softpipe: fix texture view crashes
[mesa.git] / src / gallium / drivers / softpipe / sp_tex_sample.c
1 /**************************************************************************
2 *
3 * Copyright 2007 VMware, Inc.
4 * All Rights Reserved.
5 * Copyright 2008-2010 VMware, Inc. All rights reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28
29 /**
30 * Texture sampling
31 *
32 * Authors:
33 * Brian Paul
34 * Keith Whitwell
35 */
36
37 #include "pipe/p_context.h"
38 #include "pipe/p_defines.h"
39 #include "pipe/p_shader_tokens.h"
40 #include "util/u_math.h"
41 #include "util/u_format.h"
42 #include "util/u_memory.h"
43 #include "util/u_inlines.h"
44 #include "sp_quad.h" /* only for #define QUAD_* tokens */
45 #include "sp_tex_sample.h"
46 #include "sp_texture.h"
47 #include "sp_tex_tile_cache.h"
48
49
50 /** Set to one to help debug texture sampling */
51 #define DEBUG_TEX 0
52
53
54 /*
55 * Return fractional part of 'f'. Used for computing interpolation weights.
56 * Need to be careful with negative values.
57 * Note, if this function isn't perfect you'll sometimes see 1-pixel bands
58 * of improperly weighted linear-filtered textures.
59 * The tests/texwrap.c demo is a good test.
60 */
61 static inline float
62 frac(float f)
63 {
64 return f - floorf(f);
65 }
66
67
68
69 /**
70 * Linear interpolation macro
71 */
72 static inline float
73 lerp(float a, float v0, float v1)
74 {
75 return v0 + a * (v1 - v0);
76 }
77
78
79 /**
80 * Do 2D/bilinear interpolation of float values.
81 * v00, v10, v01 and v11 are typically four texture samples in a square/box.
82 * a and b are the horizontal and vertical interpolants.
83 * It's important that this function is inlined when compiled with
84 * optimization! If we find that's not true on some systems, convert
85 * to a macro.
86 */
87 static inline float
88 lerp_2d(float a, float b,
89 float v00, float v10, float v01, float v11)
90 {
91 const float temp0 = lerp(a, v00, v10);
92 const float temp1 = lerp(a, v01, v11);
93 return lerp(b, temp0, temp1);
94 }
95
96
97 /**
98 * As above, but 3D interpolation of 8 values.
99 */
100 static inline float
101 lerp_3d(float a, float b, float c,
102 float v000, float v100, float v010, float v110,
103 float v001, float v101, float v011, float v111)
104 {
105 const float temp0 = lerp_2d(a, b, v000, v100, v010, v110);
106 const float temp1 = lerp_2d(a, b, v001, v101, v011, v111);
107 return lerp(c, temp0, temp1);
108 }
109
110
111
112 /**
113 * Compute coord % size for repeat wrap modes.
114 * Note that if coord is negative, coord % size doesn't give the right
115 * value. To avoid that problem we add a large multiple of the size
116 * (rather than using a conditional).
117 */
118 static inline int
119 repeat(int coord, unsigned size)
120 {
121 return (coord + size * 1024) % size;
122 }
123
124
125 /**
126 * Apply texture coord wrapping mode and return integer texture indexes
127 * for a vector of four texcoords (S or T or P).
128 * \param wrapMode PIPE_TEX_WRAP_x
129 * \param s the incoming texcoords
130 * \param size the texture image size
131 * \param icoord returns the integer texcoords
132 */
133 static void
134 wrap_nearest_repeat(float s, unsigned size, int offset, int *icoord)
135 {
136 /* s limited to [0,1) */
137 /* i limited to [0,size-1] */
138 const int i = util_ifloor(s * size);
139 *icoord = repeat(i + offset, size);
140 }
141
142
143 static void
144 wrap_nearest_clamp(float s, unsigned size, int offset, int *icoord)
145 {
146 /* s limited to [0,1] */
147 /* i limited to [0,size-1] */
148 s *= size;
149 s += offset;
150 if (s <= 0.0F)
151 *icoord = 0;
152 else if (s >= size)
153 *icoord = size - 1;
154 else
155 *icoord = util_ifloor(s);
156 }
157
158
159 static void
160 wrap_nearest_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
161 {
162 /* s limited to [min,max] */
163 /* i limited to [0, size-1] */
164 const float min = 0.5F;
165 const float max = (float)size - 0.5F;
166
167 s *= size;
168 s += offset;
169
170 if (s < min)
171 *icoord = 0;
172 else if (s > max)
173 *icoord = size - 1;
174 else
175 *icoord = util_ifloor(s);
176 }
177
178
179 static void
180 wrap_nearest_clamp_to_border(float s, unsigned size, int offset, int *icoord)
181 {
182 /* s limited to [min,max] */
183 /* i limited to [-1, size] */
184 const float min = -0.5F;
185 const float max = size + 0.5F;
186
187 s *= size;
188 s += offset;
189 if (s <= min)
190 *icoord = -1;
191 else if (s >= max)
192 *icoord = size;
193 else
194 *icoord = util_ifloor(s);
195 }
196
197 static void
198 wrap_nearest_mirror_repeat(float s, unsigned size, int offset, int *icoord)
199 {
200 const float min = 1.0F / (2.0F * size);
201 const float max = 1.0F - min;
202 int flr;
203 float u;
204
205 s += (float)offset / size;
206 flr = util_ifloor(s);
207 u = frac(s);
208 if (flr & 1)
209 u = 1.0F - u;
210 if (u < min)
211 *icoord = 0;
212 else if (u > max)
213 *icoord = size - 1;
214 else
215 *icoord = util_ifloor(u * size);
216 }
217
218
219 static void
220 wrap_nearest_mirror_clamp(float s, unsigned size, int offset, int *icoord)
221 {
222 /* s limited to [0,1] */
223 /* i limited to [0,size-1] */
224 const float u = fabsf(s * size + offset);
225 if (u <= 0.0F)
226 *icoord = 0;
227 else if (u >= size)
228 *icoord = size - 1;
229 else
230 *icoord = util_ifloor(u);
231 }
232
233
234 static void
235 wrap_nearest_mirror_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
236 {
237 /* s limited to [min,max] */
238 /* i limited to [0, size-1] */
239 const float min = 0.5F;
240 const float max = (float)size - 0.5F;
241 const float u = fabsf(s * size + offset);
242
243 if (u < min)
244 *icoord = 0;
245 else if (u > max)
246 *icoord = size - 1;
247 else
248 *icoord = util_ifloor(u);
249 }
250
251
252 static void
253 wrap_nearest_mirror_clamp_to_border(float s, unsigned size, int offset, int *icoord)
254 {
255 /* u limited to [-0.5, size-0.5] */
256 const float min = -0.5F;
257 const float max = (float)size + 0.5F;
258 const float u = fabsf(s * size + offset);
259
260 if (u < min)
261 *icoord = -1;
262 else if (u > max)
263 *icoord = size;
264 else
265 *icoord = util_ifloor(u);
266 }
267
268
269 /**
270 * Used to compute texel locations for linear sampling
271 * \param wrapMode PIPE_TEX_WRAP_x
272 * \param s the texcoord
273 * \param size the texture image size
274 * \param icoord0 returns first texture index
275 * \param icoord1 returns second texture index (usually icoord0 + 1)
276 * \param w returns blend factor/weight between texture indices
277 * \param icoord returns the computed integer texture coord
278 */
279 static void
280 wrap_linear_repeat(float s, unsigned size, int offset,
281 int *icoord0, int *icoord1, float *w)
282 {
283 const float u = s * size - 0.5F;
284 *icoord0 = repeat(util_ifloor(u) + offset, size);
285 *icoord1 = repeat(*icoord0 + 1, size);
286 *w = frac(u);
287 }
288
289
290 static void
291 wrap_linear_clamp(float s, unsigned size, int offset,
292 int *icoord0, int *icoord1, float *w)
293 {
294 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
295
296 *icoord0 = util_ifloor(u);
297 *icoord1 = *icoord0 + 1;
298 *w = frac(u);
299 }
300
301
302 static void
303 wrap_linear_clamp_to_edge(float s, unsigned size, int offset,
304 int *icoord0, int *icoord1, float *w)
305 {
306 const float u = CLAMP(s * size + offset, 0.0F, (float)size) - 0.5f;
307 *icoord0 = util_ifloor(u);
308 *icoord1 = *icoord0 + 1;
309 if (*icoord0 < 0)
310 *icoord0 = 0;
311 if (*icoord1 >= (int) size)
312 *icoord1 = size - 1;
313 *w = frac(u);
314 }
315
316
317 static void
318 wrap_linear_clamp_to_border(float s, unsigned size, int offset,
319 int *icoord0, int *icoord1, float *w)
320 {
321 const float min = -0.5F;
322 const float max = (float)size + 0.5F;
323 const float u = CLAMP(s * size + offset, min, max) - 0.5f;
324 *icoord0 = util_ifloor(u);
325 *icoord1 = *icoord0 + 1;
326 *w = frac(u);
327 }
328
329
330 static void
331 wrap_linear_mirror_repeat(float s, unsigned size, int offset,
332 int *icoord0, int *icoord1, float *w)
333 {
334 int flr;
335 float u;
336
337 s += (float)offset / size;
338 flr = util_ifloor(s);
339 u = frac(s);
340 if (flr & 1)
341 u = 1.0F - u;
342 u = u * size - 0.5F;
343 *icoord0 = util_ifloor(u);
344 *icoord1 = *icoord0 + 1;
345 if (*icoord0 < 0)
346 *icoord0 = 0;
347 if (*icoord1 >= (int) size)
348 *icoord1 = size - 1;
349 *w = frac(u);
350 }
351
352
353 static void
354 wrap_linear_mirror_clamp(float s, unsigned size, int offset,
355 int *icoord0, int *icoord1, float *w)
356 {
357 float u = fabsf(s * size + offset);
358 if (u >= size)
359 u = (float) size;
360 u -= 0.5F;
361 *icoord0 = util_ifloor(u);
362 *icoord1 = *icoord0 + 1;
363 *w = frac(u);
364 }
365
366
367 static void
368 wrap_linear_mirror_clamp_to_edge(float s, unsigned size, int offset,
369 int *icoord0, int *icoord1, float *w)
370 {
371 float u = fabsf(s * size + offset);
372 if (u >= size)
373 u = (float) size;
374 u -= 0.5F;
375 *icoord0 = util_ifloor(u);
376 *icoord1 = *icoord0 + 1;
377 if (*icoord0 < 0)
378 *icoord0 = 0;
379 if (*icoord1 >= (int) size)
380 *icoord1 = size - 1;
381 *w = frac(u);
382 }
383
384
385 static void
386 wrap_linear_mirror_clamp_to_border(float s, unsigned size, int offset,
387 int *icoord0, int *icoord1, float *w)
388 {
389 const float min = -0.5F;
390 const float max = size + 0.5F;
391 const float t = fabsf(s * size + offset);
392 const float u = CLAMP(t, min, max) - 0.5F;
393 *icoord0 = util_ifloor(u);
394 *icoord1 = *icoord0 + 1;
395 *w = frac(u);
396 }
397
398
399 /**
400 * PIPE_TEX_WRAP_CLAMP for nearest sampling, unnormalized coords.
401 */
402 static void
403 wrap_nearest_unorm_clamp(float s, unsigned size, int offset, int *icoord)
404 {
405 const int i = util_ifloor(s);
406 *icoord = CLAMP(i + offset, 0, (int) size-1);
407 }
408
409
410 /**
411 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for nearest sampling, unnormalized coords.
412 */
413 static void
414 wrap_nearest_unorm_clamp_to_border(float s, unsigned size, int offset, int *icoord)
415 {
416 *icoord = util_ifloor( CLAMP(s + offset, -0.5F, (float) size + 0.5F) );
417 }
418
419
420 /**
421 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for nearest sampling, unnormalized coords.
422 */
423 static void
424 wrap_nearest_unorm_clamp_to_edge(float s, unsigned size, int offset, int *icoord)
425 {
426 *icoord = util_ifloor( CLAMP(s + offset, 0.5F, (float) size - 0.5F) );
427 }
428
429
430 /**
431 * PIPE_TEX_WRAP_CLAMP for linear sampling, unnormalized coords.
432 */
433 static void
434 wrap_linear_unorm_clamp(float s, unsigned size, int offset,
435 int *icoord0, int *icoord1, float *w)
436 {
437 /* Not exactly what the spec says, but it matches NVIDIA output */
438 const float u = CLAMP(s + offset - 0.5F, 0.0f, (float) size - 1.0f);
439 *icoord0 = util_ifloor(u);
440 *icoord1 = *icoord0 + 1;
441 *w = frac(u);
442 }
443
444
445 /**
446 * PIPE_TEX_WRAP_CLAMP_TO_BORDER for linear sampling, unnormalized coords.
447 */
448 static void
449 wrap_linear_unorm_clamp_to_border(float s, unsigned size, int offset,
450 int *icoord0, int *icoord1, float *w)
451 {
452 const float u = CLAMP(s + offset, -0.5F, (float) size + 0.5F) - 0.5F;
453 *icoord0 = util_ifloor(u);
454 *icoord1 = *icoord0 + 1;
455 if (*icoord1 > (int) size - 1)
456 *icoord1 = size - 1;
457 *w = frac(u);
458 }
459
460
461 /**
462 * PIPE_TEX_WRAP_CLAMP_TO_EDGE for linear sampling, unnormalized coords.
463 */
464 static void
465 wrap_linear_unorm_clamp_to_edge(float s, unsigned size, int offset,
466 int *icoord0, int *icoord1, float *w)
467 {
468 const float u = CLAMP(s + offset, +0.5F, (float) size - 0.5F) - 0.5F;
469 *icoord0 = util_ifloor(u);
470 *icoord1 = *icoord0 + 1;
471 if (*icoord1 > (int) size - 1)
472 *icoord1 = size - 1;
473 *w = frac(u);
474 }
475
476
477 /**
478 * Do coordinate to array index conversion. For array textures.
479 */
480 static inline int
481 coord_to_layer(float coord, unsigned first_layer, unsigned last_layer)
482 {
483 const int c = util_ifloor(coord + 0.5F);
484 return CLAMP(c, (int)first_layer, (int)last_layer);
485 }
486
487
488 /**
489 * Examine the quad's texture coordinates to compute the partial
490 * derivatives w.r.t X and Y, then compute lambda (level of detail).
