a91e4f588c8e5f83e5c016293f58d22ed1ecedfa
[mesa.git] / src / gallium / drivers / softpipe / sp_setup.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28 /**
29 * \brief Primitive rasterization/rendering (points, lines, triangles)
30 *
31 * \author Keith Whitwell <keithw@vmware.com>
32 * \author Brian Paul
33 */
34
35 #include "sp_context.h"
36 #include "sp_quad.h"
37 #include "sp_quad_pipe.h"
38 #include "sp_setup.h"
39 #include "sp_state.h"
40 #include "draw/draw_context.h"
41 #include "pipe/p_shader_tokens.h"
42 #include "util/u_math.h"
43 #include "util/u_memory.h"
44
45
46 #define DEBUG_VERTS 0
47 #define DEBUG_FRAGS 0
48
49
50 /**
51 * Triangle edge info
52 */
53 struct edge {
54 float dx; /**< X(v1) - X(v0), used only during setup */
55 float dy; /**< Y(v1) - Y(v0), used only during setup */
56 float dxdy; /**< dx/dy */
57 float sx, sy; /**< first sample point coord */
58 int lines; /**< number of lines on this edge */
59 };
60
61
62 /**
63 * Max number of quads (2x2 pixel blocks) to process per batch.
64 * This can't be arbitrarily increased since we depend on some 32-bit
65 * bitmasks (two bits per quad).
66 */
67 #define MAX_QUADS 16
68
69
70 /**
71 * Triangle setup info.
72 * Also used for line drawing (taking some liberties).
73 */
74 struct setup_context {
75 struct softpipe_context *softpipe;
76
77 /* Vertices are just an array of floats making up each attribute in
78 * turn. Currently fixed at 4 floats, but should change in time.
79 * Codegen will help cope with this.
80 */
81 const float (*vmax)[4];
82 const float (*vmid)[4];
83 const float (*vmin)[4];
84 const float (*vprovoke)[4];
85
86 struct edge ebot;
87 struct edge etop;
88 struct edge emaj;
89
90 float oneoverarea;
91 int facing;
92
93 float pixel_offset;
94 unsigned max_layer;
95
96 struct quad_header quad[MAX_QUADS];
97 struct quad_header *quad_ptrs[MAX_QUADS];
98 unsigned count;
99
100 struct tgsi_interp_coef coef[PIPE_MAX_SHADER_INPUTS];
101 struct tgsi_interp_coef posCoef; /* For Z, W */
102
103 struct {
104 int left[2]; /**< [0] = row0, [1] = row1 */
105 int right[2];
106 int y;
107 } span;
108
109 #if DEBUG_FRAGS
110 uint numFragsEmitted; /**< per primitive */
111 uint numFragsWritten; /**< per primitive */
112 #endif
113
114 unsigned cull_face; /* which faces cull */
115 unsigned nr_vertex_attrs;
116 };
117
118
119
120
121
122
123
124 /**
125 * Clip setup->quad against the scissor/surface bounds.
126 */
127 static inline void
128 quad_clip(struct setup_context *setup, struct quad_header *quad)
129 {
130 unsigned viewport_index = quad[0].input.viewport_index;
131 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
132 const int minx = (int) cliprect->minx;
133 const int maxx = (int) cliprect->maxx;
134 const int miny = (int) cliprect->miny;
135 const int maxy = (int) cliprect->maxy;
136
137 if (quad->input.x0 >= maxx ||
138 quad->input.y0 >= maxy ||
139 quad->input.x0 + 1 < minx ||
140 quad->input.y0 + 1 < miny) {
141 /* totally clipped */
142 quad->inout.mask = 0x0;
143 return;
144 }
145 if (quad->input.x0 < minx)
146 quad->inout.mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
147 if (quad->input.y0 < miny)
148 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
149 if (quad->input.x0 == maxx - 1)
150 quad->inout.mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
151 if (quad->input.y0 == maxy - 1)
152 quad->inout.mask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
153 }
154
155
156 /**
157 * Emit a quad (pass to next stage) with clipping.
158 */
159 static inline void
160 clip_emit_quad(struct setup_context *setup, struct quad_header *quad)
161 {
162 quad_clip(setup, quad);
163
164 if (quad->inout.mask) {
165 struct softpipe_context *sp = setup->softpipe;
166
167 #if DEBUG_FRAGS
168 setup->numFragsEmitted += util_bitcount(quad->inout.mask);
169 #endif
170
171 sp->quad.first->run( sp->quad.first, &quad, 1 );
172 }
173 }
174
175
176
177 /**
178 * Given an X or Y coordinate, return the block/quad coordinate that it
179 * belongs to.
180 */
181 static inline int
182 block(int x)
183 {
184 return x & ~(2-1);
185 }
186
187
188 static inline int
189 block_x(int x)
190 {
191 return x & ~(16-1);
192 }
193
194
195 /**
196 * Render a horizontal span of quads
197 */
198 static void
199 flush_spans(struct setup_context *setup)
200 {
201 const int step = MAX_QUADS;
202 const int xleft0 = setup->span.left[0];
203 const int xleft1 = setup->span.left[1];
204 const int xright0 = setup->span.right[0];
205 const int xright1 = setup->span.right[1];
206 struct quad_stage *pipe = setup->softpipe->quad.first;
207
208 const int minleft = block_x(MIN2(xleft0, xleft1));
209 const int maxright = MAX2(xright0, xright1);
210 int x;
211
212 /* process quads in horizontal chunks of 16 */
213 for (x = minleft; x < maxright; x += step) {
214 unsigned skip_left0 = CLAMP(xleft0 - x, 0, step);
215 unsigned skip_left1 = CLAMP(xleft1 - x, 0, step);
216 unsigned skip_right0 = CLAMP(x + step - xright0, 0, step);
217 unsigned skip_right1 = CLAMP(x + step - xright1, 0, step);
218 unsigned lx = x;
219 unsigned q = 0;
220
221 unsigned skipmask_left0 = (1U << skip_left0) - 1U;
222 unsigned skipmask_left1 = (1U << skip_left1) - 1U;
223
224 /* These calculations fail when step == 32 and skip_right == 0.
