4; chan++) {
707 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
708 out[chan] = LLVMBuildUIToFP(ctx->ac.builder,
709 out[chan], ctx->f32, "");
710 }
711 break;
712 case SI_FIX_FETCH_RGBA_32_SSCALED:
713 for (chan = 0; chan < 4; chan++) {
714 out[chan] = ac_to_integer(&ctx->ac, out[chan]);
715 out[chan] = LLVMBuildSIToFP(ctx->ac.builder,
716 out[chan], ctx->f32, "");
717 }
718 break;
719 case SI_FIX_FETCH_RG_64_FLOAT:
720 for (chan = 0; chan < 2; chan++)
721 out[chan] = extract_double_to_float(ctx, input[0], chan);
722
723 out[2] = LLVMConstReal(ctx->f32, 0);
724 out[3] = LLVMConstReal(ctx->f32, 1);
725 break;
726 case SI_FIX_FETCH_RGB_64_FLOAT:
727 for (chan = 0; chan < 3; chan++)
728 out[chan] = extract_double_to_float(ctx, input[chan], 0);
729
730 out[3] = LLVMConstReal(ctx->f32, 1);
731 break;
732 case SI_FIX_FETCH_RGBA_64_FLOAT:
733 for (chan = 0; chan < 4; chan++) {
734 out[chan] = extract_double_to_float(ctx, input[chan / 2],
735 chan % 2);
736 }
737 break;
738 case SI_FIX_FETCH_RGB_8:
739 case SI_FIX_FETCH_RGB_8_INT:
740 case SI_FIX_FETCH_RGB_16:
741 case SI_FIX_FETCH_RGB_16_INT:
742 for (chan = 0; chan < 3; chan++) {
743 out[chan] = LLVMBuildExtractElement(ctx->ac.builder,
744 input[chan],
745 ctx->i32_0, "");
746 }
747 if (fix_fetch == SI_FIX_FETCH_RGB_8 ||
748 fix_fetch == SI_FIX_FETCH_RGB_16) {
749 out[3] = LLVMConstReal(ctx->f32, 1);
750 } else {
751 out[3] = ac_to_float(&ctx->ac, ctx->i32_1);
752 }
753 break;
754 }
755 }
756
757 static void declare_input_vs(
758 struct si_shader_context *ctx,
759 unsigned input_index,
760 const struct tgsi_full_declaration *decl,
761 LLVMValueRef out[4])
762 {
763 si_llvm_load_input_vs(ctx, input_index, out);
764 }
765
766 static LLVMValueRef get_primitive_id(struct si_shader_context *ctx,
767 unsigned swizzle)
768 {
769 if (swizzle > 0)
770 return ctx->i32_0;
771
772 switch (ctx->type) {
773 case PIPE_SHADER_VERTEX:
774 return LLVMGetParam(ctx->main_fn,
775 ctx->param_vs_prim_id);
776 case PIPE_SHADER_TESS_CTRL:
777 return ctx->abi.tcs_patch_id;
778 case PIPE_SHADER_TESS_EVAL:
779 return ctx->abi.tes_patch_id;
780 case PIPE_SHADER_GEOMETRY:
781 return ctx->abi.gs_prim_id;
782 default:
783 assert(0);
784 return ctx->i32_0;
785 }
786 }
787
788 /**
789 * Return the value of tgsi_ind_register for indexing.
790 * This is the indirect index with the constant offset added to it.
791 */
792 LLVMValueRef si_get_indirect_index(struct si_shader_context *ctx,
793 const struct tgsi_ind_register *ind,
794 unsigned addr_mul,
795 int rel_index)
796 {
797 LLVMValueRef result;
798
799 if (ind->File == TGSI_FILE_ADDRESS) {
800 result = ctx->addrs[ind->Index][ind->Swizzle];
801 result = LLVMBuildLoad(ctx->ac.builder, result, "");
802 } else {
803 struct tgsi_full_src_register src = {};
804
805 src.Register.File = ind->File;
806 src.Register.Index = ind->Index;
807
808 /* Set the second index to 0 for constants. */
809 if (ind->File == TGSI_FILE_CONSTANT)
810 src.Register.Dimension = 1;
811
812 result = ctx->bld_base.emit_fetch_funcs[ind->File](&ctx->bld_base, &src,
813 TGSI_TYPE_SIGNED,
814 ind->Swizzle);
815 result = ac_to_integer(&ctx->ac, result);
816 }
817
818 if (addr_mul != 1)
819 result = LLVMBuildMul(ctx->ac.builder, result,
820 LLVMConstInt(ctx->i32, addr_mul, 0), "");
821 result = LLVMBuildAdd(ctx->ac.builder, result,
822 LLVMConstInt(ctx->i32, rel_index, 0), "");
823 return result;
824 }
825
826 /**
827 * Like si_get_indirect_index, but restricts the return value to a (possibly
828 * undefined) value inside [0..num).
829 */
830 LLVMValueRef si_get_bounded_indirect_index(struct si_shader_context *ctx,
831 const struct tgsi_ind_register *ind,
832 int rel_index, unsigned num)
833 {
834 LLVMValueRef result = si_get_indirect_index(ctx, ind, 1, rel_index);
835
836 return si_llvm_bound_index(ctx, result, num);
837 }
838
839 static LLVMValueRef get_dw_address_from_generic_indices(struct si_shader_context *ctx,
840 LLVMValueRef vertex_dw_stride,
841 LLVMValueRef base_addr,
842 LLVMValueRef vertex_index,
843 LLVMValueRef param_index,
844 unsigned input_index,
845 ubyte *name,
846 ubyte *index,
847 bool is_patch)
848 {
849 if (vertex_dw_stride) {
850 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
851 LLVMBuildMul(ctx->ac.builder, vertex_index,
852 vertex_dw_stride, ""), "");
853 }
854
855 if (param_index) {
856 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
857 LLVMBuildMul(ctx->ac.builder, param_index,
858 LLVMConstInt(ctx->i32, 4, 0), ""), "");
859 }
860
861 int param = is_patch ?
862 si_shader_io_get_unique_index_patch(name[input_index],
863 index[input_index]) :
864 si_shader_io_get_unique_index(name[input_index],
865 index[input_index], false);
866
867 /* Add the base address of the element. */
868 return LLVMBuildAdd(ctx->ac.builder, base_addr,
869 LLVMConstInt(ctx->i32, param * 4, 0), "");
870 }
871
872 /**
873 * Calculate a dword address given an input or output register and a stride.
874 */
875 static LLVMValueRef get_dw_address(struct si_shader_context *ctx,
876 const struct tgsi_full_dst_register *dst,
877 const struct tgsi_full_src_register *src,
878 LLVMValueRef vertex_dw_stride,
879 LLVMValueRef base_addr)
880 {
881 struct tgsi_shader_info *info = &ctx->shader->selector->info;
882 ubyte *name, *index, *array_first;
883 int input_index;
884 struct tgsi_full_dst_register reg;
885 LLVMValueRef vertex_index = NULL;
886 LLVMValueRef ind_index = NULL;
887
888 /* Set the register description. The address computation is the same
889 * for sources and destinations. */
890 if (src) {
891 reg.Register.File = src->Register.File;
892 reg.Register.Index = src->Register.Index;
893 reg.Register.Indirect = src->Register.Indirect;
894 reg.Register.Dimension = src->Register.Dimension;
895 reg.Indirect = src->Indirect;
896 reg.Dimension = src->Dimension;
897 reg.DimIndirect = src->DimIndirect;
898 } else
899 reg = *dst;
900
901 /* If the register is 2-dimensional (e.g. an array of vertices
902 * in a primitive), calculate the base address of the vertex. */
903 if (reg.Register.Dimension) {
904 if (reg.Dimension.Indirect)
905 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
906 1, reg.Dimension.Index);
907 else
908 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
909 }
910
911 /* Get information about the register. */
912 if (reg.Register.File == TGSI_FILE_INPUT) {
913 name = info->input_semantic_name;
914 index = info->input_semantic_index;
915 array_first = info->input_array_first;
916 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
917 name = info->output_semantic_name;
918 index = info->output_semantic_index;
919 array_first = info->output_array_first;
920 } else {
921 assert(0);
922 return NULL;
923 }
924
925 if (reg.Register.Indirect) {
926 /* Add the relative address of the element. */
927 if (reg.Indirect.ArrayID)
928 input_index = array_first[reg.Indirect.ArrayID];
929 else
930 input_index = reg.Register.Index;
931
932 ind_index = si_get_indirect_index(ctx, &reg.Indirect,
933 1, reg.Register.Index - input_index);
934 } else {
935 input_index = reg.Register.Index;
936 }
937
938 return get_dw_address_from_generic_indices(ctx, vertex_dw_stride,
939 base_addr, vertex_index,
940 ind_index, input_index,
941 name, index,
942 !reg.Register.Dimension);
943 }
944
945 /* The offchip buffer layout for TCS->TES is
946 *
947 * - attribute 0 of patch 0 vertex 0
948 * - attribute 0 of patch 0 vertex 1
949 * - attribute 0 of patch 0 vertex 2
950 * ...
951 * - attribute 0 of patch 1 vertex 0
952 * - attribute 0 of patch 1 vertex 1
953 * ...
954 * - attribute 1 of patch 0 vertex 0
955 * - attribute 1 of patch 0 vertex 1
956 * ...
957 * - per patch attribute 0 of patch 0
958 * - per patch attribute 0 of patch 1
959 * ...
960 *
961 * Note that every attribute has 4 components.
962 */
963 static LLVMValueRef get_tcs_tes_buffer_address(struct si_shader_context *ctx,
964 LLVMValueRef rel_patch_id,
965 LLVMValueRef vertex_index,
966 LLVMValueRef param_index)
967 {
968 LLVMValueRef base_addr, vertices_per_patch, num_patches, total_vertices;
969 LLVMValueRef param_stride, constant16;
970
971 vertices_per_patch = get_num_tcs_out_vertices(ctx);
972 num_patches = si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 0, 6);
973 total_vertices = LLVMBuildMul(ctx->ac.builder, vertices_per_patch,
974 num_patches, "");
975
976 constant16 = LLVMConstInt(ctx->i32, 16, 0);
977 if (vertex_index) {
978 base_addr = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
979 vertices_per_patch, "");
980
981 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
982 vertex_index, "");
983
984 param_stride = total_vertices;
985 } else {
986 base_addr = rel_patch_id;
987 param_stride = num_patches;
988 }
989
990 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
991 LLVMBuildMul(ctx->ac.builder, param_index,
992 param_stride, ""), "");
993
994 base_addr = LLVMBuildMul(ctx->ac.builder, base_addr, constant16, "");
995
996 if (!vertex_index) {
997 LLVMValueRef patch_data_offset =
998 si_unpack_param(ctx, ctx->param_tcs_offchip_layout, 12, 20);
999
1000 base_addr = LLVMBuildAdd(ctx->ac.builder, base_addr,
1001 patch_data_offset, "");
1002 }
1003 return base_addr;
1004 }
1005
1006 /* This is a generic helper that can be shared by the NIR and TGSI backends */
1007 static LLVMValueRef get_tcs_tes_buffer_address_from_generic_indices(
1008 struct si_shader_context *ctx,
1009 LLVMValueRef vertex_index,
1010 LLVMValueRef param_index,
1011 unsigned param_base,
1012 ubyte *name,
1013 ubyte *index,
1014 bool is_patch)
1015 {
1016 unsigned param_index_base;
1017
1018 param_index_base = is_patch ?
1019 si_shader_io_get_unique_index_patch(name[param_base], index[param_base]) :
1020 si_shader_io_get_unique_index(name[param_base], index[param_base], false);
1021
1022 if (param_index) {
1023 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1024 LLVMConstInt(ctx->i32, param_index_base, 0),
1025 "");
1026 } else {
1027 param_index = LLVMConstInt(ctx->i32, param_index_base, 0);
1028 }
1029
1030 return get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx),
1031 vertex_index, param_index);
1032 }
1033
1034 static LLVMValueRef get_tcs_tes_buffer_address_from_reg(
1035 struct si_shader_context *ctx,
1036 const struct tgsi_full_dst_register *dst,
1037 const struct tgsi_full_src_register *src)
1038 {
1039 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1040 ubyte *name, *index, *array_first;
1041 struct tgsi_full_src_register reg;
1042 LLVMValueRef vertex_index = NULL;
1043 LLVMValueRef param_index = NULL;
1044 unsigned param_base;
1045
1046 reg = src ? *src : tgsi_full_src_register_from_dst(dst);
1047
1048 if (reg.Register.Dimension) {
1049
1050 if (reg.Dimension.Indirect)
1051 vertex_index = si_get_indirect_index(ctx, &reg.DimIndirect,
1052 1, reg.Dimension.Index);
1053 else
1054 vertex_index = LLVMConstInt(ctx->i32, reg.Dimension.Index, 0);
1055 }
1056
1057 /* Get information about the register. */
1058 if (reg.Register.File == TGSI_FILE_INPUT) {
1059 name = info->input_semantic_name;
1060 index = info->input_semantic_index;
1061 array_first = info->input_array_first;
1062 } else if (reg.Register.File == TGSI_FILE_OUTPUT) {
1063 name = info->output_semantic_name;
1064 index = info->output_semantic_index;
1065 array_first = info->output_array_first;
1066 } else {
1067 assert(0);
1068 return NULL;
1069 }
1070
1071 if (reg.Register.Indirect) {
1072 if (reg.Indirect.ArrayID)
1073 param_base = array_first[reg.Indirect.ArrayID];
1074 else
1075 param_base = reg.Register.Index;
1076
1077 param_index = si_get_indirect_index(ctx, &reg.Indirect,
1078 1, reg.Register.Index - param_base);
1079
1080 } else {
1081 param_base = reg.Register.Index;
1082 }
1083
1084 return get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1085 param_index, param_base,
1086 name, index, !reg.Register.Dimension);
1087 }
1088
1089 static LLVMValueRef buffer_load(struct lp_build_tgsi_context *bld_base,
1090 LLVMTypeRef type, unsigned swizzle,
1091 LLVMValueRef buffer, LLVMValueRef offset,
1092 LLVMValueRef base, bool can_speculate)
1093 {
1094 struct si_shader_context *ctx = si_shader_context(bld_base);
1095 LLVMValueRef value, value2;
1096 LLVMTypeRef vec_type = LLVMVectorType(type, 4);
1097
1098 if (swizzle == ~0) {
1099 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1100 0, 1, 0, can_speculate, false);
1101
1102 return LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1103 }
1104
1105 if (!llvm_type_is_64bit(ctx, type)) {
1106 value = ac_build_buffer_load(&ctx->ac, buffer, 4, NULL, base, offset,
1107 0, 1, 0, can_speculate, false);
1108
1109 value = LLVMBuildBitCast(ctx->ac.builder, value, vec_type, "");
1110 return LLVMBuildExtractElement(ctx->ac.builder, value,
1111 LLVMConstInt(ctx->i32, swizzle, 0), "");
1112 }
1113
1114 value = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1115 swizzle * 4, 1, 0, can_speculate, false);
1116
1117 value2 = ac_build_buffer_load(&ctx->ac, buffer, 1, NULL, base, offset,
1118 swizzle * 4 + 4, 1, 0, can_speculate, false);
1119
1120 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1121 }
1122
1123 /**
1124 * Load from LDS.
1125 *
1126 * \param type output value type
1127 * \param swizzle offset (typically 0..3); it can be ~0, which loads a vec4
1128 * \param dw_addr address in dwords
1129 */
1130 static LLVMValueRef lds_load(struct lp_build_tgsi_context *bld_base,
1131 LLVMTypeRef type, unsigned swizzle,
1132 LLVMValueRef dw_addr)
1133 {
1134 struct si_shader_context *ctx = si_shader_context(bld_base);
1135 LLVMValueRef value;
1136
1137 if (swizzle == ~0) {
1138 LLVMValueRef values[TGSI_NUM_CHANNELS];
1139
1140 for (unsigned chan = 0; chan < TGSI_NUM_CHANNELS; chan++)
1141 values[chan] = lds_load(bld_base, type, chan, dw_addr);
1142
1143 return ac_build_gather_values(&ctx->ac, values,
1144 TGSI_NUM_CHANNELS);
1145 }
1146
1147 /* Split 64-bit loads. */
1148 if (llvm_type_is_64bit(ctx, type)) {
1149 LLVMValueRef lo, hi;
1150
1151 lo = lds_load(bld_base, ctx->i32, swizzle, dw_addr);
1152 hi = lds_load(bld_base, ctx->i32, swizzle + 1, dw_addr);
1153 return si_llvm_emit_fetch_64bit(bld_base, type, lo, hi);
1154 }
1155
1156 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1157 LLVMConstInt(ctx->i32, swizzle, 0), "");
1158
1159 value = ac_lds_load(&ctx->ac, dw_addr);
1160
1161 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1162 }
1163
1164 /**
1165 * Store to LDS.
1166 *
1167 * \param swizzle offset (typically 0..3)
1168 * \param dw_addr address in dwords
1169 * \param value value to store
1170 */
1171 static void lds_store(struct si_shader_context *ctx,
1172 unsigned dw_offset_imm, LLVMValueRef dw_addr,
1173 LLVMValueRef value)
1174 {
1175 dw_addr = LLVMBuildAdd(ctx->ac.builder, dw_addr,
1176 LLVMConstInt(ctx->i32, dw_offset_imm, 0), "");
1177
1178 ac_lds_store(&ctx->ac, dw_addr, value);
1179 }
1180
1181 enum si_tess_ring {
1182 TCS_FACTOR_RING,
1183 TESS_OFFCHIP_RING_TCS,
1184 TESS_OFFCHIP_RING_TES,
1185 };
1186
1187 static LLVMValueRef get_tess_ring_descriptor(struct si_shader_context *ctx,
1188 enum si_tess_ring ring)
1189 {
1190 LLVMBuilderRef builder = ctx->ac.builder;
1191 unsigned param = ring == TESS_OFFCHIP_RING_TES ? ctx->param_tes_offchip_addr :
1192 ctx->param_tcs_out_lds_layout;
1193 LLVMValueRef addr = LLVMGetParam(ctx->main_fn, param);
1194
1195 /* TCS only receives high 13 bits of the address. */
1196 if (ring == TESS_OFFCHIP_RING_TCS || ring == TCS_FACTOR_RING) {
1197 addr = LLVMBuildAnd(builder, addr,
1198 LLVMConstInt(ctx->i32, 0xfff80000, 0), "");
1199 }
1200
1201 if (ring == TCS_FACTOR_RING) {
1202 unsigned tf_offset = ctx->screen->tess_offchip_ring_size;
1203 addr = LLVMBuildAdd(builder, addr,
1204 LLVMConstInt(ctx->i32, tf_offset, 0), "");
1205 }
1206
1207 LLVMValueRef desc[4];
1208 desc[0] = addr;
1209 desc[1] = LLVMConstInt(ctx->i32,
1210 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
1211 desc[2] = LLVMConstInt(ctx->i32, 0xffffffff, 0);
1212 desc[3] = LLVMConstInt(ctx->i32,
1213 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
1214 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
1215 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
1216 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
1217 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
1218 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0);
1219
1220 return ac_build_gather_values(&ctx->ac, desc, 4);
1221 }
1222
1223 static LLVMValueRef fetch_input_tcs(
1224 struct lp_build_tgsi_context *bld_base,
1225 const struct tgsi_full_src_register *reg,
1226 enum tgsi_opcode_type type, unsigned swizzle)
1227 {
1228 struct si_shader_context *ctx = si_shader_context(bld_base);
1229 LLVMValueRef dw_addr, stride;
1230
1231 stride = get_tcs_in_vertex_dw_stride(ctx);
1232 dw_addr = get_tcs_in_current_patch_offset(ctx);
1233 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1234
1235 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1236 }
1237
1238 static LLVMValueRef si_nir_load_tcs_varyings(struct ac_shader_abi *abi,
1239 LLVMTypeRef type,
1240 LLVMValueRef vertex_index,
1241 LLVMValueRef param_index,
1242 unsigned const_index,
1243 unsigned location,
1244 unsigned driver_location,
1245 unsigned component,
1246 unsigned num_components,
1247 bool is_patch,
1248 bool is_compact,
1249 bool load_input)
1250 {
1251 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1252 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1253 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1254 LLVMValueRef dw_addr, stride;
1255
1256 driver_location = driver_location / 4;
1257
1258 if (load_input) {
1259 stride = get_tcs_in_vertex_dw_stride(ctx);
1260 dw_addr = get_tcs_in_current_patch_offset(ctx);
1261 } else {
1262 if (is_patch) {
1263 stride = NULL;
1264 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1265 } else {
1266 stride = get_tcs_out_vertex_dw_stride(ctx);
1267 dw_addr = get_tcs_out_current_patch_offset(ctx);
1268 }
1269 }
1270
1271 if (param_index) {
1272 /* Add the constant index to the indirect index */
1273 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1274 LLVMConstInt(ctx->i32, const_index, 0), "");
1275 } else {
1276 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1277 }
1278
1279 ubyte *names;
1280 ubyte *indices;
1281 if (load_input) {
1282 names = info->input_semantic_name;
1283 indices = info->input_semantic_index;
1284 } else {
1285 names = info->output_semantic_name;
1286 indices = info->output_semantic_index;
1287 }
1288
1289 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1290 vertex_index, param_index,
1291 driver_location,
1292 names, indices,
1293 is_patch);
1294
1295 LLVMValueRef value[4];
1296 for (unsigned i = 0; i < num_components; i++) {
1297 unsigned offset = i;
1298 if (llvm_type_is_64bit(ctx, type))
1299 offset *= 2;
1300
1301 offset += component;
1302 value[i + component] = lds_load(bld_base, type, offset, dw_addr);
1303 }
1304
1305 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1306 }
1307
1308 static LLVMValueRef fetch_output_tcs(
1309 struct lp_build_tgsi_context *bld_base,
1310 const struct tgsi_full_src_register *reg,
1311 enum tgsi_opcode_type type, unsigned swizzle)
1312 {
1313 struct si_shader_context *ctx = si_shader_context(bld_base);
1314 LLVMValueRef dw_addr, stride;
1315
1316 if (reg->Register.Dimension) {
1317 stride = get_tcs_out_vertex_dw_stride(ctx);
1318 dw_addr = get_tcs_out_current_patch_offset(ctx);
1319 dw_addr = get_dw_address(ctx, NULL, reg, stride, dw_addr);
1320 } else {
1321 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1322 dw_addr = get_dw_address(ctx, NULL, reg, NULL, dw_addr);
1323 }
1324
1325 return lds_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle, dw_addr);
1326 }
1327
1328 static LLVMValueRef fetch_input_tes(
1329 struct lp_build_tgsi_context *bld_base,
1330 const struct tgsi_full_src_register *reg,
1331 enum tgsi_opcode_type type, unsigned swizzle)
1332 {
1333 struct si_shader_context *ctx = si_shader_context(bld_base);
1334 LLVMValueRef base, addr;
1335
1336 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1337 addr = get_tcs_tes_buffer_address_from_reg(ctx, NULL, reg);
1338
1339 return buffer_load(bld_base, tgsi2llvmtype(bld_base, type), swizzle,
1340 ctx->tess_offchip_ring, base, addr, true);
1341 }
1342
1343 LLVMValueRef si_nir_load_input_tes(struct ac_shader_abi *abi,
1344 LLVMTypeRef type,
1345 LLVMValueRef vertex_index,
1346 LLVMValueRef param_index,
1347 unsigned const_index,
1348 unsigned location,
1349 unsigned driver_location,
1350 unsigned component,
1351 unsigned num_components,
1352 bool is_patch,
1353 bool is_compact,
1354 bool load_input)
1355 {
1356 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1357 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1358 LLVMValueRef base, addr;
1359
1360 driver_location = driver_location / 4;
1361
1362 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1363
1364 if (param_index) {
1365 /* Add the constant index to the indirect index */
1366 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1367 LLVMConstInt(ctx->i32, const_index, 0), "");
1368 } else {
1369 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1370 }
1371
1372 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1373 param_index, driver_location,
1374 info->input_semantic_name,
1375 info->input_semantic_index,
1376 is_patch);
1377
1378 /* TODO: This will generate rather ordinary llvm code, although it
1379 * should be easy for the optimiser to fix up. In future we might want
1380 * to refactor buffer_load(), but for now this maximises code sharing
1381 * between the NIR and TGSI backends.
1382 */
1383 LLVMValueRef value[4];
1384 for (unsigned i = 0; i < num_components; i++) {
1385 unsigned offset = i;
1386 if (llvm_type_is_64bit(ctx, type))
1387 offset *= 2;
1388
1389 offset += component;
1390 value[i + component] = buffer_load(&ctx->bld_base, type, offset,
1391 ctx->tess_offchip_ring, base, addr, true);
1392 }
1393
1394 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1395 }
1396
1397 static void store_output_tcs(struct lp_build_tgsi_context *bld_base,
1398 const struct tgsi_full_instruction *inst,
1399 const struct tgsi_opcode_info *info,
1400 unsigned index,
1401 LLVMValueRef dst[4])
1402 {
1403 struct si_shader_context *ctx = si_shader_context(bld_base);
1404 const struct tgsi_full_dst_register *reg = &inst->Dst[index];
1405 const struct tgsi_shader_info *sh_info = &ctx->shader->selector->info;
1406 unsigned chan_index;
1407 LLVMValueRef dw_addr, stride;
1408 LLVMValueRef buffer, base, buf_addr;
1409 LLVMValueRef values[4];
1410 bool skip_lds_store;
1411 bool is_tess_factor = false, is_tess_inner = false;
1412
1413 /* Only handle per-patch and per-vertex outputs here.
1414 * Vectors will be lowered to scalars and this function will be called again.
1415 */
1416 if (reg->Register.File != TGSI_FILE_OUTPUT ||
1417 (dst[0] && LLVMGetTypeKind(LLVMTypeOf(dst[0])) == LLVMVectorTypeKind)) {
1418 si_llvm_emit_store(bld_base, inst, info, index, dst);
1419 return;
1420 }
1421
1422 if (reg->Register.Dimension) {
1423 stride = get_tcs_out_vertex_dw_stride(ctx);
1424 dw_addr = get_tcs_out_current_patch_offset(ctx);
1425 dw_addr = get_dw_address(ctx, reg, NULL, stride, dw_addr);
1426 skip_lds_store = !sh_info->reads_pervertex_outputs;
1427 } else {
1428 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1429 dw_addr = get_dw_address(ctx, reg, NULL, NULL, dw_addr);
1430 skip_lds_store = !sh_info->reads_perpatch_outputs;
1431
1432 if (!reg->Register.Indirect) {
1433 int name = sh_info->output_semantic_name[reg->Register.Index];
1434
1435 /* Always write tess factors into LDS for the TCS epilog. */
1436 if (name == TGSI_SEMANTIC_TESSINNER ||
1437 name == TGSI_SEMANTIC_TESSOUTER) {
1438 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1439 skip_lds_store = !sh_info->reads_tessfactor_outputs &&
1440 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1441 is_tess_factor = true;
1442 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1443 }
1444 }
1445 }
1446
1447 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1448
1449 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1450 buf_addr = get_tcs_tes_buffer_address_from_reg(ctx, reg, NULL);
1451
1452 uint32_t writemask = reg->Register.WriteMask;
1453 while (writemask) {
1454 chan_index = u_bit_scan(&writemask);
1455 LLVMValueRef value = dst[chan_index];
1456
1457 if (inst->Instruction.Saturate)
1458 value = ac_build_clamp(&ctx->ac, value);
1459
1460 /* Skip LDS stores if there is no LDS read of this output. */
1461 if (!skip_lds_store)
1462 lds_store(ctx, chan_index, dw_addr, value);
1463
1464 value = ac_to_integer(&ctx->ac, value);
1465 values[chan_index] = value;
1466
1467 if (reg->Register.WriteMask != 0xF && !is_tess_factor) {
1468 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1469 buf_addr, base,
1470 4 * chan_index, 1, 0, true, false);
1471 }
1472
1473 /* Write tess factors into VGPRs for the epilog. */
1474 if (is_tess_factor &&
1475 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1476 if (!is_tess_inner) {
1477 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1478 ctx->invoc0_tess_factors[chan_index]);
1479 } else if (chan_index < 2) {
1480 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1481 ctx->invoc0_tess_factors[4 + chan_index]);
1482 }
1483 }
1484 }
1485
1486 if (reg->Register.WriteMask == 0xF && !is_tess_factor) {
1487 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1488 values, 4);
1489 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buf_addr,
1490 base, 0, 1, 0, true, false);
1491 }
1492 }
1493
1494 static void si_nir_store_output_tcs(struct ac_shader_abi *abi,
1495 const struct nir_variable *var,
1496 LLVMValueRef vertex_index,
1497 LLVMValueRef param_index,
1498 unsigned const_index,
1499 LLVMValueRef src,
1500 unsigned writemask)
1501 {
1502 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1503 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1504 const unsigned component = var->data.location_frac;
1505 const bool is_patch = var->data.patch;
1506 unsigned driver_location = var->data.driver_location;
1507 LLVMValueRef dw_addr, stride;
1508 LLVMValueRef buffer, base, addr;
1509 LLVMValueRef values[4];
1510 bool skip_lds_store;
1511 bool is_tess_factor = false, is_tess_inner = false;
1512
1513 driver_location = driver_location / 4;
1514
1515 if (param_index) {
1516 /* Add the constant index to the indirect index */
1517 param_index = LLVMBuildAdd(ctx->ac.builder, param_index,
1518 LLVMConstInt(ctx->i32, const_index, 0), "");
1519 } else {
1520 if (const_index != 0)
1521 param_index = LLVMConstInt(ctx->i32, const_index, 0);
1522 }
1523
1524 if (!is_patch) {
1525 stride = get_tcs_out_vertex_dw_stride(ctx);
1526 dw_addr = get_tcs_out_current_patch_offset(ctx);
1527 dw_addr = get_dw_address_from_generic_indices(ctx, stride, dw_addr,
1528 vertex_index, param_index,
1529 driver_location,
1530 info->output_semantic_name,
1531 info->output_semantic_index,
1532 is_patch);
1533
1534 skip_lds_store = !info->reads_pervertex_outputs;
1535 } else {
1536 dw_addr = get_tcs_out_current_patch_data_offset(ctx);
1537 dw_addr = get_dw_address_from_generic_indices(ctx, NULL, dw_addr,
1538 vertex_index, param_index,
1539 driver_location,
1540 info->output_semantic_name,
1541 info->output_semantic_index,
1542 is_patch);
1543
1544 skip_lds_store = !info->reads_perpatch_outputs;
1545
1546 if (!param_index) {
1547 int name = info->output_semantic_name[driver_location];
1548
1549 /* Always write tess factors into LDS for the TCS epilog. */
1550 if (name == TGSI_SEMANTIC_TESSINNER ||
1551 name == TGSI_SEMANTIC_TESSOUTER) {
1552 /* The epilog doesn't read LDS if invocation 0 defines tess factors. */
1553 skip_lds_store = !info->reads_tessfactor_outputs &&
1554 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs;
1555 is_tess_factor = true;
1556 is_tess_inner = name == TGSI_SEMANTIC_TESSINNER;
1557 }
1558 }
1559 }
1560
1561 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
1562
1563 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
1564
1565 addr = get_tcs_tes_buffer_address_from_generic_indices(ctx, vertex_index,
1566 param_index, driver_location,
1567 info->output_semantic_name,
1568 info->output_semantic_index,
1569 is_patch);
1570
1571 for (unsigned chan = 0; chan < 4; chan++) {
1572 if (!(writemask & (1 << chan)))
1573 continue;
1574 LLVMValueRef value = ac_llvm_extract_elem(&ctx->ac, src, chan - component);
1575
1576 /* Skip LDS stores if there is no LDS read of this output. */
1577 if (!skip_lds_store)
1578 lds_store(ctx, chan, dw_addr, value);
1579
1580 value = ac_to_integer(&ctx->ac, value);
1581 values[chan] = value;
1582
1583 if (writemask != 0xF && !is_tess_factor) {
1584 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 1,
1585 addr, base,
1586 4 * chan, 1, 0, true, false);
1587 }
1588
1589 /* Write tess factors into VGPRs for the epilog. */
1590 if (is_tess_factor &&
1591 ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
1592 if (!is_tess_inner) {
1593 LLVMBuildStore(ctx->ac.builder, value, /* outer */
1594 ctx->invoc0_tess_factors[chan]);
1595 } else if (chan < 2) {
1596 LLVMBuildStore(ctx->ac.builder, value, /* inner */
1597 ctx->invoc0_tess_factors[4 + chan]);
1598 }
1599 }
1600 }
1601
1602 if (writemask == 0xF && !is_tess_factor) {
1603 LLVMValueRef value = ac_build_gather_values(&ctx->ac,
1604 values, 4);
1605 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, addr,
1606 base, 0, 1, 0, true, false);
1607 }
1608 }
1609
1610 LLVMValueRef si_llvm_load_input_gs(struct ac_shader_abi *abi,
1611 unsigned input_index,
1612 unsigned vtx_offset_param,
1613 LLVMTypeRef type,
1614 unsigned swizzle)
1615 {
1616 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1617 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
1618 struct si_shader *shader = ctx->shader;
1619 LLVMValueRef vtx_offset, soffset;
1620 struct tgsi_shader_info *info = &shader->selector->info;
1621 unsigned semantic_name = info->input_semantic_name[input_index];
1622 unsigned semantic_index = info->input_semantic_index[input_index];
1623 unsigned param;
1624 LLVMValueRef value;
1625
1626 param = si_shader_io_get_unique_index(semantic_name, semantic_index, false);
1627
1628 /* GFX9 has the ESGS ring in LDS. */
1629 if (ctx->screen->info.chip_class >= GFX9) {
1630 unsigned index = vtx_offset_param;
1631
1632 switch (index / 2) {
1633 case 0:
1634 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx01_offset,
1635 index % 2 ? 16 : 0, 16);
1636 break;
1637 case 1:
1638 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx23_offset,
1639 index % 2 ? 16 : 0, 16);
1640 break;
1641 case 2:
1642 vtx_offset = si_unpack_param(ctx, ctx->param_gs_vtx45_offset,
1643 index % 2 ? 16 : 0, 16);
1644 break;
1645 default:
1646 assert(0);
1647 return NULL;
1648 }
1649
1650 vtx_offset = LLVMBuildAdd(ctx->ac.builder, vtx_offset,
1651 LLVMConstInt(ctx->i32, param * 4, 0), "");
1652 return lds_load(bld_base, type, swizzle, vtx_offset);
1653 }
1654
1655 /* GFX6: input load from the ESGS ring in memory. */
1656 if (swizzle == ~0) {
1657 LLVMValueRef values[TGSI_NUM_CHANNELS];
1658 unsigned chan;
1659 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1660 values[chan] = si_llvm_load_input_gs(abi, input_index, vtx_offset_param,
1661 type, chan);
1662 }
1663 return ac_build_gather_values(&ctx->ac, values,
1664 TGSI_NUM_CHANNELS);
1665 }
1666
1667 /* Get the vertex offset parameter on GFX6. */
1668 LLVMValueRef gs_vtx_offset = ctx->gs_vtx_offset[vtx_offset_param];
1669
1670 vtx_offset = LLVMBuildMul(ctx->ac.builder, gs_vtx_offset,
1671 LLVMConstInt(ctx->i32, 4, 0), "");
1672
1673 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle) * 256, 0);
1674
1675 value = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1, ctx->i32_0,
1676 vtx_offset, soffset, 0, 1, 0, true, false);
1677 if (llvm_type_is_64bit(ctx, type)) {
1678 LLVMValueRef value2;
1679 soffset = LLVMConstInt(ctx->i32, (param * 4 + swizzle + 1) * 256, 0);
1680
1681 value2 = ac_build_buffer_load(&ctx->ac, ctx->esgs_ring, 1,
1682 ctx->i32_0, vtx_offset, soffset,
1683 0, 1, 0, true, false);
1684 return si_llvm_emit_fetch_64bit(bld_base, type, value, value2);
1685 }
1686 return LLVMBuildBitCast(ctx->ac.builder, value, type, "");
1687 }
1688
1689 static LLVMValueRef si_nir_load_input_gs(struct ac_shader_abi *abi,
1690 unsigned location,
1691 unsigned driver_location,
1692 unsigned component,
1693 unsigned num_components,
1694 unsigned vertex_index,
1695 unsigned const_index,
1696 LLVMTypeRef type)
1697 {
1698 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1699
1700 LLVMValueRef value[4];
1701 for (unsigned i = 0; i < num_components; i++) {
1702 unsigned offset = i;
1703 if (llvm_type_is_64bit(ctx, type))
1704 offset *= 2;
1705
1706 offset += component;
1707 value[i + component] = si_llvm_load_input_gs(&ctx->abi, driver_location / 4,
1708 vertex_index, type, offset);
1709 }
1710
1711 return ac_build_varying_gather_values(&ctx->ac, value, num_components, component);
1712 }
1713
1714 static LLVMValueRef fetch_input_gs(
1715 struct lp_build_tgsi_context *bld_base,
1716 const struct tgsi_full_src_register *reg,
1717 enum tgsi_opcode_type type,
1718 unsigned swizzle)
1719 {
1720 struct si_shader_context *ctx = si_shader_context(bld_base);
1721 struct tgsi_shader_info *info = &ctx->shader->selector->info;
1722
1723 unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
1724 if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID)
1725 return get_primitive_id(ctx, swizzle);
1726
1727 if (!reg->Register.Dimension)
1728 return NULL;
1729
1730 return si_llvm_load_input_gs(&ctx->abi, reg->Register.Index,
1731 reg->Dimension.Index,
1732 tgsi2llvmtype(bld_base, type),
1733 swizzle);
1734 }
1735
1736 static int lookup_interp_param_index(unsigned interpolate, unsigned location)
1737 {
1738 switch (interpolate) {
1739 case TGSI_INTERPOLATE_CONSTANT:
1740 return 0;
1741
1742 case TGSI_INTERPOLATE_LINEAR:
1743 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1744 return SI_PARAM_LINEAR_SAMPLE;
1745 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1746 return SI_PARAM_LINEAR_CENTROID;
1747 else
1748 return SI_PARAM_LINEAR_CENTER;
1749 break;
1750 case TGSI_INTERPOLATE_COLOR:
1751 case TGSI_INTERPOLATE_PERSPECTIVE:
1752 if (location == TGSI_INTERPOLATE_LOC_SAMPLE)
1753 return SI_PARAM_PERSP_SAMPLE;
1754 else if (location == TGSI_INTERPOLATE_LOC_CENTROID)
1755 return SI_PARAM_PERSP_CENTROID;
1756 else
1757 return SI_PARAM_PERSP_CENTER;
1758 break;
1759 default:
1760 fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
1761 return -1;
1762 }
1763 }
1764
1765 static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
1766 unsigned attr_index, unsigned chan,
1767 LLVMValueRef prim_mask,
1768 LLVMValueRef i, LLVMValueRef j)
1769 {
1770 if (i || j) {
1771 return ac_build_fs_interp(&ctx->ac,
1772 LLVMConstInt(ctx->i32, chan, 0),
1773 LLVMConstInt(ctx->i32, attr_index, 0),
1774 prim_mask, i, j);
1775 }
1776 return ac_build_fs_interp_mov(&ctx->ac,
1777 LLVMConstInt(ctx->i32, 2, 0), /* P0 */
1778 LLVMConstInt(ctx->i32, chan, 0),
1779 LLVMConstInt(ctx->i32, attr_index, 0),
1780 prim_mask);
1781 }
1782
1783 /**
1784 * Interpolate a fragment shader input.