491 */
492 static float
493 compute_lambda_1d(const struct sp_sampler_view *sview,
494 const float s[TGSI_QUAD_SIZE],
495 const float t[TGSI_QUAD_SIZE],
496 const float p[TGSI_QUAD_SIZE])
497 {
498 const struct pipe_resource *texture = sview->base.texture;
499 const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
500 const float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
501 const float rho = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
502
503 return util_fast_log2(rho);
504 }
505
506
507 static float
508 compute_lambda_2d(const struct sp_sampler_view *sview,
509 const float s[TGSI_QUAD_SIZE],
510 const float t[TGSI_QUAD_SIZE],
511 const float p[TGSI_QUAD_SIZE])
512 {
513 const struct pipe_resource *texture = sview->base.texture;
514 const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
515 const float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
516 const float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
517 const float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
518 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
519 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
520 const float rho = MAX2(maxx, maxy);
521
522 return util_fast_log2(rho);
523 }
524
525
526 static float
527 compute_lambda_3d(const struct sp_sampler_view *sview,
528 const float s[TGSI_QUAD_SIZE],
529 const float t[TGSI_QUAD_SIZE],
530 const float p[TGSI_QUAD_SIZE])
531 {
532 const struct pipe_resource *texture = sview->base.texture;
533 const float dsdx = fabsf(s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]);
534 const float dsdy = fabsf(s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]);
535 const float dtdx = fabsf(t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]);
536 const float dtdy = fabsf(t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]);
537 const float dpdx = fabsf(p[QUAD_BOTTOM_RIGHT] - p[QUAD_BOTTOM_LEFT]);
538 const float dpdy = fabsf(p[QUAD_TOP_LEFT] - p[QUAD_BOTTOM_LEFT]);
539 const float maxx = MAX2(dsdx, dsdy) * u_minify(texture->width0, sview->base.u.tex.first_level);
540 const float maxy = MAX2(dtdx, dtdy) * u_minify(texture->height0, sview->base.u.tex.first_level);
541 const float maxz = MAX2(dpdx, dpdy) * u_minify(texture->depth0, sview->base.u.tex.first_level);
542 const float rho = MAX3(maxx, maxy, maxz);
543
544 return util_fast_log2(rho);
545 }
546
547
548 /**
549 * Compute lambda for a vertex texture sampler.
550 * Since there aren't derivatives to use, just return 0.
551 */
552 static float
553 compute_lambda_vert(const struct sp_sampler_view *sview,
554 const float s[TGSI_QUAD_SIZE],
555 const float t[TGSI_QUAD_SIZE],
556 const float p[TGSI_QUAD_SIZE])
557 {
558 return 0.0f;
559 }
560
561
562
563 /**
564 * Get a texel from a texture, using the texture tile cache.
565 *
566 * \param addr the template tex address containing cube, z, face info.
567 * \param x the x coord of texel within 2D image
568 * \param y the y coord of texel within 2D image
569 * \param rgba the quad to put the texel/color into
570 *
571 * XXX maybe move this into sp_tex_tile_cache.c and merge with the
572 * sp_get_cached_tile_tex() function.
573 */
574
575
576
577
578 static inline const float *
579 get_texel_2d_no_border(const struct sp_sampler_view *sp_sview,
580 union tex_tile_address addr, int x, int y)
581 {
582 const struct softpipe_tex_cached_tile *tile;
583 addr.bits.x = x / TEX_TILE_SIZE;
584 addr.bits.y = y / TEX_TILE_SIZE;
585 y %= TEX_TILE_SIZE;
586 x %= TEX_TILE_SIZE;
587
588 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
589
590 return &tile->data.color[y][x][0];
591 }
592
593
594 static inline const float *
595 get_texel_2d(const struct sp_sampler_view *sp_sview,
596 const struct sp_sampler *sp_samp,
597 union tex_tile_address addr, int x, int y)
598 {
599 const struct pipe_resource *texture = sp_sview->base.texture;
600 const unsigned level = addr.bits.level;
601
602 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
603 y < 0 || y >= (int) u_minify(texture->height0, level)) {
604 return sp_samp->base.border_color.f;
605 }
606 else {
607 return get_texel_2d_no_border( sp_sview, addr, x, y );
608 }
609 }
610
611
612 /*
613 * Here's the complete logic (HOLY CRAP) for finding next face and doing the
614 * corresponding coord wrapping, implemented by get_next_face,
615 * get_next_xcoord, get_next_ycoord.
616 * Read like that (first line):
617 * If face is +x and s coord is below zero, then
618 * new face is +z, new s is max , new t is old t
619 * (max is always cube size - 1).
620 *
621 * +x s- -> +z: s = max, t = t
622 * +x s+ -> -z: s = 0, t = t
623 * +x t- -> +y: s = max, t = max-s
624 * +x t+ -> -y: s = max, t = s
625 *
626 * -x s- -> -z: s = max, t = t
627 * -x s+ -> +z: s = 0, t = t
628 * -x t- -> +y: s = 0, t = s
629 * -x t+ -> -y: s = 0, t = max-s
630 *
631 * +y s- -> -x: s = t, t = 0
632 * +y s+ -> +x: s = max-t, t = 0
633 * +y t- -> -z: s = max-s, t = 0
634 * +y t+ -> +z: s = s, t = 0
635 *
636 * -y s- -> -x: s = max-t, t = max
637 * -y s+ -> +x: s = t, t = max
638 * -y t- -> +z: s = s, t = max
639 * -y t+ -> -z: s = max-s, t = max
640
641 * +z s- -> -x: s = max, t = t
642 * +z s+ -> +x: s = 0, t = t
643 * +z t- -> +y: s = s, t = max
644 * +z t+ -> -y: s = s, t = 0
645
646 * -z s- -> +x: s = max, t = t
647 * -z s+ -> -x: s = 0, t = t
648 * -z t- -> +y: s = max-s, t = 0
649 * -z t+ -> -y: s = max-s, t = max
650 */
651
652
653 /*
654 * seamless cubemap neighbour array.
655 * this array is used to find the adjacent face in each of 4 directions,
656 * left, right, up, down. (or -x, +x, -y, +y).
657 */
658 static const unsigned face_array[PIPE_TEX_FACE_MAX][4] = {
659 /* pos X first then neg X is Z different, Y the same */
660 /* PIPE_TEX_FACE_POS_X,*/
661 { PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z,
662 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
663 /* PIPE_TEX_FACE_NEG_X */
664 { PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z,
665 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
666
667 /* pos Y first then neg Y is X different, X the same */
668 /* PIPE_TEX_FACE_POS_Y */
669 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
670 PIPE_TEX_FACE_NEG_Z, PIPE_TEX_FACE_POS_Z },
671
672 /* PIPE_TEX_FACE_NEG_Y */
673 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
674 PIPE_TEX_FACE_POS_Z, PIPE_TEX_FACE_NEG_Z },
675
676 /* pos Z first then neg Y is X different, X the same */
677 /* PIPE_TEX_FACE_POS_Z */
678 { PIPE_TEX_FACE_NEG_X, PIPE_TEX_FACE_POS_X,
679 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y },
680
681 /* PIPE_TEX_FACE_NEG_Z */
682 { PIPE_TEX_FACE_POS_X, PIPE_TEX_FACE_NEG_X,
683 PIPE_TEX_FACE_POS_Y, PIPE_TEX_FACE_NEG_Y }
684 };
685
686 static inline unsigned
687 get_next_face(unsigned face, int idx)
688 {
689 return face_array[face][idx];
690 }
691
692 /*
693 * return a new xcoord based on old face, old coords, cube size
694 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
695 */
696 static inline int
697 get_next_xcoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
698 {
699 if ((face == 0 && fall_off_index != 1) ||
700 (face == 1 && fall_off_index == 0) ||
701 (face == 4 && fall_off_index == 0) ||
702 (face == 5 && fall_off_index == 0)) {
703 return max;
704 }
705 if ((face == 1 && fall_off_index != 0) ||
706 (face == 0 && fall_off_index == 1) ||
707 (face == 4 && fall_off_index == 1) ||
708 (face == 5 && fall_off_index == 1)) {
709 return 0;
710 }
711 if ((face == 4 && fall_off_index >= 2) ||
712 (face == 2 && fall_off_index == 3) ||
713 (face == 3 && fall_off_index == 2)) {
714 return xc;
715 }
716 if ((face == 5 && fall_off_index >= 2) ||
717 (face == 2 && fall_off_index == 2) ||
718 (face == 3 && fall_off_index == 3)) {
719 return max - xc;
720 }
721 if ((face == 2 && fall_off_index == 0) ||
722 (face == 3 && fall_off_index == 1)) {
723 return yc;
724 }
725 /* (face == 2 && fall_off_index == 1) ||
726 (face == 3 && fall_off_index == 0)) */
727 return max - yc;
728 }
729
730 /*
731 * return a new ycoord based on old face, old coords, cube size
732 * and fall_off_index (0 for x-, 1 for x+, 2 for y-, 3 for y+)
733 */
734 static inline int
735 get_next_ycoord(unsigned face, unsigned fall_off_index, int max, int xc, int yc)
736 {
737 if ((fall_off_index <= 1) && (face <= 1 || face >= 4)) {
738 return yc;
739 }
740 if (face == 2 ||
741 (face == 4 && fall_off_index == 3) ||
742 (face == 5 && fall_off_index == 2)) {
743 return 0;
744 }
745 if (face == 3 ||
746 (face == 4 && fall_off_index == 2) ||
747 (face == 5 && fall_off_index == 3)) {
748 return max;
749 }
750 if ((face == 0 && fall_off_index == 3) ||
751 (face == 1 && fall_off_index == 2)) {
752 return xc;
753 }
754 /* (face == 0 && fall_off_index == 2) ||
755 (face == 1 && fall_off_index == 3) */
756 return max - xc;
757 }
758
759
760 /* Gather a quad of adjacent texels within a tile:
761 */
762 static inline void
763 get_texel_quad_2d_no_border_single_tile(const struct sp_sampler_view *sp_sview,
764 union tex_tile_address addr,
765 unsigned x, unsigned y,
766 const float *out[4])
767 {
768 const struct softpipe_tex_cached_tile *tile;
769
770 addr.bits.x = x / TEX_TILE_SIZE;
771 addr.bits.y = y / TEX_TILE_SIZE;
772 y %= TEX_TILE_SIZE;
773 x %= TEX_TILE_SIZE;
774
775 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
776
777 out[0] = &tile->data.color[y ][x ][0];
778 out[1] = &tile->data.color[y ][x+1][0];
779 out[2] = &tile->data.color[y+1][x ][0];
780 out[3] = &tile->data.color[y+1][x+1][0];
781 }
782
783
784 /* Gather a quad of potentially non-adjacent texels:
785 */
786 static inline void
787 get_texel_quad_2d_no_border(const struct sp_sampler_view *sp_sview,
788 union tex_tile_address addr,
789 int x0, int y0,
790 int x1, int y1,
791 const float *out[4])
792 {
793 out[0] = get_texel_2d_no_border( sp_sview, addr, x0, y0 );
794 out[1] = get_texel_2d_no_border( sp_sview, addr, x1, y0 );
795 out[2] = get_texel_2d_no_border( sp_sview, addr, x0, y1 );
796 out[3] = get_texel_2d_no_border( sp_sview, addr, x1, y1 );
797 }
798
799
800 /* 3d variants:
801 */
802 static inline const float *
803 get_texel_3d_no_border(const struct sp_sampler_view *sp_sview,
804 union tex_tile_address addr, int x, int y, int z)
805 {
806 const struct softpipe_tex_cached_tile *tile;
807
808 addr.bits.x = x / TEX_TILE_SIZE;
809 addr.bits.y = y / TEX_TILE_SIZE;
810 addr.bits.z = z;
811 y %= TEX_TILE_SIZE;
812 x %= TEX_TILE_SIZE;
813
814 tile = sp_get_cached_tile_tex(sp_sview->cache, addr);
815
816 return &tile->data.color[y][x][0];
817 }
818
819
820 static inline const float *
821 get_texel_3d(const struct sp_sampler_view *sp_sview,
822 const struct sp_sampler *sp_samp,
823 union tex_tile_address addr, int x, int y, int z)
824 {
825 const struct pipe_resource *texture = sp_sview->base.texture;
826 const unsigned level = addr.bits.level;
827
828 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
829 y < 0 || y >= (int) u_minify(texture->height0, level) ||
830 z < 0 || z >= (int) u_minify(texture->depth0, level)) {
831 return sp_samp->base.border_color.f;
832 }
833 else {
834 return get_texel_3d_no_border( sp_sview, addr, x, y, z );
835 }
836 }
837
838
839 /* Get texel pointer for 1D array texture */
840 static inline const float *
841 get_texel_1d_array(const struct sp_sampler_view *sp_sview,
842 const struct sp_sampler *sp_samp,
843 union tex_tile_address addr, int x, int y)
844 {
845 const struct pipe_resource *texture = sp_sview->base.texture;
846 const unsigned level = addr.bits.level;
847
848 if (x < 0 || x >= (int) u_minify(texture->width0, level)) {
849 return sp_samp->base.border_color.f;
850 }
851 else {
852 return get_texel_2d_no_border(sp_sview, addr, x, y);
853 }
854 }
855
856
857 /* Get texel pointer for 2D array texture */
858 static inline const float *
859 get_texel_2d_array(const struct sp_sampler_view *sp_sview,
860 const struct sp_sampler *sp_samp,
861 union tex_tile_address addr, int x, int y, int layer)
862 {
863 const struct pipe_resource *texture = sp_sview->base.texture;
864 const unsigned level = addr.bits.level;
865
866 assert(layer < (int) texture->array_size);
867 assert(layer >= 0);
868
869 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
870 y < 0 || y >= (int) u_minify(texture->height0, level)) {
871 return sp_samp->base.border_color.f;
872 }
873 else {
874 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
875 }
876 }
877
878
879 static inline const float *
880 get_texel_cube_seamless(const struct sp_sampler_view *sp_sview,
881 union tex_tile_address addr, int x, int y,
882 float *corner, int layer, unsigned face)
883 {
884 const struct pipe_resource *texture = sp_sview->base.texture;
885 const unsigned level = addr.bits.level;
886 int new_x, new_y, max_x;
887
888 max_x = (int) u_minify(texture->width0, level);
889
890 assert(texture->width0 == texture->height0);
891 new_x = x;
892 new_y = y;
893
894 /* change the face */
895 if (x < 0) {
896 /*
897 * Cheat with corners. They are difficult and I believe because we don't get
898 * per-pixel faces we can actually have multiple corner texels per pixel,
899 * which screws things up majorly in any case (as the per spec behavior is
900 * to average the 3 remaining texels, which we might not have).
901 * Hence just make sure that the 2nd coord is clamped, will simply pick the
902 * sample which would have fallen off the x coord, but not y coord.
903 * So the filter weight of the samples will be wrong, but at least this
904 * ensures that only valid texels near the corner are used.