225 */
226 unsigned skipmask_right0 = ~0U << (unsigned)(step - skip_right0);
227 unsigned skipmask_right1 = ~0U << (unsigned)(step - skip_right1);
228
229 unsigned mask0 = ~skipmask_left0 & ~skipmask_right0;
230 unsigned mask1 = ~skipmask_left1 & ~skipmask_right1;
231
232 if (mask0 | mask1) {
233 do {
234 unsigned quadmask = (mask0 & 3) | ((mask1 & 3) << 2);
235 if (quadmask) {
236 setup->quad[q].input.x0 = lx;
237 setup->quad[q].input.y0 = setup->span.y;
238 setup->quad[q].input.facing = setup->facing;
239 setup->quad[q].inout.mask = quadmask;
240 setup->quad_ptrs[q] = &setup->quad[q];
241 q++;
242 #if DEBUG_FRAGS
243 setup->numFragsEmitted += util_bitcount(quadmask);
244 #endif
245 }
246 mask0 >>= 2;
247 mask1 >>= 2;
248 lx += 2;
249 } while (mask0 | mask1);
250
251 pipe->run( pipe, setup->quad_ptrs, q );
252 }
253 }
254
255
256 setup->span.y = 0;
257 setup->span.right[0] = 0;
258 setup->span.right[1] = 0;
259 setup->span.left[0] = 1000000; /* greater than right[0] */
260 setup->span.left[1] = 1000000; /* greater than right[1] */
261 }
262
263
264 #if DEBUG_VERTS
265 static void
266 print_vertex(const struct setup_context *setup,
267 const float (*v)[4])
268 {
269 int i;
270 debug_printf(" Vertex: (%p)\n", (void *) v);
271 for (i = 0; i < setup->nr_vertex_attrs; i++) {
272 debug_printf(" %d: %f %f %f %f\n", i,
273 v[i][0], v[i][1], v[i][2], v[i][3]);
274 if (util_is_inf_or_nan(v[i][0])) {
275 debug_printf(" NaN!\n");
276 }
277 }
278 }
279 #endif
280
281
282 /**
283 * Sort the vertices from top to bottom order, setting up the triangle
284 * edge fields (ebot, emaj, etop).
285 * \return FALSE if coords are inf/nan (cull the tri), TRUE otherwise
286 */
287 static boolean
288 setup_sort_vertices(struct setup_context *setup,
289 float det,
290 const float (*v0)[4],
291 const float (*v1)[4],
292 const float (*v2)[4])
293 {
294 if (setup->softpipe->rasterizer->flatshade_first)
295 setup->vprovoke = v0;
296 else
297 setup->vprovoke = v2;
298
299 /* determine bottom to top order of vertices */
300 {
301 float y0 = v0[0][1];
302 float y1 = v1[0][1];
303 float y2 = v2[0][1];
304 if (y0 <= y1) {
305 if (y1 <= y2) {
306 /* y0<=y1<=y2 */
307 setup->vmin = v0;
308 setup->vmid = v1;
309 setup->vmax = v2;
310 }
311 else if (y2 <= y0) {
312 /* y2<=y0<=y1 */
313 setup->vmin = v2;
314 setup->vmid = v0;
315 setup->vmax = v1;
316 }
317 else {
318 /* y0<=y2<=y1 */
319 setup->vmin = v0;
320 setup->vmid = v2;
321 setup->vmax = v1;
322 }
323 }
324 else {
325 if (y0 <= y2) {
326 /* y1<=y0<=y2 */
327 setup->vmin = v1;
328 setup->vmid = v0;
329 setup->vmax = v2;
330 }
331 else if (y2 <= y1) {
332 /* y2<=y1<=y0 */
333 setup->vmin = v2;
334 setup->vmid = v1;
335 setup->vmax = v0;
336 }
337 else {
338 /* y1<=y2<=y0 */
339 setup->vmin = v1;
340 setup->vmid = v2;
341 setup->vmax = v0;
342 }
343 }
344 }
345
346 setup->ebot.dx = setup->vmid[0][0] - setup->vmin[0][0];
347 setup->ebot.dy = setup->vmid[0][1] - setup->vmin[0][1];
348 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
349 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
350 setup->etop.dx = setup->vmax[0][0] - setup->vmid[0][0];
351 setup->etop.dy = setup->vmax[0][1] - setup->vmid[0][1];
352
353 /*
354 * Compute triangle's area. Use 1/area to compute partial
355 * derivatives of attributes later.
356 *
357 * The area will be the same as prim->det, but the sign may be
358 * different depending on how the vertices get sorted above.
359 *
360 * To determine whether the primitive is front or back facing we
361 * use the prim->det value because its sign is correct.
362 */
363 {
364 const float area = (setup->emaj.dx * setup->ebot.dy -
365 setup->ebot.dx * setup->emaj.dy);
366
367 setup->oneoverarea = 1.0f / area;
368
369 /*
370 debug_printf("%s one-over-area %f area %f det %f\n",
371 __FUNCTION__, setup->oneoverarea, area, det );
372 */
373 if (util_is_inf_or_nan(setup->oneoverarea))
374 return FALSE;
375 }
376
377 /* We need to know if this is a front or back-facing triangle for:
378 * - the GLSL gl_FrontFacing fragment attribute (bool)
379 * - two-sided stencil test
380 * 0 = front-facing, 1 = back-facing
381 */
382 setup->facing =
383 ((det < 0.0) ^
384 (setup->softpipe->rasterizer->front_ccw));
385
386 {
387 unsigned face = setup->facing == 0 ? PIPE_FACE_FRONT : PIPE_FACE_BACK;
388
389 if (face & setup->cull_face)
390 return FALSE;
391 }
392
393 return TRUE;
394 }
395
396
397 /* Apply cylindrical wrapping to v0, v1, v2 coordinates, if enabled.
398 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
399 * Some combinations of coordinates produce invalid results,
400 * but this behaviour is acceptable.
401 */
402 static void
403 tri_apply_cylindrical_wrap(float v0,
404 float v1,
405 float v2,
406 uint cylindrical_wrap,
407 float output[3])
408 {
409 if (cylindrical_wrap) {
410 float delta;
411
412 delta = v1 - v0;
413 if (delta > 0.5f) {
414 v0 += 1.0f;
415 }
416 else if (delta < -0.5f) {
417 v1 += 1.0f;
418 }
419
420 delta = v2 - v1;
421 if (delta > 0.5f) {
422 v1 += 1.0f;
423 }
424 else if (delta < -0.5f) {
425 v2 += 1.0f;
426 }
427
428 delta = v0 - v2;
429 if (delta > 0.5f) {
430 v2 += 1.0f;
431 }
432 else if (delta < -0.5f) {
433 v0 += 1.0f;
434 }
435 }
436
437 output[0] = v0;
438 output[1] = v1;
439 output[2] = v2;
440 }
441
442
443 /**
444 * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
445 * The value value comes from vertex[slot][i].
446 * The result will be put into setup->coef[slot].a0[i].