1785 *
1786 * @param ctx context
1787 * @param input_index index of the input in hardware
1788 * @param semantic_name TGSI_SEMANTIC_*
1789 * @param semantic_index semantic index
1790 * @param num_interp_inputs number of all interpolated inputs (= BCOLOR offset)
1791 * @param colors_read_mask color components read (4 bits for each color, 8 bits in total)
1792 * @param interp_param interpolation weights (i,j)
1793 * @param prim_mask SI_PARAM_PRIM_MASK
1794 * @param face SI_PARAM_FRONT_FACE
1795 * @param result the return value (4 components)
1796 */
1797 static void interp_fs_input(struct si_shader_context *ctx,
1798 unsigned input_index,
1799 unsigned semantic_name,
1800 unsigned semantic_index,
1801 unsigned num_interp_inputs,
1802 unsigned colors_read_mask,
1803 LLVMValueRef interp_param,
1804 LLVMValueRef prim_mask,
1805 LLVMValueRef face,
1806 LLVMValueRef result[4])
1807 {
1808 LLVMValueRef i = NULL, j = NULL;
1809 unsigned chan;
1810
1811 /* fs.constant returns the param from the middle vertex, so it's not
1812 * really useful for flat shading. It's meant to be used for custom
1813 * interpolation (but the intrinsic can't fetch from the other two
1814 * vertices).
1815 *
1816 * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
1817 * to do the right thing. The only reason we use fs.constant is that
1818 * fs.interp cannot be used on integers, because they can be equal
1819 * to NaN.
1820 *
1821 * When interp is false we will use fs.constant or for newer llvm,
1822 * amdgcn.interp.mov.
1823 */
1824 bool interp = interp_param != NULL;
1825
1826 if (interp) {
1827 interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
1828 LLVMVectorType(ctx->f32, 2), "");
1829
1830 i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1831 ctx->i32_0, "");
1832 j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
1833 ctx->i32_1, "");
1834 }
1835
1836 if (semantic_name == TGSI_SEMANTIC_COLOR &&
1837 ctx->shader->key.part.ps.prolog.color_two_side) {
1838 LLVMValueRef is_face_positive;
1839
1840 /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
1841 * otherwise it's at offset "num_inputs".
1842 */
1843 unsigned back_attr_offset = num_interp_inputs;
1844 if (semantic_index == 1 && colors_read_mask & 0xf)
1845 back_attr_offset += 1;
1846
1847 is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
1848 face, ctx->i32_0, "");
1849
1850 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1851 LLVMValueRef front, back;
1852
1853 front = si_build_fs_interp(ctx,
1854 input_index, chan,
1855 prim_mask, i, j);
1856 back = si_build_fs_interp(ctx,
1857 back_attr_offset, chan,
1858 prim_mask, i, j);
1859
1860 result[chan] = LLVMBuildSelect(ctx->ac.builder,
1861 is_face_positive,
1862 front,
1863 back,
1864 "");
1865 }
1866 } else if (semantic_name == TGSI_SEMANTIC_FOG) {
1867 result[0] = si_build_fs_interp(ctx, input_index,
1868 0, prim_mask, i, j);
1869 result[1] =
1870 result[2] = LLVMConstReal(ctx->f32, 0.0f);
1871 result[3] = LLVMConstReal(ctx->f32, 1.0f);
1872 } else {
1873 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
1874 result[chan] = si_build_fs_interp(ctx,
1875 input_index, chan,
1876 prim_mask, i, j);
1877 }
1878 }
1879 }
1880
1881 void si_llvm_load_input_fs(
1882 struct si_shader_context *ctx,
1883 unsigned input_index,
1884 LLVMValueRef out[4])
1885 {
1886 struct si_shader *shader = ctx->shader;
1887 struct tgsi_shader_info *info = &shader->selector->info;
1888 LLVMValueRef main_fn = ctx->main_fn;
1889 LLVMValueRef interp_param = NULL;
1890 int interp_param_idx;
1891 enum tgsi_semantic semantic_name = info->input_semantic_name[input_index];
1892 unsigned semantic_index = info->input_semantic_index[input_index];
1893 enum tgsi_interpolate_mode interp_mode = info->input_interpolate[input_index];
1894 enum tgsi_interpolate_loc interp_loc = info->input_interpolate_loc[input_index];
1895
1896 /* Get colors from input VGPRs (set by the prolog). */
1897 if (semantic_name == TGSI_SEMANTIC_COLOR) {
1898 unsigned colors_read = shader->selector->info.colors_read;
1899 unsigned mask = colors_read >> (semantic_index * 4);
1900 unsigned offset = SI_PARAM_POS_FIXED_PT + 1 +
1901 (semantic_index ? util_bitcount(colors_read & 0xf) : 0);
1902 LLVMValueRef undef = LLVMGetUndef(ctx->f32);
1903
1904 out[0] = mask & 0x1 ? LLVMGetParam(main_fn, offset++) : undef;
1905 out[1] = mask & 0x2 ? LLVMGetParam(main_fn, offset++) : undef;
1906 out[2] = mask & 0x4 ? LLVMGetParam(main_fn, offset++) : undef;
1907 out[3] = mask & 0x8 ? LLVMGetParam(main_fn, offset++) : undef;
1908 return;
1909 }
1910
1911 interp_param_idx = lookup_interp_param_index(interp_mode, interp_loc);
1912 if (interp_param_idx == -1)
1913 return;
1914 else if (interp_param_idx) {
1915 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
1916 }
1917
1918 interp_fs_input(ctx, input_index, semantic_name,
1919 semantic_index, 0, /* this param is unused */
1920 shader->selector->info.colors_read, interp_param,
1921 ctx->abi.prim_mask,
1922 LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE),
1923 &out[0]);
1924 }
1925
1926 static void declare_input_fs(
1927 struct si_shader_context *ctx,
1928 unsigned input_index,
1929 const struct tgsi_full_declaration *decl,
1930 LLVMValueRef out[4])
1931 {
1932 si_llvm_load_input_fs(ctx, input_index, out);
1933 }
1934
1935 LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
1936 {
1937 return si_unpack_param(ctx, SI_PARAM_ANCILLARY, 8, 4);
1938 }
1939
1940 static LLVMValueRef get_base_vertex(struct ac_shader_abi *abi)
1941 {
1942 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1943
1944 /* For non-indexed draws, the base vertex set by the driver
1945 * (for direct draws) or the CP (for indirect draws) is the
1946 * first vertex ID, but GLSL expects 0 to be returned.
1947 */
1948 LLVMValueRef vs_state = LLVMGetParam(ctx->main_fn,
1949 ctx->param_vs_state_bits);
1950 LLVMValueRef indexed;
1951
1952 indexed = LLVMBuildLShr(ctx->ac.builder, vs_state, ctx->i32_1, "");
1953 indexed = LLVMBuildTrunc(ctx->ac.builder, indexed, ctx->i1, "");
1954
1955 return LLVMBuildSelect(ctx->ac.builder, indexed, ctx->abi.base_vertex,
1956 ctx->i32_0, "");
1957 }
1958
1959 static LLVMValueRef get_block_size(struct ac_shader_abi *abi)
1960 {
1961 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
1962
1963 LLVMValueRef values[3];
1964 LLVMValueRef result;
1965 unsigned i;
1966 unsigned *properties = ctx->shader->selector->info.properties;
1967
1968 if (properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] != 0) {
1969 unsigned sizes[3] = {
1970 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH],
1971 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT],
1972 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH]
1973 };
1974
1975 for (i = 0; i < 3; ++i)
1976 values[i] = LLVMConstInt(ctx->i32, sizes[i], 0);
1977
1978 result = ac_build_gather_values(&ctx->ac, values, 3);
1979 } else {
1980 result = LLVMGetParam(ctx->main_fn, ctx->param_block_size);
1981 }
1982
1983 return result;
1984 }
1985
1986 /**
1987 * Load a dword from a constant buffer.
1988 */
1989 static LLVMValueRef buffer_load_const(struct si_shader_context *ctx,
1990 LLVMValueRef resource,
1991 LLVMValueRef offset)
1992 {
1993 return ac_build_buffer_load(&ctx->ac, resource, 1, NULL, offset, NULL,
1994 0, 0, 0, true, true);
1995 }
1996
1997 static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
1998 {
1999 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2000 LLVMValueRef desc = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2001 LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
2002 LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
2003
2004 /* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
2005 LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
2006 LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
2007
2008 LLVMValueRef pos[4] = {
2009 buffer_load_const(ctx, resource, offset0),
2010 buffer_load_const(ctx, resource, offset1),
2011 LLVMConstReal(ctx->f32, 0),
2012 LLVMConstReal(ctx->f32, 0)
2013 };
2014
2015 return ac_build_gather_values(&ctx->ac, pos, 4);
2016 }
2017
2018 static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
2019 {
2020 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2021 return ac_to_integer(&ctx->ac, abi->sample_coverage);
2022 }
2023
2024 static LLVMValueRef si_load_tess_coord(struct ac_shader_abi *abi)
2025 {
2026 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2027 LLVMValueRef coord[4] = {
2028 LLVMGetParam(ctx->main_fn, ctx->param_tes_u),
2029 LLVMGetParam(ctx->main_fn, ctx->param_tes_v),
2030 ctx->ac.f32_0,
2031 ctx->ac.f32_0
2032 };
2033
2034 /* For triangles, the vector should be (u, v, 1-u-v). */
2035 if (ctx->shader->selector->info.properties[TGSI_PROPERTY_TES_PRIM_MODE] ==
2036 PIPE_PRIM_TRIANGLES) {
2037 coord[2] = LLVMBuildFSub(ctx->ac.builder, ctx->ac.f32_1,
2038 LLVMBuildFAdd(ctx->ac.builder,
2039 coord[0], coord[1], ""), "");
2040 }
2041 return ac_build_gather_values(&ctx->ac, coord, 4);
2042 }
2043
2044 static LLVMValueRef load_tess_level(struct si_shader_context *ctx,
2045 unsigned semantic_name)
2046 {
2047 LLVMValueRef base, addr;
2048
2049 int param = si_shader_io_get_unique_index_patch(semantic_name, 0);
2050
2051 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
2052 addr = get_tcs_tes_buffer_address(ctx, get_rel_patch_id(ctx), NULL,
2053 LLVMConstInt(ctx->i32, param, 0));
2054
2055 return buffer_load(&ctx->bld_base, ctx->f32,
2056 ~0, ctx->tess_offchip_ring, base, addr, true);
2057
2058 }
2059
2060 static LLVMValueRef si_load_tess_level(struct ac_shader_abi *abi,
2061 unsigned varying_id)
2062 {
2063 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2064 unsigned semantic_name;
2065
2066 switch (varying_id) {
2067 case VARYING_SLOT_TESS_LEVEL_INNER:
2068 semantic_name = TGSI_SEMANTIC_TESSINNER;
2069 break;
2070 case VARYING_SLOT_TESS_LEVEL_OUTER:
2071 semantic_name = TGSI_SEMANTIC_TESSOUTER;
2072 break;
2073 default:
2074 unreachable("unknown tess level");
2075 }
2076
2077 return load_tess_level(ctx, semantic_name);
2078
2079 }
2080
2081 static LLVMValueRef si_load_patch_vertices_in(struct ac_shader_abi *abi)
2082 {
2083 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2084 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2085 return si_unpack_param(ctx, ctx->param_tcs_out_lds_layout, 13, 6);
2086 else if (ctx->type == PIPE_SHADER_TESS_EVAL)
2087 return get_num_tcs_out_vertices(ctx);
2088 else
2089 unreachable("invalid shader stage for TGSI_SEMANTIC_VERTICESIN");
2090 }
2091
2092 void si_load_system_value(struct si_shader_context *ctx,
2093 unsigned index,
2094 const struct tgsi_full_declaration *decl)
2095 {
2096 LLVMValueRef value = 0;
2097
2098 assert(index < RADEON_LLVM_MAX_SYSTEM_VALUES);
2099
2100 switch (decl->Semantic.Name) {
2101 case TGSI_SEMANTIC_INSTANCEID:
2102 value = ctx->abi.instance_id;
2103 break;
2104
2105 case TGSI_SEMANTIC_VERTEXID:
2106 value = LLVMBuildAdd(ctx->ac.builder,
2107 ctx->abi.vertex_id,
2108 ctx->abi.base_vertex, "");
2109 break;
2110
2111 case TGSI_SEMANTIC_VERTEXID_NOBASE:
2112 /* Unused. Clarify the meaning in indexed vs. non-indexed
2113 * draws if this is ever used again. */
2114 assert(false);
2115 break;
2116
2117 case TGSI_SEMANTIC_BASEVERTEX:
2118 value = get_base_vertex(&ctx->abi);
2119 break;
2120
2121 case TGSI_SEMANTIC_BASEINSTANCE:
2122 value = ctx->abi.start_instance;
2123 break;
2124
2125 case TGSI_SEMANTIC_DRAWID:
2126 value = ctx->abi.draw_id;
2127 break;
2128
2129 case TGSI_SEMANTIC_INVOCATIONID:
2130 if (ctx->type == PIPE_SHADER_TESS_CTRL)
2131 value = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
2132 else if (ctx->type == PIPE_SHADER_GEOMETRY)
2133 value = ctx->abi.gs_invocation_id;
2134 else
2135 assert(!"INVOCATIONID not implemented");
2136 break;
2137
2138 case TGSI_SEMANTIC_POSITION:
2139 {
2140 LLVMValueRef pos[4] = {
2141 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2142 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2143 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Z_FLOAT),
2144 ac_build_fdiv(&ctx->ac, ctx->ac.f32_1,
2145 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_W_FLOAT)),
2146 };
2147 value = ac_build_gather_values(&ctx->ac, pos, 4);
2148 break;
2149 }
2150
2151 case TGSI_SEMANTIC_FACE:
2152 value = ctx->abi.front_face;
2153 break;
2154
2155 case TGSI_SEMANTIC_SAMPLEID:
2156 value = si_get_sample_id(ctx);
2157 break;
2158
2159 case TGSI_SEMANTIC_SAMPLEPOS: {
2160 LLVMValueRef pos[4] = {
2161 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_X_FLOAT),
2162 LLVMGetParam(ctx->main_fn, SI_PARAM_POS_Y_FLOAT),
2163 LLVMConstReal(ctx->f32, 0),
2164 LLVMConstReal(ctx->f32, 0)
2165 };
2166 pos[0] = ac_build_fract(&ctx->ac, pos[0], 32);
2167 pos[1] = ac_build_fract(&ctx->ac, pos[1], 32);
2168 value = ac_build_gather_values(&ctx->ac, pos, 4);
2169 break;
2170 }
2171
2172 case TGSI_SEMANTIC_SAMPLEMASK:
2173 /* This can only occur with the OpenGL Core profile, which
2174 * doesn't support smoothing.
2175 */
2176 value = LLVMGetParam(ctx->main_fn, SI_PARAM_SAMPLE_COVERAGE);
2177 break;
2178
2179 case TGSI_SEMANTIC_TESSCOORD:
2180 value = si_load_tess_coord(&ctx->abi);
2181 break;
2182
2183 case TGSI_SEMANTIC_VERTICESIN:
2184 value = si_load_patch_vertices_in(&ctx->abi);
2185 break;
2186
2187 case TGSI_SEMANTIC_TESSINNER:
2188 case TGSI_SEMANTIC_TESSOUTER:
2189 value = load_tess_level(ctx, decl->Semantic.Name);
2190 break;
2191
2192 case TGSI_SEMANTIC_DEFAULT_TESSOUTER_SI:
2193 case TGSI_SEMANTIC_DEFAULT_TESSINNER_SI:
2194 {
2195 LLVMValueRef buf, slot, val[4];
2196 int i, offset;
2197
2198 slot = LLVMConstInt(ctx->i32, SI_HS_CONST_DEFAULT_TESS_LEVELS, 0);
2199 buf = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2200 buf = ac_build_load_to_sgpr(&ctx->ac, buf, slot);
2201 offset = decl->Semantic.Name == TGSI_SEMANTIC_DEFAULT_TESSINNER_SI ? 4 : 0;
2202
2203 for (i = 0; i < 4; i++)
2204 val[i] = buffer_load_const(ctx, buf,
2205 LLVMConstInt(ctx->i32, (offset + i) * 4, 0));
2206 value = ac_build_gather_values(&ctx->ac, val, 4);
2207 break;
2208 }
2209
2210 case TGSI_SEMANTIC_PRIMID:
2211 value = get_primitive_id(ctx, 0);
2212 break;
2213
2214 case TGSI_SEMANTIC_GRID_SIZE:
2215 value = ctx->abi.num_work_groups;
2216 break;
2217
2218 case TGSI_SEMANTIC_BLOCK_SIZE:
2219 value = get_block_size(&ctx->abi);
2220 break;
2221
2222 case TGSI_SEMANTIC_BLOCK_ID:
2223 {
2224 LLVMValueRef values[3];
2225
2226 for (int i = 0; i < 3; i++) {
2227 values[i] = ctx->i32_0;
2228 if (ctx->abi.workgroup_ids[i]) {
2229 values[i] = ctx->abi.workgroup_ids[i];
2230 }
2231 }
2232 value = ac_build_gather_values(&ctx->ac, values, 3);
2233 break;
2234 }
2235
2236 case TGSI_SEMANTIC_THREAD_ID:
2237 value = ctx->abi.local_invocation_ids;
2238 break;
2239
2240 case TGSI_SEMANTIC_HELPER_INVOCATION:
2241 value = ac_build_intrinsic(&ctx->ac,
2242 "llvm.amdgcn.ps.live",
2243 ctx->i1, NULL, 0,
2244 AC_FUNC_ATTR_READNONE);
2245 value = LLVMBuildNot(ctx->ac.builder, value, "");
2246 value = LLVMBuildSExt(ctx->ac.builder, value, ctx->i32, "");
2247 break;
2248
2249 case TGSI_SEMANTIC_SUBGROUP_SIZE:
2250 value = LLVMConstInt(ctx->i32, 64, 0);
2251 break;
2252
2253 case TGSI_SEMANTIC_SUBGROUP_INVOCATION:
2254 value = ac_get_thread_id(&ctx->ac);
2255 break;
2256
2257 case TGSI_SEMANTIC_SUBGROUP_EQ_MASK:
2258 {
2259 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2260 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2261 value = LLVMBuildShl(ctx->ac.builder, LLVMConstInt(ctx->i64, 1, 0), id, "");
2262 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2263 break;
2264 }
2265
2266 case TGSI_SEMANTIC_SUBGROUP_GE_MASK:
2267 case TGSI_SEMANTIC_SUBGROUP_GT_MASK:
2268 case TGSI_SEMANTIC_SUBGROUP_LE_MASK:
2269 case TGSI_SEMANTIC_SUBGROUP_LT_MASK:
2270 {
2271 LLVMValueRef id = ac_get_thread_id(&ctx->ac);
2272 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_GT_MASK ||
2273 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK) {
2274 /* All bits set except LSB */
2275 value = LLVMConstInt(ctx->i64, -2, 0);
2276 } else {
2277 /* All bits set */
2278 value = LLVMConstInt(ctx->i64, -1, 0);
2279 }
2280 id = LLVMBuildZExt(ctx->ac.builder, id, ctx->i64, "");
2281 value = LLVMBuildShl(ctx->ac.builder, value, id, "");
2282 if (decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LE_MASK ||
2283 decl->Semantic.Name == TGSI_SEMANTIC_SUBGROUP_LT_MASK)
2284 value = LLVMBuildNot(ctx->ac.builder, value, "");
2285 value = LLVMBuildBitCast(ctx->ac.builder, value, ctx->v2i32, "");
2286 break;
2287 }
2288
2289 default:
2290 assert(!"unknown system value");
2291 return;
2292 }
2293
2294 ctx->system_values[index] = value;
2295 }
2296
2297 void si_declare_compute_memory(struct si_shader_context *ctx)
2298 {
2299 struct si_shader_selector *sel = ctx->shader->selector;
2300 unsigned lds_size = sel->info.properties[TGSI_PROPERTY_CS_LOCAL_SIZE];
2301
2302 LLVMTypeRef i8p = LLVMPointerType(ctx->i8, AC_LOCAL_ADDR_SPACE);
2303 LLVMValueRef var;
2304
2305 assert(!ctx->ac.lds);
2306
2307 var = LLVMAddGlobalInAddressSpace(ctx->ac.module,
2308 LLVMArrayType(ctx->i8, lds_size),
2309 "compute_lds",
2310 AC_LOCAL_ADDR_SPACE);
2311 LLVMSetAlignment(var, 4);
2312
2313 ctx->ac.lds = LLVMBuildBitCast(ctx->ac.builder, var, i8p, "");
2314 }
2315
2316 void si_tgsi_declare_compute_memory(struct si_shader_context *ctx,
2317 const struct tgsi_full_declaration *decl)
2318 {
2319 assert(decl->Declaration.MemType == TGSI_MEMORY_TYPE_SHARED);
2320 assert(decl->Range.First == decl->Range.Last);
2321
2322 si_declare_compute_memory(ctx);
2323 }
2324
2325 static LLVMValueRef load_const_buffer_desc_fast_path(struct si_shader_context *ctx)
2326 {
2327 LLVMValueRef ptr =
2328 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2329 struct si_shader_selector *sel = ctx->shader->selector;
2330
2331 /* Do the bounds checking with a descriptor, because
2332 * doing computation and manual bounds checking of 64-bit
2333 * addresses generates horrible VALU code with very high
2334 * VGPR usage and very low SIMD occupancy.
2335 */
2336 ptr = LLVMBuildPtrToInt(ctx->ac.builder, ptr, ctx->ac.intptr, "");
2337
2338 LLVMValueRef desc0, desc1;
2339 if (HAVE_32BIT_POINTERS) {
2340 desc0 = ptr;
2341 desc1 = LLVMConstInt(ctx->i32,
2342 S_008F04_BASE_ADDRESS_HI(ctx->screen->info.address32_hi), 0);
2343 } else {
2344 ptr = LLVMBuildBitCast(ctx->ac.builder, ptr, ctx->v2i32, "");
2345 desc0 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_0, "");
2346 desc1 = LLVMBuildExtractElement(ctx->ac.builder, ptr, ctx->i32_1, "");
2347 /* Mask out all bits except BASE_ADDRESS_HI. */
2348 desc1 = LLVMBuildAnd(ctx->ac.builder, desc1,
2349 LLVMConstInt(ctx->i32, ~C_008F04_BASE_ADDRESS_HI, 0), "");
2350 }
2351
2352 LLVMValueRef desc_elems[] = {
2353 desc0,
2354 desc1,
2355 LLVMConstInt(ctx->i32, (sel->info.const_file_max[0] + 1) * 16, 0),
2356 LLVMConstInt(ctx->i32,
2357 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
2358 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
2359 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
2360 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
2361 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
2362 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32), 0)
2363 };
2364
2365 return ac_build_gather_values(&ctx->ac, desc_elems, 4);
2366 }
2367
2368 static LLVMValueRef load_const_buffer_desc(struct si_shader_context *ctx, int i)
2369 {
2370 LLVMValueRef list_ptr = LLVMGetParam(ctx->main_fn,
2371 ctx->param_const_and_shader_buffers);
2372
2373 return ac_build_load_to_sgpr(&ctx->ac, list_ptr,
2374 LLVMConstInt(ctx->i32, si_get_constbuf_slot(i), 0));
2375 }
2376
2377 static LLVMValueRef load_ubo(struct ac_shader_abi *abi, LLVMValueRef index)
2378 {
2379 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2380 struct si_shader_selector *sel = ctx->shader->selector;
2381
2382 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2383
2384 if (sel->info.const_buffers_declared == 1 &&
2385 sel->info.shader_buffers_declared == 0) {
2386 return load_const_buffer_desc_fast_path(ctx);
2387 }
2388
2389 index = si_llvm_bound_index(ctx, index, ctx->num_const_buffers);
2390 index = LLVMBuildAdd(ctx->ac.builder, index,
2391 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2392
2393 return ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2394 }
2395
2396 static LLVMValueRef
2397 load_ssbo(struct ac_shader_abi *abi, LLVMValueRef index, bool write)
2398 {
2399 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
2400 LLVMValueRef rsrc_ptr = LLVMGetParam(ctx->main_fn,
2401 ctx->param_const_and_shader_buffers);
2402
2403 index = si_llvm_bound_index(ctx, index, ctx->num_shader_buffers);
2404 index = LLVMBuildSub(ctx->ac.builder,
2405 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS - 1, 0),
2406 index, "");
2407
2408 return ac_build_load_to_sgpr(&ctx->ac, rsrc_ptr, index);
2409 }
2410
2411 static LLVMValueRef fetch_constant(
2412 struct lp_build_tgsi_context *bld_base,
2413 const struct tgsi_full_src_register *reg,
2414 enum tgsi_opcode_type type,
2415 unsigned swizzle)
2416 {
2417 struct si_shader_context *ctx = si_shader_context(bld_base);
2418 struct si_shader_selector *sel = ctx->shader->selector;
2419 const struct tgsi_ind_register *ireg = &reg->Indirect;
2420 unsigned buf, idx;
2421
2422 LLVMValueRef addr, bufp;
2423
2424 if (swizzle == LP_CHAN_ALL) {
2425 unsigned chan;
2426 LLVMValueRef values[4];
2427 for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
2428 values[chan] = fetch_constant(bld_base, reg, type, chan);
2429
2430 return ac_build_gather_values(&ctx->ac, values, 4);
2431 }
2432
2433 /* Split 64-bit loads. */
2434 if (tgsi_type_is_64bit(type)) {
2435 LLVMValueRef lo, hi;
2436
2437 lo = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle);
2438 hi = fetch_constant(bld_base, reg, TGSI_TYPE_UNSIGNED, swizzle + 1);
2439 return si_llvm_emit_fetch_64bit(bld_base, tgsi2llvmtype(bld_base, type),
2440 lo, hi);
2441 }
2442
2443 idx = reg->Register.Index * 4 + swizzle;
2444 if (reg->Register.Indirect) {
2445 addr = si_get_indirect_index(ctx, ireg, 16, idx * 4);
2446 } else {
2447 addr = LLVMConstInt(ctx->i32, idx * 4, 0);
2448 }
2449
2450 /* Fast path when user data SGPRs point to constant buffer 0 directly. */
2451 if (sel->info.const_buffers_declared == 1 &&
2452 sel->info.shader_buffers_declared == 0) {
2453
2454 /* This enables use of s_load_dword and flat_load_dword for const buffer 0
2455 * loads, and up to x4 load opcode merging. However, it leads to horrible
2456 * code reducing SIMD wave occupancy from 8 to 2 in many cases.
2457 *
2458 * Using s_buffer_load_dword (x1) seems to be the best option right now.
2459 *
2460 * LLVM 5.0 on SI doesn't insert a required s_nop between SALU setting
2461 * a descriptor and s_buffer_load_dword using it, so we can't expand
2462 * the pointer into a full descriptor like below. We have to use
2463 * s_load_dword instead. The only case when LLVM 5.0 would select
2464 * s_buffer_load_dword (that we have to prevent) is when we use use
2465 * a literal offset where we don't need bounds checking.
2466 */
2467 if (ctx->screen->info.chip_class == SI && HAVE_LLVM < 0x0600 &&
2468 !reg->Register.Indirect) {
2469 LLVMValueRef ptr =
2470 LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2471
2472 addr = LLVMBuildLShr(ctx->ac.builder, addr, LLVMConstInt(ctx->i32, 2, 0), "");
2473 LLVMValueRef result = ac_build_load_invariant(&ctx->ac, ptr, addr);
2474 return bitcast(bld_base, type, result);
2475 }
2476
2477 LLVMValueRef desc = load_const_buffer_desc_fast_path(ctx);
2478 LLVMValueRef result = buffer_load_const(ctx, desc, addr);
2479 return bitcast(bld_base, type, result);
2480 }
2481
2482 assert(reg->Register.Dimension);
2483 buf = reg->Dimension.Index;
2484
2485 if (reg->Dimension.Indirect) {
2486 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_const_and_shader_buffers);
2487 LLVMValueRef index;
2488 index = si_get_bounded_indirect_index(ctx, &reg->DimIndirect,
2489 reg->Dimension.Index,
2490 ctx->num_const_buffers);
2491 index = LLVMBuildAdd(ctx->ac.builder, index,
2492 LLVMConstInt(ctx->i32, SI_NUM_SHADER_BUFFERS, 0), "");
2493 bufp = ac_build_load_to_sgpr(&ctx->ac, ptr, index);
2494 } else
2495 bufp = load_const_buffer_desc(ctx, buf);
2496
2497 return bitcast(bld_base, type, buffer_load_const(ctx, bufp, addr));
2498 }
2499
2500 /* Initialize arguments for the shader export intrinsic */
2501 static void si_llvm_init_export_args(struct si_shader_context *ctx,
2502 LLVMValueRef *values,
2503 unsigned target,
2504 struct ac_export_args *args)
2505 {
2506 LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
2507 unsigned spi_shader_col_format = V_028714_SPI_SHADER_32_ABGR;
2508 unsigned chan;
2509 bool is_int8, is_int10;
2510
2511 /* Default is 0xf. Adjusted below depending on the format. */
2512 args->enabled_channels = 0xf; /* writemask */
2513
2514 /* Specify whether the EXEC mask represents the valid mask */
2515 args->valid_mask = 0;
2516
2517 /* Specify whether this is the last export */
2518 args->done = 0;
2519
2520 /* Specify the target we are exporting */
2521 args->target = target;
2522
2523 if (ctx->type == PIPE_SHADER_FRAGMENT) {
2524 const struct si_shader_key *key = &ctx->shader->key;
2525 unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
2526 int cbuf = target - V_008DFC_SQ_EXP_MRT;
2527
2528 assert(cbuf >= 0 && cbuf < 8);
2529 spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
2530 is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
2531 is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
2532 }
2533
2534 args->compr = false;
2535 args->out[0] = f32undef;
2536 args->out[1] = f32undef;
2537 args->out[2] = f32undef;
2538 args->out[3] = f32undef;
2539
2540 LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
2541 LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
2542 unsigned bits, bool hi) = NULL;
2543
2544 switch (spi_shader_col_format) {
2545 case V_028714_SPI_SHADER_ZERO:
2546 args->enabled_channels = 0; /* writemask */
2547 args->target = V_008DFC_SQ_EXP_NULL;
2548 break;
2549
2550 case V_028714_SPI_SHADER_32_R:
2551 args->enabled_channels = 1; /* writemask */
2552 args->out[0] = values[0];
2553 break;
2554
2555 case V_028714_SPI_SHADER_32_GR:
2556 args->enabled_channels = 0x3; /* writemask */
2557 args->out[0] = values[0];
2558 args->out[1] = values[1];
2559 break;
2560
2561 case V_028714_SPI_SHADER_32_AR:
2562 args->enabled_channels = 0x9; /* writemask */
2563 args->out[0] = values[0];
2564 args->out[3] = values[3];
2565 break;
2566
2567 case V_028714_SPI_SHADER_FP16_ABGR:
2568 packf = ac_build_cvt_pkrtz_f16;
2569 break;
2570
2571 case V_028714_SPI_SHADER_UNORM16_ABGR:
2572 packf = ac_build_cvt_pknorm_u16;
2573 break;
2574
2575 case V_028714_SPI_SHADER_SNORM16_ABGR:
2576 packf = ac_build_cvt_pknorm_i16;
2577 break;
2578
2579 case V_028714_SPI_SHADER_UINT16_ABGR:
2580 packi = ac_build_cvt_pk_u16;
2581 break;
2582
2583 case V_028714_SPI_SHADER_SINT16_ABGR:
2584 packi = ac_build_cvt_pk_i16;
2585 break;
2586
2587 case V_028714_SPI_SHADER_32_ABGR:
2588 memcpy(&args->out[0], values, sizeof(values[0]) * 4);
2589 break;
2590 }
2591
2592 /* Pack f16 or norm_i16/u16. */
2593 if (packf) {
2594 for (chan = 0; chan < 2; chan++) {
2595 LLVMValueRef pack_args[2] = {
2596 values[2 * chan],
2597 values[2 * chan + 1]
2598 };
2599 LLVMValueRef packed;
2600
2601 packed = packf(&ctx->ac, pack_args);
2602 args->out[chan] = ac_to_float(&ctx->ac, packed);
2603 }
2604 args->compr = 1; /* COMPR flag */
2605 }
2606 /* Pack i16/u16. */
2607 if (packi) {
2608 for (chan = 0; chan < 2; chan++) {
2609 LLVMValueRef pack_args[2] = {
2610 ac_to_integer(&ctx->ac, values[2 * chan]),
2611 ac_to_integer(&ctx->ac, values[2 * chan + 1])
2612 };
2613 LLVMValueRef packed;
2614
2615 packed = packi(&ctx->ac, pack_args,
2616 is_int8 ? 8 : is_int10 ? 10 : 16,
2617 chan == 1);
2618 args->out[chan] = ac_to_float(&ctx->ac, packed);
2619 }
2620 args->compr = 1; /* COMPR flag */
2621 }
2622 }
2623
2624 static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
2625 LLVMValueRef alpha)
2626 {
2627 struct si_shader_context *ctx = si_shader_context(bld_base);
2628
2629 if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
2630 static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
2631 [PIPE_FUNC_LESS] = LLVMRealOLT,
2632 [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
2633 [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
2634 [PIPE_FUNC_GREATER] = LLVMRealOGT,
2635 [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
2636 [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
2637 };
2638 LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
2639 assert(cond);
2640
2641 LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
2642 SI_PARAM_ALPHA_REF);
2643 LLVMValueRef alpha_pass =
2644 LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
2645 ac_build_kill_if_false(&ctx->ac, alpha_pass);
2646 } else {
2647 ac_build_kill_if_false(&ctx->ac, LLVMConstInt(ctx->i1, 0, 0));
2648 }
2649 }
2650
2651 static LLVMValueRef si_scale_alpha_by_sample_mask(struct lp_build_tgsi_context *bld_base,
2652 LLVMValueRef alpha,
2653 unsigned samplemask_param)
2654 {
2655 struct si_shader_context *ctx = si_shader_context(bld_base);
2656 LLVMValueRef coverage;
2657
2658 /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
2659 coverage = LLVMGetParam(ctx->main_fn,
2660 samplemask_param);
2661 coverage = ac_to_integer(&ctx->ac, coverage);
2662
2663 coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
2664 ctx->i32,
2665 &coverage, 1, AC_FUNC_ATTR_READNONE);
2666
2667 coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
2668 ctx->f32, "");
2669
2670 coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
2671 LLVMConstReal(ctx->f32,
2672 1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
2673
2674 return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
2675 }
2676
2677 static void si_llvm_emit_clipvertex(struct si_shader_context *ctx,
2678 struct ac_export_args *pos, LLVMValueRef *out_elts)
2679 {
2680 unsigned reg_index;
2681 unsigned chan;
2682 unsigned const_chan;
2683 LLVMValueRef base_elt;
2684 LLVMValueRef ptr = LLVMGetParam(ctx->main_fn, ctx->param_rw_buffers);
2685 LLVMValueRef constbuf_index = LLVMConstInt(ctx->i32,
2686 SI_VS_CONST_CLIP_PLANES, 0);
2687 LLVMValueRef const_resource = ac_build_load_to_sgpr(&ctx->ac, ptr, constbuf_index);
2688
2689 for (reg_index = 0; reg_index < 2; reg_index ++) {
2690 struct ac_export_args *args = &pos[2 + reg_index];
2691
2692 args->out[0] =
2693 args->out[1] =
2694 args->out[2] =
2695 args->out[3] = LLVMConstReal(ctx->f32, 0.0f);
2696
2697 /* Compute dot products of position and user clip plane vectors */
2698 for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
2699 for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
2700 LLVMValueRef addr =
2701 LLVMConstInt(ctx->i32, ((reg_index * 4 + chan) * 4 +
2702 const_chan) * 4, 0);
2703 base_elt = buffer_load_const(ctx, const_resource,
2704 addr);
2705 args->out[chan] =
2706 LLVMBuildFAdd(ctx->ac.builder, args->out[chan],
2707 LLVMBuildFMul(ctx->ac.builder, base_elt,
2708 out_elts[const_chan], ""), "");
2709 }
2710 }
2711
2712 args->enabled_channels = 0xf;
2713 args->valid_mask = 0;
2714 args->done = 0;
2715 args->target = V_008DFC_SQ_EXP_POS + 2 + reg_index;
2716 args->compr = 0;
2717 }
2718 }
2719
2720 static void si_dump_streamout(struct pipe_stream_output_info *so)
2721 {
2722 unsigned i;
2723
2724 if (so->num_outputs)
2725 fprintf(stderr, "STREAMOUT\n");
2726
2727 for (i = 0; i < so->num_outputs; i++) {
2728 unsigned mask = ((1 << so->output[i].num_components) - 1) <<
2729 so->output[i].start_component;
2730 fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
2731 i, so->output[i].output_buffer,
2732 so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
2733 so->output[i].register_index,
2734 mask & 1 ? "x" : "",
2735 mask & 2 ? "y" : "",
2736 mask & 4 ? "z" : "",
2737 mask & 8 ? "w" : "");
2738 }
2739 }
2740
2741 static void emit_streamout_output(struct si_shader_context *ctx,
2742 LLVMValueRef const *so_buffers,
2743 LLVMValueRef const *so_write_offsets,
2744 struct pipe_stream_output *stream_out,
2745 struct si_shader_output_values *shader_out)
2746 {
2747 unsigned buf_idx = stream_out->output_buffer;
2748 unsigned start = stream_out->start_component;
2749 unsigned num_comps = stream_out->num_components;
2750 LLVMValueRef out[4];
2751
2752 assert(num_comps && num_comps <= 4);
2753 if (!num_comps || num_comps > 4)
2754 return;
2755
2756 /* Load the output as int. */
2757 for (int j = 0; j < num_comps; j++) {
2758 assert(stream_out->stream == shader_out->vertex_stream[start + j]);
2759
2760 out[j] = ac_to_integer(&ctx->ac, shader_out->values[start + j]);
2761 }
2762
2763 /* Pack the output. */
2764 LLVMValueRef vdata = NULL;
2765
2766 switch (num_comps) {
2767 case 1: /* as i32 */
2768 vdata = out[0];
2769 break;
2770 case 2: /* as v2i32 */
2771 case 3: /* as v4i32 (aligned to 4) */
2772 case 4: /* as v4i32 */
2773 vdata = LLVMGetUndef(LLVMVectorType(ctx->i32, util_next_power_of_two(num_comps)));
2774 for (int j = 0; j < num_comps; j++) {
2775 vdata = LLVMBuildInsertElement(ctx->ac.builder, vdata, out[j],
2776 LLVMConstInt(ctx->i32, j, 0), "");
2777 }
2778 break;
2779 }
2780
2781 ac_build_buffer_store_dword(&ctx->ac, so_buffers[buf_idx],
2782 vdata, num_comps,
2783 so_write_offsets[buf_idx],
2784 ctx->i32_0,
2785 stream_out->dst_offset * 4, 1, 1, true, false);
2786 }
2787
2788 /**
2789 * Write streamout data to buffers for vertex stream @p stream (different
2790 * vertex streams can occur for GS copy shaders).