905 */
906 if (y < 0 || y >= max_x) {
907 y = CLAMP(y, 0, max_x - 1);
908 }
909 new_x = get_next_xcoord(face, 0, max_x -1, x, y);
910 new_y = get_next_ycoord(face, 0, max_x -1, x, y);
911 face = get_next_face(face, 0);
912 } else if (x >= max_x) {
913 if (y < 0 || y >= max_x) {
914 y = CLAMP(y, 0, max_x - 1);
915 }
916 new_x = get_next_xcoord(face, 1, max_x -1, x, y);
917 new_y = get_next_ycoord(face, 1, max_x -1, x, y);
918 face = get_next_face(face, 1);
919 } else if (y < 0) {
920 new_x = get_next_xcoord(face, 2, max_x -1, x, y);
921 new_y = get_next_ycoord(face, 2, max_x -1, x, y);
922 face = get_next_face(face, 2);
923 } else if (y >= max_x) {
924 new_x = get_next_xcoord(face, 3, max_x -1, x, y);
925 new_y = get_next_ycoord(face, 3, max_x -1, x, y);
926 face = get_next_face(face, 3);
927 }
928
929 return get_texel_3d_no_border(sp_sview, addr, new_x, new_y, layer + face);
930 }
931
932
933 /* Get texel pointer for cube array texture */
934 static inline const float *
935 get_texel_cube_array(const struct sp_sampler_view *sp_sview,
936 const struct sp_sampler *sp_samp,
937 union tex_tile_address addr, int x, int y, int layer)
938 {
939 const struct pipe_resource *texture = sp_sview->base.texture;
940 const unsigned level = addr.bits.level;
941
942 assert(layer < (int) texture->array_size);
943 assert(layer >= 0);
944
945 if (x < 0 || x >= (int) u_minify(texture->width0, level) ||
946 y < 0 || y >= (int) u_minify(texture->height0, level)) {
947 return sp_samp->base.border_color.f;
948 }
949 else {
950 return get_texel_3d_no_border(sp_sview, addr, x, y, layer);
951 }
952 }
953 /**
954 * Given the logbase2 of a mipmap's base level size and a mipmap level,
955 * return the size (in texels) of that mipmap level.
956 * For example, if level[0].width = 256 then base_pot will be 8.
957 * If level = 2, then we'll return 64 (the width at level=2).
958 * Return 1 if level > base_pot.
959 */
960 static inline unsigned
961 pot_level_size(unsigned base_pot, unsigned level)
962 {
963 return (base_pot >= level) ? (1 << (base_pot - level)) : 1;
964 }
965
966
967 static void
968 print_sample(const char *function, const float *rgba)
969 {
970 debug_printf("%s %g %g %g %g\n",
971 function,
972 rgba[0], rgba[TGSI_NUM_CHANNELS], rgba[2*TGSI_NUM_CHANNELS], rgba[3*TGSI_NUM_CHANNELS]);
973 }
974
975
976 static void
977 print_sample_4(const char *function, float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
978 {
979 debug_printf("%s %g %g %g %g, %g %g %g %g, %g %g %g %g, %g %g %g %g\n",
980 function,
981 rgba[0][0], rgba[1][0], rgba[2][0], rgba[3][0],
982 rgba[0][1], rgba[1][1], rgba[2][1], rgba[3][1],
983 rgba[0][2], rgba[1][2], rgba[2][2], rgba[3][2],
984 rgba[0][3], rgba[1][3], rgba[2][3], rgba[3][3]);
985 }
986
987
988 /* Some image-filter fastpaths:
989 */
990 static inline void
991 img_filter_2d_linear_repeat_POT(const struct sp_sampler_view *sp_sview,
992 const struct sp_sampler *sp_samp,
993 const struct img_filter_args *args,
994 float *rgba)
995 {
996 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
997 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
998 const int xmax = (xpot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, xpot) - 1; */
999 const int ymax = (ypot - 1) & (TEX_TILE_SIZE - 1); /* MIN2(TEX_TILE_SIZE, ypot) - 1; */
1000 union tex_tile_address addr;
1001 int c;
1002
1003 const float u = (args->s * xpot - 0.5F) + args->offset[0];
1004 const float v = (args->t * ypot - 0.5F) + args->offset[1];
1005
1006 const int uflr = util_ifloor(u);
1007 const int vflr = util_ifloor(v);
1008
1009 const float xw = u - (float)uflr;
1010 const float yw = v - (float)vflr;
1011
1012 const int x0 = uflr & (xpot - 1);
1013 const int y0 = vflr & (ypot - 1);
1014
1015 const float *tx[4];
1016
1017 addr.value = 0;
1018 addr.bits.level = args->level;
1019 addr.bits.z = sp_sview->base.u.tex.first_layer;
1020
1021 /* Can we fetch all four at once:
1022 */
1023 if (x0 < xmax && y0 < ymax) {
1024 get_texel_quad_2d_no_border_single_tile(sp_sview, addr, x0, y0, tx);
1025 }
1026 else {
1027 const unsigned x1 = (x0 + 1) & (xpot - 1);
1028 const unsigned y1 = (y0 + 1) & (ypot - 1);
1029 get_texel_quad_2d_no_border(sp_sview, addr, x0, y0, x1, y1, tx);
1030 }
1031
1032 /* interpolate R, G, B, A */
1033 for (c = 0; c < TGSI_NUM_CHANNELS; c++) {
1034 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1035 tx[0][c], tx[1][c],
1036 tx[2][c], tx[3][c]);
1037 }
1038
1039 if (DEBUG_TEX) {
1040 print_sample(__FUNCTION__, rgba);
1041 }
1042 }
1043
1044
1045 static inline void
1046 img_filter_2d_nearest_repeat_POT(const struct sp_sampler_view *sp_sview,
1047 const struct sp_sampler *sp_samp,
1048 const struct img_filter_args *args,
1049 float *rgba)
1050 {
1051 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1052 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1053 const float *out;
1054 union tex_tile_address addr;
1055 int c;
1056
1057 const float u = args->s * xpot + args->offset[0];
1058 const float v = args->t * ypot + args->offset[1];
1059
1060 const int uflr = util_ifloor(u);
1061 const int vflr = util_ifloor(v);
1062
1063 const int x0 = uflr & (xpot - 1);
1064 const int y0 = vflr & (ypot - 1);
1065
1066 addr.value = 0;
1067 addr.bits.level = args->level;
1068 addr.bits.z = sp_sview->base.u.tex.first_layer;
1069
1070 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1071 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1072 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1073
1074 if (DEBUG_TEX) {
1075 print_sample(__FUNCTION__, rgba);
1076 }
1077 }
1078
1079
1080 static inline void
1081 img_filter_2d_nearest_clamp_POT(const struct sp_sampler_view *sp_sview,
1082 const struct sp_sampler *sp_samp,
1083 const struct img_filter_args *args,
1084 float *rgba)
1085 {
1086 const unsigned xpot = pot_level_size(sp_sview->xpot, args->level);
1087 const unsigned ypot = pot_level_size(sp_sview->ypot, args->level);
1088 union tex_tile_address addr;
1089 int c;
1090
1091 const float u = args->s * xpot + args->offset[0];
1092 const float v = args->t * ypot + args->offset[1];
1093
1094 int x0, y0;
1095 const float *out;
1096
1097 addr.value = 0;
1098 addr.bits.level = args->level;
1099 addr.bits.z = sp_sview->base.u.tex.first_layer;
1100
1101 x0 = util_ifloor(u);
1102 if (x0 < 0)
1103 x0 = 0;
1104 else if (x0 > (int) xpot - 1)
1105 x0 = xpot - 1;
1106
1107 y0 = util_ifloor(v);
1108 if (y0 < 0)
1109 y0 = 0;
1110 else if (y0 > (int) ypot - 1)
1111 y0 = ypot - 1;
1112
1113 out = get_texel_2d_no_border(sp_sview, addr, x0, y0);
1114 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1115 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1116
1117 if (DEBUG_TEX) {
1118 print_sample(__FUNCTION__, rgba);
1119 }
1120 }
1121
1122
1123 static void
1124 img_filter_1d_nearest(const struct sp_sampler_view *sp_sview,
1125 const struct sp_sampler *sp_samp,
1126 const struct img_filter_args *args,
1127 float *rgba)
1128 {
1129 const struct pipe_resource *texture = sp_sview->base.texture;
1130 const int width = u_minify(texture->width0, args->level);
1131 int x;
1132 union tex_tile_address addr;
1133 const float *out;
1134 int c;
1135
1136 assert(width > 0);
1137
1138 addr.value = 0;
1139 addr.bits.level = args->level;
1140
1141 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1142
1143 out = get_texel_1d_array(sp_sview, sp_samp, addr, x,
1144 sp_sview->base.u.tex.first_layer);
1145 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1146 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1147
1148 if (DEBUG_TEX) {
1149 print_sample(__FUNCTION__, rgba);
1150 }
1151 }
1152
1153
1154 static void
1155 img_filter_1d_array_nearest(const struct sp_sampler_view *sp_sview,
1156 const struct sp_sampler *sp_samp,
1157 const struct img_filter_args *args,
1158 float *rgba)
1159 {
1160 const struct pipe_resource *texture = sp_sview->base.texture;
1161 const int width = u_minify(texture->width0, args->level);
1162 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1163 sp_sview->base.u.tex.last_layer);
1164 int x;
1165 union tex_tile_address addr;
1166 const float *out;
1167 int c;
1168
1169 assert(width > 0);
1170
1171 addr.value = 0;
1172 addr.bits.level = args->level;
1173
1174 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1175
1176 out = get_texel_1d_array(sp_sview, sp_samp, addr, x, layer);
1177 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1178 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1179
1180 if (DEBUG_TEX) {
1181 print_sample(__FUNCTION__, rgba);
1182 }
1183 }
1184
1185
1186 static void
1187 img_filter_2d_nearest(const struct sp_sampler_view *sp_sview,
1188 const struct sp_sampler *sp_samp,
1189 const struct img_filter_args *args,
1190 float *rgba)
1191 {
1192 const struct pipe_resource *texture = sp_sview->base.texture;
1193 const int width = u_minify(texture->width0, args->level);
1194 const int height = u_minify(texture->height0, args->level);
1195 int x, y;
1196 union tex_tile_address addr;
1197 const float *out;
1198 int c;
1199
1200 assert(width > 0);
1201 assert(height > 0);
1202
1203 addr.value = 0;
1204 addr.bits.level = args->level;
1205 addr.bits.z = sp_sview->base.u.tex.first_layer;
1206
1207 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1208 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1209
1210 out = get_texel_2d(sp_sview, sp_samp, addr, x, y);
1211 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1212 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1213
1214 if (DEBUG_TEX) {
1215 print_sample(__FUNCTION__, rgba);
1216 }
1217 }
1218
1219
1220 static void
1221 img_filter_2d_array_nearest(const struct sp_sampler_view *sp_sview,
1222 const struct sp_sampler *sp_samp,
1223 const struct img_filter_args *args,
1224 float *rgba)
1225 {
1226 const struct pipe_resource *texture = sp_sview->base.texture;
1227 const int width = u_minify(texture->width0, args->level);
1228 const int height = u_minify(texture->height0, args->level);
1229 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1230 sp_sview->base.u.tex.last_layer);
1231 int x, y;
1232 union tex_tile_address addr;
1233 const float *out;
1234 int c;
1235
1236 assert(width > 0);
1237 assert(height > 0);
1238
1239 addr.value = 0;
1240 addr.bits.level = args->level;
1241
1242 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1243 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1244
1245 out = get_texel_2d_array(sp_sview, sp_samp, addr, x, y, layer);
1246 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1247 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1248
1249 if (DEBUG_TEX) {
1250 print_sample(__FUNCTION__, rgba);
1251 }
1252 }
1253
1254
1255 static void
1256 img_filter_cube_nearest(const struct sp_sampler_view *sp_sview,
1257 const struct sp_sampler *sp_samp,
1258 const struct img_filter_args *args,
1259 float *rgba)
1260 {
1261 const struct pipe_resource *texture = sp_sview->base.texture;
1262 const int width = u_minify(texture->width0, args->level);
1263 const int height = u_minify(texture->height0, args->level);
1264 const int layerface = args->face_id + sp_sview->base.u.tex.first_layer;
1265 int x, y;
1266 union tex_tile_address addr;
1267 const float *out;
1268 int c;
1269
1270 assert(width > 0);
1271 assert(height > 0);
1272
1273 addr.value = 0;
1274 addr.bits.level = args->level;
1275
1276 /*
1277 * If NEAREST filtering is done within a miplevel, always apply wrap
1278 * mode CLAMP_TO_EDGE.
1279 */
1280 if (sp_samp->base.seamless_cube_map) {
1281 wrap_nearest_clamp_to_edge(args->s, width, args->offset[0], &x);
1282 wrap_nearest_clamp_to_edge(args->t, height, args->offset[1], &y);
1283 } else {
1284 /* Would probably make sense to ignore mode and just do edge clamp */
1285 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1286 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1287 }
1288
1289 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1290 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1291 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1292
1293 if (DEBUG_TEX) {
1294 print_sample(__FUNCTION__, rgba);
1295 }
1296 }
1297
1298 static void
1299 img_filter_cube_array_nearest(const struct sp_sampler_view *sp_sview,
1300 const struct sp_sampler *sp_samp,
1301 const struct img_filter_args *args,
1302 float *rgba)
1303 {
1304 const struct pipe_resource *texture = sp_sview->base.texture;
1305 const int width = u_minify(texture->width0, args->level);
1306 const int height = u_minify(texture->height0, args->level);
1307 const int layerface =
1308 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1309 sp_sview->base.u.tex.first_layer,
1310 sp_sview->base.u.tex.last_layer - 5) + args->face_id;
1311 int x, y;
1312 union tex_tile_address addr;
1313 const float *out;
1314 int c;
1315
1316 assert(width > 0);
1317 assert(height > 0);
1318
1319 addr.value = 0;
1320 addr.bits.level = args->level;
1321
1322 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1323 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1324
1325 out = get_texel_cube_array(sp_sview, sp_samp, addr, x, y, layerface);
1326 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1327 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1328
1329 if (DEBUG_TEX) {
1330 print_sample(__FUNCTION__, rgba);
1331 }
1332 }
1333
1334 static void
1335 img_filter_3d_nearest(const struct sp_sampler_view *sp_sview,
1336 const struct sp_sampler *sp_samp,
1337 const struct img_filter_args *args,
1338 float *rgba)
1339 {
1340 const struct pipe_resource *texture = sp_sview->base.texture;
1341 const int width = u_minify(texture->width0, args->level);
1342 const int height = u_minify(texture->height0, args->level);
1343 const int depth = u_minify(texture->depth0, args->level);
1344 int x, y, z;
1345 union tex_tile_address addr;
1346 const float *out;
1347 int c;
1348
1349 assert(width > 0);
1350 assert(height > 0);
1351 assert(depth > 0);
1352
1353 sp_samp->nearest_texcoord_s(args->s, width, args->offset[0], &x);
1354 sp_samp->nearest_texcoord_t(args->t, height, args->offset[1], &y);
1355 sp_samp->nearest_texcoord_p(args->p, depth, args->offset[2], &z);
1356
1357 addr.value = 0;
1358 addr.bits.level = args->level;
1359
1360 out = get_texel_3d(sp_sview, sp_samp, addr, x, y, z);
1361 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1362 rgba[TGSI_NUM_CHANNELS*c] = out[c];
1363 }
1364
1365
1366 static void
1367 img_filter_1d_linear(const struct sp_sampler_view *sp_sview,
1368 const struct sp_sampler *sp_samp,
1369 const struct img_filter_args *args,
1370 float *rgba)
1371 {
1372 const struct pipe_resource *texture = sp_sview->base.texture;
1373 const int width = u_minify(texture->width0, args->level);
1374 int x0, x1;
1375 float xw; /* weights */
1376 union tex_tile_address addr;
1377 const float *tx0, *tx1;
1378 int c;
1379
1380 assert(width > 0);
1381
1382 addr.value = 0;
1383 addr.bits.level = args->level;
1384
1385 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1386
1387 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0,
1388 sp_sview->base.u.tex.first_layer);
1389 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1,
1390 sp_sview->base.u.tex.first_layer);
1391
1392 /* interpolate R, G, B, A */
1393 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1394 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1395 }
1396
1397
1398 static void
1399 img_filter_1d_array_linear(const struct sp_sampler_view *sp_sview,
1400 const struct sp_sampler *sp_samp,
1401 const struct img_filter_args *args,
1402 float *rgba)
1403 {
1404 const struct pipe_resource *texture = sp_sview->base.texture;
1405 const int width = u_minify(texture->width0, args->level);
1406 const int layer = coord_to_layer(args->t, sp_sview->base.u.tex.first_layer,
1407 sp_sview->base.u.tex.last_layer);
1408 int x0, x1;
1409 float xw; /* weights */
1410 union tex_tile_address addr;
1411 const float *tx0, *tx1;
1412 int c;
1413
1414 assert(width > 0);
1415
1416 addr.value = 0;
1417 addr.bits.level = args->level;
1418
1419 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1420
1421 tx0 = get_texel_1d_array(sp_sview, sp_samp, addr, x0, layer);
1422 tx1 = get_texel_1d_array(sp_sview, sp_samp, addr, x1, layer);
1423
1424 /* interpolate R, G, B, A */
1425 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1426 rgba[TGSI_NUM_CHANNELS*c] = lerp(xw, tx0[c], tx1[c]);
1427 }
1428
1429 /*
1430 * Retrieve the gathered value, need to convert to the
1431 * TGSI expected interface, and take component select
1432 * and swizzling into account.