447 * \param slot which attribute slot
448 * \param i which component of the slot (0..3)
449 */
450 static void
451 const_coeff(struct setup_context *setup,
452 struct tgsi_interp_coef *coef,
453 uint vertSlot, uint i)
454 {
455 assert(i <= 3);
456
457 coef->dadx[i] = 0;
458 coef->dady[i] = 0;
459
460 /* need provoking vertex info!
461 */
462 coef->a0[i] = setup->vprovoke[vertSlot][i];
463 }
464
465
466 /**
467 * Compute a0, dadx and dady for a linearly interpolated coefficient,
468 * for a triangle.
469 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
470 */
471 static void
472 tri_linear_coeff(struct setup_context *setup,
473 struct tgsi_interp_coef *coef,
474 uint i,
475 const float v[3])
476 {
477 float botda = v[1] - v[0];
478 float majda = v[2] - v[0];
479 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
480 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
481 float dadx = a * setup->oneoverarea;
482 float dady = b * setup->oneoverarea;
483
484 assert(i <= 3);
485
486 coef->dadx[i] = dadx;
487 coef->dady[i] = dady;
488
489 /* calculate a0 as the value which would be sampled for the
490 * fragment at (0,0), taking into account that we want to sample at
491 * pixel centers, in other words (pixel_offset, pixel_offset).
492 *
493 * this is neat but unfortunately not a good way to do things for
494 * triangles with very large values of dadx or dady as it will
495 * result in the subtraction and re-addition from a0 of a very
496 * large number, which means we'll end up loosing a lot of the
497 * fractional bits and precision from a0. the way to fix this is
498 * to define a0 as the sample at a pixel center somewhere near vmin
499 * instead - i'll switch to this later.
500 */
501 coef->a0[i] = (v[0] -
502 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
503 dady * (setup->vmin[0][1] - setup->pixel_offset)));
504 }
505
506
507 /**
508 * Compute a0, dadx and dady for a perspective-corrected interpolant,
509 * for a triangle.
510 * We basically multiply the vertex value by 1/w before computing
511 * the plane coefficients (a0, dadx, dady).
512 * Later, when we compute the value at a particular fragment position we'll
513 * divide the interpolated value by the interpolated W at that fragment.
514 * v[0], v[1] and v[2] are vmin, vmid and vmax, respectively.
515 */
516 static void
517 tri_persp_coeff(struct setup_context *setup,
518 struct tgsi_interp_coef *coef,
519 uint i,
520 const float v[3])
521 {
522 /* premultiply by 1/w (v[0][3] is always W):
523 */
524 float mina = v[0] * setup->vmin[0][3];
525 float mida = v[1] * setup->vmid[0][3];
526 float maxa = v[2] * setup->vmax[0][3];
527 float botda = mida - mina;
528 float majda = maxa - mina;
529 float a = setup->ebot.dy * majda - botda * setup->emaj.dy;
530 float b = setup->emaj.dx * botda - majda * setup->ebot.dx;
531 float dadx = a * setup->oneoverarea;
532 float dady = b * setup->oneoverarea;
533
534 assert(i <= 3);
535
536 coef->dadx[i] = dadx;
537 coef->dady[i] = dady;
538 coef->a0[i] = (mina -
539 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
540 dady * (setup->vmin[0][1] - setup->pixel_offset)));
541 }
542
543
544 /**
545 * Special coefficient setup for gl_FragCoord.
546 * X and Y are trivial, though Y may have to be inverted for OpenGL.
547 * Z and W are copied from posCoef which should have already been computed.
548 * We could do a bit less work if we'd examine gl_FragCoord's swizzle mask.
549 */
550 static void
551 setup_fragcoord_coeff(struct setup_context *setup, uint slot)
552 {
553 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
554 boolean origin_lower_left =
555 fsInfo->properties[TGSI_PROPERTY_FS_COORD_ORIGIN];
556 boolean pixel_center_integer =
557 fsInfo->properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER];
558
559 /*X*/
560 setup->coef[slot].a0[0] = pixel_center_integer ? 0.0f : 0.5f;
561 setup->coef[slot].dadx[0] = 1.0f;
562 setup->coef[slot].dady[0] = 0.0f;
563 /*Y*/
564 setup->coef[slot].a0[1] =
565 (origin_lower_left ? setup->softpipe->framebuffer.height-1 : 0)
566 + (pixel_center_integer ? 0.0f : 0.5f);
567 setup->coef[slot].dadx[1] = 0.0f;
568 setup->coef[slot].dady[1] = origin_lower_left ? -1.0f : 1.0f;
569 /*Z*/
570 setup->coef[slot].a0[2] = setup->posCoef.a0[2];
571 setup->coef[slot].dadx[2] = setup->posCoef.dadx[2];
572 setup->coef[slot].dady[2] = setup->posCoef.dady[2];
573 /*W*/
574 setup->coef[slot].a0[3] = setup->posCoef.a0[3];
575 setup->coef[slot].dadx[3] = setup->posCoef.dadx[3];
576 setup->coef[slot].dady[3] = setup->posCoef.dady[3];
577 }
578
579
580
581 /**
582 * Compute the setup->coef[] array dadx, dady, a0 values.
583 * Must be called after setup->vmin,vmid,vmax,vprovoke are initialized.