2791 */
2792 static void si_llvm_emit_streamout(struct si_shader_context *ctx,
2793 struct si_shader_output_values *outputs,
2794 unsigned noutput, unsigned stream)
2795 {
2796 struct si_shader_selector *sel = ctx->shader->selector;
2797 struct pipe_stream_output_info *so = &sel->so;
2798 LLVMBuilderRef builder = ctx->ac.builder;
2799 int i;
2800 struct lp_build_if_state if_ctx;
2801
2802 /* Get bits [22:16], i.e. (so_param >> 16) & 127; */
2803 LLVMValueRef so_vtx_count =
2804 si_unpack_param(ctx, ctx->param_streamout_config, 16, 7);
2805
2806 LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
2807
2808 /* can_emit = tid < so_vtx_count; */
2809 LLVMValueRef can_emit =
2810 LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
2811
2812 /* Emit the streamout code conditionally. This actually avoids
2813 * out-of-bounds buffer access. The hw tells us via the SGPR
2814 * (so_vtx_count) which threads are allowed to emit streamout data. */
2815 lp_build_if(&if_ctx, &ctx->gallivm, can_emit);
2816 {
2817 /* The buffer offset is computed as follows:
2818 * ByteOffset = streamout_offset[buffer_id]*4 +
2819 * (streamout_write_index + thread_id)*stride[buffer_id] +
2820 * attrib_offset
2821 */
2822
2823 LLVMValueRef so_write_index =
2824 LLVMGetParam(ctx->main_fn,
2825 ctx->param_streamout_write_index);
2826
2827 /* Compute (streamout_write_index + thread_id). */
2828 so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
2829
2830 /* Load the descriptor and compute the write offset for each
2831 * enabled buffer. */
2832 LLVMValueRef so_write_offset[4] = {};
2833 LLVMValueRef so_buffers[4];
2834 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
2835 ctx->param_rw_buffers);
2836
2837 for (i = 0; i < 4; i++) {
2838 if (!so->stride[i])
2839 continue;
2840
2841 LLVMValueRef offset = LLVMConstInt(ctx->i32,
2842 SI_VS_STREAMOUT_BUF0 + i, 0);
2843
2844 so_buffers[i] = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
2845
2846 LLVMValueRef so_offset = LLVMGetParam(ctx->main_fn,
2847 ctx->param_streamout_offset[i]);
2848 so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(ctx->i32, 4, 0), "");
2849
2850 so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
2851 LLVMConstInt(ctx->i32, so->stride[i]*4, 0), "");
2852 so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
2853 }
2854
2855 /* Write streamout data. */
2856 for (i = 0; i < so->num_outputs; i++) {
2857 unsigned reg = so->output[i].register_index;
2858
2859 if (reg >= noutput)
2860 continue;
2861
2862 if (stream != so->output[i].stream)
2863 continue;
2864
2865 emit_streamout_output(ctx, so_buffers, so_write_offset,
2866 &so->output[i], &outputs[reg]);
2867 }
2868 }
2869 lp_build_endif(&if_ctx);
2870 }
2871
2872 static void si_export_param(struct si_shader_context *ctx, unsigned index,
2873 LLVMValueRef *values)
2874 {
2875 struct ac_export_args args;
2876
2877 si_llvm_init_export_args(ctx, values,
2878 V_008DFC_SQ_EXP_PARAM + index, &args);
2879 ac_build_export(&ctx->ac, &args);
2880 }
2881
2882 static void si_build_param_exports(struct si_shader_context *ctx,
2883 struct si_shader_output_values *outputs,
2884 unsigned noutput)
2885 {
2886 struct si_shader *shader = ctx->shader;
2887 unsigned param_count = 0;
2888
2889 for (unsigned i = 0; i < noutput; i++) {
2890 unsigned semantic_name = outputs[i].semantic_name;
2891 unsigned semantic_index = outputs[i].semantic_index;
2892
2893 if (outputs[i].vertex_stream[0] != 0 &&
2894 outputs[i].vertex_stream[1] != 0 &&
2895 outputs[i].vertex_stream[2] != 0 &&
2896 outputs[i].vertex_stream[3] != 0)
2897 continue;
2898
2899 switch (semantic_name) {
2900 case TGSI_SEMANTIC_LAYER:
2901 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2902 case TGSI_SEMANTIC_CLIPDIST:
2903 case TGSI_SEMANTIC_COLOR:
2904 case TGSI_SEMANTIC_BCOLOR:
2905 case TGSI_SEMANTIC_PRIMID:
2906 case TGSI_SEMANTIC_FOG:
2907 case TGSI_SEMANTIC_TEXCOORD:
2908 case TGSI_SEMANTIC_GENERIC:
2909 break;
2910 default:
2911 continue;
2912 }
2913
2914 if ((semantic_name != TGSI_SEMANTIC_GENERIC ||
2915 semantic_index < SI_MAX_IO_GENERIC) &&
2916 shader->key.opt.kill_outputs &
2917 (1ull << si_shader_io_get_unique_index(semantic_name,
2918 semantic_index, true)))
2919 continue;
2920
2921 si_export_param(ctx, param_count, outputs[i].values);
2922
2923 assert(i < ARRAY_SIZE(shader->info.vs_output_param_offset));
2924 shader->info.vs_output_param_offset[i] = param_count++;
2925 }
2926
2927 shader->info.nr_param_exports = param_count;
2928 }
2929
2930 /* Generate export instructions for hardware VS shader stage */
2931 static void si_llvm_export_vs(struct si_shader_context *ctx,
2932 struct si_shader_output_values *outputs,
2933 unsigned noutput)
2934 {
2935 struct si_shader *shader = ctx->shader;
2936 struct ac_export_args pos_args[4] = {};
2937 LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL, viewport_index_value = NULL;
2938 unsigned pos_idx;
2939 int i;
2940
2941 /* Build position exports. */
2942 for (i = 0; i < noutput; i++) {
2943 switch (outputs[i].semantic_name) {
2944 case TGSI_SEMANTIC_POSITION:
2945 si_llvm_init_export_args(ctx, outputs[i].values,
2946 V_008DFC_SQ_EXP_POS, &pos_args[0]);
2947 break;
2948 case TGSI_SEMANTIC_PSIZE:
2949 psize_value = outputs[i].values[0];
2950 break;
2951 case TGSI_SEMANTIC_LAYER:
2952 layer_value = outputs[i].values[0];
2953 break;
2954 case TGSI_SEMANTIC_VIEWPORT_INDEX:
2955 viewport_index_value = outputs[i].values[0];
2956 break;
2957 case TGSI_SEMANTIC_EDGEFLAG:
2958 edgeflag_value = outputs[i].values[0];
2959 break;
2960 case TGSI_SEMANTIC_CLIPDIST:
2961 if (!shader->key.opt.clip_disable) {
2962 unsigned index = 2 + outputs[i].semantic_index;
2963 si_llvm_init_export_args(ctx, outputs[i].values,
2964 V_008DFC_SQ_EXP_POS + index,
2965 &pos_args[index]);
2966 }
2967 break;
2968 case TGSI_SEMANTIC_CLIPVERTEX:
2969 if (!shader->key.opt.clip_disable) {
2970 si_llvm_emit_clipvertex(ctx, pos_args,
2971 outputs[i].values);
2972 }
2973 break;
2974 }
2975 }
2976
2977 /* We need to add the position output manually if it's missing. */
2978 if (!pos_args[0].out[0]) {
2979 pos_args[0].enabled_channels = 0xf; /* writemask */
2980 pos_args[0].valid_mask = 0; /* EXEC mask */
2981 pos_args[0].done = 0; /* last export? */
2982 pos_args[0].target = V_008DFC_SQ_EXP_POS;
2983 pos_args[0].compr = 0; /* COMPR flag */
2984 pos_args[0].out[0] = ctx->ac.f32_0; /* X */
2985 pos_args[0].out[1] = ctx->ac.f32_0; /* Y */
2986 pos_args[0].out[2] = ctx->ac.f32_0; /* Z */
2987 pos_args[0].out[3] = ctx->ac.f32_1; /* W */
2988 }
2989
2990 /* Write the misc vector (point size, edgeflag, layer, viewport). */
2991 if (shader->selector->info.writes_psize ||
2992 shader->selector->info.writes_edgeflag ||
2993 shader->selector->info.writes_viewport_index ||
2994 shader->selector->info.writes_layer) {
2995 pos_args[1].enabled_channels = shader->selector->info.writes_psize |
2996 (shader->selector->info.writes_edgeflag << 1) |
2997 (shader->selector->info.writes_layer << 2);
2998
2999 pos_args[1].valid_mask = 0; /* EXEC mask */
3000 pos_args[1].done = 0; /* last export? */
3001 pos_args[1].target = V_008DFC_SQ_EXP_POS + 1;
3002 pos_args[1].compr = 0; /* COMPR flag */
3003 pos_args[1].out[0] = ctx->ac.f32_0; /* X */
3004 pos_args[1].out[1] = ctx->ac.f32_0; /* Y */
3005 pos_args[1].out[2] = ctx->ac.f32_0; /* Z */
3006 pos_args[1].out[3] = ctx->ac.f32_0; /* W */
3007
3008 if (shader->selector->info.writes_psize)
3009 pos_args[1].out[0] = psize_value;
3010
3011 if (shader->selector->info.writes_edgeflag) {
3012 /* The output is a float, but the hw expects an integer
3013 * with the first bit containing the edge flag. */
3014 edgeflag_value = LLVMBuildFPToUI(ctx->ac.builder,
3015 edgeflag_value,
3016 ctx->i32, "");
3017 edgeflag_value = ac_build_umin(&ctx->ac,
3018 edgeflag_value,
3019 ctx->i32_1);
3020
3021 /* The LLVM intrinsic expects a float. */
3022 pos_args[1].out[1] = ac_to_float(&ctx->ac, edgeflag_value);
3023 }
3024
3025 if (ctx->screen->info.chip_class >= GFX9) {
3026 /* GFX9 has the layer in out.z[10:0] and the viewport
3027 * index in out.z[19:16].
3028 */
3029 if (shader->selector->info.writes_layer)
3030 pos_args[1].out[2] = layer_value;
3031
3032 if (shader->selector->info.writes_viewport_index) {
3033 LLVMValueRef v = viewport_index_value;
3034
3035 v = ac_to_integer(&ctx->ac, v);
3036 v = LLVMBuildShl(ctx->ac.builder, v,
3037 LLVMConstInt(ctx->i32, 16, 0), "");
3038 v = LLVMBuildOr(ctx->ac.builder, v,
3039 ac_to_integer(&ctx->ac, pos_args[1].out[2]), "");
3040 pos_args[1].out[2] = ac_to_float(&ctx->ac, v);
3041 pos_args[1].enabled_channels |= 1 << 2;
3042 }
3043 } else {
3044 if (shader->selector->info.writes_layer)
3045 pos_args[1].out[2] = layer_value;
3046
3047 if (shader->selector->info.writes_viewport_index) {
3048 pos_args[1].out[3] = viewport_index_value;
3049 pos_args[1].enabled_channels |= 1 << 3;
3050 }
3051 }
3052 }
3053
3054 for (i = 0; i < 4; i++)
3055 if (pos_args[i].out[0])
3056 shader->info.nr_pos_exports++;
3057
3058 pos_idx = 0;
3059 for (i = 0; i < 4; i++) {
3060 if (!pos_args[i].out[0])
3061 continue;
3062
3063 /* Specify the target we are exporting */
3064 pos_args[i].target = V_008DFC_SQ_EXP_POS + pos_idx++;
3065
3066 if (pos_idx == shader->info.nr_pos_exports)
3067 /* Specify that this is the last export */
3068 pos_args[i].done = 1;
3069
3070 ac_build_export(&ctx->ac, &pos_args[i]);
3071 }
3072
3073 /* Build parameter exports. */
3074 si_build_param_exports(ctx, outputs, noutput);
3075 }
3076
3077 /**
3078 * Forward all outputs from the vertex shader to the TES. This is only used
3079 * for the fixed function TCS.
3080 */
3081 static void si_copy_tcs_inputs(struct lp_build_tgsi_context *bld_base)
3082 {
3083 struct si_shader_context *ctx = si_shader_context(bld_base);
3084 LLVMValueRef invocation_id, buffer, buffer_offset;
3085 LLVMValueRef lds_vertex_stride, lds_vertex_offset, lds_base;
3086 uint64_t inputs;
3087
3088 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3089 buffer = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3090 buffer_offset = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3091
3092 lds_vertex_stride = get_tcs_in_vertex_dw_stride(ctx);
3093 lds_vertex_offset = LLVMBuildMul(ctx->ac.builder, invocation_id,
3094 lds_vertex_stride, "");
3095 lds_base = get_tcs_in_current_patch_offset(ctx);
3096 lds_base = LLVMBuildAdd(ctx->ac.builder, lds_base, lds_vertex_offset, "");
3097
3098 inputs = ctx->shader->key.mono.u.ff_tcs_inputs_to_copy;
3099 while (inputs) {
3100 unsigned i = u_bit_scan64(&inputs);
3101
3102 LLVMValueRef lds_ptr = LLVMBuildAdd(ctx->ac.builder, lds_base,
3103 LLVMConstInt(ctx->i32, 4 * i, 0),
3104 "");
3105
3106 LLVMValueRef buffer_addr = get_tcs_tes_buffer_address(ctx,
3107 get_rel_patch_id(ctx),
3108 invocation_id,
3109 LLVMConstInt(ctx->i32, i, 0));
3110
3111 LLVMValueRef value = lds_load(bld_base, ctx->ac.i32, ~0,
3112 lds_ptr);
3113
3114 ac_build_buffer_store_dword(&ctx->ac, buffer, value, 4, buffer_addr,
3115 buffer_offset, 0, 1, 0, true, false);
3116 }
3117 }
3118
3119 static void si_write_tess_factors(struct lp_build_tgsi_context *bld_base,
3120 LLVMValueRef rel_patch_id,
3121 LLVMValueRef invocation_id,
3122 LLVMValueRef tcs_out_current_patch_data_offset,
3123 LLVMValueRef invoc0_tf_outer[4],
3124 LLVMValueRef invoc0_tf_inner[2])
3125 {
3126 struct si_shader_context *ctx = si_shader_context(bld_base);
3127 struct si_shader *shader = ctx->shader;
3128 unsigned tess_inner_index, tess_outer_index;
3129 LLVMValueRef lds_base, lds_inner, lds_outer, byteoffset, buffer;
3130 LLVMValueRef out[6], vec0, vec1, tf_base, inner[4], outer[4];
3131 unsigned stride, outer_comps, inner_comps, i, offset;
3132 struct lp_build_if_state if_ctx, inner_if_ctx;
3133
3134 /* Add a barrier before loading tess factors from LDS. */
3135 if (!shader->key.part.tcs.epilog.invoc0_tess_factors_are_def)
3136 si_llvm_emit_barrier(NULL, bld_base, NULL);
3137
3138 /* Do this only for invocation 0, because the tess levels are per-patch,
3139 * not per-vertex.
3140 *
3141 * This can't jump, because invocation 0 executes this. It should
3142 * at least mask out the loads and stores for other invocations.
3143 */
3144 lp_build_if(&if_ctx, &ctx->gallivm,
3145 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3146 invocation_id, ctx->i32_0, ""));
3147
3148 /* Determine the layout of one tess factor element in the buffer. */
3149 switch (shader->key.part.tcs.epilog.prim_mode) {
3150 case PIPE_PRIM_LINES:
3151 stride = 2; /* 2 dwords, 1 vec2 store */
3152 outer_comps = 2;
3153 inner_comps = 0;
3154 break;
3155 case PIPE_PRIM_TRIANGLES:
3156 stride = 4; /* 4 dwords, 1 vec4 store */
3157 outer_comps = 3;
3158 inner_comps = 1;
3159 break;
3160 case PIPE_PRIM_QUADS:
3161 stride = 6; /* 6 dwords, 2 stores (vec4 + vec2) */
3162 outer_comps = 4;
3163 inner_comps = 2;
3164 break;
3165 default:
3166 assert(0);
3167 return;
3168 }
3169
3170 for (i = 0; i < 4; i++) {
3171 inner[i] = LLVMGetUndef(ctx->i32);
3172 outer[i] = LLVMGetUndef(ctx->i32);
3173 }
3174
3175 if (shader->key.part.tcs.epilog.invoc0_tess_factors_are_def) {
3176 /* Tess factors are in VGPRs. */
3177 for (i = 0; i < outer_comps; i++)
3178 outer[i] = out[i] = invoc0_tf_outer[i];
3179 for (i = 0; i < inner_comps; i++)
3180 inner[i] = out[outer_comps+i] = invoc0_tf_inner[i];
3181 } else {
3182 /* Load tess_inner and tess_outer from LDS.
3183 * Any invocation can write them, so we can't get them from a temporary.
3184 */
3185 tess_inner_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSINNER, 0);
3186 tess_outer_index = si_shader_io_get_unique_index_patch(TGSI_SEMANTIC_TESSOUTER, 0);
3187
3188 lds_base = tcs_out_current_patch_data_offset;
3189 lds_inner = LLVMBuildAdd(ctx->ac.builder, lds_base,
3190 LLVMConstInt(ctx->i32,
3191 tess_inner_index * 4, 0), "");
3192 lds_outer = LLVMBuildAdd(ctx->ac.builder, lds_base,
3193 LLVMConstInt(ctx->i32,
3194 tess_outer_index * 4, 0), "");
3195
3196 for (i = 0; i < outer_comps; i++) {
3197 outer[i] = out[i] =
3198 lds_load(bld_base, ctx->ac.i32, i, lds_outer);
3199 }
3200 for (i = 0; i < inner_comps; i++) {
3201 inner[i] = out[outer_comps+i] =
3202 lds_load(bld_base, ctx->ac.i32, i, lds_inner);
3203 }
3204 }
3205
3206 if (shader->key.part.tcs.epilog.prim_mode == PIPE_PRIM_LINES) {
3207 /* For isolines, the hardware expects tess factors in the
3208 * reverse order from what GLSL / TGSI specify.
3209 */
3210 LLVMValueRef tmp = out[0];
3211 out[0] = out[1];
3212 out[1] = tmp;
3213 }
3214
3215 /* Convert the outputs to vectors for stores. */
3216 vec0 = ac_build_gather_values(&ctx->ac, out, MIN2(stride, 4));
3217 vec1 = NULL;
3218
3219 if (stride > 4)
3220 vec1 = ac_build_gather_values(&ctx->ac, out+4, stride - 4);
3221
3222 /* Get the buffer. */
3223 buffer = get_tess_ring_descriptor(ctx, TCS_FACTOR_RING);
3224
3225 /* Get the offset. */
3226 tf_base = LLVMGetParam(ctx->main_fn,
3227 ctx->param_tcs_factor_offset);
3228 byteoffset = LLVMBuildMul(ctx->ac.builder, rel_patch_id,
3229 LLVMConstInt(ctx->i32, 4 * stride, 0), "");
3230
3231 lp_build_if(&inner_if_ctx, &ctx->gallivm,
3232 LLVMBuildICmp(ctx->ac.builder, LLVMIntEQ,
3233 rel_patch_id, ctx->i32_0, ""));
3234
3235 /* Store the dynamic HS control word. */
3236 offset = 0;
3237 if (ctx->screen->info.chip_class <= VI) {
3238 ac_build_buffer_store_dword(&ctx->ac, buffer,
3239 LLVMConstInt(ctx->i32, 0x80000000, 0),
3240 1, ctx->i32_0, tf_base,
3241 offset, 1, 0, true, false);
3242 offset += 4;
3243 }
3244
3245 lp_build_endif(&inner_if_ctx);
3246
3247 /* Store the tessellation factors. */
3248 ac_build_buffer_store_dword(&ctx->ac, buffer, vec0,
3249 MIN2(stride, 4), byteoffset, tf_base,
3250 offset, 1, 0, true, false);
3251 offset += 16;
3252 if (vec1)
3253 ac_build_buffer_store_dword(&ctx->ac, buffer, vec1,
3254 stride - 4, byteoffset, tf_base,
3255 offset, 1, 0, true, false);
3256
3257 /* Store the tess factors into the offchip buffer if TES reads them. */
3258 if (shader->key.part.tcs.epilog.tes_reads_tess_factors) {
3259 LLVMValueRef buf, base, inner_vec, outer_vec, tf_outer_offset;
3260 LLVMValueRef tf_inner_offset;
3261 unsigned param_outer, param_inner;
3262
3263 buf = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TCS);
3264 base = LLVMGetParam(ctx->main_fn, ctx->param_tcs_offchip_offset);
3265
3266 param_outer = si_shader_io_get_unique_index_patch(
3267 TGSI_SEMANTIC_TESSOUTER, 0);
3268 tf_outer_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3269 LLVMConstInt(ctx->i32, param_outer, 0));
3270
3271 outer_vec = ac_build_gather_values(&ctx->ac, outer,
3272 util_next_power_of_two(outer_comps));
3273
3274 ac_build_buffer_store_dword(&ctx->ac, buf, outer_vec,
3275 outer_comps, tf_outer_offset,
3276 base, 0, 1, 0, true, false);
3277 if (inner_comps) {
3278 param_inner = si_shader_io_get_unique_index_patch(
3279 TGSI_SEMANTIC_TESSINNER, 0);
3280 tf_inner_offset = get_tcs_tes_buffer_address(ctx, rel_patch_id, NULL,
3281 LLVMConstInt(ctx->i32, param_inner, 0));
3282
3283 inner_vec = inner_comps == 1 ? inner[0] :
3284 ac_build_gather_values(&ctx->ac, inner, inner_comps);
3285 ac_build_buffer_store_dword(&ctx->ac, buf, inner_vec,
3286 inner_comps, tf_inner_offset,
3287 base, 0, 1, 0, true, false);
3288 }
3289 }
3290
3291 lp_build_endif(&if_ctx);
3292 }
3293
3294 static LLVMValueRef
3295 si_insert_input_ret(struct si_shader_context *ctx, LLVMValueRef ret,
3296 unsigned param, unsigned return_index)
3297 {
3298 return LLVMBuildInsertValue(ctx->ac.builder, ret,
3299 LLVMGetParam(ctx->main_fn, param),
3300 return_index, "");
3301 }
3302
3303 static LLVMValueRef
3304 si_insert_input_ret_float(struct si_shader_context *ctx, LLVMValueRef ret,
3305 unsigned param, unsigned return_index)
3306 {
3307 LLVMBuilderRef builder = ctx->ac.builder;
3308 LLVMValueRef p = LLVMGetParam(ctx->main_fn, param);
3309
3310 return LLVMBuildInsertValue(builder, ret,
3311 ac_to_float(&ctx->ac, p),
3312 return_index, "");
3313 }
3314
3315 static LLVMValueRef
3316 si_insert_input_ptr(struct si_shader_context *ctx, LLVMValueRef ret,
3317 unsigned param, unsigned return_index)
3318 {
3319 LLVMBuilderRef builder = ctx->ac.builder;
3320 LLVMValueRef ptr, lo, hi;
3321
3322 if (HAVE_32BIT_POINTERS) {
3323 ptr = LLVMGetParam(ctx->main_fn, param);
3324 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i32, "");
3325 return LLVMBuildInsertValue(builder, ret, ptr, return_index, "");
3326 }
3327
3328 ptr = LLVMGetParam(ctx->main_fn, param);
3329 ptr = LLVMBuildPtrToInt(builder, ptr, ctx->i64, "");
3330 ptr = LLVMBuildBitCast(builder, ptr, ctx->v2i32, "");
3331 lo = LLVMBuildExtractElement(builder, ptr, ctx->i32_0, "");
3332 hi = LLVMBuildExtractElement(builder, ptr, ctx->i32_1, "");
3333 ret = LLVMBuildInsertValue(builder, ret, lo, return_index, "");
3334 return LLVMBuildInsertValue(builder, ret, hi, return_index + 1, "");
3335 }
3336
3337 /* This only writes the tessellation factor levels. */
3338 static void si_llvm_emit_tcs_epilogue(struct ac_shader_abi *abi,
3339 unsigned max_outputs,
3340 LLVMValueRef *addrs)
3341 {
3342 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3343 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
3344 LLVMBuilderRef builder = ctx->ac.builder;
3345 LLVMValueRef rel_patch_id, invocation_id, tf_lds_offset;
3346
3347 si_copy_tcs_inputs(bld_base);
3348
3349 rel_patch_id = get_rel_patch_id(ctx);
3350 invocation_id = unpack_llvm_param(ctx, ctx->abi.tcs_rel_ids, 8, 5);
3351 tf_lds_offset = get_tcs_out_current_patch_data_offset(ctx);
3352
3353 if (ctx->screen->info.chip_class >= GFX9) {
3354 LLVMBasicBlockRef blocks[2] = {
3355 LLVMGetInsertBlock(builder),
3356 ctx->merged_wrap_if_state.entry_block
3357 };
3358 LLVMValueRef values[2];
3359
3360 lp_build_endif(&ctx->merged_wrap_if_state);
3361
3362 values[0] = rel_patch_id;
3363 values[1] = LLVMGetUndef(ctx->i32);
3364 rel_patch_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3365
3366 values[0] = tf_lds_offset;
3367 values[1] = LLVMGetUndef(ctx->i32);
3368 tf_lds_offset = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3369
3370 values[0] = invocation_id;
3371 values[1] = ctx->i32_1; /* cause the epilog to skip threads */
3372 invocation_id = ac_build_phi(&ctx->ac, ctx->i32, 2, values, blocks);
3373 }
3374
3375 /* Return epilog parameters from this function. */
3376 LLVMValueRef ret = ctx->return_value;
3377 unsigned vgpr;
3378
3379 if (ctx->screen->info.chip_class >= GFX9) {
3380 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3381 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3382 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3383 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3384 /* Tess offchip and tess factor offsets are at the beginning. */
3385 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3386 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3387 vgpr = 8 + GFX9_SGPR_TCS_OUT_LAYOUT + 1;
3388 } else {
3389 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3390 GFX6_SGPR_TCS_OFFCHIP_LAYOUT);
3391 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3392 GFX6_SGPR_TCS_OUT_LAYOUT);
3393 /* Tess offchip and tess factor offsets are after user SGPRs. */
3394 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset,
3395 GFX6_TCS_NUM_USER_SGPR);
3396 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset,
3397 GFX6_TCS_NUM_USER_SGPR + 1);
3398 vgpr = GFX6_TCS_NUM_USER_SGPR + 2;
3399 }
3400
3401 /* VGPRs */
3402 rel_patch_id = ac_to_float(&ctx->ac, rel_patch_id);
3403 invocation_id = ac_to_float(&ctx->ac, invocation_id);
3404 tf_lds_offset = ac_to_float(&ctx->ac, tf_lds_offset);
3405
3406 /* Leave a hole corresponding to the two input VGPRs. This ensures that
3407 * the invocation_id output does not alias the tcs_rel_ids input,
3408 * which saves a V_MOV on gfx9.
3409 */
3410 vgpr += 2;
3411
3412 ret = LLVMBuildInsertValue(builder, ret, rel_patch_id, vgpr++, "");
3413 ret = LLVMBuildInsertValue(builder, ret, invocation_id, vgpr++, "");
3414
3415 if (ctx->shader->selector->tcs_info.tessfactors_are_def_in_all_invocs) {
3416 vgpr++; /* skip the tess factor LDS offset */
3417 for (unsigned i = 0; i < 6; i++) {
3418 LLVMValueRef value =
3419 LLVMBuildLoad(builder, ctx->invoc0_tess_factors[i], "");
3420 value = ac_to_float(&ctx->ac, value);
3421 ret = LLVMBuildInsertValue(builder, ret, value, vgpr++, "");
3422 }
3423 } else {
3424 ret = LLVMBuildInsertValue(builder, ret, tf_lds_offset, vgpr++, "");
3425 }
3426 ctx->return_value = ret;
3427 }
3428
3429 /* Pass TCS inputs from LS to TCS on GFX9. */
3430 static void si_set_ls_return_value_for_tcs(struct si_shader_context *ctx)
3431 {
3432 LLVMValueRef ret = ctx->return_value;
3433
3434 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3435 if (HAVE_32BIT_POINTERS)
3436 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3437 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_offset, 2);
3438 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3439 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_factor_offset, 4);
3440 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3441
3442 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3443 8 + SI_SGPR_RW_BUFFERS);
3444 ret = si_insert_input_ptr(ctx, ret,
3445 ctx->param_bindless_samplers_and_images,
3446 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3447
3448 ret = si_insert_input_ret(ctx, ret, ctx->param_vs_state_bits,
3449 8 + SI_SGPR_VS_STATE_BITS);
3450
3451 #if !HAVE_32BIT_POINTERS
3452 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 1,
3453 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3454 #endif
3455
3456 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_offchip_layout,
3457 8 + GFX9_SGPR_TCS_OFFCHIP_LAYOUT);
3458 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_offsets,
3459 8 + GFX9_SGPR_TCS_OUT_OFFSETS);
3460 ret = si_insert_input_ret(ctx, ret, ctx->param_tcs_out_lds_layout,
3461 8 + GFX9_SGPR_TCS_OUT_LAYOUT);
3462
3463 unsigned vgpr = 8 + GFX9_TCS_NUM_USER_SGPR;
3464 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3465 ac_to_float(&ctx->ac, ctx->abi.tcs_patch_id),
3466 vgpr++, "");
3467 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
3468 ac_to_float(&ctx->ac, ctx->abi.tcs_rel_ids),
3469 vgpr++, "");
3470 ctx->return_value = ret;
3471 }
3472
3473 /* Pass GS inputs from ES to GS on GFX9. */
3474 static void si_set_es_return_value_for_gs(struct si_shader_context *ctx)
3475 {
3476 LLVMValueRef ret = ctx->return_value;
3477
3478 ret = si_insert_input_ptr(ctx, ret, 0, 0);
3479 if (HAVE_32BIT_POINTERS)
3480 ret = si_insert_input_ptr(ctx, ret, 1, 1);
3481 ret = si_insert_input_ret(ctx, ret, ctx->param_gs2vs_offset, 2);
3482 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_wave_info, 3);
3483 ret = si_insert_input_ret(ctx, ret, ctx->param_merged_scratch_offset, 5);
3484
3485 ret = si_insert_input_ptr(ctx, ret, ctx->param_rw_buffers,
3486 8 + SI_SGPR_RW_BUFFERS);
3487 ret = si_insert_input_ptr(ctx, ret,
3488 ctx->param_bindless_samplers_and_images,
3489 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
3490
3491 #if !HAVE_32BIT_POINTERS
3492 ret = si_insert_input_ptr(ctx, ret, ctx->param_vs_state_bits + 1,
3493 8 + GFX9_SGPR_2ND_SAMPLERS_AND_IMAGES);
3494 #endif
3495
3496 unsigned vgpr;
3497 if (ctx->type == PIPE_SHADER_VERTEX)
3498 vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR;
3499 else
3500 vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
3501
3502 for (unsigned i = 0; i < 5; i++) {
3503 unsigned param = ctx->param_gs_vtx01_offset + i;
3504 ret = si_insert_input_ret_float(ctx, ret, param, vgpr++);
3505 }
3506 ctx->return_value = ret;
3507 }
3508
3509 static void si_llvm_emit_ls_epilogue(struct ac_shader_abi *abi,
3510 unsigned max_outputs,
3511 LLVMValueRef *addrs)
3512 {
3513 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3514 struct si_shader *shader = ctx->shader;
3515 struct tgsi_shader_info *info = &shader->selector->info;
3516 unsigned i, chan;
3517 LLVMValueRef vertex_id = LLVMGetParam(ctx->main_fn,
3518 ctx->param_rel_auto_id);
3519 LLVMValueRef vertex_dw_stride = get_tcs_in_vertex_dw_stride(ctx);
3520 LLVMValueRef base_dw_addr = LLVMBuildMul(ctx->ac.builder, vertex_id,
3521 vertex_dw_stride, "");
3522
3523 /* Write outputs to LDS. The next shader (TCS aka HS) will read
3524 * its inputs from it. */
3525 for (i = 0; i < info->num_outputs; i++) {
3526 unsigned name = info->output_semantic_name[i];
3527 unsigned index = info->output_semantic_index[i];
3528
3529 /* The ARB_shader_viewport_layer_array spec contains the
3530 * following issue:
3531 *
3532 * 2) What happens if gl_ViewportIndex or gl_Layer is
3533 * written in the vertex shader and a geometry shader is
3534 * present?
3535 *
3536 * RESOLVED: The value written by the last vertex processing
3537 * stage is used. If the last vertex processing stage
3538 * (vertex, tessellation evaluation or geometry) does not
3539 * statically assign to gl_ViewportIndex or gl_Layer, index
3540 * or layer zero is assumed.
3541 *
3542 * So writes to those outputs in VS-as-LS are simply ignored.
3543 */
3544 if (name == TGSI_SEMANTIC_LAYER ||
3545 name == TGSI_SEMANTIC_VIEWPORT_INDEX)
3546 continue;
3547
3548 int param = si_shader_io_get_unique_index(name, index, false);
3549 LLVMValueRef dw_addr = LLVMBuildAdd(ctx->ac.builder, base_dw_addr,
3550 LLVMConstInt(ctx->i32, param * 4, 0), "");
3551
3552 for (chan = 0; chan < 4; chan++) {
3553 if (!(info->output_usagemask[i] & (1 << chan)))
3554 continue;
3555
3556 lds_store(ctx, chan, dw_addr,
3557 LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], ""));
3558 }
3559 }
3560
3561 if (ctx->screen->info.chip_class >= GFX9)
3562 si_set_ls_return_value_for_tcs(ctx);
3563 }
3564
3565 static void si_llvm_emit_es_epilogue(struct ac_shader_abi *abi,
3566 unsigned max_outputs,
3567 LLVMValueRef *addrs)
3568 {
3569 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3570 struct si_shader *es = ctx->shader;
3571 struct tgsi_shader_info *info = &es->selector->info;
3572 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
3573 ctx->param_es2gs_offset);
3574 LLVMValueRef lds_base = NULL;
3575 unsigned chan;
3576 int i;
3577
3578 if (ctx->screen->info.chip_class >= GFX9 && info->num_outputs) {
3579 unsigned itemsize_dw = es->selector->esgs_itemsize / 4;
3580 LLVMValueRef vertex_idx = ac_get_thread_id(&ctx->ac);
3581 LLVMValueRef wave_idx = si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
3582 vertex_idx = LLVMBuildOr(ctx->ac.builder, vertex_idx,
3583 LLVMBuildMul(ctx->ac.builder, wave_idx,
3584 LLVMConstInt(ctx->i32, 64, false), ""), "");
3585 lds_base = LLVMBuildMul(ctx->ac.builder, vertex_idx,
3586 LLVMConstInt(ctx->i32, itemsize_dw, 0), "");
3587 }
3588
3589 for (i = 0; i < info->num_outputs; i++) {
3590 int param;
3591
3592 if (info->output_semantic_name[i] == TGSI_SEMANTIC_VIEWPORT_INDEX ||
3593 info->output_semantic_name[i] == TGSI_SEMANTIC_LAYER)
3594 continue;
3595
3596 param = si_shader_io_get_unique_index(info->output_semantic_name[i],
3597 info->output_semantic_index[i], false);
3598
3599 for (chan = 0; chan < 4; chan++) {
3600 if (!(info->output_usagemask[i] & (1 << chan)))
3601 continue;
3602
3603 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
3604 out_val = ac_to_integer(&ctx->ac, out_val);
3605
3606 /* GFX9 has the ESGS ring in LDS. */
3607 if (ctx->screen->info.chip_class >= GFX9) {
3608 lds_store(ctx, param * 4 + chan, lds_base, out_val);
3609 continue;
3610 }
3611
3612 ac_build_buffer_store_dword(&ctx->ac,
3613 ctx->esgs_ring,
3614 out_val, 1, NULL, soffset,
3615 (4 * param + chan) * 4,
3616 1, 1, true, true);
3617 }
3618 }
3619
3620 if (ctx->screen->info.chip_class >= GFX9)
3621 si_set_es_return_value_for_gs(ctx);
3622 }
3623
3624 static LLVMValueRef si_get_gs_wave_id(struct si_shader_context *ctx)
3625 {
3626 if (ctx->screen->info.chip_class >= GFX9)
3627 return si_unpack_param(ctx, ctx->param_merged_wave_info, 16, 8);
3628 else
3629 return LLVMGetParam(ctx->main_fn, ctx->param_gs_wave_id);
3630 }
3631
3632 static void emit_gs_epilogue(struct si_shader_context *ctx)
3633 {
3634 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_NOP | AC_SENDMSG_GS_DONE,
3635 si_get_gs_wave_id(ctx));
3636
3637 if (ctx->screen->info.chip_class >= GFX9)
3638 lp_build_endif(&ctx->merged_wrap_if_state);
3639 }
3640
3641 static void si_llvm_emit_gs_epilogue(struct ac_shader_abi *abi,
3642 unsigned max_outputs,
3643 LLVMValueRef *addrs)
3644 {
3645 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3646 struct tgsi_shader_info UNUSED *info = &ctx->shader->selector->info;
3647
3648 assert(info->num_outputs <= max_outputs);
3649
3650 emit_gs_epilogue(ctx);
3651 }
3652
3653 static void si_tgsi_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
3654 {
3655 struct si_shader_context *ctx = si_shader_context(bld_base);
3656 emit_gs_epilogue(ctx);
3657 }
3658
3659 static void si_llvm_emit_vs_epilogue(struct ac_shader_abi *abi,
3660 unsigned max_outputs,
3661 LLVMValueRef *addrs)
3662 {
3663 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3664 struct tgsi_shader_info *info = &ctx->shader->selector->info;
3665 struct si_shader_output_values *outputs = NULL;
3666 int i,j;
3667
3668 assert(!ctx->shader->is_gs_copy_shader);
3669 assert(info->num_outputs <= max_outputs);
3670
3671 outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
3672
3673 /* Vertex color clamping.