1433 */
1434 static float
1435 get_gather_value(const struct sp_sampler_view *sp_sview,
1436 int chan_in, int comp_sel,
1437 const float *tx[4])
1438 {
1439 int chan;
1440 unsigned swizzle;
1441
1442 /*
1443 * softpipe samples in a different order
1444 * to TGSI expects, so we need to swizzle,
1445 * the samples into the correct slots.
1446 */
1447 switch (chan_in) {
1448 case 0:
1449 chan = 2;
1450 break;
1451 case 1:
1452 chan = 3;
1453 break;
1454 case 2:
1455 chan = 1;
1456 break;
1457 case 3:
1458 chan = 0;
1459 break;
1460 default:
1461 assert(0);
1462 return 0.0;
1463 }
1464
1465 /* pick which component to use for the swizzle */
1466 switch (comp_sel) {
1467 case 0:
1468 swizzle = sp_sview->base.swizzle_r;
1469 break;
1470 case 1:
1471 swizzle = sp_sview->base.swizzle_g;
1472 break;
1473 case 2:
1474 swizzle = sp_sview->base.swizzle_b;
1475 break;
1476 case 3:
1477 swizzle = sp_sview->base.swizzle_a;
1478 break;
1479 default:
1480 assert(0);
1481 return 0.0;
1482 }
1483
1484 /* get correct result using the channel and swizzle */
1485 switch (swizzle) {
1486 case PIPE_SWIZZLE_0:
1487 return 0.0;
1488 case PIPE_SWIZZLE_1:
1489 return 1.0;
1490 default:
1491 return tx[chan][swizzle];
1492 }
1493 }
1494
1495
1496 static void
1497 img_filter_2d_linear(const struct sp_sampler_view *sp_sview,
1498 const struct sp_sampler *sp_samp,
1499 const struct img_filter_args *args,
1500 float *rgba)
1501 {
1502 const struct pipe_resource *texture = sp_sview->base.texture;
1503 const int width = u_minify(texture->width0, args->level);
1504 const int height = u_minify(texture->height0, args->level);
1505 int x0, y0, x1, y1;
1506 float xw, yw; /* weights */
1507 union tex_tile_address addr;
1508 const float *tx[4];
1509 int c;
1510
1511 assert(width > 0);
1512 assert(height > 0);
1513
1514 addr.value = 0;
1515 addr.bits.level = args->level;
1516 addr.bits.z = sp_sview->base.u.tex.first_layer;
1517
1518 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1519 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1520
1521 tx[0] = get_texel_2d(sp_sview, sp_samp, addr, x0, y0);
1522 tx[1] = get_texel_2d(sp_sview, sp_samp, addr, x1, y0);
1523 tx[2] = get_texel_2d(sp_sview, sp_samp, addr, x0, y1);
1524 tx[3] = get_texel_2d(sp_sview, sp_samp, addr, x1, y1);
1525
1526 if (args->gather_only) {
1527 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1528 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1529 args->gather_comp,
1530 tx);
1531 } else {
1532 /* interpolate R, G, B, A */
1533 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1534 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1535 tx[0][c], tx[1][c],
1536 tx[2][c], tx[3][c]);
1537 }
1538 }
1539
1540
1541 static void
1542 img_filter_2d_array_linear(const struct sp_sampler_view *sp_sview,
1543 const struct sp_sampler *sp_samp,
1544 const struct img_filter_args *args,
1545 float *rgba)
1546 {
1547 const struct pipe_resource *texture = sp_sview->base.texture;
1548 const int width = u_minify(texture->width0, args->level);
1549 const int height = u_minify(texture->height0, args->level);
1550 const int layer = coord_to_layer(args->p, sp_sview->base.u.tex.first_layer,
1551 sp_sview->base.u.tex.last_layer);
1552 int x0, y0, x1, y1;
1553 float xw, yw; /* weights */
1554 union tex_tile_address addr;
1555 const float *tx[4];
1556 int c;
1557
1558 assert(width > 0);
1559 assert(height > 0);
1560
1561 addr.value = 0;
1562 addr.bits.level = args->level;
1563
1564 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1565 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1566
1567 tx[0] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y0, layer);
1568 tx[1] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y0, layer);
1569 tx[2] = get_texel_2d_array(sp_sview, sp_samp, addr, x0, y1, layer);
1570 tx[3] = get_texel_2d_array(sp_sview, sp_samp, addr, x1, y1, layer);
1571
1572 if (args->gather_only) {
1573 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1574 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1575 args->gather_comp,
1576 tx);
1577 } else {
1578 /* interpolate R, G, B, A */
1579 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1580 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1581 tx[0][c], tx[1][c],
1582 tx[2][c], tx[3][c]);
1583 }
1584 }
1585
1586
1587 static void
1588 img_filter_cube_linear(const struct sp_sampler_view *sp_sview,
1589 const struct sp_sampler *sp_samp,
1590 const struct img_filter_args *args,
1591 float *rgba)
1592 {
1593 const struct pipe_resource *texture = sp_sview->base.texture;
1594 const int width = u_minify(texture->width0, args->level);
1595 const int height = u_minify(texture->height0, args->level);
1596 const int layer = sp_sview->base.u.tex.first_layer;
1597 int x0, y0, x1, y1;
1598 float xw, yw; /* weights */
1599 union tex_tile_address addr;
1600 const float *tx[4];
1601 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1602 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1603 int c;
1604
1605 assert(width > 0);
1606 assert(height > 0);
1607
1608 addr.value = 0;
1609 addr.bits.level = args->level;
1610
1611 /*
1612 * For seamless if LINEAR filtering is done within a miplevel,
1613 * always apply wrap mode CLAMP_TO_BORDER.
1614 */
1615 if (sp_samp->base.seamless_cube_map) {
1616 /* Note this is a bit overkill, actual clamping is not required */
1617 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1618 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1619 } else {
1620 /* Would probably make sense to ignore mode and just do edge clamp */
1621 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1622 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1623 }
1624
1625 if (sp_samp->base.seamless_cube_map) {
1626 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1627 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1628 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1629 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1630 } else {
1631 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1632 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1633 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1634 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1635 }
1636
1637 if (args->gather_only) {
1638 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1639 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1640 args->gather_comp,
1641 tx);
1642 } else {
1643 /* interpolate R, G, B, A */
1644 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1645 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1646 tx[0][c], tx[1][c],
1647 tx[2][c], tx[3][c]);
1648 }
1649 }
1650
1651
1652 static void
1653 img_filter_cube_array_linear(const struct sp_sampler_view *sp_sview,
1654 const struct sp_sampler *sp_samp,
1655 const struct img_filter_args *args,
1656 float *rgba)
1657 {
1658 const struct pipe_resource *texture = sp_sview->base.texture;
1659 const int width = u_minify(texture->width0, args->level);
1660 const int height = u_minify(texture->height0, args->level);
1661 const int layer =
1662 coord_to_layer(6 * args->p + sp_sview->base.u.tex.first_layer,
1663 sp_sview->base.u.tex.first_layer,
1664 sp_sview->base.u.tex.last_layer - 5);
1665 int x0, y0, x1, y1;
1666 float xw, yw; /* weights */
1667 union tex_tile_address addr;
1668 const float *tx[4];
1669 float corner0[TGSI_QUAD_SIZE], corner1[TGSI_QUAD_SIZE],
1670 corner2[TGSI_QUAD_SIZE], corner3[TGSI_QUAD_SIZE];
1671 int c;
1672
1673 assert(width > 0);
1674 assert(height > 0);
1675
1676 addr.value = 0;
1677 addr.bits.level = args->level;
1678
1679 /*
1680 * For seamless if LINEAR filtering is done within a miplevel,
1681 * always apply wrap mode CLAMP_TO_BORDER.
1682 */
1683 if (sp_samp->base.seamless_cube_map) {
1684 /* Note this is a bit overkill, actual clamping is not required */
1685 wrap_linear_clamp_to_border(args->s, width, args->offset[0], &x0, &x1, &xw);
1686 wrap_linear_clamp_to_border(args->t, height, args->offset[1], &y0, &y1, &yw);
1687 } else {
1688 /* Would probably make sense to ignore mode and just do edge clamp */
1689 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1690 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1691 }
1692
1693 if (sp_samp->base.seamless_cube_map) {
1694 tx[0] = get_texel_cube_seamless(sp_sview, addr, x0, y0, corner0, layer, args->face_id);
1695 tx[1] = get_texel_cube_seamless(sp_sview, addr, x1, y0, corner1, layer, args->face_id);
1696 tx[2] = get_texel_cube_seamless(sp_sview, addr, x0, y1, corner2, layer, args->face_id);
1697 tx[3] = get_texel_cube_seamless(sp_sview, addr, x1, y1, corner3, layer, args->face_id);
1698 } else {
1699 tx[0] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y0, layer + args->face_id);
1700 tx[1] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y0, layer + args->face_id);
1701 tx[2] = get_texel_cube_array(sp_sview, sp_samp, addr, x0, y1, layer + args->face_id);
1702 tx[3] = get_texel_cube_array(sp_sview, sp_samp, addr, x1, y1, layer + args->face_id);
1703 }
1704
1705 if (args->gather_only) {
1706 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1707 rgba[TGSI_NUM_CHANNELS*c] = get_gather_value(sp_sview, c,
1708 args->gather_comp,
1709 tx);
1710 } else {
1711 /* interpolate R, G, B, A */
1712 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1713 rgba[TGSI_NUM_CHANNELS*c] = lerp_2d(xw, yw,
1714 tx[0][c], tx[1][c],
1715 tx[2][c], tx[3][c]);
1716 }
1717 }
1718
1719 static void
1720 img_filter_3d_linear(const struct sp_sampler_view *sp_sview,
1721 const struct sp_sampler *sp_samp,
1722 const struct img_filter_args *args,
1723 float *rgba)
1724 {
1725 const struct pipe_resource *texture = sp_sview->base.texture;
1726 const int width = u_minify(texture->width0, args->level);
1727 const int height = u_minify(texture->height0, args->level);
1728 const int depth = u_minify(texture->depth0, args->level);
1729 int x0, x1, y0, y1, z0, z1;
1730 float xw, yw, zw; /* interpolation weights */
1731 union tex_tile_address addr;
1732 const float *tx00, *tx01, *tx02, *tx03, *tx10, *tx11, *tx12, *tx13;
1733 int c;
1734
1735 addr.value = 0;
1736 addr.bits.level = args->level;
1737
1738 assert(width > 0);
1739 assert(height > 0);
1740 assert(depth > 0);
1741
1742 sp_samp->linear_texcoord_s(args->s, width, args->offset[0], &x0, &x1, &xw);
1743 sp_samp->linear_texcoord_t(args->t, height, args->offset[1], &y0, &y1, &yw);
1744 sp_samp->linear_texcoord_p(args->p, depth, args->offset[2], &z0, &z1, &zw);
1745
1746 tx00 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z0);
1747 tx01 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z0);
1748 tx02 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z0);
1749 tx03 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z0);
1750
1751 tx10 = get_texel_3d(sp_sview, sp_samp, addr, x0, y0, z1);
1752 tx11 = get_texel_3d(sp_sview, sp_samp, addr, x1, y0, z1);
1753 tx12 = get_texel_3d(sp_sview, sp_samp, addr, x0, y1, z1);
1754 tx13 = get_texel_3d(sp_sview, sp_samp, addr, x1, y1, z1);
1755
1756 /* interpolate R, G, B, A */
1757 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
1758 rgba[TGSI_NUM_CHANNELS*c] = lerp_3d(xw, yw, zw,
1759 tx00[c], tx01[c],
1760 tx02[c], tx03[c],
1761 tx10[c], tx11[c],
1762 tx12[c], tx13[c]);
1763 }
1764
1765
1766 /* Calculate level of detail for every fragment,
1767 * with lambda already computed.
1768 * Note that lambda has already been biased by global LOD bias.
1769 * \param biased_lambda per-quad lambda.
1770 * \param lod_in per-fragment lod_bias or explicit_lod.
1771 * \param lod returns the per-fragment lod.