584 */
585 static void
586 setup_tri_coefficients(struct setup_context *setup)
587 {
588 struct softpipe_context *softpipe = setup->softpipe;
589 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
590 const struct sp_setup_info *sinfo = &softpipe->setup_info;
591 uint fragSlot;
592 float v[3];
593
594 assert(sinfo->valid);
595
596 /* z and w are done by linear interpolation:
597 */
598 v[0] = setup->vmin[0][2];
599 v[1] = setup->vmid[0][2];
600 v[2] = setup->vmax[0][2];
601 tri_linear_coeff(setup, &setup->posCoef, 2, v);
602
603 v[0] = setup->vmin[0][3];
604 v[1] = setup->vmid[0][3];
605 v[2] = setup->vmax[0][3];
606 tri_linear_coeff(setup, &setup->posCoef, 3, v);
607
608 /* setup interpolation for all the remaining attributes:
609 */
610 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
611 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
612 uint j;
613
614 switch (sinfo->attrib[fragSlot].interp) {
615 case SP_INTERP_CONSTANT:
616 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
617 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
618 }
619 break;
620 case SP_INTERP_LINEAR:
621 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
622 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
623 setup->vmid[vertSlot][j],
624 setup->vmax[vertSlot][j],
625 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
626 v);
627 tri_linear_coeff(setup, &setup->coef[fragSlot], j, v);
628 }
629 break;
630 case SP_INTERP_PERSPECTIVE:
631 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
632 tri_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
633 setup->vmid[vertSlot][j],
634 setup->vmax[vertSlot][j],
635 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
636 v);
637 tri_persp_coeff(setup, &setup->coef[fragSlot], j, v);
638 }
639 break;
640 case SP_INTERP_POS:
641 setup_fragcoord_coeff(setup, fragSlot);
642 break;
643 default:
644 assert(0);
645 }
646
647 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
648 /* convert 0 to 1.0 and 1 to -1.0 */
649 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
650 setup->coef[fragSlot].dadx[0] = 0.0;
651 setup->coef[fragSlot].dady[0] = 0.0;
652 }
653
654 if (0) {
655 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
656 debug_printf("attr[%d].%c: a0:%f dx:%f dy:%f\n",
657 fragSlot, "xyzw"[j],
658 setup->coef[fragSlot].a0[j],
659 setup->coef[fragSlot].dadx[j],
660 setup->coef[fragSlot].dady[j]);
661 }
662 }
663 }
664 }
665
666
667 static void
668 setup_tri_edges(struct setup_context *setup)
669 {
670 float vmin_x = setup->vmin[0][0] + setup->pixel_offset;
671 float vmid_x = setup->vmid[0][0] + setup->pixel_offset;
672
673 float vmin_y = setup->vmin[0][1] - setup->pixel_offset;
674 float vmid_y = setup->vmid[0][1] - setup->pixel_offset;
675 float vmax_y = setup->vmax[0][1] - setup->pixel_offset;
676
677 setup->emaj.sy = ceilf(vmin_y);
678 setup->emaj.lines = (int) ceilf(vmax_y - setup->emaj.sy);
679 setup->emaj.dxdy = setup->emaj.dy ? setup->emaj.dx / setup->emaj.dy : .0f;
680 setup->emaj.sx = vmin_x + (setup->emaj.sy - vmin_y) * setup->emaj.dxdy;
681
682 setup->etop.sy = ceilf(vmid_y);
683 setup->etop.lines = (int) ceilf(vmax_y - setup->etop.sy);
684 setup->etop.dxdy = setup->etop.dy ? setup->etop.dx / setup->etop.dy : .0f;
685 setup->etop.sx = vmid_x + (setup->etop.sy - vmid_y) * setup->etop.dxdy;
686
687 setup->ebot.sy = ceilf(vmin_y);
688 setup->ebot.lines = (int) ceilf(vmid_y - setup->ebot.sy);
689 setup->ebot.dxdy = setup->ebot.dy ? setup->ebot.dx / setup->ebot.dy : .0f;
690 setup->ebot.sx = vmin_x + (setup->ebot.sy - vmin_y) * setup->ebot.dxdy;
691 }
692
693
694 /**
695 * Render the upper or lower half of a triangle.
696 * Scissoring/cliprect is applied here too.
697 */
698 static void
699 subtriangle(struct setup_context *setup,
700 struct edge *eleft,
701 struct edge *eright,
702 int lines,
703 unsigned viewport_index)
704 {
705 const struct pipe_scissor_state *cliprect = &setup->softpipe->cliprect[viewport_index];
706 const int minx = (int) cliprect->minx;
707 const int maxx = (int) cliprect->maxx;
708 const int miny = (int) cliprect->miny;
709 const int maxy = (int) cliprect->maxy;
710 int y, start_y, finish_y;
711 int sy = (int)eleft->sy;
712
713 assert((int)eleft->sy == (int) eright->sy);
714 assert(lines >= 0);
715
716 /* clip top/bottom */
717 start_y = sy;
718 if (start_y < miny)
719 start_y = miny;
720
721 finish_y = sy + lines;
722 if (finish_y > maxy)
723 finish_y = maxy;
724
725 start_y -= sy;
726 finish_y -= sy;
727
728 /*
729 debug_printf("%s %d %d\n", __FUNCTION__, start_y, finish_y);
730 */
731
732 for (y = start_y; y < finish_y; y++) {
733
734 /* avoid accumulating adds as floats don't have the precision to
735 * accurately iterate large triangle edges that way. luckily we
736 * can just multiply these days.
737 *
738 * this is all drowned out by the attribute interpolation anyway.
739 */
740 int left = (int)(eleft->sx + y * eleft->dxdy);
741 int right = (int)(eright->sx + y * eright->dxdy);
742
743 /* clip left/right */
744 if (left < minx)
745 left = minx;
746 if (right > maxx)
747 right = maxx;
748
749 if (left < right) {
750 int _y = sy + y;
751 if (block(_y) != setup->span.y) {
752 flush_spans(setup);
753 setup->span.y = block(_y);
754 }
755
756 setup->span.left[_y&1] = left;
757 setup->span.right[_y&1] = right;
758 }
759 }
760
761
762 /* save the values so that emaj can be restarted:
763 */
764 eleft->sx += lines * eleft->dxdy;
765 eright->sx += lines * eright->dxdy;
766 eleft->sy += lines;
767 eright->sy += lines;
768 }
769
770
771 /**
772 * Recalculate prim's determinant. This is needed as we don't have
773 * get this information through the vbuf_render interface & we must
774 * calculate it here.
775 */
776 static float
777 calc_det(const float (*v0)[4],
778 const float (*v1)[4],
779 const float (*v2)[4])
780 {
781 /* edge vectors e = v0 - v2, f = v1 - v2 */
782 const float ex = v0[0][0] - v2[0][0];
783 const float ey = v0[0][1] - v2[0][1];
784 const float fx = v1[0][0] - v2[0][0];
785 const float fy = v1[0][1] - v2[0][1];
786
787 /* det = cross(e,f).z */
788 return ex * fy - ey * fx;
789 }
790
791
792 /**
793 * Do setup for triangle rasterization, then render the triangle.