3674 *
3675 * This uses a state constant loaded in a user data SGPR and
3676 * an IF statement is added that clamps all colors if the constant
3677 * is true.
3678 */
3679 if (ctx->type == PIPE_SHADER_VERTEX) {
3680 struct lp_build_if_state if_ctx;
3681 LLVMValueRef cond = NULL;
3682 LLVMValueRef addr, val;
3683
3684 for (i = 0; i < info->num_outputs; i++) {
3685 if (info->output_semantic_name[i] != TGSI_SEMANTIC_COLOR &&
3686 info->output_semantic_name[i] != TGSI_SEMANTIC_BCOLOR)
3687 continue;
3688
3689 /* We've found a color. */
3690 if (!cond) {
3691 /* The state is in the first bit of the user SGPR. */
3692 cond = LLVMGetParam(ctx->main_fn,
3693 ctx->param_vs_state_bits);
3694 cond = LLVMBuildTrunc(ctx->ac.builder, cond,
3695 ctx->i1, "");
3696 lp_build_if(&if_ctx, &ctx->gallivm, cond);
3697 }
3698
3699 for (j = 0; j < 4; j++) {
3700 addr = addrs[4 * i + j];
3701 val = LLVMBuildLoad(ctx->ac.builder, addr, "");
3702 val = ac_build_clamp(&ctx->ac, val);
3703 LLVMBuildStore(ctx->ac.builder, val, addr);
3704 }
3705 }
3706
3707 if (cond)
3708 lp_build_endif(&if_ctx);
3709 }
3710
3711 for (i = 0; i < info->num_outputs; i++) {
3712 outputs[i].semantic_name = info->output_semantic_name[i];
3713 outputs[i].semantic_index = info->output_semantic_index[i];
3714
3715 for (j = 0; j < 4; j++) {
3716 outputs[i].values[j] =
3717 LLVMBuildLoad(ctx->ac.builder,
3718 addrs[4 * i + j],
3719 "");
3720 outputs[i].vertex_stream[j] =
3721 (info->output_streams[i] >> (2 * j)) & 3;
3722 }
3723 }
3724
3725 if (ctx->shader->selector->so.num_outputs)
3726 si_llvm_emit_streamout(ctx, outputs, i, 0);
3727
3728 /* Export PrimitiveID. */
3729 if (ctx->shader->key.mono.u.vs_export_prim_id) {
3730 outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
3731 outputs[i].semantic_index = 0;
3732 outputs[i].values[0] = ac_to_float(&ctx->ac, get_primitive_id(ctx, 0));
3733 for (j = 1; j < 4; j++)
3734 outputs[i].values[j] = LLVMConstReal(ctx->f32, 0);
3735
3736 memset(outputs[i].vertex_stream, 0,
3737 sizeof(outputs[i].vertex_stream));
3738 i++;
3739 }
3740
3741 si_llvm_export_vs(ctx, outputs, i);
3742 FREE(outputs);
3743 }
3744
3745 static void si_tgsi_emit_epilogue(struct lp_build_tgsi_context *bld_base)
3746 {
3747 struct si_shader_context *ctx = si_shader_context(bld_base);
3748
3749 ctx->abi.emit_outputs(&ctx->abi, RADEON_LLVM_MAX_OUTPUTS,
3750 &ctx->outputs[0][0]);
3751 }
3752
3753 struct si_ps_exports {
3754 unsigned num;
3755 struct ac_export_args args[10];
3756 };
3757
3758 static void si_export_mrt_z(struct lp_build_tgsi_context *bld_base,
3759 LLVMValueRef depth, LLVMValueRef stencil,
3760 LLVMValueRef samplemask, struct si_ps_exports *exp)
3761 {
3762 struct si_shader_context *ctx = si_shader_context(bld_base);
3763 struct ac_export_args args;
3764
3765 ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
3766
3767 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3768 }
3769
3770 static void si_export_mrt_color(struct lp_build_tgsi_context *bld_base,
3771 LLVMValueRef *color, unsigned index,
3772 unsigned samplemask_param,
3773 bool is_last, struct si_ps_exports *exp)
3774 {
3775 struct si_shader_context *ctx = si_shader_context(bld_base);
3776 int i;
3777
3778 /* Clamp color */
3779 if (ctx->shader->key.part.ps.epilog.clamp_color)
3780 for (i = 0; i < 4; i++)
3781 color[i] = ac_build_clamp(&ctx->ac, color[i]);
3782
3783 /* Alpha to one */
3784 if (ctx->shader->key.part.ps.epilog.alpha_to_one)
3785 color[3] = ctx->ac.f32_1;
3786
3787 /* Alpha test */
3788 if (index == 0 &&
3789 ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
3790 si_alpha_test(bld_base, color[3]);
3791
3792 /* Line & polygon smoothing */
3793 if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
3794 color[3] = si_scale_alpha_by_sample_mask(bld_base, color[3],
3795 samplemask_param);
3796
3797 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
3798 if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
3799 struct ac_export_args args[8];
3800 int c, last = -1;
3801
3802 /* Get the export arguments, also find out what the last one is. */
3803 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3804 si_llvm_init_export_args(ctx, color,
3805 V_008DFC_SQ_EXP_MRT + c, &args[c]);
3806 if (args[c].enabled_channels)
3807 last = c;
3808 }
3809
3810 /* Emit all exports. */
3811 for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
3812 if (is_last && last == c) {
3813 args[c].valid_mask = 1; /* whether the EXEC mask is valid */
3814 args[c].done = 1; /* DONE bit */
3815 } else if (!args[c].enabled_channels)
3816 continue; /* unnecessary NULL export */
3817
3818 memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
3819 }
3820 } else {
3821 struct ac_export_args args;
3822
3823 /* Export */
3824 si_llvm_init_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
3825 &args);
3826 if (is_last) {
3827 args.valid_mask = 1; /* whether the EXEC mask is valid */
3828 args.done = 1; /* DONE bit */
3829 } else if (!args.enabled_channels)
3830 return; /* unnecessary NULL export */
3831
3832 memcpy(&exp->args[exp->num++], &args, sizeof(args));
3833 }
3834 }
3835
3836 static void si_emit_ps_exports(struct si_shader_context *ctx,
3837 struct si_ps_exports *exp)
3838 {
3839 for (unsigned i = 0; i < exp->num; i++)
3840 ac_build_export(&ctx->ac, &exp->args[i]);
3841 }
3842
3843 /**
3844 * Return PS outputs in this order:
3845 *
3846 * v[0:3] = color0.xyzw
3847 * v[4:7] = color1.xyzw
3848 * ...
3849 * vN+0 = Depth
3850 * vN+1 = Stencil
3851 * vN+2 = SampleMask
3852 * vN+3 = SampleMaskIn (used for OpenGL smoothing)
3853 *
3854 * The alpha-ref SGPR is returned via its original location.
3855 */
3856 static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
3857 unsigned max_outputs,
3858 LLVMValueRef *addrs)
3859 {
3860 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
3861 struct si_shader *shader = ctx->shader;
3862 struct tgsi_shader_info *info = &shader->selector->info;
3863 LLVMBuilderRef builder = ctx->ac.builder;
3864 unsigned i, j, first_vgpr, vgpr;
3865
3866 LLVMValueRef color[8][4] = {};
3867 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
3868 LLVMValueRef ret;
3869
3870 if (ctx->postponed_kill)
3871 ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
3872
3873 /* Read the output values. */
3874 for (i = 0; i < info->num_outputs; i++) {
3875 unsigned semantic_name = info->output_semantic_name[i];
3876 unsigned semantic_index = info->output_semantic_index[i];
3877
3878 switch (semantic_name) {
3879 case TGSI_SEMANTIC_COLOR:
3880 assert(semantic_index < 8);
3881 for (j = 0; j < 4; j++) {
3882 LLVMValueRef ptr = addrs[4 * i + j];
3883 LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
3884 color[semantic_index][j] = result;
3885 }
3886 break;
3887 case TGSI_SEMANTIC_POSITION:
3888 depth = LLVMBuildLoad(builder,
3889 addrs[4 * i + 2], "");
3890 break;
3891 case TGSI_SEMANTIC_STENCIL:
3892 stencil = LLVMBuildLoad(builder,
3893 addrs[4 * i + 1], "");
3894 break;
3895 case TGSI_SEMANTIC_SAMPLEMASK:
3896 samplemask = LLVMBuildLoad(builder,
3897 addrs[4 * i + 0], "");
3898 break;
3899 default:
3900 fprintf(stderr, "Warning: SI unhandled fs output type:%d\n",
3901 semantic_name);
3902 }
3903 }
3904
3905 /* Fill the return structure. */
3906 ret = ctx->return_value;
3907
3908 /* Set SGPRs. */
3909 ret = LLVMBuildInsertValue(builder, ret,
3910 ac_to_integer(&ctx->ac,
3911 LLVMGetParam(ctx->main_fn,
3912 SI_PARAM_ALPHA_REF)),
3913 SI_SGPR_ALPHA_REF, "");
3914
3915 /* Set VGPRs */
3916 first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
3917 for (i = 0; i < ARRAY_SIZE(color); i++) {
3918 if (!color[i][0])
3919 continue;
3920
3921 for (j = 0; j < 4; j++)
3922 ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
3923 }
3924 if (depth)
3925 ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
3926 if (stencil)
3927 ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
3928 if (samplemask)
3929 ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
3930
3931 /* Add the input sample mask for smoothing at the end. */
3932 if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
3933 vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
3934 ret = LLVMBuildInsertValue(builder, ret,
3935 LLVMGetParam(ctx->main_fn,
3936 SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
3937
3938 ctx->return_value = ret;
3939 }
3940
3941 static void membar_emit(
3942 const struct lp_build_tgsi_action *action,
3943 struct lp_build_tgsi_context *bld_base,
3944 struct lp_build_emit_data *emit_data)
3945 {
3946 struct si_shader_context *ctx = si_shader_context(bld_base);
3947 LLVMValueRef src0 = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
3948 unsigned flags = LLVMConstIntGetZExtValue(src0);
3949 unsigned waitcnt = NOOP_WAITCNT;
3950
3951 if (flags & TGSI_MEMBAR_THREAD_GROUP)
3952 waitcnt &= VM_CNT & LGKM_CNT;
3953
3954 if (flags & (TGSI_MEMBAR_ATOMIC_BUFFER |
3955 TGSI_MEMBAR_SHADER_BUFFER |
3956 TGSI_MEMBAR_SHADER_IMAGE))
3957 waitcnt &= VM_CNT;
3958
3959 if (flags & TGSI_MEMBAR_SHARED)
3960 waitcnt &= LGKM_CNT;
3961
3962 if (waitcnt != NOOP_WAITCNT)
3963 ac_build_waitcnt(&ctx->ac, waitcnt);
3964 }
3965
3966 static void clock_emit(
3967 const struct lp_build_tgsi_action *action,
3968 struct lp_build_tgsi_context *bld_base,
3969 struct lp_build_emit_data *emit_data)
3970 {
3971 struct si_shader_context *ctx = si_shader_context(bld_base);
3972 LLVMValueRef tmp = ac_build_shader_clock(&ctx->ac);
3973
3974 emit_data->output[0] =
3975 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_0, "");
3976 emit_data->output[1] =
3977 LLVMBuildExtractElement(ctx->ac.builder, tmp, ctx->i32_1, "");
3978 }
3979
3980 static void si_llvm_emit_ddxy(
3981 const struct lp_build_tgsi_action *action,
3982 struct lp_build_tgsi_context *bld_base,
3983 struct lp_build_emit_data *emit_data)
3984 {
3985 struct si_shader_context *ctx = si_shader_context(bld_base);
3986 unsigned opcode = emit_data->info->opcode;
3987 LLVMValueRef val;
3988 int idx;
3989 unsigned mask;
3990
3991 if (opcode == TGSI_OPCODE_DDX_FINE)
3992 mask = AC_TID_MASK_LEFT;
3993 else if (opcode == TGSI_OPCODE_DDY_FINE)
3994 mask = AC_TID_MASK_TOP;
3995 else
3996 mask = AC_TID_MASK_TOP_LEFT;
3997
3998 /* for DDX we want to next X pixel, DDY next Y pixel. */
3999 idx = (opcode == TGSI_OPCODE_DDX || opcode == TGSI_OPCODE_DDX_FINE) ? 1 : 2;
4000
4001 val = ac_to_integer(&ctx->ac, emit_data->args[0]);
4002 val = ac_build_ddxy(&ctx->ac, mask, idx, val);
4003 emit_data->output[emit_data->chan] = val;
4004 }
4005
4006 /*
4007 * this takes an I,J coordinate pair,
4008 * and works out the X and Y derivatives.
4009 * it returns DDX(I), DDX(J), DDY(I), DDY(J).
4010 */
4011 static LLVMValueRef si_llvm_emit_ddxy_interp(
4012 struct lp_build_tgsi_context *bld_base,
4013 LLVMValueRef interp_ij)
4014 {
4015 struct si_shader_context *ctx = si_shader_context(bld_base);
4016 LLVMValueRef result[4], a;
4017 unsigned i;
4018
4019 for (i = 0; i < 2; i++) {
4020 a = LLVMBuildExtractElement(ctx->ac.builder, interp_ij,
4021 LLVMConstInt(ctx->i32, i, 0), "");
4022 result[i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 1,
4023 ac_to_integer(&ctx->ac, a)); /* DDX */
4024 result[2+i] = ac_build_ddxy(&ctx->ac, AC_TID_MASK_TOP_LEFT, 2,
4025 ac_to_integer(&ctx->ac, a)); /* DDY */
4026 }
4027
4028 return ac_build_gather_values(&ctx->ac, result, 4);
4029 }
4030
4031 static void interp_fetch_args(
4032 struct lp_build_tgsi_context *bld_base,
4033 struct lp_build_emit_data *emit_data)
4034 {
4035 struct si_shader_context *ctx = si_shader_context(bld_base);
4036 const struct tgsi_full_instruction *inst = emit_data->inst;
4037
4038 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET) {
4039 /* offset is in second src, first two channels */
4040 emit_data->args[0] = lp_build_emit_fetch(bld_base,
4041 emit_data->inst, 1,
4042 TGSI_CHAN_X);
4043 emit_data->args[1] = lp_build_emit_fetch(bld_base,
4044 emit_data->inst, 1,
4045 TGSI_CHAN_Y);
4046 emit_data->arg_count = 2;
4047 } else if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4048 LLVMValueRef sample_position;
4049 LLVMValueRef sample_id;
4050 LLVMValueRef halfval = LLVMConstReal(ctx->f32, 0.5f);
4051
4052 /* fetch sample ID, then fetch its sample position,
4053 * and place into first two channels.
4054 */
4055 sample_id = lp_build_emit_fetch(bld_base,
4056 emit_data->inst, 1, TGSI_CHAN_X);
4057 sample_id = ac_to_integer(&ctx->ac, sample_id);
4058
4059 /* Section 8.13.2 (Interpolation Functions) of the OpenGL Shading
4060 * Language 4.50 spec says about interpolateAtSample:
4061 *
4062 * "Returns the value of the input interpolant variable at
4063 * the location of sample number sample. If multisample
4064 * buffers are not available, the input variable will be
4065 * evaluated at the center of the pixel. If sample sample
4066 * does not exist, the position used to interpolate the
4067 * input variable is undefined."
4068 *
4069 * This means that sample_id values outside of the valid are
4070 * in fact valid input, and the usual mechanism for loading the
4071 * sample position doesn't work.
4072 */
4073 if (ctx->shader->key.mono.u.ps.interpolate_at_sample_force_center) {
4074 LLVMValueRef center[4] = {
4075 LLVMConstReal(ctx->f32, 0.5),
4076 LLVMConstReal(ctx->f32, 0.5),
4077 ctx->ac.f32_0,
4078 ctx->ac.f32_0,
4079 };
4080
4081 sample_position = ac_build_gather_values(&ctx->ac, center, 4);
4082 } else {
4083 sample_position = load_sample_position(&ctx->abi, sample_id);
4084 }
4085
4086 emit_data->args[0] = LLVMBuildExtractElement(ctx->ac.builder,
4087 sample_position,
4088 ctx->i32_0, "");
4089
4090 emit_data->args[0] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[0], halfval, "");
4091 emit_data->args[1] = LLVMBuildExtractElement(ctx->ac.builder,
4092 sample_position,
4093 ctx->i32_1, "");
4094 emit_data->args[1] = LLVMBuildFSub(ctx->ac.builder, emit_data->args[1], halfval, "");
4095 emit_data->arg_count = 2;
4096 }
4097 }
4098
4099 static void build_interp_intrinsic(const struct lp_build_tgsi_action *action,
4100 struct lp_build_tgsi_context *bld_base,
4101 struct lp_build_emit_data *emit_data)
4102 {
4103 struct si_shader_context *ctx = si_shader_context(bld_base);
4104 struct si_shader *shader = ctx->shader;
4105 const struct tgsi_shader_info *info = &shader->selector->info;
4106 LLVMValueRef interp_param;
4107 const struct tgsi_full_instruction *inst = emit_data->inst;
4108 const struct tgsi_full_src_register *input = &inst->Src[0];
4109 int input_base, input_array_size;
4110 int chan;
4111 int i;
4112 LLVMValueRef prim_mask = ctx->abi.prim_mask;
4113 LLVMValueRef array_idx;
4114 int interp_param_idx;
4115 unsigned interp;
4116 unsigned location;
4117
4118 assert(input->Register.File == TGSI_FILE_INPUT);
4119
4120 if (input->Register.Indirect) {
4121 unsigned array_id = input->Indirect.ArrayID;
4122
4123 if (array_id) {
4124 input_base = info->input_array_first[array_id];
4125 input_array_size = info->input_array_last[array_id] - input_base + 1;
4126 } else {
4127 input_base = inst->Src[0].Register.Index;
4128 input_array_size = info->num_inputs - input_base;
4129 }
4130
4131 array_idx = si_get_indirect_index(ctx, &input->Indirect,
4132 1, input->Register.Index - input_base);
4133 } else {
4134 input_base = inst->Src[0].Register.Index;
4135 input_array_size = 1;
4136 array_idx = ctx->i32_0;
4137 }
4138
4139 interp = shader->selector->info.input_interpolate[input_base];
4140
4141 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4142 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE)
4143 location = TGSI_INTERPOLATE_LOC_CENTER;
4144 else
4145 location = TGSI_INTERPOLATE_LOC_CENTROID;
4146
4147 interp_param_idx = lookup_interp_param_index(interp, location);
4148 if (interp_param_idx == -1)
4149 return;
4150 else if (interp_param_idx)
4151 interp_param = LLVMGetParam(ctx->main_fn, interp_param_idx);
4152 else
4153 interp_param = NULL;
4154
4155 if (inst->Instruction.Opcode == TGSI_OPCODE_INTERP_OFFSET ||
4156 inst->Instruction.Opcode == TGSI_OPCODE_INTERP_SAMPLE) {
4157 LLVMValueRef ij_out[2];
4158 LLVMValueRef ddxy_out = si_llvm_emit_ddxy_interp(bld_base, interp_param);
4159
4160 /*
4161 * take the I then J parameters, and the DDX/Y for it, and
4162 * calculate the IJ inputs for the interpolator.
4163 * temp1 = ddx * offset/sample.x + I;
4164 * interp_param.I = ddy * offset/sample.y + temp1;
4165 * temp1 = ddx * offset/sample.x + J;
4166 * interp_param.J = ddy * offset/sample.y + temp1;
4167 */
4168 for (i = 0; i < 2; i++) {
4169 LLVMValueRef ix_ll = LLVMConstInt(ctx->i32, i, 0);
4170 LLVMValueRef iy_ll = LLVMConstInt(ctx->i32, i + 2, 0);
4171 LLVMValueRef ddx_el = LLVMBuildExtractElement(ctx->ac.builder,
4172 ddxy_out, ix_ll, "");
4173 LLVMValueRef ddy_el = LLVMBuildExtractElement(ctx->ac.builder,
4174 ddxy_out, iy_ll, "");
4175 LLVMValueRef interp_el = LLVMBuildExtractElement(ctx->ac.builder,
4176 interp_param, ix_ll, "");
4177 LLVMValueRef temp1, temp2;
4178
4179 interp_el = ac_to_float(&ctx->ac, interp_el);
4180
4181 temp1 = LLVMBuildFMul(ctx->ac.builder, ddx_el, emit_data->args[0], "");
4182
4183 temp1 = LLVMBuildFAdd(ctx->ac.builder, temp1, interp_el, "");
4184
4185 temp2 = LLVMBuildFMul(ctx->ac.builder, ddy_el, emit_data->args[1], "");
4186
4187 ij_out[i] = LLVMBuildFAdd(ctx->ac.builder, temp2, temp1, "");
4188 }
4189 interp_param = ac_build_gather_values(&ctx->ac, ij_out, 2);
4190 }
4191
4192 if (interp_param)
4193 interp_param = ac_to_float(&ctx->ac, interp_param);
4194
4195 for (chan = 0; chan < 4; chan++) {
4196 LLVMValueRef gather = LLVMGetUndef(LLVMVectorType(ctx->f32, input_array_size));
4197 unsigned schan = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], chan);
4198
4199 for (unsigned idx = 0; idx < input_array_size; ++idx) {
4200 LLVMValueRef v, i = NULL, j = NULL;
4201
4202 if (interp_param) {
4203 i = LLVMBuildExtractElement(
4204 ctx->ac.builder, interp_param, ctx->i32_0, "");
4205 j = LLVMBuildExtractElement(
4206 ctx->ac.builder, interp_param, ctx->i32_1, "");
4207 }
4208 v = si_build_fs_interp(ctx, input_base + idx, schan,
4209 prim_mask, i, j);
4210
4211 gather = LLVMBuildInsertElement(ctx->ac.builder,
4212 gather, v, LLVMConstInt(ctx->i32, idx, false), "");
4213 }
4214
4215 emit_data->output[chan] = LLVMBuildExtractElement(
4216 ctx->ac.builder, gather, array_idx, "");
4217 }
4218 }
4219
4220 static void vote_all_emit(
4221 const struct lp_build_tgsi_action *action,
4222 struct lp_build_tgsi_context *bld_base,
4223 struct lp_build_emit_data *emit_data)
4224 {
4225 struct si_shader_context *ctx = si_shader_context(bld_base);
4226
4227 LLVMValueRef tmp = ac_build_vote_all(&ctx->ac, emit_data->args[0]);
4228 emit_data->output[emit_data->chan] =
4229 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4230 }
4231
4232 static void vote_any_emit(
4233 const struct lp_build_tgsi_action *action,
4234 struct lp_build_tgsi_context *bld_base,
4235 struct lp_build_emit_data *emit_data)
4236 {
4237 struct si_shader_context *ctx = si_shader_context(bld_base);
4238
4239 LLVMValueRef tmp = ac_build_vote_any(&ctx->ac, emit_data->args[0]);
4240 emit_data->output[emit_data->chan] =
4241 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4242 }
4243
4244 static void vote_eq_emit(
4245 const struct lp_build_tgsi_action *action,
4246 struct lp_build_tgsi_context *bld_base,
4247 struct lp_build_emit_data *emit_data)
4248 {
4249 struct si_shader_context *ctx = si_shader_context(bld_base);
4250
4251 LLVMValueRef tmp = ac_build_vote_eq(&ctx->ac, emit_data->args[0]);
4252 emit_data->output[emit_data->chan] =
4253 LLVMBuildSExt(ctx->ac.builder, tmp, ctx->i32, "");
4254 }
4255
4256 static void ballot_emit(
4257 const struct lp_build_tgsi_action *action,
4258 struct lp_build_tgsi_context *bld_base,
4259 struct lp_build_emit_data *emit_data)
4260 {
4261 struct si_shader_context *ctx = si_shader_context(bld_base);
4262 LLVMBuilderRef builder = ctx->ac.builder;
4263 LLVMValueRef tmp;
4264
4265 tmp = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_X);
4266 tmp = ac_build_ballot(&ctx->ac, tmp);
4267 tmp = LLVMBuildBitCast(builder, tmp, ctx->v2i32, "");
4268
4269 emit_data->output[0] = LLVMBuildExtractElement(builder, tmp, ctx->i32_0, "");
4270 emit_data->output[1] = LLVMBuildExtractElement(builder, tmp, ctx->i32_1, "");
4271 }
4272
4273 static void read_invoc_fetch_args(
4274 struct lp_build_tgsi_context *bld_base,
4275 struct lp_build_emit_data *emit_data)
4276 {
4277 emit_data->args[0] = lp_build_emit_fetch(bld_base, emit_data->inst,
4278 0, emit_data->src_chan);
4279
4280 /* Always read the source invocation (= lane) from the X channel. */
4281 emit_data->args[1] = lp_build_emit_fetch(bld_base, emit_data->inst,
4282 1, TGSI_CHAN_X);
4283 emit_data->arg_count = 2;
4284 }
4285
4286 static void read_lane_emit(
4287 const struct lp_build_tgsi_action *action,
4288 struct lp_build_tgsi_context *bld_base,
4289 struct lp_build_emit_data *emit_data)
4290 {
4291 struct si_shader_context *ctx = si_shader_context(bld_base);
4292
4293 /* We currently have no other way to prevent LLVM from lifting the icmp
4294 * calls to a dominating basic block.
4295 */
4296 ac_build_optimization_barrier(&ctx->ac, &emit_data->args[0]);
4297
4298 for (unsigned i = 0; i < emit_data->arg_count; ++i)
4299 emit_data->args[i] = ac_to_integer(&ctx->ac, emit_data->args[i]);
4300
4301 emit_data->output[emit_data->chan] =
4302 ac_build_intrinsic(&ctx->ac, action->intr_name,
4303 ctx->i32, emit_data->args, emit_data->arg_count,
4304 AC_FUNC_ATTR_READNONE |
4305 AC_FUNC_ATTR_CONVERGENT);
4306 }
4307
4308 static unsigned si_llvm_get_stream(struct lp_build_tgsi_context *bld_base,
4309 struct lp_build_emit_data *emit_data)
4310 {
4311 struct si_shader_context *ctx = si_shader_context(bld_base);
4312 struct tgsi_src_register src0 = emit_data->inst->Src[0].Register;
4313 LLVMValueRef imm;
4314 unsigned stream;
4315
4316 assert(src0.File == TGSI_FILE_IMMEDIATE);
4317
4318 imm = ctx->imms[src0.Index * TGSI_NUM_CHANNELS + src0.SwizzleX];
4319 stream = LLVMConstIntGetZExtValue(imm) & 0x3;
4320 return stream;
4321 }
4322
4323 /* Emit one vertex from the geometry shader */
4324 static void si_llvm_emit_vertex(struct ac_shader_abi *abi,
4325 unsigned stream,
4326 LLVMValueRef *addrs)
4327 {
4328 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4329 struct tgsi_shader_info *info = &ctx->shader->selector->info;
4330 struct si_shader *shader = ctx->shader;
4331 struct lp_build_if_state if_state;
4332 LLVMValueRef soffset = LLVMGetParam(ctx->main_fn,
4333 ctx->param_gs2vs_offset);
4334 LLVMValueRef gs_next_vertex;
4335 LLVMValueRef can_emit;
4336 unsigned chan, offset;
4337 int i;
4338
4339 /* Write vertex attribute values to GSVS ring */
4340 gs_next_vertex = LLVMBuildLoad(ctx->ac.builder,
4341 ctx->gs_next_vertex[stream],
4342 "");
4343
4344 /* If this thread has already emitted the declared maximum number of
4345 * vertices, skip the write: excessive vertex emissions are not
4346 * supposed to have any effect.
4347 *
4348 * If the shader has no writes to memory, kill it instead. This skips
4349 * further memory loads and may allow LLVM to skip to the end
4350 * altogether.
4351 */
4352 can_emit = LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, gs_next_vertex,
4353 LLVMConstInt(ctx->i32,
4354 shader->selector->gs_max_out_vertices, 0), "");
4355
4356 bool use_kill = !info->writes_memory;
4357 if (use_kill) {
4358 ac_build_kill_if_false(&ctx->ac, can_emit);
4359 } else {
4360 lp_build_if(&if_state, &ctx->gallivm, can_emit);
4361 }
4362
4363 offset = 0;
4364 for (i = 0; i < info->num_outputs; i++) {
4365 for (chan = 0; chan < 4; chan++) {
4366 if (!(info->output_usagemask[i] & (1 << chan)) ||
4367 ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
4368 continue;
4369
4370 LLVMValueRef out_val = LLVMBuildLoad(ctx->ac.builder, addrs[4 * i + chan], "");
4371 LLVMValueRef voffset =
4372 LLVMConstInt(ctx->i32, offset *
4373 shader->selector->gs_max_out_vertices, 0);
4374 offset++;
4375
4376 voffset = LLVMBuildAdd(ctx->ac.builder, voffset, gs_next_vertex, "");
4377 voffset = LLVMBuildMul(ctx->ac.builder, voffset,
4378 LLVMConstInt(ctx->i32, 4, 0), "");
4379
4380 out_val = ac_to_integer(&ctx->ac, out_val);
4381
4382 ac_build_buffer_store_dword(&ctx->ac,
4383 ctx->gsvs_ring[stream],
4384 out_val, 1,
4385 voffset, soffset, 0,
4386 1, 1, true, true);
4387 }
4388 }
4389
4390 gs_next_vertex = LLVMBuildAdd(ctx->ac.builder, gs_next_vertex, ctx->i32_1, "");
4391 LLVMBuildStore(ctx->ac.builder, gs_next_vertex, ctx->gs_next_vertex[stream]);
4392
4393 /* Signal vertex emission */
4394 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_EMIT | AC_SENDMSG_GS | (stream << 8),
4395 si_get_gs_wave_id(ctx));
4396 if (!use_kill)
4397 lp_build_endif(&if_state);
4398 }
4399
4400 /* Emit one vertex from the geometry shader */
4401 static void si_tgsi_emit_vertex(
4402 const struct lp_build_tgsi_action *action,
4403 struct lp_build_tgsi_context *bld_base,
4404 struct lp_build_emit_data *emit_data)
4405 {
4406 struct si_shader_context *ctx = si_shader_context(bld_base);
4407 unsigned stream = si_llvm_get_stream(bld_base, emit_data);
4408
4409 si_llvm_emit_vertex(&ctx->abi, stream, ctx->outputs[0]);
4410 }
4411
4412 /* Cut one primitive from the geometry shader */
4413 static void si_llvm_emit_primitive(struct ac_shader_abi *abi,
4414 unsigned stream)
4415 {
4416 struct si_shader_context *ctx = si_shader_context_from_abi(abi);
4417
4418 /* Signal primitive cut */
4419 ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_OP_CUT | AC_SENDMSG_GS | (stream << 8),
4420 si_get_gs_wave_id(ctx));
4421 }
4422
4423 /* Cut one primitive from the geometry shader */
4424 static void si_tgsi_emit_primitive(
4425 const struct lp_build_tgsi_action *action,
4426 struct lp_build_tgsi_context *bld_base,
4427 struct lp_build_emit_data *emit_data)
4428 {
4429 struct si_shader_context *ctx = si_shader_context(bld_base);
4430
4431 si_llvm_emit_primitive(&ctx->abi, si_llvm_get_stream(bld_base, emit_data));
4432 }
4433
4434 static void si_llvm_emit_barrier(const struct lp_build_tgsi_action *action,
4435 struct lp_build_tgsi_context *bld_base,
4436 struct lp_build_emit_data *emit_data)
4437 {
4438 struct si_shader_context *ctx = si_shader_context(bld_base);
4439
4440 /* SI only (thanks to a hw bug workaround):
4441 * The real barrier instruction isn’t needed, because an entire patch
4442 * always fits into a single wave.
4443 */
4444 if (ctx->screen->info.chip_class == SI &&
4445 ctx->type == PIPE_SHADER_TESS_CTRL) {
4446 ac_build_waitcnt(&ctx->ac, LGKM_CNT & VM_CNT);
4447 return;
4448 }
4449
4450 ac_build_intrinsic(&ctx->ac,
4451 "llvm.amdgcn.s.barrier",
4452 ctx->voidt, NULL, 0, AC_FUNC_ATTR_CONVERGENT);
4453 }
4454
4455 static const struct lp_build_tgsi_action interp_action = {
4456 .fetch_args = interp_fetch_args,
4457 .emit = build_interp_intrinsic,
4458 };
4459
4460 static void si_create_function(struct si_shader_context *ctx,
4461 const char *name,
4462 LLVMTypeRef *returns, unsigned num_returns,
4463 struct si_function_info *fninfo,
4464 unsigned max_workgroup_size)
4465 {
4466 int i;
4467
4468 si_llvm_create_func(ctx, name, returns, num_returns,
4469 fninfo->types, fninfo->num_params);
4470 ctx->return_value = LLVMGetUndef(ctx->return_type);
4471
4472 for (i = 0; i < fninfo->num_sgpr_params; ++i) {
4473 LLVMValueRef P = LLVMGetParam(ctx->main_fn, i);
4474
4475 /* The combination of:
4476 * - noalias
4477 * - dereferenceable
4478 * - invariant.load
4479 * allows the optimization passes to move loads and reduces
4480 * SGPR spilling significantly.
4481 */
4482 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4483 AC_FUNC_ATTR_INREG);
4484
4485 if (LLVMGetTypeKind(LLVMTypeOf(P)) == LLVMPointerTypeKind) {
4486 ac_add_function_attr(ctx->ac.context, ctx->main_fn, i + 1,
4487 AC_FUNC_ATTR_NOALIAS);
4488 ac_add_attr_dereferenceable(P, UINT64_MAX);
4489 }
4490 }
4491
4492 for (i = 0; i < fninfo->num_params; ++i) {
4493 if (fninfo->assign[i])
4494 *fninfo->assign[i] = LLVMGetParam(ctx->main_fn, i);
4495 }
4496
4497 if (ctx->screen->info.address32_hi) {
4498 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4499 "amdgpu-32bit-address-high-bits",
4500 ctx->screen->info.address32_hi);
4501 }
4502
4503 if (max_workgroup_size) {
4504 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
4505 "amdgpu-max-work-group-size",
4506 max_workgroup_size);
4507 }
4508 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4509 "no-signed-zeros-fp-math",
4510 "true");
4511
4512 if (ctx->screen->debug_flags & DBG(UNSAFE_MATH)) {
4513 /* These were copied from some LLVM test. */
4514 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4515 "less-precise-fpmad",
4516 "true");
4517 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4518 "no-infs-fp-math",
4519 "true");
4520 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4521 "no-nans-fp-math",
4522 "true");
4523 LLVMAddTargetDependentFunctionAttr(ctx->main_fn,
4524 "unsafe-fp-math",
4525 "true");
4526 }
4527 }
4528
4529 static void declare_streamout_params(struct si_shader_context *ctx,
4530 struct pipe_stream_output_info *so,
4531 struct si_function_info *fninfo)
4532 {
4533 int i;
4534
4535 /* Streamout SGPRs. */
4536 if (so->num_outputs) {
4537 if (ctx->type != PIPE_SHADER_TESS_EVAL)
4538 ctx->param_streamout_config = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4539 else
4540 ctx->param_streamout_config = fninfo->num_params - 1;
4541
4542 ctx->param_streamout_write_index = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4543 }
4544 /* A streamout buffer offset is loaded if the stride is non-zero. */
4545 for (i = 0; i < 4; i++) {
4546 if (!so->stride[i])
4547 continue;
4548
4549 ctx->param_streamout_offset[i] = add_arg(fninfo, ARG_SGPR, ctx->ac.i32);
4550 }
4551 }
4552
4553 static unsigned si_get_max_workgroup_size(const struct si_shader *shader)
4554 {
4555 switch (shader->selector->type) {
4556 case PIPE_SHADER_TESS_CTRL:
4557 /* Return this so that LLVM doesn't remove s_barrier
4558 * instructions on chips where we use s_barrier. */
4559 return shader->selector->screen->info.chip_class >= CIK ? 128 : 64;
4560
4561 case PIPE_SHADER_GEOMETRY:
4562 return shader->selector->screen->info.chip_class >= GFX9 ? 128 : 64;
4563
4564 case PIPE_SHADER_COMPUTE:
4565 break; /* see below */
4566
4567 default:
4568 return 0;
4569 }
4570
4571 const unsigned *properties = shader->selector->info.properties;
4572 unsigned max_work_group_size =
4573 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_WIDTH] *
4574 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_HEIGHT] *
4575 properties[TGSI_PROPERTY_CS_FIXED_BLOCK_DEPTH];
4576
4577 if (!max_work_group_size) {
4578 /* This is a variable group size compute shader,
4579 * compile it for the maximum possible group size.