1772 */
1773 static inline void
1774 compute_lod(const struct pipe_sampler_state *sampler,
1775 enum tgsi_sampler_control control,
1776 const float biased_lambda,
1777 const float lod_in[TGSI_QUAD_SIZE],
1778 float lod[TGSI_QUAD_SIZE])
1779 {
1780 const float min_lod = sampler->min_lod;
1781 const float max_lod = sampler->max_lod;
1782 uint i;
1783
1784 switch (control) {
1785 case TGSI_SAMPLER_LOD_NONE:
1786 case TGSI_SAMPLER_LOD_ZERO:
1787 /* XXX FIXME */
1788 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1789 lod[0] = lod[1] = lod[2] = lod[3] = CLAMP(biased_lambda, min_lod, max_lod);
1790 break;
1791 case TGSI_SAMPLER_LOD_BIAS:
1792 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1793 lod[i] = biased_lambda + lod_in[i];
1794 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1795 }
1796 break;
1797 case TGSI_SAMPLER_LOD_EXPLICIT:
1798 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1799 lod[i] = CLAMP(lod_in[i], min_lod, max_lod);
1800 }
1801 break;
1802 default:
1803 assert(0);
1804 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1805 }
1806 }
1807
1808
1809 /* Calculate level of detail for every fragment. The computed value is not
1810 * clamped to lod_min and lod_max.
1811 * \param lod_in per-fragment lod_bias or explicit_lod.
1812 * \param lod results per-fragment lod.
1813 */
1814 static inline void
1815 compute_lambda_lod_unclamped(const struct sp_sampler_view *sp_sview,
1816 const struct sp_sampler *sp_samp,
1817 const float s[TGSI_QUAD_SIZE],
1818 const float t[TGSI_QUAD_SIZE],
1819 const float p[TGSI_QUAD_SIZE],
1820 const float lod_in[TGSI_QUAD_SIZE],
1821 enum tgsi_sampler_control control,
1822 float lod[TGSI_QUAD_SIZE])
1823 {
1824 const struct pipe_sampler_state *sampler = &sp_samp->base;
1825 const float lod_bias = sampler->lod_bias;
1826 float lambda;
1827 uint i;
1828
1829 switch (control) {
1830 case TGSI_SAMPLER_LOD_NONE:
1831 /* XXX FIXME */
1832 case TGSI_SAMPLER_DERIVS_EXPLICIT:
1833 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1834 lod[0] = lod[1] = lod[2] = lod[3] = lambda;
1835 break;
1836 case TGSI_SAMPLER_LOD_BIAS:
1837 lambda = sp_sview->compute_lambda(sp_sview, s, t, p) + lod_bias;
1838 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1839 lod[i] = lambda + lod_in[i];
1840 }
1841 break;
1842 case TGSI_SAMPLER_LOD_EXPLICIT:
1843 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1844 lod[i] = lod_in[i] + lod_bias;
1845 }
1846 break;
1847 case TGSI_SAMPLER_LOD_ZERO:
1848 case TGSI_SAMPLER_GATHER:
1849 lod[0] = lod[1] = lod[2] = lod[3] = lod_bias;
1850 break;
1851 default:
1852 assert(0);
1853 lod[0] = lod[1] = lod[2] = lod[3] = 0.0f;
1854 }
1855 }
1856
1857 /* Calculate level of detail for every fragment.
1858 * \param lod_in per-fragment lod_bias or explicit_lod.
1859 * \param lod results per-fragment lod.
1860 */
1861 static inline void
1862 compute_lambda_lod(const struct sp_sampler_view *sp_sview,
1863 const struct sp_sampler *sp_samp,
1864 const float s[TGSI_QUAD_SIZE],
1865 const float t[TGSI_QUAD_SIZE],
1866 const float p[TGSI_QUAD_SIZE],
1867 const float lod_in[TGSI_QUAD_SIZE],
1868 enum tgsi_sampler_control control,
1869 float lod[TGSI_QUAD_SIZE])
1870 {
1871 const struct pipe_sampler_state *sampler = &sp_samp->base;
1872 const float min_lod = sampler->min_lod;
1873 const float max_lod = sampler->max_lod;
1874 int i;
1875
1876 compute_lambda_lod_unclamped(sp_sview, sp_samp,
1877 s, t, p, lod_in, control, lod);
1878 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1879 lod[i] = CLAMP(lod[i], min_lod, max_lod);
1880 }
1881 }
1882
1883 static inline unsigned
1884 get_gather_component(const float lod_in[TGSI_QUAD_SIZE])
1885 {
1886 /* gather component is stored in lod_in slot as unsigned */
1887 return (*(unsigned int *)lod_in) & 0x3;
1888 }
1889
1890 /**
1891 * Clamps given lod to both lod limits and mip level limits. Clamping to the
1892 * latter limits is done so that lod is relative to the first (base) level.
1893 */
1894 static void
1895 clamp_lod(const struct sp_sampler_view *sp_sview,
1896 const struct sp_sampler *sp_samp,
1897 const float lod[TGSI_QUAD_SIZE],
1898 float clamped[TGSI_QUAD_SIZE])
1899 {
1900 const float min_lod = sp_samp->base.min_lod;
1901 const float max_lod = sp_samp->base.max_lod;
1902 const float min_level = sp_sview->base.u.tex.first_level;
1903 const float max_level = sp_sview->base.u.tex.last_level;
1904 int i;
1905
1906 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
1907 float cl = lod[i];
1908
1909 cl = CLAMP(cl, min_lod, max_lod);
1910 cl = CLAMP(cl, 0, max_level - min_level);
1911 clamped[i] = cl;
1912 }
1913 }
1914
1915 /**
1916 * Get mip level relative to base level for linear mip filter
1917 */
1918 static void
1919 mip_rel_level_linear(const struct sp_sampler_view *sp_sview,
1920 const struct sp_sampler *sp_samp,
1921 const float lod[TGSI_QUAD_SIZE],
1922 float level[TGSI_QUAD_SIZE])
1923 {
1924 clamp_lod(sp_sview, sp_samp, lod, level);
1925 }
1926
1927 static void
1928 mip_filter_linear(const struct sp_sampler_view *sp_sview,
1929 const struct sp_sampler *sp_samp,
1930 img_filter_func min_filter,
1931 img_filter_func mag_filter,
1932 const float s[TGSI_QUAD_SIZE],
1933 const float t[TGSI_QUAD_SIZE],
1934 const float p[TGSI_QUAD_SIZE],
1935 const float c0[TGSI_QUAD_SIZE],
1936 const float lod_in[TGSI_QUAD_SIZE],
1937 const struct filter_args *filt_args,
1938 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
1939 {
1940 const struct pipe_sampler_view *psview = &sp_sview->base;
1941 int j;
1942 float lod[TGSI_QUAD_SIZE];
1943 struct img_filter_args args;
1944
1945 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
1946
1947 args.offset = filt_args->offset;
1948 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
1949 args.gather_comp = get_gather_component(lod_in);
1950
1951 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
1952 const int level0 = psview->u.tex.first_level + (int)lod[j];
1953
1954 args.s = s[j];
1955 args.t = t[j];
1956 args.p = p[j];
1957 args.face_id = filt_args->faces[j];
1958
1959 if (lod[j] < 0.0) {
1960 args.level = psview->u.tex.first_level;
1961 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
1962 }
1963 else if (level0 >= (int) psview->u.tex.last_level) {
1964 args.level = psview->u.tex.last_level;
1965 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
1966 }
1967 else {
1968 float levelBlend = frac(lod[j]);
1969 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
1970 int c;
1971
1972 args.level = level0;
1973 min_filter(sp_sview, sp_samp, &args, &rgbax[0][0]);
1974 args.level = level0+1;
1975 min_filter(sp_sview, sp_samp, &args, &rgbax[0][1]);
1976
1977 for (c = 0; c < 4; c++) {
1978 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
1979 }
1980 }
1981 }
1982
1983 if (DEBUG_TEX) {
1984 print_sample_4(__FUNCTION__, rgba);
1985 }
1986 }
1987
1988
1989 /**
1990 * Get mip level relative to base level for nearest mip filter
1991 */
1992 static void
1993 mip_rel_level_nearest(const struct sp_sampler_view *sp_sview,
1994 const struct sp_sampler *sp_samp,
1995 const float lod[TGSI_QUAD_SIZE],
1996 float level[TGSI_QUAD_SIZE])
1997 {
1998 int j;
1999
2000 clamp_lod(sp_sview, sp_samp, lod, level);
2001 for (j = 0; j < TGSI_QUAD_SIZE; j++)
2002 /* TODO: It should rather be:
2003 * level[j] = ceil(level[j] + 0.5F) - 1.0F;
2004 */
2005 level[j] = (int)(level[j] + 0.5F);
2006 }
2007
2008 /**
2009 * Compute nearest mipmap level from texcoords.
2010 * Then sample the texture level for four elements of a quad.
2011 * \param c0 the LOD bias factors, or absolute LODs (depending on control)
2012 */
2013 static void
2014 mip_filter_nearest(const struct sp_sampler_view *sp_sview,
2015 const struct sp_sampler *sp_samp,
2016 img_filter_func min_filter,
2017 img_filter_func mag_filter,
2018 const float s[TGSI_QUAD_SIZE],
2019 const float t[TGSI_QUAD_SIZE],
2020 const float p[TGSI_QUAD_SIZE],
2021 const float c0[TGSI_QUAD_SIZE],
2022 const float lod_in[TGSI_QUAD_SIZE],
2023 const struct filter_args *filt_args,
2024 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2025 {
2026 const struct pipe_sampler_view *psview = &sp_sview->base;
2027 float lod[TGSI_QUAD_SIZE];
2028 int j;
2029 struct img_filter_args args;
2030
2031 args.offset = filt_args->offset;
2032 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2033 args.gather_comp = get_gather_component(lod_in);
2034
2035 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2036
2037 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2038 args.s = s[j];
2039 args.t = t[j];
2040 args.p = p[j];
2041 args.face_id = filt_args->faces[j];
2042
2043 if (lod[j] < 0.0) {
2044 args.level = psview->u.tex.first_level;
2045 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2046 } else {
2047 const int level = psview->u.tex.first_level + (int)(lod[j] + 0.5F);
2048 args.level = MIN2(level, (int)psview->u.tex.last_level);
2049 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2050 }
2051 }
2052
2053 if (DEBUG_TEX) {
2054 print_sample_4(__FUNCTION__, rgba);
2055 }
2056 }
2057
2058
2059 /**
2060 * Get mip level relative to base level for none mip filter
2061 */
2062 static void
2063 mip_rel_level_none(const struct sp_sampler_view *sp_sview,
2064 const struct sp_sampler *sp_samp,
2065 const float lod[TGSI_QUAD_SIZE],
2066 float level[TGSI_QUAD_SIZE])
2067 {
2068 int j;
2069
2070 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2071 level[j] = 0;
2072 }
2073 }
2074
2075 static void
2076 mip_filter_none(const struct sp_sampler_view *sp_sview,
2077 const struct sp_sampler *sp_samp,
2078 img_filter_func min_filter,
2079 img_filter_func mag_filter,
2080 const float s[TGSI_QUAD_SIZE],
2081 const float t[TGSI_QUAD_SIZE],
2082 const float p[TGSI_QUAD_SIZE],
2083 const float c0[TGSI_QUAD_SIZE],
2084 const float lod_in[TGSI_QUAD_SIZE],
2085 const struct filter_args *filt_args,
2086 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2087 {
2088 float lod[TGSI_QUAD_SIZE];
2089 int j;
2090 struct img_filter_args args;
2091
2092 args.level = sp_sview->base.u.tex.first_level;
2093 args.offset = filt_args->offset;
2094 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2095
2096 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2097
2098 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2099 args.s = s[j];
2100 args.t = t[j];
2101 args.p = p[j];
2102 args.face_id = filt_args->faces[j];
2103 if (lod[j] < 0.0) {
2104 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2105 }
2106 else {
2107 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2108 }
2109 }
2110 }
2111
2112
2113 /**
2114 * Get mip level relative to base level for none mip filter
2115 */
2116 static void
2117 mip_rel_level_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2118 const struct sp_sampler *sp_samp,
2119 const float lod[TGSI_QUAD_SIZE],
2120 float level[TGSI_QUAD_SIZE])
2121 {
2122 mip_rel_level_none(sp_sview, sp_samp, lod, level);
2123 }
2124
2125 static void
2126 mip_filter_none_no_filter_select(const struct sp_sampler_view *sp_sview,
2127 const struct sp_sampler *sp_samp,
2128 img_filter_func min_filter,
2129 img_filter_func mag_filter,
2130 const float s[TGSI_QUAD_SIZE],
2131 const float t[TGSI_QUAD_SIZE],
2132 const float p[TGSI_QUAD_SIZE],
2133 const float c0[TGSI_QUAD_SIZE],
2134 const float lod_in[TGSI_QUAD_SIZE],
2135 const struct filter_args *filt_args,
2136 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2137 {
2138 int j;
2139 struct img_filter_args args;
2140 args.level = sp_sview->base.u.tex.first_level;
2141 args.offset = filt_args->offset;
2142 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2143 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2144 args.s = s[j];
2145 args.t = t[j];
2146 args.p = p[j];
2147 args.face_id = filt_args->faces[j];
2148 mag_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2149 }
2150 }
2151
2152
2153 /* For anisotropic filtering */
2154 #define WEIGHT_LUT_SIZE 1024
2155
2156 static const float *weightLut = NULL;
2157
2158 /**
2159 * Creates the look-up table used to speed-up EWA sampling
2160 */
2161 static void
2162 create_filter_table(void)
2163 {
2164 unsigned i;
2165 if (!weightLut) {
2166 float *lut = (float *) MALLOC(WEIGHT_LUT_SIZE * sizeof(float));
2167
2168 for (i = 0; i < WEIGHT_LUT_SIZE; ++i) {
2169 const float alpha = 2;
2170 const float r2 = (float) i / (float) (WEIGHT_LUT_SIZE - 1);
2171 const float weight = (float) exp(-alpha * r2);
2172 lut[i] = weight;
2173 }
2174 weightLut = lut;
2175 }
2176 }
2177
2178
2179 /**
2180 * Elliptical weighted average (EWA) filter for producing high quality
2181 * anisotropic filtered results.
2182 * Based on the Higher Quality Elliptical Weighted Average Filter
2183 * published by Paul S. Heckbert in his Master's Thesis
2184 * "Fundamentals of Texture Mapping and Image Warping" (1989)
2185 */
2186 static void
2187 img_filter_2d_ewa(const struct sp_sampler_view *sp_sview,
2188 const struct sp_sampler *sp_samp,
2189 img_filter_func min_filter,
2190 img_filter_func mag_filter,
2191 const float s[TGSI_QUAD_SIZE],
2192 const float t[TGSI_QUAD_SIZE],
2193 const float p[TGSI_QUAD_SIZE],
2194 const uint faces[TGSI_QUAD_SIZE],
2195 const int8_t *offset,
2196 unsigned level,
2197 const float dudx, const float dvdx,
2198 const float dudy, const float dvdy,
2199 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2200 {
2201 const struct pipe_resource *texture = sp_sview->base.texture;
2202
2203 // ??? Won't the image filters blow up if level is negative?