794 */
795 void
796 sp_setup_tri(struct setup_context *setup,
797 const float (*v0)[4],
798 const float (*v1)[4],
799 const float (*v2)[4])
800 {
801 float det;
802 uint layer = 0;
803 unsigned viewport_index = 0;
804 #if DEBUG_VERTS
805 debug_printf("Setup triangle:\n");
806 print_vertex(setup, v0);
807 print_vertex(setup, v1);
808 print_vertex(setup, v2);
809 #endif
810
811 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
812 return;
813
814 det = calc_det(v0, v1, v2);
815 /*
816 debug_printf("%s\n", __FUNCTION__ );
817 */
818
819 #if DEBUG_FRAGS
820 setup->numFragsEmitted = 0;
821 setup->numFragsWritten = 0;
822 #endif
823
824 if (!setup_sort_vertices( setup, det, v0, v1, v2 ))
825 return;
826
827 setup_tri_coefficients( setup );
828 setup_tri_edges( setup );
829
830 assert(setup->softpipe->reduced_prim == PIPE_PRIM_TRIANGLES);
831
832 setup->span.y = 0;
833 setup->span.right[0] = 0;
834 setup->span.right[1] = 0;
835 /* setup->span.z_mode = tri_z_mode( setup->ctx ); */
836 if (setup->softpipe->layer_slot > 0) {
837 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
838 layer = MIN2(layer, setup->max_layer);
839 }
840 setup->quad[0].input.layer = layer;
841
842 if (setup->softpipe->viewport_index_slot > 0) {
843 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
844 viewport_index = sp_clamp_viewport_idx(*udata);
845 }
846 setup->quad[0].input.viewport_index = viewport_index;
847
848 /* init_constant_attribs( setup ); */
849
850 if (setup->oneoverarea < 0.0) {
851 /* emaj on left:
852 */
853 subtriangle(setup, &setup->emaj, &setup->ebot, setup->ebot.lines, viewport_index);
854 subtriangle(setup, &setup->emaj, &setup->etop, setup->etop.lines, viewport_index);
855 }
856 else {
857 /* emaj on right:
858 */
859 subtriangle(setup, &setup->ebot, &setup->emaj, setup->ebot.lines, viewport_index);
860 subtriangle(setup, &setup->etop, &setup->emaj, setup->etop.lines, viewport_index);
861 }
862
863 flush_spans( setup );
864
865 if (setup->softpipe->active_statistics_queries) {
866 setup->softpipe->pipeline_statistics.c_primitives++;
867 }
868
869 #if DEBUG_FRAGS
870 printf("Tri: %u frags emitted, %u written\n",
871 setup->numFragsEmitted,
872 setup->numFragsWritten);
873 #endif
874 }
875
876
877 /* Apply cylindrical wrapping to v0, v1 coordinates, if enabled.
878 * Input coordinates must be in [0, 1] range, otherwise results are undefined.
879 */
880 static void
881 line_apply_cylindrical_wrap(float v0,
882 float v1,
883 uint cylindrical_wrap,
884 float output[2])
885 {
886 if (cylindrical_wrap) {
887 float delta;
888
889 delta = v1 - v0;
890 if (delta > 0.5f) {
891 v0 += 1.0f;
892 }
893 else if (delta < -0.5f) {
894 v1 += 1.0f;
895 }
896 }
897
898 output[0] = v0;
899 output[1] = v1;
900 }
901
902
903 /**
904 * Compute a0, dadx and dady for a linearly interpolated coefficient,
905 * for a line.
906 * v[0] and v[1] are vmin and vmax, respectively.
907 */
908 static void
909 line_linear_coeff(const struct setup_context *setup,
910 struct tgsi_interp_coef *coef,
911 uint i,
912 const float v[2])
913 {
914 const float da = v[1] - v[0];
915 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
916 const float dady = da * setup->emaj.dy * setup->oneoverarea;
917 coef->dadx[i] = dadx;
918 coef->dady[i] = dady;
919 coef->a0[i] = (v[0] -
920 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
921 dady * (setup->vmin[0][1] - setup->pixel_offset)));
922 }
923
924
925 /**
926 * Compute a0, dadx and dady for a perspective-corrected interpolant,
927 * for a line.
928 * v[0] and v[1] are vmin and vmax, respectively.
929 */
930 static void
931 line_persp_coeff(const struct setup_context *setup,
932 struct tgsi_interp_coef *coef,
933 uint i,
934 const float v[2])
935 {
936 const float a0 = v[0] * setup->vmin[0][3];
937 const float a1 = v[1] * setup->vmax[0][3];
938 const float da = a1 - a0;
939 const float dadx = da * setup->emaj.dx * setup->oneoverarea;
940 const float dady = da * setup->emaj.dy * setup->oneoverarea;
941 coef->dadx[i] = dadx;
942 coef->dady[i] = dady;
943 coef->a0[i] = (a0 -
944 (dadx * (setup->vmin[0][0] - setup->pixel_offset) +
945 dady * (setup->vmin[0][1] - setup->pixel_offset)));
946 }
947
948
949 /**
950 * Compute the setup->coef[] array dadx, dady, a0 values.
951 * Must be called after setup->vmin,vmax are initialized.
952 */
953 static boolean
954 setup_line_coefficients(struct setup_context *setup,
955 const float (*v0)[4],
956 const float (*v1)[4])
957 {
958 struct softpipe_context *softpipe = setup->softpipe;
959 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
960 const struct sp_setup_info *sinfo = &softpipe->setup_info;
961 uint fragSlot;
962 float area;
963 float v[2];
964
965 assert(sinfo->valid);
966
967 /* use setup->vmin, vmax to point to vertices */
968 if (softpipe->rasterizer->flatshade_first)
969 setup->vprovoke = v0;
970 else
971 setup->vprovoke = v1;
972 setup->vmin = v0;
973 setup->vmax = v1;
974
975 setup->emaj.dx = setup->vmax[0][0] - setup->vmin[0][0];
976 setup->emaj.dy = setup->vmax[0][1] - setup->vmin[0][1];
977
978 /* NOTE: this is not really area but something proportional to it */
979 area = setup->emaj.dx * setup->emaj.dx + setup->emaj.dy * setup->emaj.dy;
980 if (area == 0.0f || util_is_inf_or_nan(area))
981 return FALSE;
982 setup->oneoverarea = 1.0f / area;
983
984 /* z and w are done by linear interpolation:
985 */
986 v[0] = setup->vmin[0][2];
987 v[1] = setup->vmax[0][2];
988 line_linear_coeff(setup, &setup->posCoef, 2, v);
989
990 v[0] = setup->vmin[0][3];
991 v[1] = setup->vmax[0][3];
992 line_linear_coeff(setup, &setup->posCoef, 3, v);
993
994 /* setup interpolation for all the remaining attributes:
995 */
996 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
997 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
998 uint j;
999
1000 switch (sinfo->attrib[fragSlot].interp) {
1001 case SP_INTERP_CONSTANT:
1002 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1003 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1004 break;
1005 case SP_INTERP_LINEAR:
1006 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1007 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1008 setup->vmax[vertSlot][j],
1009 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1010 v);
1011 line_linear_coeff(setup, &setup->coef[fragSlot], j, v);
1012 }
1013 break;
1014 case SP_INTERP_PERSPECTIVE:
1015 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
1016 line_apply_cylindrical_wrap(setup->vmin[vertSlot][j],
1017 setup->vmax[vertSlot][j],
1018 fsInfo->input_cylindrical_wrap[fragSlot] & (1 << j),
1019 v);
1020 line_persp_coeff(setup, &setup->coef[fragSlot], j, v);
1021 }
1022 break;
1023 case SP_INTERP_POS:
1024 setup_fragcoord_coeff(setup, fragSlot);
1025 break;
1026 default:
1027 assert(0);
1028 }
1029
1030 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1031 /* convert 0 to 1.0 and 1 to -1.0 */
1032 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1033 setup->coef[fragSlot].dadx[0] = 0.0;
1034 setup->coef[fragSlot].dady[0] = 0.0;
1035 }
1036 }
1037 return TRUE;
1038 }
1039
1040
1041 /**
1042 * Plot a pixel in a line segment.