4580 */
4581 max_work_group_size = SI_MAX_VARIABLE_THREADS_PER_BLOCK;
4582 }
4583 return max_work_group_size;
4584 }
4585
4586 static void declare_const_and_shader_buffers(struct si_shader_context *ctx,
4587 struct si_function_info *fninfo,
4588 bool assign_params)
4589 {
4590 LLVMTypeRef const_shader_buf_type;
4591
4592 if (ctx->shader->selector->info.const_buffers_declared == 1 &&
4593 ctx->shader->selector->info.shader_buffers_declared == 0)
4594 const_shader_buf_type = ctx->f32;
4595 else
4596 const_shader_buf_type = ctx->v4i32;
4597
4598 unsigned const_and_shader_buffers =
4599 add_arg(fninfo, ARG_SGPR,
4600 ac_array_in_const32_addr_space(const_shader_buf_type));
4601
4602 if (assign_params)
4603 ctx->param_const_and_shader_buffers = const_and_shader_buffers;
4604 }
4605
4606 static void declare_samplers_and_images(struct si_shader_context *ctx,
4607 struct si_function_info *fninfo,
4608 bool assign_params)
4609 {
4610 unsigned samplers_and_images =
4611 add_arg(fninfo, ARG_SGPR,
4612 ac_array_in_const32_addr_space(ctx->v8i32));
4613
4614 if (assign_params)
4615 ctx->param_samplers_and_images = samplers_and_images;
4616 }
4617
4618 static void declare_per_stage_desc_pointers(struct si_shader_context *ctx,
4619 struct si_function_info *fninfo,
4620 bool assign_params)
4621 {
4622 declare_const_and_shader_buffers(ctx, fninfo, assign_params);
4623 declare_samplers_and_images(ctx, fninfo, assign_params);
4624 }
4625
4626 static void declare_global_desc_pointers(struct si_shader_context *ctx,
4627 struct si_function_info *fninfo)
4628 {
4629 ctx->param_rw_buffers = add_arg(fninfo, ARG_SGPR,
4630 ac_array_in_const32_addr_space(ctx->v4i32));
4631 ctx->param_bindless_samplers_and_images = add_arg(fninfo, ARG_SGPR,
4632 ac_array_in_const32_addr_space(ctx->v8i32));
4633 }
4634
4635 static void declare_vs_specific_input_sgprs(struct si_shader_context *ctx,
4636 struct si_function_info *fninfo)
4637 {
4638 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.base_vertex);
4639 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.start_instance);
4640 add_arg_assign(fninfo, ARG_SGPR, ctx->i32, &ctx->abi.draw_id);
4641 ctx->param_vs_state_bits = add_arg(fninfo, ARG_SGPR, ctx->i32);
4642 }
4643
4644 static void declare_vs_input_vgprs(struct si_shader_context *ctx,
4645 struct si_function_info *fninfo,
4646 unsigned *num_prolog_vgprs)
4647 {
4648 struct si_shader *shader = ctx->shader;
4649
4650 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.vertex_id);
4651 if (shader->key.as_ls) {
4652 ctx->param_rel_auto_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4653 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4654 } else {
4655 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.instance_id);
4656 ctx->param_vs_prim_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4657 }
4658 add_arg(fninfo, ARG_VGPR, ctx->i32); /* unused */
4659
4660 if (!shader->is_gs_copy_shader) {
4661 /* Vertex load indices. */
4662 ctx->param_vertex_index0 = fninfo->num_params;
4663 for (unsigned i = 0; i < shader->selector->info.num_inputs; i++)
4664 add_arg(fninfo, ARG_VGPR, ctx->i32);
4665 *num_prolog_vgprs += shader->selector->info.num_inputs;
4666 }
4667 }
4668
4669 static void declare_tes_input_vgprs(struct si_shader_context *ctx,
4670 struct si_function_info *fninfo)
4671 {
4672 ctx->param_tes_u = add_arg(fninfo, ARG_VGPR, ctx->f32);
4673 ctx->param_tes_v = add_arg(fninfo, ARG_VGPR, ctx->f32);
4674 ctx->param_tes_rel_patch_id = add_arg(fninfo, ARG_VGPR, ctx->i32);
4675 add_arg_assign(fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tes_patch_id);
4676 }
4677
4678 enum {
4679 /* Convenient merged shader definitions. */
4680 SI_SHADER_MERGED_VERTEX_TESSCTRL = PIPE_SHADER_TYPES,
4681 SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY,
4682 };
4683
4684 static void create_function(struct si_shader_context *ctx)
4685 {
4686 struct si_shader *shader = ctx->shader;
4687 struct si_function_info fninfo;
4688 LLVMTypeRef returns[16+32*4];
4689 unsigned i, num_return_sgprs;
4690 unsigned num_returns = 0;
4691 unsigned num_prolog_vgprs = 0;
4692 unsigned type = ctx->type;
4693 unsigned vs_blit_property =
4694 shader->selector->info.properties[TGSI_PROPERTY_VS_BLIT_SGPRS];
4695
4696 si_init_function_info(&fninfo);
4697
4698 /* Set MERGED shaders. */
4699 if (ctx->screen->info.chip_class >= GFX9) {
4700 if (shader->key.as_ls || type == PIPE_SHADER_TESS_CTRL)
4701 type = SI_SHADER_MERGED_VERTEX_TESSCTRL; /* LS or HS */
4702 else if (shader->key.as_es || type == PIPE_SHADER_GEOMETRY)
4703 type = SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY;
4704 }
4705
4706 LLVMTypeRef v3i32 = LLVMVectorType(ctx->i32, 3);
4707
4708 switch (type) {
4709 case PIPE_SHADER_VERTEX:
4710 declare_global_desc_pointers(ctx, &fninfo);
4711
4712 if (vs_blit_property) {
4713 ctx->param_vs_blit_inputs = fninfo.num_params;
4714 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x1, y1 */
4715 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* i16 x2, y2 */
4716 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* depth */
4717
4718 if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_COLOR) {
4719 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color0 */
4720 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color1 */
4721 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color2 */
4722 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* color3 */
4723 } else if (vs_blit_property == SI_VS_BLIT_SGPRS_POS_TEXCOORD) {
4724 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x1 */
4725 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y1 */
4726 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.x2 */
4727 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.y2 */
4728 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.z */
4729 add_arg(&fninfo, ARG_SGPR, ctx->f32); /* texcoord.w */
4730 }
4731
4732 /* VGPRs */
4733 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4734 break;
4735 }
4736
4737 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4738 declare_vs_specific_input_sgprs(ctx, &fninfo);
4739 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4740 ac_array_in_const32_addr_space(ctx->v4i32));
4741
4742 if (shader->key.as_es) {
4743 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4744 } else if (shader->key.as_ls) {
4745 /* no extra parameters */
4746 } else {
4747 if (shader->is_gs_copy_shader) {
4748 fninfo.num_params = ctx->param_rw_buffers + 1;
4749 fninfo.num_sgpr_params = fninfo.num_params;
4750 }
4751
4752 /* The locations of the other parameters are assigned dynamically. */
4753 declare_streamout_params(ctx, &shader->selector->so,
4754 &fninfo);
4755 }
4756
4757 /* VGPRs */
4758 declare_vs_input_vgprs(ctx, &fninfo, &num_prolog_vgprs);
4759 break;
4760
4761 case PIPE_SHADER_TESS_CTRL: /* SI-CI-VI */
4762 declare_global_desc_pointers(ctx, &fninfo);
4763 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4764 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4765 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4766 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4767 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4768 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4769 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4770
4771 /* VGPRs */
4772 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4773 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4774
4775 /* param_tcs_offchip_offset and param_tcs_factor_offset are
4776 * placed after the user SGPRs.
4777 */
4778 for (i = 0; i < GFX6_TCS_NUM_USER_SGPR + 2; i++)
4779 returns[num_returns++] = ctx->i32; /* SGPRs */
4780 for (i = 0; i < 11; i++)
4781 returns[num_returns++] = ctx->f32; /* VGPRs */
4782 break;
4783
4784 case SI_SHADER_MERGED_VERTEX_TESSCTRL:
4785 /* Merged stages have 8 system SGPRs at the beginning. */
4786 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_HS */
4787 if (HAVE_32BIT_POINTERS) {
4788 declare_per_stage_desc_pointers(ctx, &fninfo,
4789 ctx->type == PIPE_SHADER_TESS_CTRL);
4790 } else {
4791 declare_const_and_shader_buffers(ctx, &fninfo,
4792 ctx->type == PIPE_SHADER_TESS_CTRL);
4793 }
4794 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4795 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4796 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4797 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4798 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4799 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4800
4801 declare_global_desc_pointers(ctx, &fninfo);
4802 declare_per_stage_desc_pointers(ctx, &fninfo,
4803 ctx->type == PIPE_SHADER_VERTEX);
4804 declare_vs_specific_input_sgprs(ctx, &fninfo);
4805
4806 if (!HAVE_32BIT_POINTERS) {
4807 declare_samplers_and_images(ctx, &fninfo,
4808 ctx->type == PIPE_SHADER_TESS_CTRL);
4809 }
4810 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4811 ctx->param_tcs_out_lds_offsets = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4812 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4813 if (!HAVE_32BIT_POINTERS) /* Align to 2 dwords. */
4814 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4815 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4816 ac_array_in_const32_addr_space(ctx->v4i32));
4817
4818 /* VGPRs (first TCS, then VS) */
4819 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_patch_id);
4820 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.tcs_rel_ids);
4821
4822 if (ctx->type == PIPE_SHADER_VERTEX) {
4823 declare_vs_input_vgprs(ctx, &fninfo,
4824 &num_prolog_vgprs);
4825
4826 /* LS return values are inputs to the TCS main shader part. */
4827 for (i = 0; i < 8 + GFX9_TCS_NUM_USER_SGPR; i++)
4828 returns[num_returns++] = ctx->i32; /* SGPRs */
4829 for (i = 0; i < 2; i++)
4830 returns[num_returns++] = ctx->f32; /* VGPRs */
4831 } else {
4832 /* TCS return values are inputs to the TCS epilog.
4833 *
4834 * param_tcs_offchip_offset, param_tcs_factor_offset,
4835 * param_tcs_offchip_layout, and param_rw_buffers
4836 * should be passed to the epilog.
4837 */
4838 for (i = 0; i <= 8 + GFX9_SGPR_TCS_OUT_LAYOUT; i++)
4839 returns[num_returns++] = ctx->i32; /* SGPRs */
4840 for (i = 0; i < 11; i++)
4841 returns[num_returns++] = ctx->f32; /* VGPRs */
4842 }
4843 break;
4844
4845 case SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY:
4846 /* Merged stages have 8 system SGPRs at the beginning. */
4847 /* SPI_SHADER_USER_DATA_ADDR_LO/HI_GS */
4848 if (HAVE_32BIT_POINTERS) {
4849 declare_per_stage_desc_pointers(ctx, &fninfo,
4850 ctx->type == PIPE_SHADER_GEOMETRY);
4851 } else {
4852 declare_const_and_shader_buffers(ctx, &fninfo,
4853 ctx->type == PIPE_SHADER_GEOMETRY);
4854 }
4855 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4856 ctx->param_merged_wave_info = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4857 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4858 ctx->param_merged_scratch_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4859 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS << 8) */
4860 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused (SPI_SHADER_PGM_LO/HI_GS >> 24) */
4861
4862 declare_global_desc_pointers(ctx, &fninfo);
4863 declare_per_stage_desc_pointers(ctx, &fninfo,
4864 (ctx->type == PIPE_SHADER_VERTEX ||
4865 ctx->type == PIPE_SHADER_TESS_EVAL));
4866 if (ctx->type == PIPE_SHADER_VERTEX) {
4867 declare_vs_specific_input_sgprs(ctx, &fninfo);
4868 } else {
4869 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4870 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4871 if (!HAVE_32BIT_POINTERS) {
4872 /* Declare as many input SGPRs as the VS has. */
4873 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4874 ctx->param_vs_state_bits = add_arg(&fninfo, ARG_SGPR, ctx->i32); /* unused */
4875 }
4876 }
4877
4878 if (!HAVE_32BIT_POINTERS) {
4879 declare_samplers_and_images(ctx, &fninfo,
4880 ctx->type == PIPE_SHADER_GEOMETRY);
4881 }
4882 if (ctx->type == PIPE_SHADER_VERTEX) {
4883 ctx->param_vertex_buffers = add_arg(&fninfo, ARG_SGPR,
4884 ac_array_in_const32_addr_space(ctx->v4i32));
4885 }
4886
4887 /* VGPRs (first GS, then VS/TES) */
4888 ctx->param_gs_vtx01_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4889 ctx->param_gs_vtx23_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4890 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4891 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4892 ctx->param_gs_vtx45_offset = add_arg(&fninfo, ARG_VGPR, ctx->i32);
4893
4894 if (ctx->type == PIPE_SHADER_VERTEX) {
4895 declare_vs_input_vgprs(ctx, &fninfo,
4896 &num_prolog_vgprs);
4897 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
4898 declare_tes_input_vgprs(ctx, &fninfo);
4899 }
4900
4901 if (ctx->type == PIPE_SHADER_VERTEX ||
4902 ctx->type == PIPE_SHADER_TESS_EVAL) {
4903 unsigned num_user_sgprs;
4904
4905 if (ctx->type == PIPE_SHADER_VERTEX)
4906 num_user_sgprs = GFX9_VSGS_NUM_USER_SGPR;
4907 else
4908 num_user_sgprs = GFX9_TESGS_NUM_USER_SGPR;
4909
4910 /* ES return values are inputs to GS. */
4911 for (i = 0; i < 8 + num_user_sgprs; i++)
4912 returns[num_returns++] = ctx->i32; /* SGPRs */
4913 for (i = 0; i < 5; i++)
4914 returns[num_returns++] = ctx->f32; /* VGPRs */
4915 }
4916 break;
4917
4918 case PIPE_SHADER_TESS_EVAL:
4919 declare_global_desc_pointers(ctx, &fninfo);
4920 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4921 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4922 ctx->param_tes_offchip_addr = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4923
4924 if (shader->key.as_es) {
4925 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4926 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4927 ctx->param_es2gs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4928 } else {
4929 add_arg(&fninfo, ARG_SGPR, ctx->i32);
4930 declare_streamout_params(ctx, &shader->selector->so,
4931 &fninfo);
4932 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4933 }
4934
4935 /* VGPRs */
4936 declare_tes_input_vgprs(ctx, &fninfo);
4937 break;
4938
4939 case PIPE_SHADER_GEOMETRY:
4940 declare_global_desc_pointers(ctx, &fninfo);
4941 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4942 ctx->param_gs2vs_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4943 ctx->param_gs_wave_id = add_arg(&fninfo, ARG_SGPR, ctx->i32);
4944
4945 /* VGPRs */
4946 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[0]);
4947 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[1]);
4948 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_prim_id);
4949 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[2]);
4950 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[3]);
4951 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[4]);
4952 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->gs_vtx_offset[5]);
4953 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &ctx->abi.gs_invocation_id);
4954 break;
4955
4956 case PIPE_SHADER_FRAGMENT:
4957 declare_global_desc_pointers(ctx, &fninfo);
4958 declare_per_stage_desc_pointers(ctx, &fninfo, true);
4959 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
4960 add_arg_assign_checked(&fninfo, ARG_SGPR, ctx->i32,
4961 &ctx->abi.prim_mask, SI_PARAM_PRIM_MASK);
4962
4963 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_SAMPLE);
4964 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTER);
4965 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_PERSP_CENTROID);
4966 add_arg_checked(&fninfo, ARG_VGPR, v3i32, SI_PARAM_PERSP_PULL_MODEL);
4967 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_SAMPLE);
4968 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTER);
4969 add_arg_checked(&fninfo, ARG_VGPR, ctx->v2i32, SI_PARAM_LINEAR_CENTROID);
4970 add_arg_checked(&fninfo, ARG_VGPR, ctx->f32, SI_PARAM_LINE_STIPPLE_TEX);
4971 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4972 &ctx->abi.frag_pos[0], SI_PARAM_POS_X_FLOAT);
4973 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4974 &ctx->abi.frag_pos[1], SI_PARAM_POS_Y_FLOAT);
4975 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4976 &ctx->abi.frag_pos[2], SI_PARAM_POS_Z_FLOAT);
4977 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4978 &ctx->abi.frag_pos[3], SI_PARAM_POS_W_FLOAT);
4979 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4980 &ctx->abi.front_face, SI_PARAM_FRONT_FACE);
4981 shader->info.face_vgpr_index = 20;
4982 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->i32,
4983 &ctx->abi.ancillary, SI_PARAM_ANCILLARY);
4984 shader->info.ancillary_vgpr_index = 21;
4985 add_arg_assign_checked(&fninfo, ARG_VGPR, ctx->f32,
4986 &ctx->abi.sample_coverage, SI_PARAM_SAMPLE_COVERAGE);
4987 add_arg_checked(&fninfo, ARG_VGPR, ctx->i32, SI_PARAM_POS_FIXED_PT);
4988
4989 /* Color inputs from the prolog. */
4990 if (shader->selector->info.colors_read) {
4991 unsigned num_color_elements =
4992 util_bitcount(shader->selector->info.colors_read);
4993
4994 assert(fninfo.num_params + num_color_elements <= ARRAY_SIZE(fninfo.types));
4995 for (i = 0; i < num_color_elements; i++)
4996 add_arg(&fninfo, ARG_VGPR, ctx->f32);
4997
4998 num_prolog_vgprs += num_color_elements;
4999 }
5000
5001 /* Outputs for the epilog. */
5002 num_return_sgprs = SI_SGPR_ALPHA_REF + 1;
5003 num_returns =
5004 num_return_sgprs +
5005 util_bitcount(shader->selector->info.colors_written) * 4 +
5006 shader->selector->info.writes_z +
5007 shader->selector->info.writes_stencil +
5008 shader->selector->info.writes_samplemask +
5009 1 /* SampleMaskIn */;
5010
5011 num_returns = MAX2(num_returns,
5012 num_return_sgprs +
5013 PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
5014
5015 for (i = 0; i < num_return_sgprs; i++)
5016 returns[i] = ctx->i32;
5017 for (; i < num_returns; i++)
5018 returns[i] = ctx->f32;
5019 break;
5020
5021 case PIPE_SHADER_COMPUTE:
5022 declare_global_desc_pointers(ctx, &fninfo);
5023 declare_per_stage_desc_pointers(ctx, &fninfo, true);
5024 if (shader->selector->info.uses_grid_size)
5025 add_arg_assign(&fninfo, ARG_SGPR, v3i32, &ctx->abi.num_work_groups);
5026 if (shader->selector->info.uses_block_size)
5027 ctx->param_block_size = add_arg(&fninfo, ARG_SGPR, v3i32);
5028
5029 for (i = 0; i < 3; i++) {
5030 ctx->abi.workgroup_ids[i] = NULL;
5031 if (shader->selector->info.uses_block_id[i])
5032 add_arg_assign(&fninfo, ARG_SGPR, ctx->i32, &ctx->abi.workgroup_ids[i]);
5033 }
5034
5035 add_arg_assign(&fninfo, ARG_VGPR, v3i32, &ctx->abi.local_invocation_ids);
5036 break;
5037 default:
5038 assert(0 && "unimplemented shader");
5039 return;
5040 }
5041
5042 si_create_function(ctx, "main", returns, num_returns, &fninfo,
5043 si_get_max_workgroup_size(shader));
5044
5045 /* Reserve register locations for VGPR inputs the PS prolog may need. */
5046 if (ctx->type == PIPE_SHADER_FRAGMENT && !ctx->shader->is_monolithic) {
5047 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
5048 "InitialPSInputAddr",
5049 S_0286D0_PERSP_SAMPLE_ENA(1) |
5050 S_0286D0_PERSP_CENTER_ENA(1) |
5051 S_0286D0_PERSP_CENTROID_ENA(1) |
5052 S_0286D0_LINEAR_SAMPLE_ENA(1) |
5053 S_0286D0_LINEAR_CENTER_ENA(1) |
5054 S_0286D0_LINEAR_CENTROID_ENA(1) |
5055 S_0286D0_FRONT_FACE_ENA(1) |
5056 S_0286D0_ANCILLARY_ENA(1) |
5057 S_0286D0_POS_FIXED_PT_ENA(1));
5058 }
5059
5060 shader->info.num_input_sgprs = 0;
5061 shader->info.num_input_vgprs = 0;
5062
5063 for (i = 0; i < fninfo.num_sgpr_params; ++i)
5064 shader->info.num_input_sgprs += ac_get_type_size(fninfo.types[i]) / 4;
5065
5066 for (; i < fninfo.num_params; ++i)
5067 shader->info.num_input_vgprs += ac_get_type_size(fninfo.types[i]) / 4;
5068
5069 assert(shader->info.num_input_vgprs >= num_prolog_vgprs);
5070 shader->info.num_input_vgprs -= num_prolog_vgprs;
5071
5072 if (shader->key.as_ls ||
5073 ctx->type == PIPE_SHADER_TESS_CTRL ||
5074 /* GFX9 has the ESGS ring buffer in LDS. */
5075 type == SI_SHADER_MERGED_VERTEX_OR_TESSEVAL_GEOMETRY)
5076 ac_declare_lds_as_pointer(&ctx->ac);
5077 }
5078
5079 /**
5080 * Load ESGS and GSVS ring buffer resource descriptors and save the variables
5081 * for later use.
5082 */
5083 static void preload_ring_buffers(struct si_shader_context *ctx)
5084 {
5085 LLVMBuilderRef builder = ctx->ac.builder;
5086
5087 LLVMValueRef buf_ptr = LLVMGetParam(ctx->main_fn,
5088 ctx->param_rw_buffers);
5089
5090 if (ctx->screen->info.chip_class <= VI &&
5091 (ctx->shader->key.as_es || ctx->type == PIPE_SHADER_GEOMETRY)) {
5092 unsigned ring =
5093 ctx->type == PIPE_SHADER_GEOMETRY ? SI_GS_RING_ESGS
5094 : SI_ES_RING_ESGS;
5095 LLVMValueRef offset = LLVMConstInt(ctx->i32, ring, 0);
5096
5097 ctx->esgs_ring =
5098 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5099 }
5100
5101 if (ctx->shader->is_gs_copy_shader) {
5102 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5103
5104 ctx->gsvs_ring[0] =
5105 ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5106 } else if (ctx->type == PIPE_SHADER_GEOMETRY) {
5107 const struct si_shader_selector *sel = ctx->shader->selector;
5108 LLVMValueRef offset = LLVMConstInt(ctx->i32, SI_RING_GSVS, 0);
5109 LLVMValueRef base_ring;
5110
5111 base_ring = ac_build_load_to_sgpr(&ctx->ac, buf_ptr, offset);
5112
5113 /* The conceptual layout of the GSVS ring is
5114 * v0c0 .. vLv0 v0c1 .. vLc1 ..
5115 * but the real memory layout is swizzled across
5116 * threads:
5117 * t0v0c0 .. t15v0c0 t0v1c0 .. t15v1c0 ... t15vLcL
5118 * t16v0c0 ..
5119 * Override the buffer descriptor accordingly.
5120 */
5121 LLVMTypeRef v2i64 = LLVMVectorType(ctx->i64, 2);
5122 uint64_t stream_offset = 0;
5123
5124 for (unsigned stream = 0; stream < 4; ++stream) {
5125 unsigned num_components;
5126 unsigned stride;
5127 unsigned num_records;
5128 LLVMValueRef ring, tmp;
5129
5130 num_components = sel->info.num_stream_output_components[stream];
5131 if (!num_components)
5132 continue;
5133
5134 stride = 4 * num_components * sel->gs_max_out_vertices;
5135
5136 /* Limit on the stride field for <= CIK. */
5137 assert(stride < (1 << 14));
5138
5139 num_records = 64;
5140
5141 ring = LLVMBuildBitCast(builder, base_ring, v2i64, "");
5142 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_0, "");
5143 tmp = LLVMBuildAdd(builder, tmp,
5144 LLVMConstInt(ctx->i64,
5145 stream_offset, 0), "");
5146 stream_offset += stride * 64;
5147
5148 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_0, "");
5149 ring = LLVMBuildBitCast(builder, ring, ctx->v4i32, "");
5150 tmp = LLVMBuildExtractElement(builder, ring, ctx->i32_1, "");
5151 tmp = LLVMBuildOr(builder, tmp,
5152 LLVMConstInt(ctx->i32,
5153 S_008F04_STRIDE(stride) |
5154 S_008F04_SWIZZLE_ENABLE(1), 0), "");
5155 ring = LLVMBuildInsertElement(builder, ring, tmp, ctx->i32_1, "");
5156 ring = LLVMBuildInsertElement(builder, ring,
5157 LLVMConstInt(ctx->i32, num_records, 0),
5158 LLVMConstInt(ctx->i32, 2, 0), "");
5159 ring = LLVMBuildInsertElement(builder, ring,
5160 LLVMConstInt(ctx->i32,
5161 S_008F0C_DST_SEL_X(V_008F0C_SQ_SEL_X) |
5162 S_008F0C_DST_SEL_Y(V_008F0C_SQ_SEL_Y) |
5163 S_008F0C_DST_SEL_Z(V_008F0C_SQ_SEL_Z) |
5164 S_008F0C_DST_SEL_W(V_008F0C_SQ_SEL_W) |
5165 S_008F0C_NUM_FORMAT(V_008F0C_BUF_NUM_FORMAT_FLOAT) |
5166 S_008F0C_DATA_FORMAT(V_008F0C_BUF_DATA_FORMAT_32) |
5167 S_008F0C_ELEMENT_SIZE(1) | /* element_size = 4 (bytes) */
5168 S_008F0C_INDEX_STRIDE(1) | /* index_stride = 16 (elements) */
5169 S_008F0C_ADD_TID_ENABLE(1),
5170 0),
5171 LLVMConstInt(ctx->i32, 3, 0), "");
5172
5173 ctx->gsvs_ring[stream] = ring;
5174 }
5175 } else if (ctx->type == PIPE_SHADER_TESS_EVAL) {
5176 ctx->tess_offchip_ring = get_tess_ring_descriptor(ctx, TESS_OFFCHIP_RING_TES);
5177 }
5178 }
5179
5180 static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
5181 LLVMValueRef param_rw_buffers,
5182 unsigned param_pos_fixed_pt)
5183 {
5184 LLVMBuilderRef builder = ctx->ac.builder;
5185 LLVMValueRef slot, desc, offset, row, bit, address[2];
5186
5187 /* Use the fixed-point gl_FragCoord input.
5188 * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
5189 * per coordinate to get the repeating effect.
5190 */
5191 address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
5192 address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
5193
5194 /* Load the buffer descriptor. */
5195 slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
5196 desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
5197
5198 /* The stipple pattern is 32x32, each row has 32 bits. */
5199 offset = LLVMBuildMul(builder, address[1],
5200 LLVMConstInt(ctx->i32, 4, 0), "");
5201 row = buffer_load_const(ctx, desc, offset);
5202 row = ac_to_integer(&ctx->ac, row);
5203 bit = LLVMBuildLShr(builder, row, address[0], "");
5204 bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
5205 ac_build_kill_if_false(&ctx->ac, bit);
5206 }
5207
5208 void si_shader_binary_read_config(struct ac_shader_binary *binary,
5209 struct si_shader_config *conf,
5210 unsigned symbol_offset)
5211 {
5212 unsigned i;
5213 const unsigned char *config =
5214 ac_shader_binary_config_start(binary, symbol_offset);
5215 bool really_needs_scratch = false;
5216
5217 /* LLVM adds SGPR spills to the scratch size.
5218 * Find out if we really need the scratch buffer.
5219 */
5220 for (i = 0; i < binary->reloc_count; i++) {
5221 const struct ac_shader_reloc *reloc = &binary->relocs[i];
5222
5223 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name) ||
5224 !strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5225 really_needs_scratch = true;
5226 break;
5227 }
5228 }
5229
5230 /* XXX: We may be able to emit some of these values directly rather than
5231 * extracting fields to be emitted later.
5232 */
5233
5234 for (i = 0; i < binary->config_size_per_symbol; i+= 8) {
5235 unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
5236 unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
5237 switch (reg) {
5238 case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
5239 case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
5240 case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
5241 case R_00B428_SPI_SHADER_PGM_RSRC1_HS:
5242 case R_00B848_COMPUTE_PGM_RSRC1:
5243 conf->num_sgprs = MAX2(conf->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
5244 conf->num_vgprs = MAX2(conf->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
5245 conf->float_mode = G_00B028_FLOAT_MODE(value);
5246 conf->rsrc1 = value;
5247 break;
5248 case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
5249 conf->lds_size = MAX2(conf->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
5250 break;
5251 case R_00B84C_COMPUTE_PGM_RSRC2:
5252 conf->lds_size = MAX2(conf->lds_size, G_00B84C_LDS_SIZE(value));
5253 conf->rsrc2 = value;
5254 break;
5255 case R_0286CC_SPI_PS_INPUT_ENA:
5256 conf->spi_ps_input_ena = value;
5257 break;
5258 case R_0286D0_SPI_PS_INPUT_ADDR:
5259 conf->spi_ps_input_addr = value;
5260 break;
5261 case R_0286E8_SPI_TMPRING_SIZE:
5262 case R_00B860_COMPUTE_TMPRING_SIZE:
5263 /* WAVESIZE is in units of 256 dwords. */
5264 if (really_needs_scratch)
5265 conf->scratch_bytes_per_wave =
5266 G_00B860_WAVESIZE(value) * 256 * 4;
5267 break;
5268 case 0x4: /* SPILLED_SGPRS */
5269 conf->spilled_sgprs = value;
5270 break;
5271 case 0x8: /* SPILLED_VGPRS */
5272 conf->spilled_vgprs = value;
5273 break;
5274 default:
5275 {
5276 static bool printed;
5277
5278 if (!printed) {
5279 fprintf(stderr, "Warning: LLVM emitted unknown "
5280 "config register: 0x%x\n", reg);
5281 printed = true;
5282 }
5283 }
5284 break;
5285 }
5286 }
5287
5288 if (!conf->spi_ps_input_addr)
5289 conf->spi_ps_input_addr = conf->spi_ps_input_ena;
5290 }
5291
5292 void si_shader_apply_scratch_relocs(struct si_shader *shader,
5293 uint64_t scratch_va)
5294 {
5295 unsigned i;
5296 uint32_t scratch_rsrc_dword0 = scratch_va;
5297 uint32_t scratch_rsrc_dword1 =
5298 S_008F04_BASE_ADDRESS_HI(scratch_va >> 32);
5299
5300 /* Enable scratch coalescing. */
5301 scratch_rsrc_dword1 |= S_008F04_SWIZZLE_ENABLE(1);
5302
5303 for (i = 0 ; i < shader->binary.reloc_count; i++) {
5304 const struct ac_shader_reloc *reloc =
5305 &shader->binary.relocs[i];
5306 if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
5307 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5308 &scratch_rsrc_dword0, 4);
5309 } else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
5310 util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
5311 &scratch_rsrc_dword1, 4);
5312 }
5313 }
5314 }
5315
5316 /* For the UMR disassembler. */
5317 #define DEBUGGER_END_OF_CODE_MARKER 0xbf9f0000 /* invalid instruction */
5318 #define DEBUGGER_NUM_MARKERS 5
5319
5320 static unsigned si_get_shader_binary_size(const struct si_shader *shader)
5321 {
5322 unsigned size = shader->binary.code_size;
5323
5324 if (shader->prolog)
5325 size += shader->prolog->binary.code_size;
5326 if (shader->previous_stage)
5327 size += shader->previous_stage->binary.code_size;
5328 if (shader->prolog2)
5329 size += shader->prolog2->binary.code_size;
5330 if (shader->epilog)
5331 size += shader->epilog->binary.code_size;
5332 return size + DEBUGGER_NUM_MARKERS * 4;
5333 }
5334
5335 int si_shader_binary_upload(struct si_screen *sscreen, struct si_shader *shader)
5336 {
5337 const struct ac_shader_binary *prolog =
5338 shader->prolog ? &shader->prolog->binary : NULL;
5339 const struct ac_shader_binary *previous_stage =
5340 shader->previous_stage ? &shader->previous_stage->binary : NULL;
5341 const struct ac_shader_binary *prolog2 =
5342 shader->prolog2 ? &shader->prolog2->binary : NULL;
5343 const struct ac_shader_binary *epilog =
5344 shader->epilog ? &shader->epilog->binary : NULL;
5345 const struct ac_shader_binary *mainb = &shader->binary;
5346 unsigned bo_size = si_get_shader_binary_size(shader) +
5347 (!epilog ? mainb->rodata_size : 0);
5348 unsigned char *ptr;
5349
5350 assert(!prolog || !prolog->rodata_size);
5351 assert(!previous_stage || !previous_stage->rodata_size);
5352 assert(!prolog2 || !prolog2->rodata_size);
5353 assert((!prolog && !previous_stage && !prolog2 && !epilog) ||
5354 !mainb->rodata_size);
5355 assert(!epilog || !epilog->rodata_size);
5356
5357 r600_resource_reference(&shader->bo, NULL);
5358 shader->bo = si_aligned_buffer_create(&sscreen->b,
5359 sscreen->cpdma_prefetch_writes_memory ?
5360 0 : SI_RESOURCE_FLAG_READ_ONLY,
5361 PIPE_USAGE_IMMUTABLE,
5362 align(bo_size, SI_CPDMA_ALIGNMENT),
5363 256);
5364 if (!shader->bo)
5365 return -ENOMEM;
5366
5367 /* Upload. */
5368 ptr = sscreen->ws->buffer_map(shader->bo->buf, NULL,
5369 PIPE_TRANSFER_READ_WRITE |
5370 PIPE_TRANSFER_UNSYNCHRONIZED);
5371
5372 /* Don't use util_memcpy_cpu_to_le32. LLVM binaries are
5373 * endian-independent. */
5374 if (prolog) {
5375 memcpy(ptr, prolog->code, prolog->code_size);
5376 ptr += prolog->code_size;
5377 }
5378 if (previous_stage) {
5379 memcpy(ptr, previous_stage->code, previous_stage->code_size);
5380 ptr += previous_stage->code_size;
5381 }
5382 if (prolog2) {
5383 memcpy(ptr, prolog2->code, prolog2->code_size);
5384 ptr += prolog2->code_size;
5385 }
5386
5387 memcpy(ptr, mainb->code, mainb->code_size);
5388 ptr += mainb->code_size;
5389
5390 if (epilog) {
5391 memcpy(ptr, epilog->code, epilog->code_size);
5392 ptr += epilog->code_size;
5393 } else if (mainb->rodata_size > 0) {
5394 memcpy(ptr, mainb->rodata, mainb->rodata_size);
5395 ptr += mainb->rodata_size;
5396 }
5397
5398 /* Add end-of-code markers for the UMR disassembler. */
5399 uint32_t *ptr32 = (uint32_t*)ptr;
5400 for (unsigned i = 0; i < DEBUGGER_NUM_MARKERS; i++)
5401 ptr32[i] = DEBUGGER_END_OF_CODE_MARKER;
5402
5403 sscreen->ws->buffer_unmap(shader->bo->buf);
5404 return 0;
5405 }
5406
5407 static void si_shader_dump_disassembly(const struct ac_shader_binary *binary,
5408 struct pipe_debug_callback *debug,
5409 const char *name, FILE *file)
5410 {
5411 char *line, *p;
5412 unsigned i, count;
5413
5414 if (binary->disasm_string) {
5415 fprintf(file, "Shader %s disassembly:\n", name);
5416 fprintf(file, "%s", binary->disasm_string);
5417
5418 if (debug && debug->debug_message) {
5419 /* Very long debug messages are cut off, so send the
5420 * disassembly one line at a time. This causes more
5421 * overhead, but on the plus side it simplifies
5422 * parsing of resulting logs.
5423 */
5424 pipe_debug_message(debug, SHADER_INFO,
5425 "Shader Disassembly Begin");
5426
5427 line = binary->disasm_string;
5428 while (*line) {
5429 p = util_strchrnul(line, '\n');
5430 count = p - line;
5431
5432 if (count) {
5433 pipe_debug_message(debug, SHADER_INFO,
5434 "%.*s", count, line);
5435 }
5436
5437 if (!*p)
5438 break;
5439 line = p + 1;
5440 }
5441
5442 pipe_debug_message(debug, SHADER_INFO,
5443 "Shader Disassembly End");
5444 }
5445 } else {
5446 fprintf(file, "Shader %s binary:\n", name);
5447 for (i = 0; i < binary->code_size; i += 4) {
5448 fprintf(file, "@0x%x: %02x%02x%02x%02x\n", i,
5449 binary->code[i + 3], binary->code[i + 2],
5450 binary->code[i + 1], binary->code[i]);
5451 }
5452 }
5453 }
5454
5455 static void si_calculate_max_simd_waves(struct si_shader *shader)
5456 {
5457 struct si_screen *sscreen = shader->selector->screen;
5458 struct si_shader_config *conf = &shader->config;
5459 unsigned num_inputs = shader->selector->info.num_inputs;
5460 unsigned lds_increment = sscreen->info.chip_class >= CIK ? 512 : 256;
5461 unsigned lds_per_wave = 0;
5462 unsigned max_simd_waves;
5463
5464 max_simd_waves = ac_get_max_simd_waves(sscreen->info.family);
5465
5466 /* Compute LDS usage for PS. */
5467 switch (shader->selector->type) {
5468 case PIPE_SHADER_FRAGMENT:
5469 /* The minimum usage per wave is (num_inputs * 48). The maximum
5470 * usage is (num_inputs * 48 * 16).
5471 * We can get anything in between and it varies between waves.
5472 *
5473 * The 48 bytes per input for a single primitive is equal to
5474 * 4 bytes/component * 4 components/input * 3 points.
5475 *
5476 * Other stages don't know the size at compile time or don't
5477 * allocate LDS per wave, but instead they do it per thread group.