2204 const unsigned level0 = level > 0 ? level : 0;
2205 const float scaling = 1.0f / (1 << level0);
2206 const int width = u_minify(texture->width0, level0);
2207 const int height = u_minify(texture->height0, level0);
2208 struct img_filter_args args;
2209 const float ux = dudx * scaling;
2210 const float vx = dvdx * scaling;
2211 const float uy = dudy * scaling;
2212 const float vy = dvdy * scaling;
2213
2214 /* compute ellipse coefficients to bound the region:
2215 * A*x*x + B*x*y + C*y*y = F.
2216 */
2217 float A = vx*vx+vy*vy+1;
2218 float B = -2*(ux*vx+uy*vy);
2219 float C = ux*ux+uy*uy+1;
2220 float F = A*C-B*B/4.0f;
2221
2222 /* check if it is an ellipse */
2223 /* assert(F > 0.0); */
2224
2225 /* Compute the ellipse's (u,v) bounding box in texture space */
2226 const float d = -B*B+4.0f*C*A;
2227 const float box_u = 2.0f / d * sqrtf(d*C*F); /* box_u -> half of bbox with */
2228 const float box_v = 2.0f / d * sqrtf(A*d*F); /* box_v -> half of bbox height */
2229
2230 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2231 float s_buffer[TGSI_QUAD_SIZE];
2232 float t_buffer[TGSI_QUAD_SIZE];
2233 float weight_buffer[TGSI_QUAD_SIZE];
2234 int j;
2235
2236 /* For each quad, the du and dx values are the same and so the ellipse is
2237 * also the same. Note that texel/image access can only be performed using
2238 * a quad, i.e. it is not possible to get the pixel value for a single
2239 * tex coord. In order to have a better performance, the access is buffered
2240 * using the s_buffer/t_buffer and weight_buffer. Only when the buffer is
2241 * full, then the pixel values are read from the image.
2242 */
2243 const float ddq = 2 * A;
2244
2245 /* Scale ellipse formula to directly index the Filter Lookup Table.
2246 * i.e. scale so that F = WEIGHT_LUT_SIZE-1
2247 */
2248 const double formScale = (double) (WEIGHT_LUT_SIZE - 1) / F;
2249 A *= formScale;
2250 B *= formScale;
2251 C *= formScale;
2252 /* F *= formScale; */ /* no need to scale F as we don't use it below here */
2253
2254 args.level = level;
2255 args.offset = offset;
2256
2257 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2258 /* Heckbert MS thesis, p. 59; scan over the bounding box of the ellipse
2259 * and incrementally update the value of Ax^2+Bxy*Cy^2; when this
2260 * value, q, is less than F, we're inside the ellipse
2261 */
2262 const float tex_u = -0.5F + s[j] * texture->width0 * scaling;
2263 const float tex_v = -0.5F + t[j] * texture->height0 * scaling;
2264
2265 const int u0 = (int) floorf(tex_u - box_u);
2266 const int u1 = (int) ceilf(tex_u + box_u);
2267 const int v0 = (int) floorf(tex_v - box_v);
2268 const int v1 = (int) ceilf(tex_v + box_v);
2269 const float U = u0 - tex_u;
2270
2271 float num[4] = {0.0F, 0.0F, 0.0F, 0.0F};
2272 unsigned buffer_next = 0;
2273 float den = 0;
2274 int v;
2275 args.face_id = faces[j];
2276
2277 for (v = v0; v <= v1; ++v) {
2278 const float V = v - tex_v;
2279 float dq = A * (2 * U + 1) + B * V;
2280 float q = (C * V + B * U) * V + A * U * U;
2281
2282 int u;
2283 for (u = u0; u <= u1; ++u) {
2284 /* Note that the ellipse has been pre-scaled so F =
2285 * WEIGHT_LUT_SIZE - 1
2286 */
2287 if (q < WEIGHT_LUT_SIZE) {
2288 /* as a LUT is used, q must never be negative;
2289 * should not happen, though
2290 */
2291 const int qClamped = q >= 0.0F ? q : 0;
2292 const float weight = weightLut[qClamped];
2293
2294 weight_buffer[buffer_next] = weight;
2295 s_buffer[buffer_next] = u / ((float) width);
2296 t_buffer[buffer_next] = v / ((float) height);
2297
2298 buffer_next++;
2299 if (buffer_next == TGSI_QUAD_SIZE) {
2300 /* 4 texel coords are in the buffer -> read it now */
2301 unsigned jj;
2302 /* it is assumed that samp->min_img_filter is set to
2303 * img_filter_2d_nearest or one of the
2304 * accelerated img_filter_2d_nearest_XXX functions.
2305 */
2306 for (jj = 0; jj < buffer_next; jj++) {
2307 args.s = s_buffer[jj];
2308 args.t = t_buffer[jj];
2309 args.p = p[jj];
2310 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2311 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2312 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2313 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2314 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2315 }
2316
2317 buffer_next = 0;
2318 }
2319
2320 den += weight;
2321 }
2322 q += dq;
2323 dq += ddq;
2324 }
2325 }
2326
2327 /* if the tex coord buffer contains unread values, we will read
2328 * them now.
2329 */
2330 if (buffer_next > 0) {
2331 unsigned jj;
2332 /* it is assumed that samp->min_img_filter is set to
2333 * img_filter_2d_nearest or one of the
2334 * accelerated img_filter_2d_nearest_XXX functions.
2335 */
2336 for (jj = 0; jj < buffer_next; jj++) {
2337 args.s = s_buffer[jj];
2338 args.t = t_buffer[jj];
2339 args.p = p[jj];
2340 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][jj]);
2341 num[0] += weight_buffer[jj] * rgba_temp[0][jj];
2342 num[1] += weight_buffer[jj] * rgba_temp[1][jj];
2343 num[2] += weight_buffer[jj] * rgba_temp[2][jj];
2344 num[3] += weight_buffer[jj] * rgba_temp[3][jj];
2345 }
2346 }
2347
2348 if (den <= 0.0F) {
2349 /* Reaching this place would mean that no pixels intersected
2350 * the ellipse. This should never happen because the filter
2351 * we use always intersects at least one pixel.
2352 */
2353
2354 /*rgba[0]=0;
2355 rgba[1]=0;
2356 rgba[2]=0;
2357 rgba[3]=0;*/
2358 /* not enough pixels in resampling, resort to direct interpolation */
2359 args.s = s[j];
2360 args.t = t[j];
2361 args.p = p[j];
2362 min_filter(sp_sview, sp_samp, &args, &rgba_temp[0][j]);
2363 den = 1;
2364 num[0] = rgba_temp[0][j];
2365 num[1] = rgba_temp[1][j];
2366 num[2] = rgba_temp[2][j];
2367 num[3] = rgba_temp[3][j];
2368 }
2369
2370 rgba[0][j] = num[0] / den;
2371 rgba[1][j] = num[1] / den;
2372 rgba[2][j] = num[2] / den;
2373 rgba[3][j] = num[3] / den;
2374 }
2375 }
2376
2377
2378 /**
2379 * Get mip level relative to base level for linear mip filter
2380 */
2381 static void
2382 mip_rel_level_linear_aniso(const struct sp_sampler_view *sp_sview,
2383 const struct sp_sampler *sp_samp,
2384 const float lod[TGSI_QUAD_SIZE],
2385 float level[TGSI_QUAD_SIZE])
2386 {
2387 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2388 }
2389
2390 /**
2391 * Sample 2D texture using an anisotropic filter.
2392 */
2393 static void
2394 mip_filter_linear_aniso(const struct sp_sampler_view *sp_sview,
2395 const struct sp_sampler *sp_samp,
2396 img_filter_func min_filter,
2397 img_filter_func mag_filter,
2398 const float s[TGSI_QUAD_SIZE],
2399 const float t[TGSI_QUAD_SIZE],
2400 const float p[TGSI_QUAD_SIZE],
2401 const float c0[TGSI_QUAD_SIZE],
2402 const float lod_in[TGSI_QUAD_SIZE],
2403 const struct filter_args *filt_args,
2404 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2405 {
2406 const struct pipe_resource *texture = sp_sview->base.texture;
2407 const struct pipe_sampler_view *psview = &sp_sview->base;
2408 int level0;
2409 float lambda;
2410 float lod[TGSI_QUAD_SIZE];
2411
2412 const float s_to_u = u_minify(texture->width0, psview->u.tex.first_level);
2413 const float t_to_v = u_minify(texture->height0, psview->u.tex.first_level);
2414 const float dudx = (s[QUAD_BOTTOM_RIGHT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2415 const float dudy = (s[QUAD_TOP_LEFT] - s[QUAD_BOTTOM_LEFT]) * s_to_u;
2416 const float dvdx = (t[QUAD_BOTTOM_RIGHT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2417 const float dvdy = (t[QUAD_TOP_LEFT] - t[QUAD_BOTTOM_LEFT]) * t_to_v;
2418 struct img_filter_args args;
2419
2420 args.offset = filt_args->offset;
2421
2422 if (filt_args->control == TGSI_SAMPLER_LOD_BIAS ||
2423 filt_args->control == TGSI_SAMPLER_LOD_NONE ||
2424 /* XXX FIXME */
2425 filt_args->control == TGSI_SAMPLER_DERIVS_EXPLICIT) {
2426 /* note: instead of working with Px and Py, we will use the
2427 * squared length instead, to avoid sqrt.
2428 */
2429 const float Px2 = dudx * dudx + dvdx * dvdx;
2430 const float Py2 = dudy * dudy + dvdy * dvdy;
2431
2432 float Pmax2;
2433 float Pmin2;
2434 float e;
2435 const float maxEccentricity = sp_samp->base.max_anisotropy * sp_samp->base.max_anisotropy;
2436
2437 if (Px2 < Py2) {
2438 Pmax2 = Py2;
2439 Pmin2 = Px2;
2440 }
2441 else {
2442 Pmax2 = Px2;
2443 Pmin2 = Py2;
2444 }
2445
2446 /* if the eccentricity of the ellipse is too big, scale up the shorter
2447 * of the two vectors to limit the maximum amount of work per pixel
2448 */
2449 e = Pmax2 / Pmin2;
2450 if (e > maxEccentricity) {
2451 /* float s=e / maxEccentricity;
2452 minor[0] *= s;
2453 minor[1] *= s;
2454 Pmin2 *= s; */
2455 Pmin2 = Pmax2 / maxEccentricity;
2456 }
2457
2458 /* note: we need to have Pmin=sqrt(Pmin2) here, but we can avoid
2459 * this since 0.5*log(x) = log(sqrt(x))
2460 */
2461 lambda = 0.5F * util_fast_log2(Pmin2) + sp_samp->base.lod_bias;
2462 compute_lod(&sp_samp->base, filt_args->control, lambda, lod_in, lod);
2463 }
2464 else {
2465 assert(filt_args->control == TGSI_SAMPLER_LOD_EXPLICIT ||
2466 filt_args->control == TGSI_SAMPLER_LOD_ZERO);
2467 compute_lod(&sp_samp->base, filt_args->control, sp_samp->base.lod_bias, lod_in, lod);
2468 }
2469
2470 /* XXX: Take into account all lod values.
2471 */
2472 lambda = lod[0];
2473 level0 = psview->u.tex.first_level + (int)lambda;
2474
2475 /* If the ellipse covers the whole image, we can
2476 * simply return the average of the whole image.
2477 */
2478 if (level0 >= (int) psview->u.tex.last_level) {
2479 int j;
2480 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2481 args.s = s[j];
2482 args.t = t[j];
2483 args.p = p[j];
2484 args.level = psview->u.tex.last_level;
2485 args.face_id = filt_args->faces[j];
2486 /*
2487 * XXX: we overwrote any linear filter with nearest, so this
2488 * isn't right (albeit if last level is 1x1 and no border it
2489 * will work just the same).
2490 */
2491 min_filter(sp_sview, sp_samp, &args, &rgba[0][j]);
2492 }
2493 }
2494 else {
2495 /* don't bother interpolating between multiple LODs; it doesn't
2496 * seem to be worth the extra running time.
2497 */
2498 img_filter_2d_ewa(sp_sview, sp_samp, min_filter, mag_filter,
2499 s, t, p, filt_args->faces, filt_args->offset,
2500 level0, dudx, dvdx, dudy, dvdy, rgba);
2501 }
2502
2503 if (DEBUG_TEX) {
2504 print_sample_4(__FUNCTION__, rgba);
2505 }
2506 }
2507
2508 /**
2509 * Get mip level relative to base level for linear mip filter
2510 */
2511 static void
2512 mip_rel_level_linear_2d_linear_repeat_POT(
2513 const struct sp_sampler_view *sp_sview,
2514 const struct sp_sampler *sp_samp,
2515 const float lod[TGSI_QUAD_SIZE],
2516 float level[TGSI_QUAD_SIZE])
2517 {
2518 mip_rel_level_linear(sp_sview, sp_samp, lod, level);
2519 }
2520
2521 /**
2522 * Specialized version of mip_filter_linear with hard-wired calls to
2523 * 2d lambda calculation and 2d_linear_repeat_POT img filters.
2524 */
2525 static void
2526 mip_filter_linear_2d_linear_repeat_POT(
2527 const struct sp_sampler_view *sp_sview,
2528 const struct sp_sampler *sp_samp,
2529 img_filter_func min_filter,
2530 img_filter_func mag_filter,
2531 const float s[TGSI_QUAD_SIZE],
2532 const float t[TGSI_QUAD_SIZE],
2533 const float p[TGSI_QUAD_SIZE],
2534 const float c0[TGSI_QUAD_SIZE],
2535 const float lod_in[TGSI_QUAD_SIZE],
2536 const struct filter_args *filt_args,
2537 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2538 {
2539 const struct pipe_sampler_view *psview = &sp_sview->base;
2540 int j;
2541 float lod[TGSI_QUAD_SIZE];
2542
2543 compute_lambda_lod(sp_sview, sp_samp, s, t, p, lod_in, filt_args->control, lod);
2544
2545 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2546 const int level0 = psview->u.tex.first_level + (int)lod[j];
2547 struct img_filter_args args;
2548 /* Catches both negative and large values of level0:
2549 */
2550 args.s = s[j];
2551 args.t = t[j];
2552 args.p = p[j];
2553 args.face_id = filt_args->faces[j];
2554 args.offset = filt_args->offset;
2555 args.gather_only = filt_args->control == TGSI_SAMPLER_GATHER;
2556 if ((unsigned)level0 >= psview->u.tex.last_level) {
2557 if (level0 < 0)
2558 args.level = psview->u.tex.first_level;
2559 else
2560 args.level = psview->u.tex.last_level;
2561 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args,
2562 &rgba[0][j]);
2563
2564 }
2565 else {
2566 const float levelBlend = frac(lod[j]);
2567 float rgbax[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2568 int c;
2569
2570 args.level = level0;
2571 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][0]);
2572 args.level = level0+1;
2573 img_filter_2d_linear_repeat_POT(sp_sview, sp_samp, &args, &rgbax[0][1]);
2574
2575 for (c = 0; c < TGSI_NUM_CHANNELS; c++)
2576 rgba[c][j] = lerp(levelBlend, rgbax[c][0], rgbax[c][1]);
2577 }
2578 }
2579
2580 if (DEBUG_TEX) {
2581 print_sample_4(__FUNCTION__, rgba);
2582 }
2583 }
2584
2585 static const struct sp_filter_funcs funcs_linear = {
2586 mip_rel_level_linear,
2587 mip_filter_linear
2588 };
2589
2590 static const struct sp_filter_funcs funcs_nearest = {
2591 mip_rel_level_nearest,
2592 mip_filter_nearest
2593 };
2594
2595 static const struct sp_filter_funcs funcs_none = {
2596 mip_rel_level_none,
2597 mip_filter_none
2598 };
2599
2600 static const struct sp_filter_funcs funcs_none_no_filter_select = {
2601 mip_rel_level_none_no_filter_select,
2602 mip_filter_none_no_filter_select
2603 };
2604
2605 static const struct sp_filter_funcs funcs_linear_aniso = {
2606 mip_rel_level_linear_aniso,
2607 mip_filter_linear_aniso
2608 };
2609
2610 static const struct sp_filter_funcs funcs_linear_2d_linear_repeat_POT = {
2611 mip_rel_level_linear_2d_linear_repeat_POT,
2612 mip_filter_linear_2d_linear_repeat_POT
2613 };
2614
2615 /**
2616 * Do shadow/depth comparisons.