1043 */
1044 static inline void
1045 plot(struct setup_context *setup, int x, int y)
1046 {
1047 const int iy = y & 1;
1048 const int ix = x & 1;
1049 const int quadX = x - ix;
1050 const int quadY = y - iy;
1051 const int mask = (1 << ix) << (2 * iy);
1052
1053 if (quadX != setup->quad[0].input.x0 ||
1054 quadY != setup->quad[0].input.y0)
1055 {
1056 /* flush prev quad, start new quad */
1057
1058 if (setup->quad[0].input.x0 != -1)
1059 clip_emit_quad(setup, &setup->quad[0]);
1060
1061 setup->quad[0].input.x0 = quadX;
1062 setup->quad[0].input.y0 = quadY;
1063 setup->quad[0].inout.mask = 0x0;
1064 }
1065
1066 setup->quad[0].inout.mask |= mask;
1067 }
1068
1069
1070 /**
1071 * Do setup for line rasterization, then render the line.
1072 * Single-pixel width, no stipple, etc. We rely on the 'draw' module
1073 * to handle stippling and wide lines.
1074 */
1075 void
1076 sp_setup_line(struct setup_context *setup,
1077 const float (*v0)[4],
1078 const float (*v1)[4])
1079 {
1080 int x0 = (int) v0[0][0];
1081 int x1 = (int) v1[0][0];
1082 int y0 = (int) v0[0][1];
1083 int y1 = (int) v1[0][1];
1084 int dx = x1 - x0;
1085 int dy = y1 - y0;
1086 int xstep, ystep;
1087 uint layer = 0;
1088 unsigned viewport_index = 0;
1089
1090 #if DEBUG_VERTS
1091 debug_printf("Setup line:\n");
1092 print_vertex(setup, v0);
1093 print_vertex(setup, v1);
1094 #endif
1095
1096 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1097 return;
1098
1099 if (dx == 0 && dy == 0)
1100 return;
1101
1102 if (!setup_line_coefficients(setup, v0, v1))
1103 return;
1104
1105 assert(v0[0][0] < 1.0e9);
1106 assert(v0[0][1] < 1.0e9);
1107 assert(v1[0][0] < 1.0e9);
1108 assert(v1[0][1] < 1.0e9);
1109
1110 if (dx < 0) {
1111 dx = -dx; /* make positive */
1112 xstep = -1;
1113 }
1114 else {
1115 xstep = 1;
1116 }
1117
1118 if (dy < 0) {
1119 dy = -dy; /* make positive */
1120 ystep = -1;
1121 }
1122 else {
1123 ystep = 1;
1124 }
1125
1126 assert(dx >= 0);
1127 assert(dy >= 0);
1128 assert(setup->softpipe->reduced_prim == PIPE_PRIM_LINES);
1129
1130 setup->quad[0].input.x0 = setup->quad[0].input.y0 = -1;
1131 setup->quad[0].inout.mask = 0x0;
1132 if (setup->softpipe->layer_slot > 0) {
1133 layer = *(unsigned *)setup->vprovoke[setup->softpipe->layer_slot];
1134 layer = MIN2(layer, setup->max_layer);
1135 }
1136 setup->quad[0].input.layer = layer;
1137
1138 if (setup->softpipe->viewport_index_slot > 0) {
1139 unsigned *udata = (unsigned*)setup->vprovoke[setup->softpipe->viewport_index_slot];
1140 viewport_index = sp_clamp_viewport_idx(*udata);
1141 }
1142 setup->quad[0].input.viewport_index = viewport_index;
1143
1144 /* XXX temporary: set coverage to 1.0 so the line appears
1145 * if AA mode happens to be enabled.
1146 */
1147 setup->quad[0].input.coverage[0] =
1148 setup->quad[0].input.coverage[1] =
1149 setup->quad[0].input.coverage[2] =
1150 setup->quad[0].input.coverage[3] = 1.0;
1151
1152 if (dx > dy) {
1153 /*** X-major line ***/
1154 int i;
1155 const int errorInc = dy + dy;
1156 int error = errorInc - dx;
1157 const int errorDec = error - dx;
1158
1159 for (i = 0; i < dx; i++) {
1160 plot(setup, x0, y0);
1161
1162 x0 += xstep;
1163 if (error < 0) {
1164 error += errorInc;
1165 }
1166 else {
1167 error += errorDec;
1168 y0 += ystep;
1169 }
1170 }
1171 }
1172 else {
1173 /*** Y-major line ***/
1174 int i;
1175 const int errorInc = dx + dx;
1176 int error = errorInc - dy;
1177 const int errorDec = error - dy;
1178
1179 for (i = 0; i < dy; i++) {
1180 plot(setup, x0, y0);
1181
1182 y0 += ystep;
1183 if (error < 0) {
1184 error += errorInc;
1185 }
1186 else {
1187 error += errorDec;
1188 x0 += xstep;
1189 }
1190 }
1191 }
1192
1193 /* draw final quad */
1194 if (setup->quad[0].inout.mask) {
1195 clip_emit_quad(setup, &setup->quad[0]);
1196 }
1197 }
1198
1199
1200 static void
1201 point_persp_coeff(const struct setup_context *setup,
1202 const float (*vert)[4],
1203 struct tgsi_interp_coef *coef,
1204 uint vertSlot, uint i)
1205 {
1206 assert(i <= 3);
1207 coef->dadx[i] = 0.0F;
1208 coef->dady[i] = 0.0F;
1209 coef->a0[i] = vert[vertSlot][i] * vert[0][3];
1210 }
1211
1212
1213 /**
1214 * Do setup for point rasterization, then render the point.
1215 * Round or square points...
1216 * XXX could optimize a lot for 1-pixel points.