5478 */
5479 lds_per_wave = conf->lds_size * lds_increment +
5480 align(num_inputs * 48, lds_increment);
5481 break;
5482 case PIPE_SHADER_COMPUTE:
5483 if (shader->selector) {
5484 unsigned max_workgroup_size =
5485 si_get_max_workgroup_size(shader);
5486 lds_per_wave = (conf->lds_size * lds_increment) /
5487 DIV_ROUND_UP(max_workgroup_size, 64);
5488 }
5489 break;
5490 }
5491
5492 /* Compute the per-SIMD wave counts. */
5493 if (conf->num_sgprs) {
5494 if (sscreen->info.chip_class >= VI)
5495 max_simd_waves = MIN2(max_simd_waves, 800 / conf->num_sgprs);
5496 else
5497 max_simd_waves = MIN2(max_simd_waves, 512 / conf->num_sgprs);
5498 }
5499
5500 if (conf->num_vgprs)
5501 max_simd_waves = MIN2(max_simd_waves, 256 / conf->num_vgprs);
5502
5503 /* LDS is 64KB per CU (4 SIMDs), which is 16KB per SIMD (usage above
5504 * 16KB makes some SIMDs unoccupied). */
5505 if (lds_per_wave)
5506 max_simd_waves = MIN2(max_simd_waves, 16384 / lds_per_wave);
5507
5508 conf->max_simd_waves = max_simd_waves;
5509 }
5510
5511 void si_shader_dump_stats_for_shader_db(const struct si_shader *shader,
5512 struct pipe_debug_callback *debug)
5513 {
5514 const struct si_shader_config *conf = &shader->config;
5515
5516 pipe_debug_message(debug, SHADER_INFO,
5517 "Shader Stats: SGPRS: %d VGPRS: %d Code Size: %d "
5518 "LDS: %d Scratch: %d Max Waves: %d Spilled SGPRs: %d "
5519 "Spilled VGPRs: %d PrivMem VGPRs: %d",
5520 conf->num_sgprs, conf->num_vgprs,
5521 si_get_shader_binary_size(shader),
5522 conf->lds_size, conf->scratch_bytes_per_wave,
5523 conf->max_simd_waves, conf->spilled_sgprs,
5524 conf->spilled_vgprs, conf->private_mem_vgprs);
5525 }
5526
5527 static void si_shader_dump_stats(struct si_screen *sscreen,
5528 const struct si_shader *shader,
5529 unsigned processor,
5530 FILE *file,
5531 bool check_debug_option)
5532 {
5533 const struct si_shader_config *conf = &shader->config;
5534
5535 if (!check_debug_option ||
5536 si_can_dump_shader(sscreen, processor)) {
5537 if (processor == PIPE_SHADER_FRAGMENT) {
5538 fprintf(file, "*** SHADER CONFIG ***\n"
5539 "SPI_PS_INPUT_ADDR = 0x%04x\n"
5540 "SPI_PS_INPUT_ENA = 0x%04x\n",
5541 conf->spi_ps_input_addr, conf->spi_ps_input_ena);
5542 }
5543
5544 fprintf(file, "*** SHADER STATS ***\n"
5545 "SGPRS: %d\n"
5546 "VGPRS: %d\n"
5547 "Spilled SGPRs: %d\n"
5548 "Spilled VGPRs: %d\n"
5549 "Private memory VGPRs: %d\n"
5550 "Code Size: %d bytes\n"
5551 "LDS: %d blocks\n"
5552 "Scratch: %d bytes per wave\n"
5553 "Max Waves: %d\n"
5554 "********************\n\n\n",
5555 conf->num_sgprs, conf->num_vgprs,
5556 conf->spilled_sgprs, conf->spilled_vgprs,
5557 conf->private_mem_vgprs,
5558 si_get_shader_binary_size(shader),
5559 conf->lds_size, conf->scratch_bytes_per_wave,
5560 conf->max_simd_waves);
5561 }
5562 }
5563
5564 const char *si_get_shader_name(const struct si_shader *shader, unsigned processor)
5565 {
5566 switch (processor) {
5567 case PIPE_SHADER_VERTEX:
5568 if (shader->key.as_es)
5569 return "Vertex Shader as ES";
5570 else if (shader->key.as_ls)
5571 return "Vertex Shader as LS";
5572 else
5573 return "Vertex Shader as VS";
5574 case PIPE_SHADER_TESS_CTRL:
5575 return "Tessellation Control Shader";
5576 case PIPE_SHADER_TESS_EVAL:
5577 if (shader->key.as_es)
5578 return "Tessellation Evaluation Shader as ES";
5579 else
5580 return "Tessellation Evaluation Shader as VS";
5581 case PIPE_SHADER_GEOMETRY:
5582 if (shader->is_gs_copy_shader)
5583 return "GS Copy Shader as VS";
5584 else
5585 return "Geometry Shader";
5586 case PIPE_SHADER_FRAGMENT:
5587 return "Pixel Shader";
5588 case PIPE_SHADER_COMPUTE:
5589 return "Compute Shader";
5590 default:
5591 return "Unknown Shader";
5592 }
5593 }
5594
5595 void si_shader_dump(struct si_screen *sscreen, const struct si_shader *shader,
5596 struct pipe_debug_callback *debug, unsigned processor,
5597 FILE *file, bool check_debug_option)
5598 {
5599 if (!check_debug_option ||
5600 si_can_dump_shader(sscreen, processor))
5601 si_dump_shader_key(processor, shader, file);
5602
5603 if (!check_debug_option && shader->binary.llvm_ir_string) {
5604 if (shader->previous_stage &&
5605 shader->previous_stage->binary.llvm_ir_string) {
5606 fprintf(file, "\n%s - previous stage - LLVM IR:\n\n",
5607 si_get_shader_name(shader, processor));
5608 fprintf(file, "%s\n", shader->previous_stage->binary.llvm_ir_string);
5609 }
5610
5611 fprintf(file, "\n%s - main shader part - LLVM IR:\n\n",
5612 si_get_shader_name(shader, processor));
5613 fprintf(file, "%s\n", shader->binary.llvm_ir_string);
5614 }
5615
5616 if (!check_debug_option ||
5617 (si_can_dump_shader(sscreen, processor) &&
5618 !(sscreen->debug_flags & DBG(NO_ASM)))) {
5619 fprintf(file, "\n%s:\n", si_get_shader_name(shader, processor));
5620
5621 if (shader->prolog)
5622 si_shader_dump_disassembly(&shader->prolog->binary,
5623 debug, "prolog", file);
5624 if (shader->previous_stage)
5625 si_shader_dump_disassembly(&shader->previous_stage->binary,
5626 debug, "previous stage", file);
5627 if (shader->prolog2)
5628 si_shader_dump_disassembly(&shader->prolog2->binary,
5629 debug, "prolog2", file);
5630
5631 si_shader_dump_disassembly(&shader->binary, debug, "main", file);
5632
5633 if (shader->epilog)
5634 si_shader_dump_disassembly(&shader->epilog->binary,
5635 debug, "epilog", file);
5636 fprintf(file, "\n");
5637 }
5638
5639 si_shader_dump_stats(sscreen, shader, processor, file,
5640 check_debug_option);
5641 }
5642
5643 static int si_compile_llvm(struct si_screen *sscreen,
5644 struct ac_shader_binary *binary,
5645 struct si_shader_config *conf,
5646 struct si_compiler *compiler,
5647 LLVMModuleRef mod,
5648 struct pipe_debug_callback *debug,
5649 unsigned processor,
5650 const char *name)
5651 {
5652 int r = 0;
5653 unsigned count = p_atomic_inc_return(&sscreen->num_compilations);
5654
5655 if (si_can_dump_shader(sscreen, processor)) {
5656 fprintf(stderr, "radeonsi: Compiling shader %d\n", count);
5657
5658 if (!(sscreen->debug_flags & (DBG(NO_IR) | DBG(PREOPT_IR)))) {
5659 fprintf(stderr, "%s LLVM IR:\n\n", name);
5660 ac_dump_module(mod);
5661 fprintf(stderr, "\n");
5662 }
5663 }
5664
5665 if (sscreen->record_llvm_ir) {
5666 char *ir = LLVMPrintModuleToString(mod);
5667 binary->llvm_ir_string = strdup(ir);
5668 LLVMDisposeMessage(ir);
5669 }
5670
5671 if (!si_replace_shader(count, binary)) {
5672 r = si_llvm_compile(mod, binary, compiler, debug);
5673 if (r)
5674 return r;
5675 }
5676
5677 si_shader_binary_read_config(binary, conf, 0);
5678
5679 /* Enable 64-bit and 16-bit denormals, because there is no performance
5680 * cost.
5681 *
5682 * If denormals are enabled, all floating-point output modifiers are
5683 * ignored.
5684 *
5685 * Don't enable denormals for 32-bit floats, because:
5686 * - Floating-point output modifiers would be ignored by the hw.
5687 * - Some opcodes don't support denormals, such as v_mad_f32. We would
5688 * have to stop using those.
5689 * - SI & CI would be very slow.
5690 */
5691 conf->float_mode |= V_00B028_FP_64_DENORMS;
5692
5693 FREE(binary->config);
5694 FREE(binary->global_symbol_offsets);
5695 binary->config = NULL;
5696 binary->global_symbol_offsets = NULL;
5697
5698 /* Some shaders can't have rodata because their binaries can be
5699 * concatenated.
5700 */
5701 if (binary->rodata_size &&
5702 (processor == PIPE_SHADER_VERTEX ||
5703 processor == PIPE_SHADER_TESS_CTRL ||
5704 processor == PIPE_SHADER_TESS_EVAL ||
5705 processor == PIPE_SHADER_FRAGMENT)) {
5706 fprintf(stderr, "radeonsi: The shader can't have rodata.");
5707 return -EINVAL;
5708 }
5709
5710 return r;
5711 }
5712
5713 static void si_llvm_build_ret(struct si_shader_context *ctx, LLVMValueRef ret)
5714 {
5715 if (LLVMGetTypeKind(LLVMTypeOf(ret)) == LLVMVoidTypeKind)
5716 LLVMBuildRetVoid(ctx->ac.builder);
5717 else
5718 LLVMBuildRet(ctx->ac.builder, ret);
5719 }
5720
5721 /* Generate code for the hardware VS shader stage to go with a geometry shader */
5722 struct si_shader *
5723 si_generate_gs_copy_shader(struct si_screen *sscreen,
5724 struct si_compiler *compiler,
5725 struct si_shader_selector *gs_selector,
5726 struct pipe_debug_callback *debug)
5727 {
5728 struct si_shader_context ctx;
5729 struct si_shader *shader;
5730 LLVMBuilderRef builder;
5731 struct si_shader_output_values *outputs;
5732 struct tgsi_shader_info *gsinfo = &gs_selector->info;
5733 int i, r;
5734
5735 outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
5736
5737 if (!outputs)
5738 return NULL;
5739
5740 shader = CALLOC_STRUCT(si_shader);
5741 if (!shader) {
5742 FREE(outputs);
5743 return NULL;
5744 }
5745
5746 /* We can leave the fence as permanently signaled because the GS copy
5747 * shader only becomes visible globally after it has been compiled. */
5748 util_queue_fence_init(&shader->ready);
5749
5750 shader->selector = gs_selector;
5751 shader->is_gs_copy_shader = true;
5752
5753 si_init_shader_ctx(&ctx, sscreen, compiler);
5754 ctx.shader = shader;
5755 ctx.type = PIPE_SHADER_VERTEX;
5756
5757 builder = ctx.ac.builder;
5758
5759 create_function(&ctx);
5760 preload_ring_buffers(&ctx);
5761
5762 LLVMValueRef voffset =
5763 LLVMBuildMul(ctx.ac.builder, ctx.abi.vertex_id,
5764 LLVMConstInt(ctx.i32, 4, 0), "");
5765
5766 /* Fetch the vertex stream ID.*/
5767 LLVMValueRef stream_id;
5768
5769 if (gs_selector->so.num_outputs)
5770 stream_id = si_unpack_param(&ctx, ctx.param_streamout_config, 24, 2);
5771 else
5772 stream_id = ctx.i32_0;
5773
5774 /* Fill in output information. */
5775 for (i = 0; i < gsinfo->num_outputs; ++i) {
5776 outputs[i].semantic_name = gsinfo->output_semantic_name[i];
5777 outputs[i].semantic_index = gsinfo->output_semantic_index[i];
5778
5779 for (int chan = 0; chan < 4; chan++) {
5780 outputs[i].vertex_stream[chan] =
5781 (gsinfo->output_streams[i] >> (2 * chan)) & 3;
5782 }
5783 }
5784
5785 LLVMBasicBlockRef end_bb;
5786 LLVMValueRef switch_inst;
5787
5788 end_bb = LLVMAppendBasicBlockInContext(ctx.ac.context, ctx.main_fn, "end");
5789 switch_inst = LLVMBuildSwitch(builder, stream_id, end_bb, 4);
5790
5791 for (int stream = 0; stream < 4; stream++) {
5792 LLVMBasicBlockRef bb;
5793 unsigned offset;
5794
5795 if (!gsinfo->num_stream_output_components[stream])
5796 continue;
5797
5798 if (stream > 0 && !gs_selector->so.num_outputs)
5799 continue;
5800
5801 bb = LLVMInsertBasicBlockInContext(ctx.ac.context, end_bb, "out");
5802 LLVMAddCase(switch_inst, LLVMConstInt(ctx.i32, stream, 0), bb);
5803 LLVMPositionBuilderAtEnd(builder, bb);
5804
5805 /* Fetch vertex data from GSVS ring */
5806 offset = 0;
5807 for (i = 0; i < gsinfo->num_outputs; ++i) {
5808 for (unsigned chan = 0; chan < 4; chan++) {
5809 if (!(gsinfo->output_usagemask[i] & (1 << chan)) ||
5810 outputs[i].vertex_stream[chan] != stream) {
5811 outputs[i].values[chan] = LLVMGetUndef(ctx.f32);
5812 continue;
5813 }
5814
5815 LLVMValueRef soffset = LLVMConstInt(ctx.i32,
5816 offset * gs_selector->gs_max_out_vertices * 16 * 4, 0);
5817 offset++;
5818
5819 outputs[i].values[chan] =
5820 ac_build_buffer_load(&ctx.ac,
5821 ctx.gsvs_ring[0], 1,
5822 ctx.i32_0, voffset,
5823 soffset, 0, 1, 1,
5824 true, false);
5825 }
5826 }
5827
5828 /* Streamout and exports. */
5829 if (gs_selector->so.num_outputs) {
5830 si_llvm_emit_streamout(&ctx, outputs,
5831 gsinfo->num_outputs,
5832 stream);
5833 }
5834
5835 if (stream == 0)
5836 si_llvm_export_vs(&ctx, outputs, gsinfo->num_outputs);
5837
5838 LLVMBuildBr(builder, end_bb);
5839 }
5840
5841 LLVMPositionBuilderAtEnd(builder, end_bb);
5842
5843 LLVMBuildRetVoid(ctx.ac.builder);
5844
5845 ctx.type = PIPE_SHADER_GEOMETRY; /* override for shader dumping */
5846 si_llvm_optimize_module(&ctx);
5847
5848 r = si_compile_llvm(sscreen, &ctx.shader->binary,
5849 &ctx.shader->config, ctx.compiler,
5850 ctx.ac.module,
5851 debug, PIPE_SHADER_GEOMETRY,
5852 "GS Copy Shader");
5853 if (!r) {
5854 if (si_can_dump_shader(sscreen, PIPE_SHADER_GEOMETRY))
5855 fprintf(stderr, "GS Copy Shader:\n");
5856 si_shader_dump(sscreen, ctx.shader, debug,
5857 PIPE_SHADER_GEOMETRY, stderr, true);
5858 r = si_shader_binary_upload(sscreen, ctx.shader);
5859 }
5860
5861 si_llvm_dispose(&ctx);
5862
5863 FREE(outputs);
5864
5865 if (r != 0) {
5866 FREE(shader);
5867 shader = NULL;
5868 }
5869 return shader;
5870 }
5871
5872 static void si_dump_shader_key_vs(const struct si_shader_key *key,
5873 const struct si_vs_prolog_bits *prolog,
5874 const char *prefix, FILE *f)
5875 {
5876 fprintf(f, " %s.instance_divisor_is_one = %u\n",
5877 prefix, prolog->instance_divisor_is_one);
5878 fprintf(f, " %s.instance_divisor_is_fetched = %u\n",
5879 prefix, prolog->instance_divisor_is_fetched);
5880 fprintf(f, " %s.ls_vgpr_fix = %u\n",
5881 prefix, prolog->ls_vgpr_fix);
5882
5883 fprintf(f, " mono.vs.fix_fetch = {");
5884 for (int i = 0; i < SI_MAX_ATTRIBS; i++)
5885 fprintf(f, !i ? "%u" : ", %u", key->mono.vs_fix_fetch[i]);
5886 fprintf(f, "}\n");
5887 }
5888
5889 static void si_dump_shader_key(unsigned processor, const struct si_shader *shader,
5890 FILE *f)
5891 {
5892 const struct si_shader_key *key = &shader->key;
5893
5894 fprintf(f, "SHADER KEY\n");
5895
5896 switch (processor) {
5897 case PIPE_SHADER_VERTEX:
5898 si_dump_shader_key_vs(key, &key->part.vs.prolog,
5899 "part.vs.prolog", f);
5900 fprintf(f, " as_es = %u\n", key->as_es);
5901 fprintf(f, " as_ls = %u\n", key->as_ls);
5902 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5903 key->mono.u.vs_export_prim_id);
5904 break;
5905
5906 case PIPE_SHADER_TESS_CTRL:
5907 if (shader->selector->screen->info.chip_class >= GFX9) {
5908 si_dump_shader_key_vs(key, &key->part.tcs.ls_prolog,
5909 "part.tcs.ls_prolog", f);
5910 }
5911 fprintf(f, " part.tcs.epilog.prim_mode = %u\n", key->part.tcs.epilog.prim_mode);
5912 fprintf(f, " mono.u.ff_tcs_inputs_to_copy = 0x%"PRIx64"\n", key->mono.u.ff_tcs_inputs_to_copy);
5913 break;
5914
5915 case PIPE_SHADER_TESS_EVAL:
5916 fprintf(f, " as_es = %u\n", key->as_es);
5917 fprintf(f, " mono.u.vs_export_prim_id = %u\n",
5918 key->mono.u.vs_export_prim_id);
5919 break;
5920
5921 case PIPE_SHADER_GEOMETRY:
5922 if (shader->is_gs_copy_shader)
5923 break;
5924
5925 if (shader->selector->screen->info.chip_class >= GFX9 &&
5926 key->part.gs.es->type == PIPE_SHADER_VERTEX) {
5927 si_dump_shader_key_vs(key, &key->part.gs.vs_prolog,
5928 "part.gs.vs_prolog", f);
5929 }
5930 fprintf(f, " part.gs.prolog.tri_strip_adj_fix = %u\n", key->part.gs.prolog.tri_strip_adj_fix);
5931 break;
5932
5933 case PIPE_SHADER_COMPUTE:
5934 break;
5935
5936 case PIPE_SHADER_FRAGMENT:
5937 fprintf(f, " part.ps.prolog.color_two_side = %u\n", key->part.ps.prolog.color_two_side);
5938 fprintf(f, " part.ps.prolog.flatshade_colors = %u\n", key->part.ps.prolog.flatshade_colors);
5939 fprintf(f, " part.ps.prolog.poly_stipple = %u\n", key->part.ps.prolog.poly_stipple);
5940 fprintf(f, " part.ps.prolog.force_persp_sample_interp = %u\n", key->part.ps.prolog.force_persp_sample_interp);
5941 fprintf(f, " part.ps.prolog.force_linear_sample_interp = %u\n", key->part.ps.prolog.force_linear_sample_interp);
5942 fprintf(f, " part.ps.prolog.force_persp_center_interp = %u\n", key->part.ps.prolog.force_persp_center_interp);
5943 fprintf(f, " part.ps.prolog.force_linear_center_interp = %u\n", key->part.ps.prolog.force_linear_center_interp);
5944 fprintf(f, " part.ps.prolog.bc_optimize_for_persp = %u\n", key->part.ps.prolog.bc_optimize_for_persp);
5945 fprintf(f, " part.ps.prolog.bc_optimize_for_linear = %u\n", key->part.ps.prolog.bc_optimize_for_linear);
5946 fprintf(f, " part.ps.epilog.spi_shader_col_format = 0x%x\n", key->part.ps.epilog.spi_shader_col_format);
5947 fprintf(f, " part.ps.epilog.color_is_int8 = 0x%X\n", key->part.ps.epilog.color_is_int8);
5948 fprintf(f, " part.ps.epilog.color_is_int10 = 0x%X\n", key->part.ps.epilog.color_is_int10);
5949 fprintf(f, " part.ps.epilog.last_cbuf = %u\n", key->part.ps.epilog.last_cbuf);
5950 fprintf(f, " part.ps.epilog.alpha_func = %u\n", key->part.ps.epilog.alpha_func);
5951 fprintf(f, " part.ps.epilog.alpha_to_one = %u\n", key->part.ps.epilog.alpha_to_one);
5952 fprintf(f, " part.ps.epilog.poly_line_smoothing = %u\n", key->part.ps.epilog.poly_line_smoothing);
5953 fprintf(f, " part.ps.epilog.clamp_color = %u\n", key->part.ps.epilog.clamp_color);
5954 break;
5955
5956 default:
5957 assert(0);
5958 }
5959
5960 if ((processor == PIPE_SHADER_GEOMETRY ||
5961 processor == PIPE_SHADER_TESS_EVAL ||
5962 processor == PIPE_SHADER_VERTEX) &&
5963 !key->as_es && !key->as_ls) {
5964 fprintf(f, " opt.kill_outputs = 0x%"PRIx64"\n", key->opt.kill_outputs);
5965 fprintf(f, " opt.clip_disable = %u\n", key->opt.clip_disable);
5966 }
5967 }
5968
5969 static void si_init_shader_ctx(struct si_shader_context *ctx,
5970 struct si_screen *sscreen,
5971 struct si_compiler *compiler)
5972 {
5973 struct lp_build_tgsi_context *bld_base;
5974
5975 si_llvm_context_init(ctx, sscreen, compiler);
5976
5977 bld_base = &ctx->bld_base;
5978 bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
5979
5980 bld_base->op_actions[TGSI_OPCODE_INTERP_CENTROID] = interp_action;
5981 bld_base->op_actions[TGSI_OPCODE_INTERP_SAMPLE] = interp_action;
5982 bld_base->op_actions[TGSI_OPCODE_INTERP_OFFSET] = interp_action;
5983
5984 bld_base->op_actions[TGSI_OPCODE_MEMBAR].emit = membar_emit;
5985
5986 bld_base->op_actions[TGSI_OPCODE_CLOCK].emit = clock_emit;
5987
5988 bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
5989 bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
5990 bld_base->op_actions[TGSI_OPCODE_DDX_FINE].emit = si_llvm_emit_ddxy;
5991 bld_base->op_actions[TGSI_OPCODE_DDY_FINE].emit = si_llvm_emit_ddxy;
5992
5993 bld_base->op_actions[TGSI_OPCODE_VOTE_ALL].emit = vote_all_emit;
5994 bld_base->op_actions[TGSI_OPCODE_VOTE_ANY].emit = vote_any_emit;
5995 bld_base->op_actions[TGSI_OPCODE_VOTE_EQ].emit = vote_eq_emit;
5996 bld_base->op_actions[TGSI_OPCODE_BALLOT].emit = ballot_emit;
5997 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].intr_name = "llvm.amdgcn.readfirstlane";
5998 bld_base->op_actions[TGSI_OPCODE_READ_FIRST].emit = read_lane_emit;
5999 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].intr_name = "llvm.amdgcn.readlane";
6000 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].fetch_args = read_invoc_fetch_args;
6001 bld_base->op_actions[TGSI_OPCODE_READ_INVOC].emit = read_lane_emit;
6002
6003 bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_tgsi_emit_vertex;
6004 bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_tgsi_emit_primitive;
6005 bld_base->op_actions[TGSI_OPCODE_BARRIER].emit = si_llvm_emit_barrier;
6006 }
6007
6008 static void si_optimize_vs_outputs(struct si_shader_context *ctx)
6009 {
6010 struct si_shader *shader = ctx->shader;
6011 struct tgsi_shader_info *info = &shader->selector->info;
6012
6013 if ((ctx->type != PIPE_SHADER_VERTEX &&
6014 ctx->type != PIPE_SHADER_TESS_EVAL) ||
6015 shader->key.as_ls ||
6016 shader->key.as_es)
6017 return;
6018
6019 ac_optimize_vs_outputs(&ctx->ac,
6020 ctx->main_fn,
6021 shader->info.vs_output_param_offset,
6022 info->num_outputs,
6023 &shader->info.nr_param_exports);
6024 }
6025
6026 static void si_init_exec_from_input(struct si_shader_context *ctx,
6027 unsigned param, unsigned bitoffset)
6028 {
6029 LLVMValueRef args[] = {
6030 LLVMGetParam(ctx->main_fn, param),
6031 LLVMConstInt(ctx->i32, bitoffset, 0),
6032 };
6033 ac_build_intrinsic(&ctx->ac,
6034 "llvm.amdgcn.init.exec.from.input",
6035 ctx->voidt, args, 2, AC_FUNC_ATTR_CONVERGENT);
6036 }
6037
6038 static bool si_vs_needs_prolog(const struct si_shader_selector *sel,
6039 const struct si_vs_prolog_bits *key)
6040 {
6041 /* VGPR initialization fixup for Vega10 and Raven is always done in the
6042 * VS prolog. */
6043 return sel->vs_needs_prolog || key->ls_vgpr_fix;
6044 }
6045
6046 static bool si_compile_tgsi_main(struct si_shader_context *ctx)
6047 {
6048 struct si_shader *shader = ctx->shader;
6049 struct si_shader_selector *sel = shader->selector;
6050 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
6051
6052 // TODO clean all this up!
6053 switch (ctx->type) {
6054 case PIPE_SHADER_VERTEX:
6055 ctx->load_input = declare_input_vs;
6056 if (shader->key.as_ls)
6057 ctx->abi.emit_outputs = si_llvm_emit_ls_epilogue;
6058 else if (shader->key.as_es)
6059 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6060 else
6061 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6062 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6063 ctx->abi.load_base_vertex = get_base_vertex;
6064 break;
6065 case PIPE_SHADER_TESS_CTRL:
6066 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tcs;
6067 ctx->abi.load_tess_varyings = si_nir_load_tcs_varyings;
6068 bld_base->emit_fetch_funcs[TGSI_FILE_OUTPUT] = fetch_output_tcs;
6069 bld_base->emit_store = store_output_tcs;
6070 ctx->abi.store_tcs_outputs = si_nir_store_output_tcs;
6071 ctx->abi.emit_outputs = si_llvm_emit_tcs_epilogue;
6072 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6073 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6074 break;
6075 case PIPE_SHADER_TESS_EVAL:
6076 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_tes;
6077 ctx->abi.load_tess_varyings = si_nir_load_input_tes;
6078 ctx->abi.load_tess_coord = si_load_tess_coord;
6079 ctx->abi.load_tess_level = si_load_tess_level;
6080 ctx->abi.load_patch_vertices_in = si_load_patch_vertices_in;
6081 if (shader->key.as_es)
6082 ctx->abi.emit_outputs = si_llvm_emit_es_epilogue;
6083 else
6084 ctx->abi.emit_outputs = si_llvm_emit_vs_epilogue;
6085 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6086 break;
6087 case PIPE_SHADER_GEOMETRY:
6088 bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
6089 ctx->abi.load_inputs = si_nir_load_input_gs;
6090 ctx->abi.emit_vertex = si_llvm_emit_vertex;
6091 ctx->abi.emit_primitive = si_llvm_emit_primitive;
6092 ctx->abi.emit_outputs = si_llvm_emit_gs_epilogue;
6093 bld_base->emit_epilogue = si_tgsi_emit_gs_epilogue;
6094 break;
6095 case PIPE_SHADER_FRAGMENT:
6096 ctx->load_input = declare_input_fs;
6097 ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
6098 bld_base->emit_epilogue = si_tgsi_emit_epilogue;
6099 ctx->abi.lookup_interp_param = si_nir_lookup_interp_param;
6100 ctx->abi.load_sample_position = load_sample_position;
6101 ctx->abi.load_sample_mask_in = load_sample_mask_in;
6102 ctx->abi.emit_kill = si_llvm_emit_kill;
6103 break;
6104 case PIPE_SHADER_COMPUTE:
6105 ctx->abi.load_local_group_size = get_block_size;
6106 break;
6107 default:
6108 assert(!"Unsupported shader type");
6109 return false;
6110 }
6111
6112 ctx->abi.load_ubo = load_ubo;
6113 ctx->abi.load_ssbo = load_ssbo;
6114
6115 create_function(ctx);
6116 preload_ring_buffers(ctx);
6117
6118 /* For GFX9 merged shaders:
6119 * - Set EXEC for the first shader. If the prolog is present, set
6120 * EXEC there instead.
6121 * - Add a barrier before the second shader.
6122 * - In the second shader, reset EXEC to ~0 and wrap the main part in
6123 * an if-statement. This is required for correctness in geometry
6124 * shaders, to ensure that empty GS waves do not send GS_EMIT and
6125 * GS_CUT messages.
6126 *
6127 * For monolithic merged shaders, the first shader is wrapped in an
6128 * if-block together with its prolog in si_build_wrapper_function.
6129 */
6130 if (ctx->screen->info.chip_class >= GFX9) {
6131 if (!shader->is_monolithic &&
6132 sel->info.num_instructions > 1 && /* not empty shader */
6133 (shader->key.as_es || shader->key.as_ls) &&
6134 (ctx->type == PIPE_SHADER_TESS_EVAL ||
6135 (ctx->type == PIPE_SHADER_VERTEX &&
6136 !si_vs_needs_prolog(sel, &shader->key.part.vs.prolog)))) {
6137 si_init_exec_from_input(ctx,
6138 ctx->param_merged_wave_info, 0);
6139 } else if (ctx->type == PIPE_SHADER_TESS_CTRL ||
6140 ctx->type == PIPE_SHADER_GEOMETRY) {
6141 if (!shader->is_monolithic)
6142 ac_init_exec_full_mask(&ctx->ac);
6143
6144 LLVMValueRef num_threads = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
6145 LLVMValueRef ena =
6146 LLVMBuildICmp(ctx->ac.builder, LLVMIntULT,
6147 ac_get_thread_id(&ctx->ac), num_threads, "");
6148 lp_build_if(&ctx->merged_wrap_if_state, &ctx->gallivm, ena);
6149
6150 /* The barrier must execute for all shaders in a
6151 * threadgroup.
6152 *
6153 * Execute the barrier inside the conditional block,
6154 * so that empty waves can jump directly to s_endpgm,
6155 * which will also signal the barrier.
6156 *
6157 * If the shader is TCS and the TCS epilog is present
6158 * and contains a barrier, it will wait there and then
6159 * reach s_endpgm.
6160 */
6161 si_llvm_emit_barrier(NULL, bld_base, NULL);
6162 }
6163 }
6164
6165 if (ctx->type == PIPE_SHADER_TESS_CTRL &&
6166 sel->tcs_info.tessfactors_are_def_in_all_invocs) {
6167 for (unsigned i = 0; i < 6; i++) {
6168 ctx->invoc0_tess_factors[i] =
6169 ac_build_alloca_undef(&ctx->ac, ctx->i32, "");
6170 }
6171 }
6172
6173 if (ctx->type == PIPE_SHADER_GEOMETRY) {
6174 int i;
6175 for (i = 0; i < 4; i++) {
6176 ctx->gs_next_vertex[i] =
6177 ac_build_alloca(&ctx->ac, ctx->i32, "");
6178 }
6179 }
6180
6181 if (sel->force_correct_derivs_after_kill) {
6182 ctx->postponed_kill = ac_build_alloca_undef(&ctx->ac, ctx->i1, "");
6183 /* true = don't kill. */
6184 LLVMBuildStore(ctx->ac.builder, LLVMConstInt(ctx->i1, 1, 0),
6185 ctx->postponed_kill);
6186 }
6187
6188 if (sel->tokens) {
6189 if (!lp_build_tgsi_llvm(bld_base, sel->tokens)) {
6190 fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
6191 return false;
6192 }
6193 } else {
6194 if (!si_nir_build_llvm(ctx, sel->nir)) {
6195 fprintf(stderr, "Failed to translate shader from NIR to LLVM\n");
6196 return false;
6197 }
6198 }
6199
6200 si_llvm_build_ret(ctx, ctx->return_value);
6201 return true;
6202 }
6203
6204 /**
6205 * Compute the VS prolog key, which contains all the information needed to
6206 * build the VS prolog function, and set shader->info bits where needed.
6207 *
6208 * \param info Shader info of the vertex shader.
6209 * \param num_input_sgprs Number of input SGPRs for the vertex shader.
6210 * \param prolog_key Key of the VS prolog
6211 * \param shader_out The vertex shader, or the next shader if merging LS+HS or ES+GS.
6212 * \param key Output shader part key.
6213 */
6214 static void si_get_vs_prolog_key(const struct tgsi_shader_info *info,
6215 unsigned num_input_sgprs,
6216 const struct si_vs_prolog_bits *prolog_key,
6217 struct si_shader *shader_out,
6218 union si_shader_part_key *key)
6219 {
6220 memset(key, 0, sizeof(*key));
6221 key->vs_prolog.states = *prolog_key;
6222 key->vs_prolog.num_input_sgprs = num_input_sgprs;
6223 key->vs_prolog.last_input = MAX2(1, info->num_inputs) - 1;
6224 key->vs_prolog.as_ls = shader_out->key.as_ls;
6225 key->vs_prolog.as_es = shader_out->key.as_es;
6226
6227 if (shader_out->selector->type == PIPE_SHADER_TESS_CTRL) {
6228 key->vs_prolog.as_ls = 1;
6229 key->vs_prolog.num_merged_next_stage_vgprs = 2;
6230 } else if (shader_out->selector->type == PIPE_SHADER_GEOMETRY) {
6231 key->vs_prolog.as_es = 1;
6232 key->vs_prolog.num_merged_next_stage_vgprs = 5;
6233 }
6234
6235 /* Enable loading the InstanceID VGPR. */
6236 uint16_t input_mask = u_bit_consecutive(0, info->num_inputs);
6237
6238 if ((key->vs_prolog.states.instance_divisor_is_one |
6239 key->vs_prolog.states.instance_divisor_is_fetched) & input_mask)
6240 shader_out->info.uses_instanceid = true;
6241 }
6242
6243 /**
6244 * Compute the PS prolog key, which contains all the information needed to
6245 * build the PS prolog function, and set related bits in shader->config.
6246 */
6247 static void si_get_ps_prolog_key(struct si_shader *shader,
6248 union si_shader_part_key *key,
6249 bool separate_prolog)
6250 {
6251 struct tgsi_shader_info *info = &shader->selector->info;
6252
6253 memset(key, 0, sizeof(*key));
6254 key->ps_prolog.states = shader->key.part.ps.prolog;
6255 key->ps_prolog.colors_read = info->colors_read;
6256 key->ps_prolog.num_input_sgprs = shader->info.num_input_sgprs;
6257 key->ps_prolog.num_input_vgprs = shader->info.num_input_vgprs;
6258 key->ps_prolog.wqm = info->uses_derivatives &&
6259 (key->ps_prolog.colors_read ||
6260 key->ps_prolog.states.force_persp_sample_interp ||
6261 key->ps_prolog.states.force_linear_sample_interp ||
6262 key->ps_prolog.states.force_persp_center_interp ||
6263 key->ps_prolog.states.force_linear_center_interp ||
6264 key->ps_prolog.states.bc_optimize_for_persp ||
6265 key->ps_prolog.states.bc_optimize_for_linear);
6266 key->ps_prolog.ancillary_vgpr_index = shader->info.ancillary_vgpr_index;
6267
6268 if (info->colors_read) {
6269 unsigned *color = shader->selector->color_attr_index;
6270
6271 if (shader->key.part.ps.prolog.color_two_side) {
6272 /* BCOLORs are stored after the last input. */
6273 key->ps_prolog.num_interp_inputs = info->num_inputs;
6274 key->ps_prolog.face_vgpr_index = shader->info.face_vgpr_index;
6275 shader->config.spi_ps_input_ena |= S_0286CC_FRONT_FACE_ENA(1);
6276 }
6277
6278 for (unsigned i = 0; i < 2; i++) {
6279 unsigned interp = info->input_interpolate[color[i]];
6280 unsigned location = info->input_interpolate_loc[color[i]];
6281
6282 if (!(info->colors_read & (0xf << i*4)))
6283 continue;
6284
6285 key->ps_prolog.color_attr_index[i] = color[i];
6286
6287 if (shader->key.part.ps.prolog.flatshade_colors &&
6288 interp == TGSI_INTERPOLATE_COLOR)
6289 interp = TGSI_INTERPOLATE_CONSTANT;
6290
6291 switch (interp) {
6292 case TGSI_INTERPOLATE_CONSTANT:
6293 key->ps_prolog.color_interp_vgpr_index[i] = -1;
6294 break;
6295 case TGSI_INTERPOLATE_PERSPECTIVE:
6296 case TGSI_INTERPOLATE_COLOR:
6297 /* Force the interpolation location for colors here. */
6298 if (shader->key.part.ps.prolog.force_persp_sample_interp)
6299 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6300 if (shader->key.part.ps.prolog.force_persp_center_interp)
6301 location = TGSI_INTERPOLATE_LOC_CENTER;
6302
6303 switch (location) {
6304 case TGSI_INTERPOLATE_LOC_SAMPLE:
6305 key->ps_prolog.color_interp_vgpr_index[i] = 0;
6306 shader->config.spi_ps_input_ena |=
6307 S_0286CC_PERSP_SAMPLE_ENA(1);
6308 break;
6309 case TGSI_INTERPOLATE_LOC_CENTER:
6310 key->ps_prolog.color_interp_vgpr_index[i] = 2;
6311 shader->config.spi_ps_input_ena |=
6312 S_0286CC_PERSP_CENTER_ENA(1);
6313 break;
6314 case TGSI_INTERPOLATE_LOC_CENTROID:
6315 key->ps_prolog.color_interp_vgpr_index[i] = 4;
6316 shader->config.spi_ps_input_ena |=
6317 S_0286CC_PERSP_CENTROID_ENA(1);
6318 break;
6319 default:
6320 assert(0);
6321 }
6322 break;
6323 case TGSI_INTERPOLATE_LINEAR:
6324 /* Force the interpolation location for colors here. */
6325 if (shader->key.part.ps.prolog.force_linear_sample_interp)
6326 location = TGSI_INTERPOLATE_LOC_SAMPLE;
6327 if (shader->key.part.ps.prolog.force_linear_center_interp)
6328 location = TGSI_INTERPOLATE_LOC_CENTER;
6329
6330 /* The VGPR assignment for non-monolithic shaders
6331 * works because InitialPSInputAddr is set on the
6332 * main shader and PERSP_PULL_MODEL is never used.