2617 */
2618 static void
2619 sample_compare(const struct sp_sampler_view *sp_sview,
2620 const struct sp_sampler *sp_samp,
2621 const float s[TGSI_QUAD_SIZE],
2622 const float t[TGSI_QUAD_SIZE],
2623 const float p[TGSI_QUAD_SIZE],
2624 const float c0[TGSI_QUAD_SIZE],
2625 const float c1[TGSI_QUAD_SIZE],
2626 enum tgsi_sampler_control control,
2627 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2628 {
2629 const struct pipe_sampler_state *sampler = &sp_samp->base;
2630 int j, v;
2631 int k[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
2632 float pc[4];
2633 const struct util_format_description *format_desc =
2634 util_format_description(sp_sview->base.format);
2635 /* not entirely sure we couldn't end up with non-valid swizzle here */
2636 const unsigned chan_type =
2637 format_desc->swizzle[0] <= PIPE_SWIZZLE_W ?
2638 format_desc->channel[format_desc->swizzle[0]].type :
2639 UTIL_FORMAT_TYPE_FLOAT;
2640 const bool is_gather = (control == TGSI_SAMPLER_GATHER);
2641
2642 /**
2643 * Compare texcoord 'p' (aka R) against texture value 'rgba[0]'
2644 * for 2D Array texture we need to use the 'c0' (aka Q).
2645 * When we sampled the depth texture, the depth value was put into all
2646 * RGBA channels. We look at the red channel here.
2647 */
2648
2649 if (sp_sview->base.target == PIPE_TEXTURE_2D_ARRAY ||
2650 sp_sview->base.target == PIPE_TEXTURE_CUBE) {
2651 pc[0] = c0[0];
2652 pc[1] = c0[1];
2653 pc[2] = c0[2];
2654 pc[3] = c0[3];
2655 } else if (sp_sview->base.target == PIPE_TEXTURE_CUBE_ARRAY) {
2656 pc[0] = c1[0];
2657 pc[1] = c1[1];
2658 pc[2] = c1[2];
2659 pc[3] = c1[3];
2660 } else {
2661 pc[0] = p[0];
2662 pc[1] = p[1];
2663 pc[2] = p[2];
2664 pc[3] = p[3];
2665 }
2666
2667 if (chan_type != UTIL_FORMAT_TYPE_FLOAT) {
2668 /*
2669 * clamping is a result of conversion to texture format, hence
2670 * doesn't happen with floats. Technically also should do comparison
2671 * in texture format (quantization!).
2672 */
2673 pc[0] = CLAMP(pc[0], 0.0F, 1.0F);
2674 pc[1] = CLAMP(pc[1], 0.0F, 1.0F);
2675 pc[2] = CLAMP(pc[2], 0.0F, 1.0F);
2676 pc[3] = CLAMP(pc[3], 0.0F, 1.0F);
2677 }
2678
2679 for (v = 0; v < (is_gather ? TGSI_NUM_CHANNELS : 1); v++) {
2680 /* compare four texcoords vs. four texture samples */
2681 switch (sampler->compare_func) {
2682 case PIPE_FUNC_LESS:
2683 k[v][0] = pc[0] < rgba[v][0];
2684 k[v][1] = pc[1] < rgba[v][1];
2685 k[v][2] = pc[2] < rgba[v][2];
2686 k[v][3] = pc[3] < rgba[v][3];
2687 break;
2688 case PIPE_FUNC_LEQUAL:
2689 k[v][0] = pc[0] <= rgba[v][0];
2690 k[v][1] = pc[1] <= rgba[v][1];
2691 k[v][2] = pc[2] <= rgba[v][2];
2692 k[v][3] = pc[3] <= rgba[v][3];
2693 break;
2694 case PIPE_FUNC_GREATER:
2695 k[v][0] = pc[0] > rgba[v][0];
2696 k[v][1] = pc[1] > rgba[v][1];
2697 k[v][2] = pc[2] > rgba[v][2];
2698 k[v][3] = pc[3] > rgba[v][3];
2699 break;
2700 case PIPE_FUNC_GEQUAL:
2701 k[v][0] = pc[0] >= rgba[v][0];
2702 k[v][1] = pc[1] >= rgba[v][1];
2703 k[v][2] = pc[2] >= rgba[v][2];
2704 k[v][3] = pc[3] >= rgba[v][3];
2705 break;
2706 case PIPE_FUNC_EQUAL:
2707 k[v][0] = pc[0] == rgba[v][0];
2708 k[v][1] = pc[1] == rgba[v][1];
2709 k[v][2] = pc[2] == rgba[v][2];
2710 k[v][3] = pc[3] == rgba[v][3];
2711 break;
2712 case PIPE_FUNC_NOTEQUAL:
2713 k[v][0] = pc[0] != rgba[v][0];
2714 k[v][1] = pc[1] != rgba[v][1];
2715 k[v][2] = pc[2] != rgba[v][2];
2716 k[v][3] = pc[3] != rgba[v][3];
2717 break;
2718 case PIPE_FUNC_ALWAYS:
2719 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 1;
2720 break;
2721 case PIPE_FUNC_NEVER:
2722 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2723 break;
2724 default:
2725 k[v][0] = k[v][1] = k[v][2] = k[v][3] = 0;
2726 assert(0);
2727 break;
2728 }
2729 }
2730
2731 if (is_gather) {
2732 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2733 for (v = 0; v < TGSI_NUM_CHANNELS; v++) {
2734 rgba[v][j] = k[v][j];
2735 }
2736 }
2737 } else {
2738 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
2739 rgba[0][j] = k[0][j];
2740 rgba[1][j] = k[0][j];
2741 rgba[2][j] = k[0][j];
2742 rgba[3][j] = 1.0F;
2743 }
2744 }
2745 }
2746
2747 static void
2748 do_swizzling(const struct pipe_sampler_view *sview,
2749 float in[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE],
2750 float out[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
2751 {
2752 int j;
2753 const unsigned swizzle_r = sview->swizzle_r;
2754 const unsigned swizzle_g = sview->swizzle_g;
2755 const unsigned swizzle_b = sview->swizzle_b;
2756 const unsigned swizzle_a = sview->swizzle_a;
2757
2758 switch (swizzle_r) {
2759 case PIPE_SWIZZLE_0:
2760 for (j = 0; j < 4; j++)
2761 out[0][j] = 0.0f;
2762 break;
2763 case PIPE_SWIZZLE_1:
2764 for (j = 0; j < 4; j++)
2765 out[0][j] = 1.0f;
2766 break;
2767 default:
2768 assert(swizzle_r < 4);
2769 for (j = 0; j < 4; j++)
2770 out[0][j] = in[swizzle_r][j];
2771 }
2772
2773 switch (swizzle_g) {
2774 case PIPE_SWIZZLE_0:
2775 for (j = 0; j < 4; j++)
2776 out[1][j] = 0.0f;
2777 break;
2778 case PIPE_SWIZZLE_1:
2779 for (j = 0; j < 4; j++)
2780 out[1][j] = 1.0f;
2781 break;
2782 default:
2783 assert(swizzle_g < 4);
2784 for (j = 0; j < 4; j++)
2785 out[1][j] = in[swizzle_g][j];
2786 }
2787
2788 switch (swizzle_b) {
2789 case PIPE_SWIZZLE_0:
2790 for (j = 0; j < 4; j++)
2791 out[2][j] = 0.0f;
2792 break;
2793 case PIPE_SWIZZLE_1:
2794 for (j = 0; j < 4; j++)
2795 out[2][j] = 1.0f;
2796 break;
2797 default:
2798 assert(swizzle_b < 4);
2799 for (j = 0; j < 4; j++)
2800 out[2][j] = in[swizzle_b][j];
2801 }
2802
2803 switch (swizzle_a) {
2804 case PIPE_SWIZZLE_0:
2805 for (j = 0; j < 4; j++)
2806 out[3][j] = 0.0f;
2807 break;
2808 case PIPE_SWIZZLE_1:
2809 for (j = 0; j < 4; j++)
2810 out[3][j] = 1.0f;
2811 break;
2812 default:
2813 assert(swizzle_a < 4);
2814 for (j = 0; j < 4; j++)
2815 out[3][j] = in[swizzle_a][j];
2816 }
2817 }
2818
2819
2820 static wrap_nearest_func
2821 get_nearest_unorm_wrap(unsigned mode)
2822 {
2823 switch (mode) {
2824 case PIPE_TEX_WRAP_CLAMP:
2825 return wrap_nearest_unorm_clamp;
2826 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2827 return wrap_nearest_unorm_clamp_to_edge;
2828 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2829 return wrap_nearest_unorm_clamp_to_border;
2830 default:
2831 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2832 return wrap_nearest_unorm_clamp;
2833 }
2834 }
2835
2836
2837 static wrap_nearest_func
2838 get_nearest_wrap(unsigned mode)
2839 {
2840 switch (mode) {
2841 case PIPE_TEX_WRAP_REPEAT:
2842 return wrap_nearest_repeat;
2843 case PIPE_TEX_WRAP_CLAMP:
2844 return wrap_nearest_clamp;
2845 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2846 return wrap_nearest_clamp_to_edge;
2847 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2848 return wrap_nearest_clamp_to_border;
2849 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2850 return wrap_nearest_mirror_repeat;
2851 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2852 return wrap_nearest_mirror_clamp;
2853 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2854 return wrap_nearest_mirror_clamp_to_edge;
2855 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2856 return wrap_nearest_mirror_clamp_to_border;
2857 default:
2858 assert(0);
2859 return wrap_nearest_repeat;
2860 }
2861 }
2862
2863
2864 static wrap_linear_func
2865 get_linear_unorm_wrap(unsigned mode)
2866 {
2867 switch (mode) {
2868 case PIPE_TEX_WRAP_CLAMP:
2869 return wrap_linear_unorm_clamp;
2870 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2871 return wrap_linear_unorm_clamp_to_edge;
2872 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2873 return wrap_linear_unorm_clamp_to_border;
2874 default:
2875 debug_printf("illegal wrap mode %d with non-normalized coords\n", mode);
2876 return wrap_linear_unorm_clamp;
2877 }
2878 }
2879
2880
2881 static wrap_linear_func
2882 get_linear_wrap(unsigned mode)
2883 {
2884 switch (mode) {
2885 case PIPE_TEX_WRAP_REPEAT:
2886 return wrap_linear_repeat;
2887 case PIPE_TEX_WRAP_CLAMP:
2888 return wrap_linear_clamp;
2889 case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
2890 return wrap_linear_clamp_to_edge;
2891 case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
2892 return wrap_linear_clamp_to_border;
2893 case PIPE_TEX_WRAP_MIRROR_REPEAT:
2894 return wrap_linear_mirror_repeat;
2895 case PIPE_TEX_WRAP_MIRROR_CLAMP:
2896 return wrap_linear_mirror_clamp;
2897 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
2898 return wrap_linear_mirror_clamp_to_edge;
2899 case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
2900 return wrap_linear_mirror_clamp_to_border;
2901 default:
2902 assert(0);
2903 return wrap_linear_repeat;
2904 }
2905 }
2906
2907
2908 /**
2909 * Is swizzling needed for the given state key?
2910 */
2911 static inline bool
2912 any_swizzle(const struct pipe_sampler_view *view)
2913 {
2914 return (view->swizzle_r != PIPE_SWIZZLE_X ||
2915 view->swizzle_g != PIPE_SWIZZLE_Y ||
2916 view->swizzle_b != PIPE_SWIZZLE_Z ||
2917 view->swizzle_a != PIPE_SWIZZLE_W);
2918 }
2919
2920
2921 static img_filter_func
2922 get_img_filter(const struct sp_sampler_view *sp_sview,
2923 const struct pipe_sampler_state *sampler,
2924 unsigned filter, bool gather)
2925 {
2926 switch (sp_sview->base.target) {
2927 case PIPE_BUFFER:
2928 case PIPE_TEXTURE_1D:
2929 if (filter == PIPE_TEX_FILTER_NEAREST)
2930 return img_filter_1d_nearest;
2931 else
2932 return img_filter_1d_linear;
2933 break;
2934 case PIPE_TEXTURE_1D_ARRAY:
2935 if (filter == PIPE_TEX_FILTER_NEAREST)
2936 return img_filter_1d_array_nearest;
2937 else
2938 return img_filter_1d_array_linear;
2939 break;
2940 case PIPE_TEXTURE_2D:
2941 case PIPE_TEXTURE_RECT:
2942 /* Try for fast path:
2943 */
2944 if (!gather && sp_sview->pot2d &&
2945 sampler->wrap_s == sampler->wrap_t &&
2946 sampler->normalized_coords)
2947 {
2948 switch (sampler->wrap_s) {
2949 case PIPE_TEX_WRAP_REPEAT:
2950 switch (filter) {
2951 case PIPE_TEX_FILTER_NEAREST:
2952 return img_filter_2d_nearest_repeat_POT;
2953 case PIPE_TEX_FILTER_LINEAR:
2954 return img_filter_2d_linear_repeat_POT;
2955 default:
2956 break;
2957 }
2958 break;
2959 case PIPE_TEX_WRAP_CLAMP:
2960 switch (filter) {
2961 case PIPE_TEX_FILTER_NEAREST:
2962 return img_filter_2d_nearest_clamp_POT;
2963 default:
2964 break;
2965 }
2966 }
2967 }
2968 /* Otherwise use default versions:
2969 */
2970 if (filter == PIPE_TEX_FILTER_NEAREST)
2971 return img_filter_2d_nearest;
2972 else
2973 return img_filter_2d_linear;
2974 break;
2975 case PIPE_TEXTURE_2D_ARRAY:
2976 if (filter == PIPE_TEX_FILTER_NEAREST)
2977 return img_filter_2d_array_nearest;
2978 else
2979 return img_filter_2d_array_linear;
2980 break;
2981 case PIPE_TEXTURE_CUBE:
2982 if (filter == PIPE_TEX_FILTER_NEAREST)
2983 return img_filter_cube_nearest;
2984 else
2985 return img_filter_cube_linear;
2986 break;
2987 case PIPE_TEXTURE_CUBE_ARRAY:
2988 if (filter == PIPE_TEX_FILTER_NEAREST)
2989 return img_filter_cube_array_nearest;
2990 else
2991 return img_filter_cube_array_linear;
2992 break;
2993 case PIPE_TEXTURE_3D:
2994 if (filter == PIPE_TEX_FILTER_NEAREST)
2995 return img_filter_3d_nearest;
2996 else
2997 return img_filter_3d_linear;
2998 break;
2999 default:
3000 assert(0);
3001 return img_filter_1d_nearest;
3002 }
3003 }
3004
3005 /**
3006 * Get mip filter funcs, and optionally both img min filter and img mag
3007 * filter. Note that both img filter function pointers must be either non-NULL
3008 * or NULL.