1217 */
1218 void
1219 sp_setup_point(struct setup_context *setup,
1220 const float (*v0)[4])
1221 {
1222 struct softpipe_context *softpipe = setup->softpipe;
1223 const struct tgsi_shader_info *fsInfo = &setup->softpipe->fs_variant->info;
1224 const int sizeAttr = setup->softpipe->psize_slot;
1225 const float size
1226 = sizeAttr > 0 ? v0[sizeAttr][0]
1227 : setup->softpipe->rasterizer->point_size;
1228 const float halfSize = 0.5F * size;
1229 const boolean round = (boolean) setup->softpipe->rasterizer->point_smooth;
1230 const float x = v0[0][0]; /* Note: data[0] is always position */
1231 const float y = v0[0][1];
1232 const struct sp_setup_info *sinfo = &softpipe->setup_info;
1233 uint fragSlot;
1234 uint layer = 0;
1235 unsigned viewport_index = 0;
1236 #if DEBUG_VERTS
1237 debug_printf("Setup point:\n");
1238 print_vertex(setup, v0);
1239 #endif
1240
1241 assert(sinfo->valid);
1242
1243 if (setup->softpipe->no_rast || setup->softpipe->rasterizer->rasterizer_discard)
1244 return;
1245
1246 assert(setup->softpipe->reduced_prim == PIPE_PRIM_POINTS);
1247
1248 if (setup->softpipe->layer_slot > 0) {
1249 layer = *(unsigned *)v0[setup->softpipe->layer_slot];
1250 layer = MIN2(layer, setup->max_layer);
1251 }
1252 setup->quad[0].input.layer = layer;
1253
1254 if (setup->softpipe->viewport_index_slot > 0) {
1255 unsigned *udata = (unsigned*)v0[setup->softpipe->viewport_index_slot];
1256 viewport_index = sp_clamp_viewport_idx(*udata);
1257 }
1258 setup->quad[0].input.viewport_index = viewport_index;
1259
1260 /* For points, all interpolants are constant-valued.
1261 * However, for point sprites, we'll need to setup texcoords appropriately.
1262 * XXX: which coefficients are the texcoords???
1263 * We may do point sprites as textured quads...
1264 *
1265 * KW: We don't know which coefficients are texcoords - ultimately
1266 * the choice of what interpolation mode to use for each attribute
1267 * should be determined by the fragment program, using
1268 * per-attribute declaration statements that include interpolation
1269 * mode as a parameter. So either the fragment program will have
1270 * to be adjusted for pointsprite vs normal point behaviour, or
1271 * otherwise a special interpolation mode will have to be defined
1272 * which matches the required behaviour for point sprites. But -
1273 * the latter is not a feature of normal hardware, and as such
1274 * probably should be ruled out on that basis.
1275 */
1276 setup->vprovoke = v0;
1277
1278 /* setup Z, W */
1279 const_coeff(setup, &setup->posCoef, 0, 2);
1280 const_coeff(setup, &setup->posCoef, 0, 3);
1281
1282 for (fragSlot = 0; fragSlot < fsInfo->num_inputs; fragSlot++) {
1283 const uint vertSlot = sinfo->attrib[fragSlot].src_index;
1284 uint j;
1285
1286 switch (sinfo->attrib[fragSlot].interp) {
1287 case SP_INTERP_CONSTANT:
1288 /* fall-through */
1289 case SP_INTERP_LINEAR:
1290 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1291 const_coeff(setup, &setup->coef[fragSlot], vertSlot, j);
1292 break;
1293 case SP_INTERP_PERSPECTIVE:
1294 for (j = 0; j < TGSI_NUM_CHANNELS; j++)
1295 point_persp_coeff(setup, setup->vprovoke,
1296 &setup->coef[fragSlot], vertSlot, j);
1297 break;
1298 case SP_INTERP_POS:
1299 setup_fragcoord_coeff(setup, fragSlot);
1300 break;
1301 default:
1302 assert(0);
1303 }
1304
1305 if (fsInfo->input_semantic_name[fragSlot] == TGSI_SEMANTIC_FACE) {
1306 /* convert 0 to 1.0 and 1 to -1.0 */
1307 setup->coef[fragSlot].a0[0] = setup->facing * -2.0f + 1.0f;
1308 setup->coef[fragSlot].dadx[0] = 0.0;
1309 setup->coef[fragSlot].dady[0] = 0.0;
1310 }
1311 }
1312
1313
1314 if (halfSize <= 0.5 && !round) {
1315 /* special case for 1-pixel points */
1316 const int ix = ((int) x) & 1;
1317 const int iy = ((int) y) & 1;
1318 setup->quad[0].input.x0 = (int) x - ix;
1319 setup->quad[0].input.y0 = (int) y - iy;
1320 setup->quad[0].inout.mask = (1 << ix) << (2 * iy);
1321 clip_emit_quad(setup, &setup->quad[0]);
1322 }
1323 else {
1324 if (round) {
1325 /* rounded points */
1326 const int ixmin = block((int) (x - halfSize));
1327 const int ixmax = block((int) (x + halfSize));
1328 const int iymin = block((int) (y - halfSize));
1329 const int iymax = block((int) (y + halfSize));
1330 const float rmin = halfSize - 0.7071F; /* 0.7071 = sqrt(2)/2 */
1331 const float rmax = halfSize + 0.7071F;
1332 const float rmin2 = MAX2(0.0F, rmin * rmin);
1333 const float rmax2 = rmax * rmax;
1334 const float cscale = 1.0F / (rmax2 - rmin2);
1335 int ix, iy;
1336
1337 for (iy = iymin; iy <= iymax; iy += 2) {
1338 for (ix = ixmin; ix <= ixmax; ix += 2) {
1339 float dx, dy, dist2, cover;
1340
1341 setup->quad[0].inout.mask = 0x0;
1342
1343 dx = (ix + 0.5f) - x;
1344 dy = (iy + 0.5f) - y;
1345 dist2 = dx * dx + dy * dy;
1346 if (dist2 <= rmax2) {
1347 cover = 1.0F - (dist2 - rmin2) * cscale;
1348 setup->quad[0].input.coverage[QUAD_TOP_LEFT] = MIN2(cover, 1.0f);
1349 setup->quad[0].inout.mask |= MASK_TOP_LEFT;
1350 }
1351
1352 dx = (ix + 1.5f) - x;