6333 */
6334 switch (location) {
6335 case TGSI_INTERPOLATE_LOC_SAMPLE:
6336 key->ps_prolog.color_interp_vgpr_index[i] =
6337 separate_prolog ? 6 : 9;
6338 shader->config.spi_ps_input_ena |=
6339 S_0286CC_LINEAR_SAMPLE_ENA(1);
6340 break;
6341 case TGSI_INTERPOLATE_LOC_CENTER:
6342 key->ps_prolog.color_interp_vgpr_index[i] =
6343 separate_prolog ? 8 : 11;
6344 shader->config.spi_ps_input_ena |=
6345 S_0286CC_LINEAR_CENTER_ENA(1);
6346 break;
6347 case TGSI_INTERPOLATE_LOC_CENTROID:
6348 key->ps_prolog.color_interp_vgpr_index[i] =
6349 separate_prolog ? 10 : 13;
6350 shader->config.spi_ps_input_ena |=
6351 S_0286CC_LINEAR_CENTROID_ENA(1);
6352 break;
6353 default:
6354 assert(0);
6355 }
6356 break;
6357 default:
6358 assert(0);
6359 }
6360 }
6361 }
6362 }
6363
6364 /**
6365 * Check whether a PS prolog is required based on the key.
6366 */
6367 static bool si_need_ps_prolog(const union si_shader_part_key *key)
6368 {
6369 return key->ps_prolog.colors_read ||
6370 key->ps_prolog.states.force_persp_sample_interp ||
6371 key->ps_prolog.states.force_linear_sample_interp ||
6372 key->ps_prolog.states.force_persp_center_interp ||
6373 key->ps_prolog.states.force_linear_center_interp ||
6374 key->ps_prolog.states.bc_optimize_for_persp ||
6375 key->ps_prolog.states.bc_optimize_for_linear ||
6376 key->ps_prolog.states.poly_stipple ||
6377 key->ps_prolog.states.samplemask_log_ps_iter;
6378 }
6379
6380 /**
6381 * Compute the PS epilog key, which contains all the information needed to
6382 * build the PS epilog function.
6383 */
6384 static void si_get_ps_epilog_key(struct si_shader *shader,
6385 union si_shader_part_key *key)
6386 {
6387 struct tgsi_shader_info *info = &shader->selector->info;
6388 memset(key, 0, sizeof(*key));
6389 key->ps_epilog.colors_written = info->colors_written;
6390 key->ps_epilog.writes_z = info->writes_z;
6391 key->ps_epilog.writes_stencil = info->writes_stencil;
6392 key->ps_epilog.writes_samplemask = info->writes_samplemask;
6393 key->ps_epilog.states = shader->key.part.ps.epilog;
6394 }
6395
6396 /**
6397 * Build the GS prolog function. Rotate the input vertices for triangle strips
6398 * with adjacency.
6399 */
6400 static void si_build_gs_prolog_function(struct si_shader_context *ctx,
6401 union si_shader_part_key *key)
6402 {
6403 unsigned num_sgprs, num_vgprs;
6404 struct si_function_info fninfo;
6405 LLVMBuilderRef builder = ctx->ac.builder;
6406 LLVMTypeRef returns[48];
6407 LLVMValueRef func, ret;
6408
6409 si_init_function_info(&fninfo);
6410
6411 if (ctx->screen->info.chip_class >= GFX9) {
6412 if (key->gs_prolog.states.gfx9_prev_is_vs)
6413 num_sgprs = 8 + GFX9_VSGS_NUM_USER_SGPR;
6414 else
6415 num_sgprs = 8 + GFX9_TESGS_NUM_USER_SGPR;
6416 num_vgprs = 5; /* ES inputs are not needed by GS */
6417 } else {
6418 num_sgprs = GFX6_GS_NUM_USER_SGPR + 2;
6419 num_vgprs = 8;
6420 }
6421
6422 for (unsigned i = 0; i < num_sgprs; ++i) {
6423 add_arg(&fninfo, ARG_SGPR, ctx->i32);
6424 returns[i] = ctx->i32;
6425 }
6426
6427 for (unsigned i = 0; i < num_vgprs; ++i) {
6428 add_arg(&fninfo, ARG_VGPR, ctx->i32);
6429 returns[num_sgprs + i] = ctx->f32;
6430 }
6431
6432 /* Create the function. */
6433 si_create_function(ctx, "gs_prolog", returns, num_sgprs + num_vgprs,
6434 &fninfo, 0);
6435 func = ctx->main_fn;
6436
6437 /* Set the full EXEC mask for the prolog, because we are only fiddling
6438 * with registers here. The main shader part will set the correct EXEC
6439 * mask.
6440 */
6441 if (ctx->screen->info.chip_class >= GFX9 && !key->gs_prolog.is_monolithic)
6442 ac_init_exec_full_mask(&ctx->ac);
6443
6444 /* Copy inputs to outputs. This should be no-op, as the registers match,
6445 * but it will prevent the compiler from overwriting them unintentionally.
6446 */
6447 ret = ctx->return_value;
6448 for (unsigned i = 0; i < num_sgprs; i++) {
6449 LLVMValueRef p = LLVMGetParam(func, i);
6450 ret = LLVMBuildInsertValue(builder, ret, p, i, "");
6451 }
6452 for (unsigned i = 0; i < num_vgprs; i++) {
6453 LLVMValueRef p = LLVMGetParam(func, num_sgprs + i);
6454 p = ac_to_float(&ctx->ac, p);
6455 ret = LLVMBuildInsertValue(builder, ret, p, num_sgprs + i, "");
6456 }
6457
6458 if (key->gs_prolog.states.tri_strip_adj_fix) {
6459 /* Remap the input vertices for every other primitive. */
6460 const unsigned gfx6_vtx_params[6] = {
6461 num_sgprs,
6462 num_sgprs + 1,
6463 num_sgprs + 3,
6464 num_sgprs + 4,
6465 num_sgprs + 5,
6466 num_sgprs + 6
6467 };
6468 const unsigned gfx9_vtx_params[3] = {
6469 num_sgprs,
6470 num_sgprs + 1,
6471 num_sgprs + 4,
6472 };
6473 LLVMValueRef vtx_in[6], vtx_out[6];
6474 LLVMValueRef prim_id, rotate;
6475
6476 if (ctx->screen->info.chip_class >= GFX9) {
6477 for (unsigned i = 0; i < 3; i++) {
6478 vtx_in[i*2] = si_unpack_param(ctx, gfx9_vtx_params[i], 0, 16);
6479 vtx_in[i*2+1] = si_unpack_param(ctx, gfx9_vtx_params[i], 16, 16);
6480 }
6481 } else {
6482 for (unsigned i = 0; i < 6; i++)
6483 vtx_in[i] = LLVMGetParam(func, gfx6_vtx_params[i]);
6484 }
6485
6486 prim_id = LLVMGetParam(func, num_sgprs + 2);
6487 rotate = LLVMBuildTrunc(builder, prim_id, ctx->i1, "");
6488
6489 for (unsigned i = 0; i < 6; ++i) {
6490 LLVMValueRef base, rotated;
6491 base = vtx_in[i];
6492 rotated = vtx_in[(i + 4) % 6];
6493 vtx_out[i] = LLVMBuildSelect(builder, rotate, rotated, base, "");
6494 }
6495
6496 if (ctx->screen->info.chip_class >= GFX9) {
6497 for (unsigned i = 0; i < 3; i++) {
6498 LLVMValueRef hi, out;
6499
6500 hi = LLVMBuildShl(builder, vtx_out[i*2+1],
6501 LLVMConstInt(ctx->i32, 16, 0), "");
6502 out = LLVMBuildOr(builder, vtx_out[i*2], hi, "");
6503 out = ac_to_float(&ctx->ac, out);
6504 ret = LLVMBuildInsertValue(builder, ret, out,
6505 gfx9_vtx_params[i], "");
6506 }
6507 } else {
6508 for (unsigned i = 0; i < 6; i++) {
6509 LLVMValueRef out;
6510
6511 out = ac_to_float(&ctx->ac, vtx_out[i]);
6512 ret = LLVMBuildInsertValue(builder, ret, out,
6513 gfx6_vtx_params[i], "");
6514 }
6515 }
6516 }
6517
6518 LLVMBuildRet(builder, ret);
6519 }
6520
6521 /**
6522 * Given a list of shader part functions, build a wrapper function that
6523 * runs them in sequence to form a monolithic shader.
6524 */
6525 static void si_build_wrapper_function(struct si_shader_context *ctx,
6526 LLVMValueRef *parts,
6527 unsigned num_parts,
6528 unsigned main_part,
6529 unsigned next_shader_first_part)
6530 {
6531 LLVMBuilderRef builder = ctx->ac.builder;
6532 /* PS epilog has one arg per color component; gfx9 merged shader
6533 * prologs need to forward 32 user SGPRs.
6534 */
6535 struct si_function_info fninfo;
6536 LLVMValueRef initial[64], out[64];
6537 LLVMTypeRef function_type;
6538 unsigned num_first_params;
6539 unsigned num_out, initial_num_out;
6540 MAYBE_UNUSED unsigned num_out_sgpr; /* used in debug checks */
6541 MAYBE_UNUSED unsigned initial_num_out_sgpr; /* used in debug checks */
6542 unsigned num_sgprs, num_vgprs;
6543 unsigned gprs;
6544 struct lp_build_if_state if_state;
6545
6546 si_init_function_info(&fninfo);
6547
6548 for (unsigned i = 0; i < num_parts; ++i) {
6549 ac_add_function_attr(ctx->ac.context, parts[i], -1,
6550 AC_FUNC_ATTR_ALWAYSINLINE);
6551 LLVMSetLinkage(parts[i], LLVMPrivateLinkage);
6552 }
6553
6554 /* The parameters of the wrapper function correspond to those of the
6555 * first part in terms of SGPRs and VGPRs, but we use the types of the
6556 * main part to get the right types. This is relevant for the
6557 * dereferenceable attribute on descriptor table pointers.
6558 */
6559 num_sgprs = 0;
6560 num_vgprs = 0;
6561
6562 function_type = LLVMGetElementType(LLVMTypeOf(parts[0]));
6563 num_first_params = LLVMCountParamTypes(function_type);
6564
6565 for (unsigned i = 0; i < num_first_params; ++i) {
6566 LLVMValueRef param = LLVMGetParam(parts[0], i);
6567
6568 if (ac_is_sgpr_param(param)) {
6569 assert(num_vgprs == 0);
6570 num_sgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6571 } else {
6572 num_vgprs += ac_get_type_size(LLVMTypeOf(param)) / 4;
6573 }
6574 }
6575
6576 gprs = 0;
6577 while (gprs < num_sgprs + num_vgprs) {
6578 LLVMValueRef param = LLVMGetParam(parts[main_part], fninfo.num_params);
6579 LLVMTypeRef type = LLVMTypeOf(param);
6580 unsigned size = ac_get_type_size(type) / 4;
6581
6582 add_arg(&fninfo, gprs < num_sgprs ? ARG_SGPR : ARG_VGPR, type);
6583
6584 assert(ac_is_sgpr_param(param) == (gprs < num_sgprs));
6585 assert(gprs + size <= num_sgprs + num_vgprs &&
6586 (gprs >= num_sgprs || gprs + size <= num_sgprs));
6587
6588 gprs += size;
6589 }
6590
6591 si_create_function(ctx, "wrapper", NULL, 0, &fninfo,
6592 si_get_max_workgroup_size(ctx->shader));
6593
6594 if (is_merged_shader(ctx->shader))
6595 ac_init_exec_full_mask(&ctx->ac);
6596
6597 /* Record the arguments of the function as if they were an output of
6598 * a previous part.
6599 */
6600 num_out = 0;
6601 num_out_sgpr = 0;
6602
6603 for (unsigned i = 0; i < fninfo.num_params; ++i) {
6604 LLVMValueRef param = LLVMGetParam(ctx->main_fn, i);
6605 LLVMTypeRef param_type = LLVMTypeOf(param);
6606 LLVMTypeRef out_type = i < fninfo.num_sgpr_params ? ctx->i32 : ctx->f32;
6607 unsigned size = ac_get_type_size(param_type) / 4;
6608
6609 if (size == 1) {
6610 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6611 param = LLVMBuildPtrToInt(builder, param, ctx->i32, "");
6612 param_type = ctx->i32;
6613 }
6614
6615 if (param_type != out_type)
6616 param = LLVMBuildBitCast(builder, param, out_type, "");
6617 out[num_out++] = param;
6618 } else {
6619 LLVMTypeRef vector_type = LLVMVectorType(out_type, size);
6620
6621 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6622 param = LLVMBuildPtrToInt(builder, param, ctx->i64, "");
6623 param_type = ctx->i64;
6624 }
6625
6626 if (param_type != vector_type)
6627 param = LLVMBuildBitCast(builder, param, vector_type, "");
6628
6629 for (unsigned j = 0; j < size; ++j)
6630 out[num_out++] = LLVMBuildExtractElement(
6631 builder, param, LLVMConstInt(ctx->i32, j, 0), "");
6632 }
6633
6634 if (i < fninfo.num_sgpr_params)
6635 num_out_sgpr = num_out;
6636 }
6637
6638 memcpy(initial, out, sizeof(out));
6639 initial_num_out = num_out;
6640 initial_num_out_sgpr = num_out_sgpr;
6641
6642 /* Now chain the parts. */
6643 for (unsigned part = 0; part < num_parts; ++part) {
6644 LLVMValueRef in[48];
6645 LLVMValueRef ret;
6646 LLVMTypeRef ret_type;
6647 unsigned out_idx = 0;
6648 unsigned num_params = LLVMCountParams(parts[part]);
6649
6650 /* Merged shaders are executed conditionally depending
6651 * on the number of enabled threads passed in the input SGPRs. */
6652 if (is_merged_shader(ctx->shader) && part == 0) {
6653 LLVMValueRef ena, count = initial[3];
6654
6655 count = LLVMBuildAnd(builder, count,
6656 LLVMConstInt(ctx->i32, 0x7f, 0), "");
6657 ena = LLVMBuildICmp(builder, LLVMIntULT,
6658 ac_get_thread_id(&ctx->ac), count, "");
6659 lp_build_if(&if_state, &ctx->gallivm, ena);
6660 }
6661
6662 /* Derive arguments for the next part from outputs of the
6663 * previous one.
6664 */
6665 for (unsigned param_idx = 0; param_idx < num_params; ++param_idx) {
6666 LLVMValueRef param;
6667 LLVMTypeRef param_type;
6668 bool is_sgpr;
6669 unsigned param_size;
6670 LLVMValueRef arg = NULL;
6671
6672 param = LLVMGetParam(parts[part], param_idx);
6673 param_type = LLVMTypeOf(param);
6674 param_size = ac_get_type_size(param_type) / 4;
6675 is_sgpr = ac_is_sgpr_param(param);
6676
6677 if (is_sgpr) {
6678 ac_add_function_attr(ctx->ac.context, parts[part],
6679 param_idx + 1, AC_FUNC_ATTR_INREG);
6680 } else if (out_idx < num_out_sgpr) {
6681 /* Skip returned SGPRs the current part doesn't
6682 * declare on the input. */
6683 out_idx = num_out_sgpr;
6684 }
6685
6686 assert(out_idx + param_size <= (is_sgpr ? num_out_sgpr : num_out));
6687
6688 if (param_size == 1)
6689 arg = out[out_idx];
6690 else
6691 arg = ac_build_gather_values(&ctx->ac, &out[out_idx], param_size);
6692
6693 if (LLVMTypeOf(arg) != param_type) {
6694 if (LLVMGetTypeKind(param_type) == LLVMPointerTypeKind) {
6695 if (LLVMGetPointerAddressSpace(param_type) ==
6696 AC_CONST_32BIT_ADDR_SPACE) {
6697 arg = LLVMBuildBitCast(builder, arg, ctx->i32, "");
6698 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6699 } else {
6700 arg = LLVMBuildBitCast(builder, arg, ctx->i64, "");
6701 arg = LLVMBuildIntToPtr(builder, arg, param_type, "");
6702 }
6703 } else {
6704 arg = LLVMBuildBitCast(builder, arg, param_type, "");
6705 }
6706 }
6707
6708 in[param_idx] = arg;
6709 out_idx += param_size;
6710 }
6711
6712 ret = LLVMBuildCall(builder, parts[part], in, num_params, "");
6713
6714 if (is_merged_shader(ctx->shader) &&
6715 part + 1 == next_shader_first_part) {
6716 lp_build_endif(&if_state);
6717
6718 /* The second half of the merged shader should use
6719 * the inputs from the toplevel (wrapper) function,
6720 * not the return value from the last call.
6721 *
6722 * That's because the last call was executed condi-
6723 * tionally, so we can't consume it in the main
6724 * block.
6725 */
6726 memcpy(out, initial, sizeof(initial));
6727 num_out = initial_num_out;
6728 num_out_sgpr = initial_num_out_sgpr;
6729 continue;
6730 }
6731
6732 /* Extract the returned GPRs. */
6733 ret_type = LLVMTypeOf(ret);
6734 num_out = 0;
6735 num_out_sgpr = 0;
6736
6737 if (LLVMGetTypeKind(ret_type) != LLVMVoidTypeKind) {
6738 assert(LLVMGetTypeKind(ret_type) == LLVMStructTypeKind);
6739
6740 unsigned ret_size = LLVMCountStructElementTypes(ret_type);
6741
6742 for (unsigned i = 0; i < ret_size; ++i) {
6743 LLVMValueRef val =
6744 LLVMBuildExtractValue(builder, ret, i, "");
6745
6746 assert(num_out < ARRAY_SIZE(out));
6747 out[num_out++] = val;
6748
6749 if (LLVMTypeOf(val) == ctx->i32) {
6750 assert(num_out_sgpr + 1 == num_out);
6751 num_out_sgpr = num_out;
6752 }
6753 }
6754 }
6755 }
6756
6757 LLVMBuildRetVoid(builder);
6758 }
6759
6760 int si_compile_tgsi_shader(struct si_screen *sscreen,
6761 struct si_compiler *compiler,
6762 struct si_shader *shader,
6763 struct pipe_debug_callback *debug)
6764 {
6765 struct si_shader_selector *sel = shader->selector;
6766 struct si_shader_context ctx;
6767 int r = -1;
6768
6769 /* Dump TGSI code before doing TGSI->LLVM conversion in case the
6770 * conversion fails. */
6771 if (si_can_dump_shader(sscreen, sel->info.processor) &&
6772 !(sscreen->debug_flags & DBG(NO_TGSI))) {
6773 if (sel->tokens)
6774 tgsi_dump(sel->tokens, 0);
6775 else
6776 nir_print_shader(sel->nir, stderr);
6777 si_dump_streamout(&sel->so);
6778 }
6779
6780 si_init_shader_ctx(&ctx, sscreen, compiler);
6781 si_llvm_context_set_tgsi(&ctx, shader);
6782
6783 memset(shader->info.vs_output_param_offset, AC_EXP_PARAM_UNDEFINED,
6784 sizeof(shader->info.vs_output_param_offset));
6785
6786 shader->info.uses_instanceid = sel->info.uses_instanceid;
6787
6788 if (!si_compile_tgsi_main(&ctx)) {
6789 si_llvm_dispose(&ctx);
6790 return -1;
6791 }
6792
6793 if (shader->is_monolithic && ctx.type == PIPE_SHADER_VERTEX) {
6794 LLVMValueRef parts[2];
6795 bool need_prolog = sel->vs_needs_prolog;
6796
6797 parts[1] = ctx.main_fn;
6798
6799 if (need_prolog) {
6800 union si_shader_part_key prolog_key;
6801 si_get_vs_prolog_key(&sel->info,
6802 shader->info.num_input_sgprs,
6803 &shader->key.part.vs.prolog,
6804 shader, &prolog_key);
6805 si_build_vs_prolog_function(&ctx, &prolog_key);
6806 parts[0] = ctx.main_fn;
6807 }
6808
6809 si_build_wrapper_function(&ctx, parts + !need_prolog,
6810 1 + need_prolog, need_prolog, 0);
6811 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_TESS_CTRL) {
6812 if (sscreen->info.chip_class >= GFX9) {
6813 struct si_shader_selector *ls = shader->key.part.tcs.ls;
6814 LLVMValueRef parts[4];
6815 bool vs_needs_prolog =
6816 si_vs_needs_prolog(ls, &shader->key.part.tcs.ls_prolog);
6817
6818 /* TCS main part */
6819 parts[2] = ctx.main_fn;
6820
6821 /* TCS epilog */
6822 union si_shader_part_key tcs_epilog_key;
6823 memset(&tcs_epilog_key, 0, sizeof(tcs_epilog_key));
6824 tcs_epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6825 si_build_tcs_epilog_function(&ctx, &tcs_epilog_key);
6826 parts[3] = ctx.main_fn;
6827
6828 /* VS as LS main part */
6829 struct si_shader shader_ls = {};
6830 shader_ls.selector = ls;
6831 shader_ls.key.as_ls = 1;
6832 shader_ls.key.mono = shader->key.mono;
6833 shader_ls.key.opt = shader->key.opt;
6834 shader_ls.is_monolithic = true;
6835 si_llvm_context_set_tgsi(&ctx, &shader_ls);
6836
6837 if (!si_compile_tgsi_main(&ctx)) {
6838 si_llvm_dispose(&ctx);
6839 return -1;
6840 }
6841 shader->info.uses_instanceid |= ls->info.uses_instanceid;
6842 parts[1] = ctx.main_fn;
6843
6844 /* LS prolog */
6845 if (vs_needs_prolog) {
6846 union si_shader_part_key vs_prolog_key;
6847 si_get_vs_prolog_key(&ls->info,
6848 shader_ls.info.num_input_sgprs,
6849 &shader->key.part.tcs.ls_prolog,
6850 shader, &vs_prolog_key);
6851 vs_prolog_key.vs_prolog.is_monolithic = true;
6852 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6853 parts[0] = ctx.main_fn;
6854 }
6855
6856 /* Reset the shader context. */
6857 ctx.shader = shader;
6858 ctx.type = PIPE_SHADER_TESS_CTRL;
6859
6860 si_build_wrapper_function(&ctx,
6861 parts + !vs_needs_prolog,
6862 4 - !vs_needs_prolog, vs_needs_prolog,
6863 vs_needs_prolog ? 2 : 1);
6864 } else {
6865 LLVMValueRef parts[2];
6866 union si_shader_part_key epilog_key;
6867
6868 parts[0] = ctx.main_fn;
6869
6870 memset(&epilog_key, 0, sizeof(epilog_key));
6871 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
6872 si_build_tcs_epilog_function(&ctx, &epilog_key);
6873 parts[1] = ctx.main_fn;
6874
6875 si_build_wrapper_function(&ctx, parts, 2, 0, 0);
6876 }
6877 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_GEOMETRY) {
6878 if (ctx.screen->info.chip_class >= GFX9) {
6879 struct si_shader_selector *es = shader->key.part.gs.es;
6880 LLVMValueRef es_prolog = NULL;
6881 LLVMValueRef es_main = NULL;
6882 LLVMValueRef gs_prolog = NULL;
6883 LLVMValueRef gs_main = ctx.main_fn;
6884
6885 /* GS prolog */
6886 union si_shader_part_key gs_prolog_key;
6887 memset(&gs_prolog_key, 0, sizeof(gs_prolog_key));
6888 gs_prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6889 gs_prolog_key.gs_prolog.is_monolithic = true;
6890 si_build_gs_prolog_function(&ctx, &gs_prolog_key);
6891 gs_prolog = ctx.main_fn;
6892
6893 /* ES main part */
6894 struct si_shader shader_es = {};
6895 shader_es.selector = es;
6896 shader_es.key.as_es = 1;
6897 shader_es.key.mono = shader->key.mono;
6898 shader_es.key.opt = shader->key.opt;
6899 shader_es.is_monolithic = true;
6900 si_llvm_context_set_tgsi(&ctx, &shader_es);
6901
6902 if (!si_compile_tgsi_main(&ctx)) {
6903 si_llvm_dispose(&ctx);
6904 return -1;
6905 }
6906 shader->info.uses_instanceid |= es->info.uses_instanceid;
6907 es_main = ctx.main_fn;
6908
6909 /* ES prolog */
6910 if (es->vs_needs_prolog) {
6911 union si_shader_part_key vs_prolog_key;
6912 si_get_vs_prolog_key(&es->info,
6913 shader_es.info.num_input_sgprs,
6914 &shader->key.part.gs.vs_prolog,
6915 shader, &vs_prolog_key);
6916 vs_prolog_key.vs_prolog.is_monolithic = true;
6917 si_build_vs_prolog_function(&ctx, &vs_prolog_key);
6918 es_prolog = ctx.main_fn;
6919 }
6920
6921 /* Reset the shader context. */
6922 ctx.shader = shader;
6923 ctx.type = PIPE_SHADER_GEOMETRY;
6924
6925 /* Prepare the array of shader parts. */
6926 LLVMValueRef parts[4];
6927 unsigned num_parts = 0, main_part, next_first_part;
6928
6929 if (es_prolog)
6930 parts[num_parts++] = es_prolog;
6931
6932 parts[main_part = num_parts++] = es_main;
6933 parts[next_first_part = num_parts++] = gs_prolog;
6934 parts[num_parts++] = gs_main;
6935
6936 si_build_wrapper_function(&ctx, parts, num_parts,
6937 main_part, next_first_part);
6938 } else {
6939 LLVMValueRef parts[2];
6940 union si_shader_part_key prolog_key;
6941
6942 parts[1] = ctx.main_fn;
6943
6944 memset(&prolog_key, 0, sizeof(prolog_key));
6945 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
6946 si_build_gs_prolog_function(&ctx, &prolog_key);
6947 parts[0] = ctx.main_fn;
6948
6949 si_build_wrapper_function(&ctx, parts, 2, 1, 0);
6950 }
6951 } else if (shader->is_monolithic && ctx.type == PIPE_SHADER_FRAGMENT) {
6952 LLVMValueRef parts[3];
6953 union si_shader_part_key prolog_key;
6954 union si_shader_part_key epilog_key;
6955 bool need_prolog;
6956
6957 si_get_ps_prolog_key(shader, &prolog_key, false);
6958 need_prolog = si_need_ps_prolog(&prolog_key);
6959
6960 parts[need_prolog ? 1 : 0] = ctx.main_fn;
6961
6962 if (need_prolog) {
6963 si_build_ps_prolog_function(&ctx, &prolog_key);
6964 parts[0] = ctx.main_fn;
6965 }
6966
6967 si_get_ps_epilog_key(shader, &epilog_key);
6968 si_build_ps_epilog_function(&ctx, &epilog_key);
6969 parts[need_prolog ? 2 : 1] = ctx.main_fn;
6970
6971 si_build_wrapper_function(&ctx, parts, need_prolog ? 3 : 2,
6972 need_prolog ? 1 : 0, 0);
6973 }
6974
6975 si_llvm_optimize_module(&ctx);
6976
6977 /* Post-optimization transformations and analysis. */
6978 si_optimize_vs_outputs(&ctx);
6979
6980 if ((debug && debug->debug_message) ||
6981 si_can_dump_shader(sscreen, ctx.type)) {
6982 ctx.shader->config.private_mem_vgprs =
6983 ac_count_scratch_private_memory(ctx.main_fn);
6984 }
6985
6986 /* Make sure the input is a pointer and not integer followed by inttoptr. */
6987 assert(LLVMGetTypeKind(LLVMTypeOf(LLVMGetParam(ctx.main_fn, 0))) ==
6988 LLVMPointerTypeKind);
6989
6990 /* Compile to bytecode. */
6991 r = si_compile_llvm(sscreen, &shader->binary, &shader->config, compiler,
6992 ctx.ac.module, debug, ctx.type, "TGSI shader");
6993 si_llvm_dispose(&ctx);
6994 if (r) {
6995 fprintf(stderr, "LLVM failed to compile shader\n");
6996 return r;
6997 }
6998
6999 /* Validate SGPR and VGPR usage for compute to detect compiler bugs.
7000 * LLVM 3.9svn has this bug.
7001 */
7002 if (sel->type == PIPE_SHADER_COMPUTE) {
7003 unsigned wave_size = 64;
7004 unsigned max_vgprs = 256;
7005 unsigned max_sgprs = sscreen->info.chip_class >= VI ? 800 : 512;
7006 unsigned max_sgprs_per_wave = 128;
7007 unsigned max_block_threads = si_get_max_workgroup_size(shader);
7008 unsigned min_waves_per_cu = DIV_ROUND_UP(max_block_threads, wave_size);
7009 unsigned min_waves_per_simd = DIV_ROUND_UP(min_waves_per_cu, 4);
7010
7011 max_vgprs = max_vgprs / min_waves_per_simd;
7012 max_sgprs = MIN2(max_sgprs / min_waves_per_simd, max_sgprs_per_wave);
7013
7014 if (shader->config.num_sgprs > max_sgprs ||
7015 shader->config.num_vgprs > max_vgprs) {
7016 fprintf(stderr, "LLVM failed to compile a shader correctly: "
7017 "SGPR:VGPR usage is %u:%u, but the hw limit is %u:%u\n",
7018 shader->config.num_sgprs, shader->config.num_vgprs,
7019 max_sgprs, max_vgprs);
7020
7021 /* Just terminate the process, because dependent
7022 * shaders can hang due to bad input data, but use
7023 * the env var to allow shader-db to work.
7024 */
7025 if (!debug_get_bool_option("SI_PASS_BAD_SHADERS", false))
7026 abort();
7027 }
7028 }
7029
7030 /* Add the scratch offset to input SGPRs. */
7031 if (shader->config.scratch_bytes_per_wave && !is_merged_shader(shader))
7032 shader->info.num_input_sgprs += 1; /* scratch byte offset */
7033
7034 /* Calculate the number of fragment input VGPRs. */
7035 if (ctx.type == PIPE_SHADER_FRAGMENT) {
7036 shader->info.num_input_vgprs = 0;
7037 shader->info.face_vgpr_index = -1;
7038 shader->info.ancillary_vgpr_index = -1;
7039
7040 if (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7041 shader->info.num_input_vgprs += 2;
7042 if (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr))
7043 shader->info.num_input_vgprs += 2;
7044 if (G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_addr))
7045 shader->info.num_input_vgprs += 2;
7046 if (G_0286CC_PERSP_PULL_MODEL_ENA(shader->config.spi_ps_input_addr))
7047 shader->info.num_input_vgprs += 3;
7048 if (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_addr))
7049 shader->info.num_input_vgprs += 2;
7050 if (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr))
7051 shader->info.num_input_vgprs += 2;
7052 if (G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_addr))
7053 shader->info.num_input_vgprs += 2;
7054 if (G_0286CC_LINE_STIPPLE_TEX_ENA(shader->config.spi_ps_input_addr))
7055 shader->info.num_input_vgprs += 1;
7056 if (G_0286CC_POS_X_FLOAT_ENA(shader->config.spi_ps_input_addr))
7057 shader->info.num_input_vgprs += 1;
7058 if (G_0286CC_POS_Y_FLOAT_ENA(shader->config.spi_ps_input_addr))
7059 shader->info.num_input_vgprs += 1;
7060 if (G_0286CC_POS_Z_FLOAT_ENA(shader->config.spi_ps_input_addr))
7061 shader->info.num_input_vgprs += 1;
7062 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_addr))
7063 shader->info.num_input_vgprs += 1;
7064 if (G_0286CC_FRONT_FACE_ENA(shader->config.spi_ps_input_addr)) {
7065 shader->info.face_vgpr_index = shader->info.num_input_vgprs;
7066 shader->info.num_input_vgprs += 1;
7067 }
7068 if (G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr)) {
7069 shader->info.ancillary_vgpr_index = shader->info.num_input_vgprs;
7070 shader->info.num_input_vgprs += 1;
7071 }
7072 if (G_0286CC_SAMPLE_COVERAGE_ENA(shader->config.spi_ps_input_addr))
7073 shader->info.num_input_vgprs += 1;
7074 if (G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr))
7075 shader->info.num_input_vgprs += 1;
7076 }
7077
7078 si_calculate_max_simd_waves(shader);
7079 si_shader_dump_stats_for_shader_db(shader, debug);
7080 return 0;
7081 }
7082
7083 /**
7084 * Create, compile and return a shader part (prolog or epilog).
7085 *
7086 * \param sscreen screen
7087 * \param list list of shader parts of the same category
7088 * \param type shader type
7089 * \param key shader part key
7090 * \param prolog whether the part being requested is a prolog
7091 * \param tm LLVM target machine
7092 * \param debug debug callback
7093 * \param build the callback responsible for building the main function
7094 * \return non-NULL on success
7095 */
7096 static struct si_shader_part *
7097 si_get_shader_part(struct si_screen *sscreen,
7098 struct si_shader_part **list,
7099 enum pipe_shader_type type,
7100 bool prolog,
7101 union si_shader_part_key *key,
7102 struct si_compiler *compiler,
7103 struct pipe_debug_callback *debug,
7104 void (*build)(struct si_shader_context *,
7105 union si_shader_part_key *),
7106 const char *name)
7107 {
7108 struct si_shader_part *result;
7109
7110 mtx_lock(&sscreen->shader_parts_mutex);
7111
7112 /* Find existing. */
7113 for (result = *list; result; result = result->next) {
7114 if (memcmp(&result->key, key, sizeof(*key)) == 0) {
7115 mtx_unlock(&sscreen->shader_parts_mutex);
7116 return result;
7117 }
7118 }
7119
7120 /* Compile a new one. */
7121 result = CALLOC_STRUCT(si_shader_part);
7122 result->key = *key;
7123
7124 struct si_shader shader = {};
7125 struct si_shader_context ctx;
7126
7127 si_init_shader_ctx(&ctx, sscreen, compiler);
7128 ctx.shader = &shader;
7129 ctx.type = type;
7130
7131 switch (type) {
7132 case PIPE_SHADER_VERTEX:
7133 shader.key.as_ls = key->vs_prolog.as_ls;
7134 shader.key.as_es = key->vs_prolog.as_es;
7135 break;
7136 case PIPE_SHADER_TESS_CTRL:
7137 assert(!prolog);
7138 shader.key.part.tcs.epilog = key->tcs_epilog.states;
7139 break;
7140 case PIPE_SHADER_GEOMETRY:
7141 assert(prolog);
7142 break;
7143 case PIPE_SHADER_FRAGMENT:
7144 if (prolog)
7145 shader.key.part.ps.prolog = key->ps_prolog.states;
7146 else
7147 shader.key.part.ps.epilog = key->ps_epilog.states;
7148 break;
7149 default:
7150 unreachable("bad shader part");
7151 }
7152
7153 build(&ctx, key);
7154
7155 /* Compile. */
7156 si_llvm_optimize_module(&ctx);
7157
7158 if (si_compile_llvm(sscreen, &result->binary, &result->config, compiler,
7159 ctx.ac.module, debug, ctx.type, name)) {
7160 FREE(result);
7161 result = NULL;
7162 goto out;
7163 }
7164
7165 result->next = *list;
7166 *list = result;
7167
7168 out:
7169 si_llvm_dispose(&ctx);
7170 mtx_unlock(&sscreen->shader_parts_mutex);
7171 return result;
7172 }
7173
7174 static LLVMValueRef si_prolog_get_rw_buffers(struct si_shader_context *ctx)
7175 {
7176 LLVMValueRef ptr[2], list;
7177 bool is_merged_shader =
7178 ctx->screen->info.chip_class >= GFX9 &&
7179 (ctx->type == PIPE_SHADER_TESS_CTRL ||
7180 ctx->type == PIPE_SHADER_GEOMETRY ||
7181 ctx->shader->key.as_ls || ctx->shader->key.as_es);
7182
7183 if (HAVE_32BIT_POINTERS) {
7184 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7185 list = LLVMBuildIntToPtr(ctx->ac.builder, ptr[0],
7186 ac_array_in_const32_addr_space(ctx->v4i32), "");
7187 return list;
7188 }
7189
7190 /* Get the pointer to rw buffers. */
7191 ptr[0] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS);
7192 ptr[1] = LLVMGetParam(ctx->main_fn, (is_merged_shader ? 8 : 0) + SI_SGPR_RW_BUFFERS + 1);
7193 list = ac_build_gather_values(&ctx->ac, ptr, 2);
7194 list = LLVMBuildBitCast(ctx->ac.builder, list, ctx->i64, "");
7195 list = LLVMBuildIntToPtr(ctx->ac.builder, list,
7196 ac_array_in_const_addr_space(ctx->v4i32), "");
7197 return list;
7198 }
7199
7200 /**
7201 * Build the vertex shader prolog function.
7202 *
7203 * The inputs are the same as VS (a lot of SGPRs and 4 VGPR system values).
7204 * All inputs are returned unmodified. The vertex load indices are
7205 * stored after them, which will be used by the API VS for fetching inputs.