1353 dy = (iy + 0.5f) - y;
1354 dist2 = dx * dx + dy * dy;
1355 if (dist2 <= rmax2) {
1356 cover = 1.0F - (dist2 - rmin2) * cscale;
1357 setup->quad[0].input.coverage[QUAD_TOP_RIGHT] = MIN2(cover, 1.0f);
1358 setup->quad[0].inout.mask |= MASK_TOP_RIGHT;
1359 }
1360
1361 dx = (ix + 0.5f) - x;
1362 dy = (iy + 1.5f) - y;
1363 dist2 = dx * dx + dy * dy;
1364 if (dist2 <= rmax2) {
1365 cover = 1.0F - (dist2 - rmin2) * cscale;
1366 setup->quad[0].input.coverage[QUAD_BOTTOM_LEFT] = MIN2(cover, 1.0f);
1367 setup->quad[0].inout.mask |= MASK_BOTTOM_LEFT;
1368 }
1369
1370 dx = (ix + 1.5f) - x;
1371 dy = (iy + 1.5f) - y;
1372 dist2 = dx * dx + dy * dy;
1373 if (dist2 <= rmax2) {
1374 cover = 1.0F - (dist2 - rmin2) * cscale;
1375 setup->quad[0].input.coverage[QUAD_BOTTOM_RIGHT] = MIN2(cover, 1.0f);
1376 setup->quad[0].inout.mask |= MASK_BOTTOM_RIGHT;
1377 }
1378
1379 if (setup->quad[0].inout.mask) {
1380 setup->quad[0].input.x0 = ix;
1381 setup->quad[0].input.y0 = iy;
1382 clip_emit_quad(setup, &setup->quad[0]);
1383 }
1384 }
1385 }
1386 }
1387 else {
1388 /* square points */
1389 const int xmin = (int) (x + 0.75 - halfSize);
1390 const int ymin = (int) (y + 0.25 - halfSize);
1391 const int xmax = xmin + (int) size;
1392 const int ymax = ymin + (int) size;
1393 /* XXX could apply scissor to xmin,ymin,xmax,ymax now */
1394 const int ixmin = block(xmin);
1395 const int ixmax = block(xmax - 1);
1396 const int iymin = block(ymin);
1397 const int iymax = block(ymax - 1);
1398 int ix, iy;
1399
1400 /*
1401 debug_printf("(%f, %f) -> X:%d..%d Y:%d..%d\n", x, y, xmin, xmax,ymin,ymax);
1402 */
1403 for (iy = iymin; iy <= iymax; iy += 2) {
1404 uint rowMask = 0xf;
1405 if (iy < ymin) {
1406 /* above the top edge */
1407 rowMask &= (MASK_BOTTOM_LEFT | MASK_BOTTOM_RIGHT);
1408 }
1409 if (iy + 1 >= ymax) {
1410 /* below the bottom edge */
1411 rowMask &= (MASK_TOP_LEFT | MASK_TOP_RIGHT);
1412 }
1413
1414 for (ix = ixmin; ix <= ixmax; ix += 2) {
1415 uint mask = rowMask;
1416
1417 if (ix < xmin) {
1418 /* fragment is past left edge of point, turn off left bits */
1419 mask &= (MASK_BOTTOM_RIGHT | MASK_TOP_RIGHT);
1420 }
1421 if (ix + 1 >= xmax) {
1422 /* past the right edge */
1423 mask &= (MASK_BOTTOM_LEFT | MASK_TOP_LEFT);
1424 }
1425
1426 setup->quad[0].inout.mask = mask;
1427 setup->quad[0].input.x0 = ix;
1428 setup->quad[0].input.y0 = iy;
1429 clip_emit_quad(setup, &setup->quad[0]);
1430 }
1431 }
1432 }
1433 }
1434 }
1435
1436
1437 /**
1438 * Called by vbuf code just before we start buffering primitives.
1439 */
1440 void
1441 sp_setup_prepare(struct setup_context *setup)
1442 {
1443 struct softpipe_context *sp = setup->softpipe;
1444 int i;
1445 unsigned max_layer = ~0;
1446 if (sp->dirty) {
1447 softpipe_update_derived(sp, sp->reduced_api_prim);
1448 }
1449
1450 /* Note: nr_attrs is only used for debugging (vertex printing) */
1451 setup->nr_vertex_attrs = draw_num_shader_outputs(sp->draw);
1452
1453 /*
1454 * Determine how many layers the fb has (used for clamping layer value).
1455 * OpenGL (but not d3d10) permits different amount of layers per rt, however
1456 * results are undefined if layer exceeds the amount of layers of ANY
1457 * attachment hence don't need separate per cbuf and zsbuf max.
1458 */
1459 for (i = 0; i < setup->softpipe->framebuffer.nr_cbufs; i++) {
1460 struct pipe_surface *cbuf = setup->softpipe->framebuffer.cbufs[i];
1461 if (cbuf) {
1462 max_layer = MIN2(max_layer,
1463 cbuf->u.tex.last_layer - cbuf->u.tex.first_layer);
1464
1465 }
1466 }
1467
1468 /* Prepare pixel offset for rasterisation:
1469 * - pixel center (0.5, 0.5) for GL, or
1470 * - assume (0.0, 0.0) for other APIs.
1471 */
1472 if (setup->softpipe->rasterizer->half_pixel_center) {
1473 setup->pixel_offset = 0.5f;
1474 } else {
1475 setup->pixel_offset = 0.0f;
1476 }
1477
1478 setup->max_layer = max_layer;
1479
1480 sp->quad.first->begin( sp->quad.first );
1481
1482 if (sp->reduced_api_prim == PIPE_PRIM_TRIANGLES &&
1483 sp->rasterizer->fill_front == PIPE_POLYGON_MODE_FILL &&
1484 sp->rasterizer->fill_back == PIPE_POLYGON_MODE_FILL) {
1485 /* we'll do culling */
1486 setup->cull_face = sp->rasterizer->cull_face;
1487 }
1488 else {
1489 /* 'draw' will do culling */
1490 setup->cull_face = PIPE_FACE_NONE;
1491 }
1492 }
1493
1494
1495 void
1496 sp_setup_destroy_context(struct setup_context *setup)
1497 {
1498 FREE( setup );
1499 }
1500
1501
1502 /**
1503 * Create a new primitive setup/render stage.
1504 */
1505 struct setup_context *
1506 sp_setup_create_context(struct softpipe_context *softpipe)
1507 {
1508 struct setup_context *setup = CALLOC_STRUCT(setup_context);
1509 unsigned i;
1510
1511 setup->softpipe = softpipe;
1512
1513 for (i = 0; i < MAX_QUADS; i++) {
1514 setup->quad[i].coef = setup->coef;
1515 setup->quad[i].posCoef = &setup->posCoef;
1516 }
1517
1518 setup->span.left[0] = 1000000; /* greater than right[0] */
1519 setup->span.left[1] = 1000000; /* greater than right[1] */
1520
1521 return setup;
1522 }