7206 *
7207 * For example, the expected outputs for instance_divisors[] = {0, 1, 2} are:
7208 * input_v0,
7209 * input_v1,
7210 * input_v2,
7211 * input_v3,
7212 * (VertexID + BaseVertex),
7213 * (InstanceID + StartInstance),
7214 * (InstanceID / 2 + StartInstance)
7215 */
7216 static void si_build_vs_prolog_function(struct si_shader_context *ctx,
7217 union si_shader_part_key *key)
7218 {
7219 struct si_function_info fninfo;
7220 LLVMTypeRef *returns;
7221 LLVMValueRef ret, func;
7222 int num_returns, i;
7223 unsigned first_vs_vgpr = key->vs_prolog.num_merged_next_stage_vgprs;
7224 unsigned num_input_vgprs = key->vs_prolog.num_merged_next_stage_vgprs + 4;
7225 LLVMValueRef input_vgprs[9];
7226 unsigned num_all_input_regs = key->vs_prolog.num_input_sgprs +
7227 num_input_vgprs;
7228 unsigned user_sgpr_base = key->vs_prolog.num_merged_next_stage_vgprs ? 8 : 0;
7229
7230 si_init_function_info(&fninfo);
7231
7232 /* 4 preloaded VGPRs + vertex load indices as prolog outputs */
7233 returns = alloca((num_all_input_regs + key->vs_prolog.last_input + 1) *
7234 sizeof(LLVMTypeRef));
7235 num_returns = 0;
7236
7237 /* Declare input and output SGPRs. */
7238 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7239 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7240 returns[num_returns++] = ctx->i32;
7241 }
7242
7243 /* Preloaded VGPRs (outputs must be floats) */
7244 for (i = 0; i < num_input_vgprs; i++) {
7245 add_arg_assign(&fninfo, ARG_VGPR, ctx->i32, &input_vgprs[i]);
7246 returns[num_returns++] = ctx->f32;
7247 }
7248
7249 /* Vertex load indices. */
7250 for (i = 0; i <= key->vs_prolog.last_input; i++)
7251 returns[num_returns++] = ctx->f32;
7252
7253 /* Create the function. */
7254 si_create_function(ctx, "vs_prolog", returns, num_returns, &fninfo, 0);
7255 func = ctx->main_fn;
7256
7257 if (key->vs_prolog.num_merged_next_stage_vgprs) {
7258 if (!key->vs_prolog.is_monolithic)
7259 si_init_exec_from_input(ctx, 3, 0);
7260
7261 if (key->vs_prolog.as_ls &&
7262 ctx->screen->has_ls_vgpr_init_bug) {
7263 /* If there are no HS threads, SPI loads the LS VGPRs
7264 * starting at VGPR 0. Shift them back to where they
7265 * belong.
7266 */
7267 LLVMValueRef has_hs_threads =
7268 LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
7269 si_unpack_param(ctx, 3, 8, 8),
7270 ctx->i32_0, "");
7271
7272 for (i = 4; i > 0; --i) {
7273 input_vgprs[i + 1] =
7274 LLVMBuildSelect(ctx->ac.builder, has_hs_threads,
7275 input_vgprs[i + 1],
7276 input_vgprs[i - 1], "");
7277 }
7278 }
7279 }
7280
7281 ctx->abi.vertex_id = input_vgprs[first_vs_vgpr];
7282 ctx->abi.instance_id = input_vgprs[first_vs_vgpr + (key->vs_prolog.as_ls ? 2 : 1)];
7283
7284 /* Copy inputs to outputs. This should be no-op, as the registers match,
7285 * but it will prevent the compiler from overwriting them unintentionally.
7286 */
7287 ret = ctx->return_value;
7288 for (i = 0; i < key->vs_prolog.num_input_sgprs; i++) {
7289 LLVMValueRef p = LLVMGetParam(func, i);
7290 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7291 }
7292 for (i = 0; i < num_input_vgprs; i++) {
7293 LLVMValueRef p = input_vgprs[i];
7294 p = ac_to_float(&ctx->ac, p);
7295 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p,
7296 key->vs_prolog.num_input_sgprs + i, "");
7297 }
7298
7299 /* Compute vertex load indices from instance divisors. */
7300 LLVMValueRef instance_divisor_constbuf = NULL;
7301
7302 if (key->vs_prolog.states.instance_divisor_is_fetched) {
7303 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7304 LLVMValueRef buf_index =
7305 LLVMConstInt(ctx->i32, SI_VS_CONST_INSTANCE_DIVISORS, 0);
7306 instance_divisor_constbuf =
7307 ac_build_load_to_sgpr(&ctx->ac, list, buf_index);
7308 }
7309
7310 for (i = 0; i <= key->vs_prolog.last_input; i++) {
7311 bool divisor_is_one =
7312 key->vs_prolog.states.instance_divisor_is_one & (1u << i);
7313 bool divisor_is_fetched =
7314 key->vs_prolog.states.instance_divisor_is_fetched & (1u << i);
7315 LLVMValueRef index;
7316
7317 if (divisor_is_one || divisor_is_fetched) {
7318 LLVMValueRef divisor = ctx->i32_1;
7319
7320 if (divisor_is_fetched) {
7321 divisor = buffer_load_const(ctx, instance_divisor_constbuf,
7322 LLVMConstInt(ctx->i32, i * 4, 0));
7323 divisor = ac_to_integer(&ctx->ac, divisor);
7324 }
7325
7326 /* InstanceID / Divisor + StartInstance */
7327 index = get_instance_index_for_fetch(ctx,
7328 user_sgpr_base +
7329 SI_SGPR_START_INSTANCE,
7330 divisor);
7331 } else {
7332 /* VertexID + BaseVertex */
7333 index = LLVMBuildAdd(ctx->ac.builder,
7334 ctx->abi.vertex_id,
7335 LLVMGetParam(func, user_sgpr_base +
7336 SI_SGPR_BASE_VERTEX), "");
7337 }
7338
7339 index = ac_to_float(&ctx->ac, index);
7340 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, index,
7341 fninfo.num_params + i, "");
7342 }
7343
7344 si_llvm_build_ret(ctx, ret);
7345 }
7346
7347 static bool si_get_vs_prolog(struct si_screen *sscreen,
7348 struct si_compiler *compiler,
7349 struct si_shader *shader,
7350 struct pipe_debug_callback *debug,
7351 struct si_shader *main_part,
7352 const struct si_vs_prolog_bits *key)
7353 {
7354 struct si_shader_selector *vs = main_part->selector;
7355
7356 if (!si_vs_needs_prolog(vs, key))
7357 return true;
7358
7359 /* Get the prolog. */
7360 union si_shader_part_key prolog_key;
7361 si_get_vs_prolog_key(&vs->info, main_part->info.num_input_sgprs,
7362 key, shader, &prolog_key);
7363
7364 shader->prolog =
7365 si_get_shader_part(sscreen, &sscreen->vs_prologs,
7366 PIPE_SHADER_VERTEX, true, &prolog_key, compiler,
7367 debug, si_build_vs_prolog_function,
7368 "Vertex Shader Prolog");
7369 return shader->prolog != NULL;
7370 }
7371
7372 /**
7373 * Select and compile (or reuse) vertex shader parts (prolog & epilog).
7374 */
7375 static bool si_shader_select_vs_parts(struct si_screen *sscreen,
7376 struct si_compiler *compiler,
7377 struct si_shader *shader,
7378 struct pipe_debug_callback *debug)
7379 {
7380 return si_get_vs_prolog(sscreen, compiler, shader, debug, shader,
7381 &shader->key.part.vs.prolog);
7382 }
7383
7384 /**
7385 * Compile the TCS epilog function. This writes tesselation factors to memory
7386 * based on the output primitive type of the tesselator (determined by TES).
7387 */
7388 static void si_build_tcs_epilog_function(struct si_shader_context *ctx,
7389 union si_shader_part_key *key)
7390 {
7391 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7392 struct si_function_info fninfo;
7393 LLVMValueRef func;
7394
7395 si_init_function_info(&fninfo);
7396
7397 if (ctx->screen->info.chip_class >= GFX9) {
7398 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7399 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7400 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7401 add_arg(&fninfo, ARG_SGPR, ctx->i32); /* wave info */
7402 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7403 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7404 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7405 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7406 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7407 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7408 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7409 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7410 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7411 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7412 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7413 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7414 if (!HAVE_32BIT_POINTERS)
7415 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7416 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7417 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7418 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7419 } else {
7420 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7421 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7422 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7423 add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7424 ctx->param_tcs_offchip_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7425 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7426 ctx->param_tcs_out_lds_layout = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7427 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7428 ctx->param_tcs_offchip_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7429 ctx->param_tcs_factor_offset = add_arg(&fninfo, ARG_SGPR, ctx->i32);
7430 }
7431
7432 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7433 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* VGPR gap */
7434 unsigned tess_factors_idx =
7435 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* patch index within the wave (REL_PATCH_ID) */
7436 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* invocation ID within the patch */
7437 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* LDS offset where tess factors should be loaded from */
7438
7439 for (unsigned i = 0; i < 6; i++)
7440 add_arg(&fninfo, ARG_VGPR, ctx->i32); /* tess factors */
7441
7442 /* Create the function. */
7443 si_create_function(ctx, "tcs_epilog", NULL, 0, &fninfo,
7444 ctx->screen->info.chip_class >= CIK ? 128 : 64);
7445 ac_declare_lds_as_pointer(&ctx->ac);
7446 func = ctx->main_fn;
7447
7448 LLVMValueRef invoc0_tess_factors[6];
7449 for (unsigned i = 0; i < 6; i++)
7450 invoc0_tess_factors[i] = LLVMGetParam(func, tess_factors_idx + 3 + i);
7451
7452 si_write_tess_factors(bld_base,
7453 LLVMGetParam(func, tess_factors_idx),
7454 LLVMGetParam(func, tess_factors_idx + 1),
7455 LLVMGetParam(func, tess_factors_idx + 2),
7456 invoc0_tess_factors, invoc0_tess_factors + 4);
7457
7458 LLVMBuildRetVoid(ctx->ac.builder);
7459 }
7460
7461 /**
7462 * Select and compile (or reuse) TCS parts (epilog).
7463 */
7464 static bool si_shader_select_tcs_parts(struct si_screen *sscreen,
7465 struct si_compiler *compiler,
7466 struct si_shader *shader,
7467 struct pipe_debug_callback *debug)
7468 {
7469 if (sscreen->info.chip_class >= GFX9) {
7470 struct si_shader *ls_main_part =
7471 shader->key.part.tcs.ls->main_shader_part_ls;
7472
7473 if (!si_get_vs_prolog(sscreen, compiler, shader, debug, ls_main_part,
7474 &shader->key.part.tcs.ls_prolog))
7475 return false;
7476
7477 shader->previous_stage = ls_main_part;
7478 }
7479
7480 /* Get the epilog. */
7481 union si_shader_part_key epilog_key;
7482 memset(&epilog_key, 0, sizeof(epilog_key));
7483 epilog_key.tcs_epilog.states = shader->key.part.tcs.epilog;
7484
7485 shader->epilog = si_get_shader_part(sscreen, &sscreen->tcs_epilogs,
7486 PIPE_SHADER_TESS_CTRL, false,
7487 &epilog_key, compiler, debug,
7488 si_build_tcs_epilog_function,
7489 "Tessellation Control Shader Epilog");
7490 return shader->epilog != NULL;
7491 }
7492
7493 /**
7494 * Select and compile (or reuse) GS parts (prolog).
7495 */
7496 static bool si_shader_select_gs_parts(struct si_screen *sscreen,
7497 struct si_compiler *compiler,
7498 struct si_shader *shader,
7499 struct pipe_debug_callback *debug)
7500 {
7501 if (sscreen->info.chip_class >= GFX9) {
7502 struct si_shader *es_main_part =
7503 shader->key.part.gs.es->main_shader_part_es;
7504
7505 if (shader->key.part.gs.es->type == PIPE_SHADER_VERTEX &&
7506 !si_get_vs_prolog(sscreen, compiler, shader, debug, es_main_part,
7507 &shader->key.part.gs.vs_prolog))
7508 return false;
7509
7510 shader->previous_stage = es_main_part;
7511 }
7512
7513 if (!shader->key.part.gs.prolog.tri_strip_adj_fix)
7514 return true;
7515
7516 union si_shader_part_key prolog_key;
7517 memset(&prolog_key, 0, sizeof(prolog_key));
7518 prolog_key.gs_prolog.states = shader->key.part.gs.prolog;
7519
7520 shader->prolog2 = si_get_shader_part(sscreen, &sscreen->gs_prologs,
7521 PIPE_SHADER_GEOMETRY, true,
7522 &prolog_key, compiler, debug,
7523 si_build_gs_prolog_function,
7524 "Geometry Shader Prolog");
7525 return shader->prolog2 != NULL;
7526 }
7527
7528 /**
7529 * Build the pixel shader prolog function. This handles:
7530 * - two-side color selection and interpolation
7531 * - overriding interpolation parameters for the API PS
7532 * - polygon stippling
7533 *
7534 * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
7535 * overriden by other states. (e.g. per-sample interpolation)
7536 * Interpolated colors are stored after the preloaded VGPRs.
7537 */
7538 static void si_build_ps_prolog_function(struct si_shader_context *ctx,
7539 union si_shader_part_key *key)
7540 {
7541 struct si_function_info fninfo;
7542 LLVMValueRef ret, func;
7543 int num_returns, i, num_color_channels;
7544
7545 assert(si_need_ps_prolog(key));
7546
7547 si_init_function_info(&fninfo);
7548
7549 /* Declare inputs. */
7550 for (i = 0; i < key->ps_prolog.num_input_sgprs; i++)
7551 add_arg(&fninfo, ARG_SGPR, ctx->i32);
7552
7553 for (i = 0; i < key->ps_prolog.num_input_vgprs; i++)
7554 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7555
7556 /* Declare outputs (same as inputs + add colors if needed) */
7557 num_returns = fninfo.num_params;
7558 num_color_channels = util_bitcount(key->ps_prolog.colors_read);
7559 for (i = 0; i < num_color_channels; i++)
7560 fninfo.types[num_returns++] = ctx->f32;
7561
7562 /* Create the function. */
7563 si_create_function(ctx, "ps_prolog", fninfo.types, num_returns,
7564 &fninfo, 0);
7565 func = ctx->main_fn;
7566
7567 /* Copy inputs to outputs. This should be no-op, as the registers match,
7568 * but it will prevent the compiler from overwriting them unintentionally.
7569 */
7570 ret = ctx->return_value;
7571 for (i = 0; i < fninfo.num_params; i++) {
7572 LLVMValueRef p = LLVMGetParam(func, i);
7573 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
7574 }
7575
7576 /* Polygon stippling. */
7577 if (key->ps_prolog.states.poly_stipple) {
7578 /* POS_FIXED_PT is always last. */
7579 unsigned pos = key->ps_prolog.num_input_sgprs +
7580 key->ps_prolog.num_input_vgprs - 1;
7581 LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
7582
7583 si_llvm_emit_polygon_stipple(ctx, list, pos);
7584 }
7585
7586 if (key->ps_prolog.states.bc_optimize_for_persp ||
7587 key->ps_prolog.states.bc_optimize_for_linear) {
7588 unsigned i, base = key->ps_prolog.num_input_sgprs;
7589 LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
7590
7591 /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
7592 * The hw doesn't compute CENTROID if the whole wave only
7593 * contains fully-covered quads.
7594 *
7595 * PRIM_MASK is after user SGPRs.
7596 */
7597 bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7598 bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
7599 LLVMConstInt(ctx->i32, 31, 0), "");
7600 bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
7601 ctx->i1, "");
7602
7603 if (key->ps_prolog.states.bc_optimize_for_persp) {
7604 /* Read PERSP_CENTER. */
7605 for (i = 0; i < 2; i++)
7606 center[i] = LLVMGetParam(func, base + 2 + i);
7607 /* Read PERSP_CENTROID. */
7608 for (i = 0; i < 2; i++)
7609 centroid[i] = LLVMGetParam(func, base + 4 + i);
7610 /* Select PERSP_CENTROID. */
7611 for (i = 0; i < 2; i++) {
7612 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7613 center[i], centroid[i], "");
7614 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7615 tmp, base + 4 + i, "");
7616 }
7617 }
7618 if (key->ps_prolog.states.bc_optimize_for_linear) {
7619 /* Read LINEAR_CENTER. */
7620 for (i = 0; i < 2; i++)
7621 center[i] = LLVMGetParam(func, base + 8 + i);
7622 /* Read LINEAR_CENTROID. */
7623 for (i = 0; i < 2; i++)
7624 centroid[i] = LLVMGetParam(func, base + 10 + i);
7625 /* Select LINEAR_CENTROID. */
7626 for (i = 0; i < 2; i++) {
7627 tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
7628 center[i], centroid[i], "");
7629 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7630 tmp, base + 10 + i, "");
7631 }
7632 }
7633 }
7634
7635 /* Force per-sample interpolation. */
7636 if (key->ps_prolog.states.force_persp_sample_interp) {
7637 unsigned i, base = key->ps_prolog.num_input_sgprs;
7638 LLVMValueRef persp_sample[2];
7639
7640 /* Read PERSP_SAMPLE. */
7641 for (i = 0; i < 2; i++)
7642 persp_sample[i] = LLVMGetParam(func, base + i);
7643 /* Overwrite PERSP_CENTER. */
7644 for (i = 0; i < 2; i++)
7645 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7646 persp_sample[i], base + 2 + i, "");
7647 /* Overwrite PERSP_CENTROID. */
7648 for (i = 0; i < 2; i++)
7649 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7650 persp_sample[i], base + 4 + i, "");
7651 }
7652 if (key->ps_prolog.states.force_linear_sample_interp) {
7653 unsigned i, base = key->ps_prolog.num_input_sgprs;
7654 LLVMValueRef linear_sample[2];
7655
7656 /* Read LINEAR_SAMPLE. */
7657 for (i = 0; i < 2; i++)
7658 linear_sample[i] = LLVMGetParam(func, base + 6 + i);
7659 /* Overwrite LINEAR_CENTER. */
7660 for (i = 0; i < 2; i++)
7661 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7662 linear_sample[i], base + 8 + i, "");
7663 /* Overwrite LINEAR_CENTROID. */
7664 for (i = 0; i < 2; i++)
7665 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7666 linear_sample[i], base + 10 + i, "");
7667 }
7668
7669 /* Force center interpolation. */
7670 if (key->ps_prolog.states.force_persp_center_interp) {
7671 unsigned i, base = key->ps_prolog.num_input_sgprs;
7672 LLVMValueRef persp_center[2];
7673
7674 /* Read PERSP_CENTER. */
7675 for (i = 0; i < 2; i++)
7676 persp_center[i] = LLVMGetParam(func, base + 2 + i);
7677 /* Overwrite PERSP_SAMPLE. */
7678 for (i = 0; i < 2; i++)
7679 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7680 persp_center[i], base + i, "");
7681 /* Overwrite PERSP_CENTROID. */
7682 for (i = 0; i < 2; i++)
7683 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7684 persp_center[i], base + 4 + i, "");
7685 }
7686 if (key->ps_prolog.states.force_linear_center_interp) {
7687 unsigned i, base = key->ps_prolog.num_input_sgprs;
7688 LLVMValueRef linear_center[2];
7689
7690 /* Read LINEAR_CENTER. */
7691 for (i = 0; i < 2; i++)
7692 linear_center[i] = LLVMGetParam(func, base + 8 + i);
7693 /* Overwrite LINEAR_SAMPLE. */
7694 for (i = 0; i < 2; i++)
7695 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7696 linear_center[i], base + 6 + i, "");
7697 /* Overwrite LINEAR_CENTROID. */
7698 for (i = 0; i < 2; i++)
7699 ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
7700 linear_center[i], base + 10 + i, "");
7701 }
7702
7703 /* Interpolate colors. */
7704 unsigned color_out_idx = 0;
7705 for (i = 0; i < 2; i++) {
7706 unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
7707 unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
7708 key->ps_prolog.face_vgpr_index;
7709 LLVMValueRef interp[2], color[4];
7710 LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
7711
7712 if (!writemask)
7713 continue;
7714
7715 /* If the interpolation qualifier is not CONSTANT (-1). */
7716 if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
7717 unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
7718 key->ps_prolog.color_interp_vgpr_index[i];
7719
7720 /* Get the (i,j) updated by bc_optimize handling. */
7721 interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7722 interp_vgpr, "");
7723 interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
7724 interp_vgpr + 1, "");
7725 interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
7726 }
7727
7728 /* Use the absolute location of the input. */
7729 prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
7730
7731 if (key->ps_prolog.states.color_two_side) {
7732 face = LLVMGetParam(func, face_vgpr);
7733 face = ac_to_integer(&ctx->ac, face);
7734 }
7735
7736 interp_fs_input(ctx,
7737 key->ps_prolog.color_attr_index[i],
7738 TGSI_SEMANTIC_COLOR, i,
7739 key->ps_prolog.num_interp_inputs,
7740 key->ps_prolog.colors_read, interp_ij,
7741 prim_mask, face, color);
7742
7743 while (writemask) {
7744 unsigned chan = u_bit_scan(&writemask);
7745 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
7746 fninfo.num_params + color_out_idx++, "");
7747 }
7748 }
7749
7750 /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
7751 * says:
7752 *
7753 * "When per-sample shading is active due to the use of a fragment
7754 * input qualified by sample or due to the use of the gl_SampleID
7755 * or gl_SamplePosition variables, only the bit for the current
7756 * sample is set in gl_SampleMaskIn. When state specifies multiple
7757 * fragment shader invocations for a given fragment, the sample
7758 * mask for any single fragment shader invocation may specify a
7759 * subset of the covered samples for the fragment. In this case,
7760 * the bit corresponding to each covered sample will be set in
7761 * exactly one fragment shader invocation."
7762 *
7763 * The samplemask loaded by hardware is always the coverage of the
7764 * entire pixel/fragment, so mask bits out based on the sample ID.
7765 */
7766 if (key->ps_prolog.states.samplemask_log_ps_iter) {
7767 /* The bit pattern matches that used by fixed function fragment
7768 * processing. */
7769 static const uint16_t ps_iter_masks[] = {
7770 0xffff, /* not used */
7771 0x5555,
7772 0x1111,
7773 0x0101,
7774 0x0001,
7775 };
7776 assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
7777
7778 uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
7779 unsigned ancillary_vgpr = key->ps_prolog.num_input_sgprs +
7780 key->ps_prolog.ancillary_vgpr_index;
7781 LLVMValueRef sampleid = si_unpack_param(ctx, ancillary_vgpr, 8, 4);
7782 LLVMValueRef samplemask = LLVMGetParam(func, ancillary_vgpr + 1);
7783
7784 samplemask = ac_to_integer(&ctx->ac, samplemask);
7785 samplemask = LLVMBuildAnd(
7786 ctx->ac.builder,
7787 samplemask,
7788 LLVMBuildShl(ctx->ac.builder,
7789 LLVMConstInt(ctx->i32, ps_iter_mask, false),
7790 sampleid, ""),
7791 "");
7792 samplemask = ac_to_float(&ctx->ac, samplemask);
7793
7794 ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
7795 ancillary_vgpr + 1, "");
7796 }
7797
7798 /* Tell LLVM to insert WQM instruction sequence when needed. */
7799 if (key->ps_prolog.wqm) {
7800 LLVMAddTargetDependentFunctionAttr(func,
7801 "amdgpu-ps-wqm-outputs", "");
7802 }
7803
7804 si_llvm_build_ret(ctx, ret);
7805 }
7806
7807 /**
7808 * Build the pixel shader epilog function. This handles everything that must be
7809 * emulated for pixel shader exports. (alpha-test, format conversions, etc)
7810 */
7811 static void si_build_ps_epilog_function(struct si_shader_context *ctx,
7812 union si_shader_part_key *key)
7813 {
7814 struct lp_build_tgsi_context *bld_base = &ctx->bld_base;
7815 struct si_function_info fninfo;
7816 LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
7817 int i;
7818 struct si_ps_exports exp = {};
7819
7820 si_init_function_info(&fninfo);
7821
7822 /* Declare input SGPRs. */
7823 ctx->param_rw_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7824 ctx->param_bindless_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7825 ctx->param_const_and_shader_buffers = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7826 ctx->param_samplers_and_images = add_arg(&fninfo, ARG_SGPR, ctx->ac.intptr);
7827 add_arg_checked(&fninfo, ARG_SGPR, ctx->f32, SI_PARAM_ALPHA_REF);
7828
7829 /* Declare input VGPRs. */
7830 unsigned required_num_params =
7831 fninfo.num_sgpr_params +
7832 util_bitcount(key->ps_epilog.colors_written) * 4 +
7833 key->ps_epilog.writes_z +
7834 key->ps_epilog.writes_stencil +
7835 key->ps_epilog.writes_samplemask;
7836
7837 required_num_params = MAX2(required_num_params,
7838 fninfo.num_sgpr_params + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
7839
7840 while (fninfo.num_params < required_num_params)
7841 add_arg(&fninfo, ARG_VGPR, ctx->f32);
7842
7843 /* Create the function. */
7844 si_create_function(ctx, "ps_epilog", NULL, 0, &fninfo, 0);
7845 /* Disable elimination of unused inputs. */
7846 ac_llvm_add_target_dep_function_attr(ctx->main_fn,
7847 "InitialPSInputAddr", 0xffffff);
7848
7849 /* Process colors. */
7850 unsigned vgpr = fninfo.num_sgpr_params;
7851 unsigned colors_written = key->ps_epilog.colors_written;
7852 int last_color_export = -1;
7853
7854 /* Find the last color export. */
7855 if (!key->ps_epilog.writes_z &&
7856 !key->ps_epilog.writes_stencil &&
7857 !key->ps_epilog.writes_samplemask) {
7858 unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
7859
7860 /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
7861 if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
7862 /* Just set this if any of the colorbuffers are enabled. */
7863 if (spi_format &
7864 ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
7865 last_color_export = 0;
7866 } else {
7867 for (i = 0; i < 8; i++)
7868 if (colors_written & (1 << i) &&
7869 (spi_format >> (i * 4)) & 0xf)
7870 last_color_export = i;
7871 }
7872 }
7873
7874 while (colors_written) {
7875 LLVMValueRef color[4];
7876 int mrt = u_bit_scan(&colors_written);
7877
7878 for (i = 0; i < 4; i++)
7879 color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
7880
7881 si_export_mrt_color(bld_base, color, mrt,
7882 fninfo.num_params - 1,
7883 mrt == last_color_export, &exp);
7884 }
7885
7886 /* Process depth, stencil, samplemask. */
7887 if (key->ps_epilog.writes_z)
7888 depth = LLVMGetParam(ctx->main_fn, vgpr++);
7889 if (key->ps_epilog.writes_stencil)
7890 stencil = LLVMGetParam(ctx->main_fn, vgpr++);
7891 if (key->ps_epilog.writes_samplemask)
7892 samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
7893
7894 if (depth || stencil || samplemask)
7895 si_export_mrt_z(bld_base, depth, stencil, samplemask, &exp);
7896 else if (last_color_export == -1)
7897 ac_build_export_null(&ctx->ac);
7898
7899 if (exp.num)
7900 si_emit_ps_exports(ctx, &exp);
7901
7902 /* Compile. */
7903 LLVMBuildRetVoid(ctx->ac.builder);
7904 }
7905
7906 /**
7907 * Select and compile (or reuse) pixel shader parts (prolog & epilog).
7908 */
7909 static bool si_shader_select_ps_parts(struct si_screen *sscreen,
7910 struct si_compiler *compiler,
7911 struct si_shader *shader,
7912 struct pipe_debug_callback *debug)
7913 {
7914 union si_shader_part_key prolog_key;
7915 union si_shader_part_key epilog_key;
7916
7917 /* Get the prolog. */
7918 si_get_ps_prolog_key(shader, &prolog_key, true);
7919
7920 /* The prolog is a no-op if these aren't set. */
7921 if (si_need_ps_prolog(&prolog_key)) {
7922 shader->prolog =
7923 si_get_shader_part(sscreen, &sscreen->ps_prologs,
7924 PIPE_SHADER_FRAGMENT, true,
7925 &prolog_key, compiler, debug,
7926 si_build_ps_prolog_function,
7927 "Fragment Shader Prolog");
7928 if (!shader->prolog)
7929 return false;
7930 }
7931
7932 /* Get the epilog. */
7933 si_get_ps_epilog_key(shader, &epilog_key);
7934
7935 shader->epilog =
7936 si_get_shader_part(sscreen, &sscreen->ps_epilogs,
7937 PIPE_SHADER_FRAGMENT, false,
7938 &epilog_key, compiler, debug,
7939 si_build_ps_epilog_function,
7940 "Fragment Shader Epilog");
7941 if (!shader->epilog)
7942 return false;
7943
7944 /* Enable POS_FIXED_PT if polygon stippling is enabled. */
7945 if (shader->key.part.ps.prolog.poly_stipple) {
7946 shader->config.spi_ps_input_ena |= S_0286CC_POS_FIXED_PT_ENA(1);
7947 assert(G_0286CC_POS_FIXED_PT_ENA(shader->config.spi_ps_input_addr));
7948 }
7949
7950 /* Set up the enable bits for per-sample shading if needed. */
7951 if (shader->key.part.ps.prolog.force_persp_sample_interp &&
7952 (G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7953 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7954 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTER_ENA;
7955 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7956 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_SAMPLE_ENA(1);
7957 }
7958 if (shader->key.part.ps.prolog.force_linear_sample_interp &&
7959 (G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_ena) ||
7960 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7961 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTER_ENA;
7962 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7963 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_SAMPLE_ENA(1);
7964 }
7965 if (shader->key.part.ps.prolog.force_persp_center_interp &&
7966 (G_0286CC_PERSP_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7967 G_0286CC_PERSP_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7968 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_SAMPLE_ENA;
7969 shader->config.spi_ps_input_ena &= C_0286CC_PERSP_CENTROID_ENA;
7970 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7971 }
7972 if (shader->key.part.ps.prolog.force_linear_center_interp &&
7973 (G_0286CC_LINEAR_SAMPLE_ENA(shader->config.spi_ps_input_ena) ||
7974 G_0286CC_LINEAR_CENTROID_ENA(shader->config.spi_ps_input_ena))) {
7975 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_SAMPLE_ENA;
7976 shader->config.spi_ps_input_ena &= C_0286CC_LINEAR_CENTROID_ENA;
7977 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7978 }
7979
7980 /* POW_W_FLOAT requires that one of the perspective weights is enabled. */
7981 if (G_0286CC_POS_W_FLOAT_ENA(shader->config.spi_ps_input_ena) &&
7982 !(shader->config.spi_ps_input_ena & 0xf)) {
7983 shader->config.spi_ps_input_ena |= S_0286CC_PERSP_CENTER_ENA(1);
7984 assert(G_0286CC_PERSP_CENTER_ENA(shader->config.spi_ps_input_addr));
7985 }
7986
7987 /* At least one pair of interpolation weights must be enabled. */
7988 if (!(shader->config.spi_ps_input_ena & 0x7f)) {
7989 shader->config.spi_ps_input_ena |= S_0286CC_LINEAR_CENTER_ENA(1);
7990 assert(G_0286CC_LINEAR_CENTER_ENA(shader->config.spi_ps_input_addr));
7991 }
7992
7993 /* Samplemask fixup requires the sample ID. */
7994 if (shader->key.part.ps.prolog.samplemask_log_ps_iter) {
7995 shader->config.spi_ps_input_ena |= S_0286CC_ANCILLARY_ENA(1);
7996 assert(G_0286CC_ANCILLARY_ENA(shader->config.spi_ps_input_addr));
7997 }
7998
7999 /* The sample mask input is always enabled, because the API shader always
8000 * passes it through to the epilog. Disable it here if it's unused.
8001 */
8002 if (!shader->key.part.ps.epilog.poly_line_smoothing &&
8003 !shader->selector->info.reads_samplemask)
8004 shader->config.spi_ps_input_ena &= C_0286CC_SAMPLE_COVERAGE_ENA;
8005
8006 return true;
8007 }
8008
8009 void si_multiwave_lds_size_workaround(struct si_screen *sscreen,
8010 unsigned *lds_size)
8011 {
8012 /* If tessellation is all offchip and on-chip GS isn't used, this
8013 * workaround is not needed.
8014 */
8015 return;
8016
8017 /* SPI barrier management bug:
8018 * Make sure we have at least 4k of LDS in use to avoid the bug.
8019 * It applies to workgroup sizes of more than one wavefront.
8020 */
8021 if (sscreen->info.family == CHIP_BONAIRE ||
8022 sscreen->info.family == CHIP_KABINI ||
8023 sscreen->info.family == CHIP_MULLINS)
8024 *lds_size = MAX2(*lds_size, 8);
8025 }
8026
8027 static void si_fix_resource_usage(struct si_screen *sscreen,
8028 struct si_shader *shader)
8029 {
8030 unsigned min_sgprs = shader->info.num_input_sgprs + 2; /* VCC */
8031
8032 shader->config.num_sgprs = MAX2(shader->config.num_sgprs, min_sgprs);
8033
8034 if (shader->selector->type == PIPE_SHADER_COMPUTE &&
8035 si_get_max_workgroup_size(shader) > 64) {
8036 si_multiwave_lds_size_workaround(sscreen,
8037 &shader->config.lds_size);
8038 }
8039 }
8040
8041 int si_shader_create(struct si_screen *sscreen, struct si_compiler *compiler,
8042 struct si_shader *shader,
8043 struct pipe_debug_callback *debug)
8044 {
8045 struct si_shader_selector *sel = shader->selector;
8046 struct si_shader *mainp = *si_get_main_shader_part(sel, &shader->key);
8047 int r;
8048
8049 /* LS, ES, VS are compiled on demand if the main part hasn't been
8050 * compiled for that stage.
8051 *
8052 * Vertex shaders are compiled on demand when a vertex fetch
8053 * workaround must be applied.
8054 */
8055 if (shader->is_monolithic) {
8056 /* Monolithic shader (compiled as a whole, has many variants,
8057 * may take a long time to compile).
8058 */
8059 r = si_compile_tgsi_shader(sscreen, compiler, shader, debug);
8060 if (r)
8061 return r;
8062 } else {
8063 /* The shader consists of several parts:
8064 *
8065 * - the middle part is the user shader, it has 1 variant only
8066 * and it was compiled during the creation of the shader
8067 * selector
8068 * - the prolog part is inserted at the beginning
8069 * - the epilog part is inserted at the end
8070 *
8071 * The prolog and epilog have many (but simple) variants.
8072 *
8073 * Starting with gfx9, geometry and tessellation control
8074 * shaders also contain the prolog and user shader parts of
8075 * the previous shader stage.
8076 */
8077
8078 if (!mainp)
8079 return -1;
8080
8081 /* Copy the compiled TGSI shader data over. */
8082 shader->is_binary_shared = true;
8083 shader->binary = mainp->binary;
8084 shader->config = mainp->config;
8085 shader->info.num_input_sgprs = mainp->info.num_input_sgprs;
8086 shader->info.num_input_vgprs = mainp->info.num_input_vgprs;
8087 shader->info.face_vgpr_index = mainp->info.face_vgpr_index;
8088 shader->info.ancillary_vgpr_index = mainp->info.ancillary_vgpr_index;
8089 memcpy(shader->info.vs_output_param_offset,
8090 mainp->info.vs_output_param_offset,
8091 sizeof(mainp->info.vs_output_param_offset));
8092 shader->info.uses_instanceid = mainp->info.uses_instanceid;
8093 shader->info.nr_pos_exports = mainp->info.nr_pos_exports;
8094 shader->info.nr_param_exports = mainp->info.nr_param_exports;
8095
8096 /* Select prologs and/or epilogs. */
8097 switch (sel->type) {
8098 case PIPE_SHADER_VERTEX:
8099 if (!si_shader_select_vs_parts(sscreen, compiler, shader, debug))
8100 return -1;
8101 break;
8102 case PIPE_SHADER_TESS_CTRL:
8103 if (!si_shader_select_tcs_parts(sscreen, compiler, shader, debug))
8104 return -1;
8105 break;
8106 case PIPE_SHADER_TESS_EVAL:
8107 break;
8108 case PIPE_SHADER_GEOMETRY:
8109 if (!si_shader_select_gs_parts(sscreen, compiler, shader, debug))
8110 return -1;
8111 break;
8112 case PIPE_SHADER_FRAGMENT:
8113 if (!si_shader_select_ps_parts(sscreen, compiler, shader, debug))
8114 return -1;
8115
8116 /* Make sure we have at least as many VGPRs as there
8117 * are allocated inputs.
8118 */
8119 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8120 shader->info.num_input_vgprs);
8121 break;
8122 }
8123
8124 /* Update SGPR and VGPR counts. */
8125 if (shader->prolog) {
8126 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8127 shader->prolog->config.num_sgprs);
8128 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8129 shader->prolog->config.num_vgprs);
8130 }
8131 if (shader->previous_stage) {
8132 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8133 shader->previous_stage->config.num_sgprs);
8134 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8135 shader->previous_stage->config.num_vgprs);
8136 shader->config.spilled_sgprs =
8137 MAX2(shader->config.spilled_sgprs,
8138 shader->previous_stage->config.spilled_sgprs);
8139 shader->config.spilled_vgprs =
8140 MAX2(shader->config.spilled_vgprs,
8141 shader->previous_stage->config.spilled_vgprs);
8142 shader->config.private_mem_vgprs =
8143 MAX2(shader->config.private_mem_vgprs,
8144 shader->previous_stage->config.private_mem_vgprs);
8145 shader->config.scratch_bytes_per_wave =
8146 MAX2(shader->config.scratch_bytes_per_wave,
8147 shader->previous_stage->config.scratch_bytes_per_wave);
8148 shader->info.uses_instanceid |=
8149 shader->previous_stage->info.uses_instanceid;
8150 }
8151 if (shader->prolog2) {
8152 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8153 shader->prolog2->config.num_sgprs);
8154 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8155 shader->prolog2->config.num_vgprs);
8156 }
8157 if (shader->epilog) {
8158 shader->config.num_sgprs = MAX2(shader->config.num_sgprs,
8159 shader->epilog->config.num_sgprs);
8160 shader->config.num_vgprs = MAX2(shader->config.num_vgprs,
8161 shader->epilog->config.num_vgprs);
8162 }
8163 si_calculate_max_simd_waves(shader);
8164 }
8165
8166 si_fix_resource_usage(sscreen, shader);
8167 si_shader_dump(sscreen, shader, debug, sel->info.processor,
8168 stderr, true);
8169
8170 /* Upload. */
8171 r = si_shader_binary_upload(sscreen, shader);
8172 if (r) {
8173 fprintf(stderr, "LLVM failed to upload shader\n");
8174 return r;
8175 }
8176
8177 return 0;
8178 }
8179
8180 void si_shader_destroy(struct si_shader *shader)
8181 {
8182 if (shader->scratch_bo)
8183 r600_resource_reference(&shader->scratch_bo, NULL);
8184
8185 r600_resource_reference(&shader->bo, NULL);
8186
8187 if (!shader->is_binary_shared)
8188 ac_shader_binary_clean(&shader->binary);
8189
8190 free(shader->shader_log);
8191 }