3009 */
3010 static void
3011 get_filters(const struct sp_sampler_view *sp_sview,
3012 const struct sp_sampler *sp_samp,
3013 const enum tgsi_sampler_control control,
3014 const struct sp_filter_funcs **funcs,
3015 img_filter_func *min,
3016 img_filter_func *mag)
3017 {
3018 assert(funcs);
3019 if (control == TGSI_SAMPLER_GATHER) {
3020 *funcs = &funcs_nearest;
3021 if (min) {
3022 *min = get_img_filter(sp_sview, &sp_samp->base,
3023 PIPE_TEX_FILTER_LINEAR, true);
3024 }
3025 } else if (sp_sview->pot2d & sp_samp->min_mag_equal_repeat_linear) {
3026 *funcs = &funcs_linear_2d_linear_repeat_POT;
3027 } else {
3028 *funcs = sp_samp->filter_funcs;
3029 if (min) {
3030 assert(mag);
3031 *min = get_img_filter(sp_sview, &sp_samp->base,
3032 sp_samp->min_img_filter, false);
3033 if (sp_samp->min_mag_equal) {
3034 *mag = *min;
3035 } else {
3036 *mag = get_img_filter(sp_sview, &sp_samp->base,
3037 sp_samp->base.mag_img_filter, false);
3038 }
3039 }
3040 }
3041 }
3042
3043 static void
3044 sample_mip(const struct sp_sampler_view *sp_sview,
3045 const struct sp_sampler *sp_samp,
3046 const float s[TGSI_QUAD_SIZE],
3047 const float t[TGSI_QUAD_SIZE],
3048 const float p[TGSI_QUAD_SIZE],
3049 const float c0[TGSI_QUAD_SIZE],
3050 const float lod[TGSI_QUAD_SIZE],
3051 const struct filter_args *filt_args,
3052 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3053 {
3054 const struct sp_filter_funcs *funcs = NULL;
3055 img_filter_func min_img_filter = NULL;
3056 img_filter_func mag_img_filter = NULL;
3057
3058 get_filters(sp_sview, sp_samp, filt_args->control,
3059 &funcs, &min_img_filter, &mag_img_filter);
3060
3061 funcs->filter(sp_sview, sp_samp, min_img_filter, mag_img_filter,
3062 s, t, p, c0, lod, filt_args, rgba);
3063
3064 if (sp_samp->base.compare_mode != PIPE_TEX_COMPARE_NONE) {
3065 sample_compare(sp_sview, sp_samp, s, t, p, c0,
3066 lod, filt_args->control, rgba);
3067 }
3068
3069 if (sp_sview->need_swizzle && filt_args->control != TGSI_SAMPLER_GATHER) {
3070 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3071 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3072 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3073 }
3074
3075 }
3076
3077
3078 /**
3079 * This function uses cube texture coordinates to choose a face of a cube and
3080 * computes the 2D cube face coordinates. Puts face info into the sampler
3081 * faces[] array.
3082 */
3083 static void
3084 convert_cube(const struct sp_sampler_view *sp_sview,
3085 const struct sp_sampler *sp_samp,
3086 const float s[TGSI_QUAD_SIZE],
3087 const float t[TGSI_QUAD_SIZE],
3088 const float p[TGSI_QUAD_SIZE],
3089 const float c0[TGSI_QUAD_SIZE],
3090 float ssss[TGSI_QUAD_SIZE],
3091 float tttt[TGSI_QUAD_SIZE],
3092 float pppp[TGSI_QUAD_SIZE],
3093 uint faces[TGSI_QUAD_SIZE])
3094 {
3095 unsigned j;
3096
3097 pppp[0] = c0[0];
3098 pppp[1] = c0[1];
3099 pppp[2] = c0[2];
3100 pppp[3] = c0[3];
3101 /*
3102 major axis
3103 direction target sc tc ma
3104 ---------- ------------------------------- --- --- ---
3105 +rx TEXTURE_CUBE_MAP_POSITIVE_X_EXT -rz -ry rx
3106 -rx TEXTURE_CUBE_MAP_NEGATIVE_X_EXT +rz -ry rx
3107 +ry TEXTURE_CUBE_MAP_POSITIVE_Y_EXT +rx +rz ry
3108 -ry TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT +rx -rz ry
3109 +rz TEXTURE_CUBE_MAP_POSITIVE_Z_EXT +rx -ry rz
3110 -rz TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT -rx -ry rz
3111 */
3112
3113 /* Choose the cube face and compute new s/t coords for the 2D face.
3114 *
3115 * Use the same cube face for all four pixels in the quad.
3116 *
3117 * This isn't ideal, but if we want to use a different cube face
3118 * per pixel in the quad, we'd have to also compute the per-face
3119 * LOD here too. That's because the four post-face-selection
3120 * texcoords are no longer related to each other (they're
3121 * per-face!) so we can't use subtraction to compute the partial
3122 * deriviates to compute the LOD. Doing so (near cube edges
3123 * anyway) gives us pretty much random values.
3124 */
3125 {
3126 /* use the average of the four pixel's texcoords to choose the face */
3127 const float rx = 0.25F * (s[0] + s[1] + s[2] + s[3]);
3128 const float ry = 0.25F * (t[0] + t[1] + t[2] + t[3]);
3129 const float rz = 0.25F * (p[0] + p[1] + p[2] + p[3]);
3130 const float arx = fabsf(rx), ary = fabsf(ry), arz = fabsf(rz);
3131
3132 if (arx >= ary && arx >= arz) {
3133 const float sign = (rx >= 0.0F) ? 1.0F : -1.0F;
3134 const uint face = (rx >= 0.0F) ?
3135 PIPE_TEX_FACE_POS_X : PIPE_TEX_FACE_NEG_X;
3136 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3137 const float ima = -0.5F / fabsf(s[j]);
3138 ssss[j] = sign * p[j] * ima + 0.5F;
3139 tttt[j] = t[j] * ima + 0.5F;
3140 faces[j] = face;
3141 }
3142 }
3143 else if (ary >= arx && ary >= arz) {
3144 const float sign = (ry >= 0.0F) ? 1.0F : -1.0F;
3145 const uint face = (ry >= 0.0F) ?
3146 PIPE_TEX_FACE_POS_Y : PIPE_TEX_FACE_NEG_Y;
3147 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3148 const float ima = -0.5F / fabsf(t[j]);
3149 ssss[j] = -s[j] * ima + 0.5F;
3150 tttt[j] = sign * -p[j] * ima + 0.5F;
3151 faces[j] = face;
3152 }
3153 }
3154 else {
3155 const float sign = (rz >= 0.0F) ? 1.0F : -1.0F;
3156 const uint face = (rz >= 0.0F) ?
3157 PIPE_TEX_FACE_POS_Z : PIPE_TEX_FACE_NEG_Z;
3158 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3159 const float ima = -0.5F / fabsf(p[j]);
3160 ssss[j] = sign * -s[j] * ima + 0.5F;
3161 tttt[j] = t[j] * ima + 0.5F;
3162 faces[j] = face;
3163 }
3164 }
3165 }
3166 }
3167
3168
3169 static void
3170 sp_get_dims(const struct sp_sampler_view *sp_sview,
3171 int level,
3172 int dims[4])
3173 {
3174 const struct pipe_sampler_view *view = &sp_sview->base;
3175 const struct pipe_resource *texture = view->texture;
3176
3177 if (view->target == PIPE_BUFFER) {
3178 dims[0] = view->u.buf.size / util_format_get_blocksize(view->format);
3179 /* the other values are undefined, but let's avoid potential valgrind
3180 * warnings.
3181 */
3182 dims[1] = dims[2] = dims[3] = 0;
3183 return;
3184 }
3185
3186 /* undefined according to EXT_gpu_program */
3187 level += view->u.tex.first_level;
3188 if (level > view->u.tex.last_level)
3189 return;
3190
3191 dims[3] = view->u.tex.last_level - view->u.tex.first_level + 1;
3192 dims[0] = u_minify(texture->width0, level);
3193
3194 switch (view->target) {
3195 case PIPE_TEXTURE_1D_ARRAY:
3196 dims[1] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3197 /* fallthrough */
3198 case PIPE_TEXTURE_1D:
3199 return;
3200 case PIPE_TEXTURE_2D_ARRAY:
3201 dims[2] = view->u.tex.last_layer - view->u.tex.first_layer + 1;
3202 /* fallthrough */
3203 case PIPE_TEXTURE_2D:
3204 case PIPE_TEXTURE_CUBE:
3205 case PIPE_TEXTURE_RECT:
3206 dims[1] = u_minify(texture->height0, level);
3207 return;
3208 case PIPE_TEXTURE_3D:
3209 dims[1] = u_minify(texture->height0, level);
3210 dims[2] = u_minify(texture->depth0, level);
3211 return;
3212 case PIPE_TEXTURE_CUBE_ARRAY:
3213 dims[1] = u_minify(texture->height0, level);
3214 dims[2] = (view->u.tex.last_layer - view->u.tex.first_layer + 1) / 6;
3215 break;
3216 default:
3217 assert(!"unexpected texture target in sp_get_dims()");
3218 return;
3219 }
3220 }
3221
3222 /**
3223 * This function is only used for getting unfiltered texels via the
3224 * TXF opcode. The GL spec says that out-of-bounds texel fetches
3225 * produce undefined results. Instead of crashing, lets just clamp
3226 * coords to the texture image size.
3227 */
3228 static void
3229 sp_get_texels(const struct sp_sampler_view *sp_sview,
3230 const int v_i[TGSI_QUAD_SIZE],
3231 const int v_j[TGSI_QUAD_SIZE],
3232 const int v_k[TGSI_QUAD_SIZE],
3233 const int lod[TGSI_QUAD_SIZE],
3234 const int8_t offset[3],
3235 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3236 {
3237 union tex_tile_address addr;
3238 const struct pipe_resource *texture = sp_sview->base.texture;
3239 int j, c;
3240 const float *tx;
3241 /* TODO write a better test for LOD */
3242 const unsigned level =
3243 sp_sview->base.target == PIPE_BUFFER ? 0 :
3244 CLAMP(lod[0] + sp_sview->base.u.tex.first_level,
3245 sp_sview->base.u.tex.first_level,
3246 sp_sview->base.u.tex.last_level);
3247 const int width = u_minify(texture->width0, level);
3248 const int height = u_minify(texture->height0, level);
3249 const int depth = u_minify(texture->depth0, level);
3250 unsigned elem_size, first_element, last_element;
3251
3252 addr.value = 0;
3253 addr.bits.level = level;
3254
3255 switch (sp_sview->base.target) {
3256 case PIPE_BUFFER:
3257 elem_size = util_format_get_blocksize(sp_sview->base.format);
3258 first_element = sp_sview->base.u.buf.offset / elem_size;
3259 last_element = (sp_sview->base.u.buf.offset +
3260 sp_sview->base.u.buf.size) / elem_size - 1;
3261 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3262 const int x = CLAMP(v_i[j] + offset[0] +
3263 first_element,
3264 first_element,
3265 last_element);
3266 tx = get_texel_2d_no_border(sp_sview, addr, x, 0);
3267 for (c = 0; c < 4; c++) {
3268 rgba[c][j] = tx[c];
3269 }
3270 }
3271 break;
3272 case PIPE_TEXTURE_1D:
3273 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3274 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3275 tx = get_texel_2d_no_border(sp_sview, addr, x,
3276 sp_sview->base.u.tex.first_layer);
3277 for (c = 0; c < 4; c++) {
3278 rgba[c][j] = tx[c];
3279 }
3280 }
3281 break;
3282 case PIPE_TEXTURE_1D_ARRAY:
3283 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3284 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3285 const int y = CLAMP(v_j[j], sp_sview->base.u.tex.first_layer,
3286 sp_sview->base.u.tex.last_layer);
3287 tx = get_texel_2d_no_border(sp_sview, addr, x, y);
3288 for (c = 0; c < 4; c++) {
3289 rgba[c][j] = tx[c];
3290 }
3291 }
3292 break;
3293 case PIPE_TEXTURE_2D:
3294 case PIPE_TEXTURE_RECT:
3295 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3296 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3297 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3298 tx = get_texel_3d_no_border(sp_sview, addr, x, y,
3299 sp_sview->base.u.tex.first_layer);
3300 for (c = 0; c < 4; c++) {
3301 rgba[c][j] = tx[c];
3302 }
3303 }
3304 break;
3305 case PIPE_TEXTURE_2D_ARRAY:
3306 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3307 const int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3308 const int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3309 const int layer = CLAMP(v_k[j], sp_sview->base.u.tex.first_layer,
3310 sp_sview->base.u.tex.last_layer);
3311 tx = get_texel_3d_no_border(sp_sview, addr, x, y, layer);
3312 for (c = 0; c < 4; c++) {
3313 rgba[c][j] = tx[c];
3314 }
3315 }
3316 break;
3317 case PIPE_TEXTURE_3D:
3318 for (j = 0; j < TGSI_QUAD_SIZE; j++) {
3319 int x = CLAMP(v_i[j] + offset[0], 0, width - 1);
3320 int y = CLAMP(v_j[j] + offset[1], 0, height - 1);
3321 int z = CLAMP(v_k[j] + offset[2], 0, depth - 1);
3322 tx = get_texel_3d_no_border(sp_sview, addr, x, y, z);
3323 for (c = 0; c < 4; c++) {
3324 rgba[c][j] = tx[c];
3325 }
3326 }
3327 break;
3328 case PIPE_TEXTURE_CUBE: /* TXF can't work on CUBE according to spec */
3329 case PIPE_TEXTURE_CUBE_ARRAY:
3330 default:
3331 assert(!"Unknown or CUBE texture type in TXF processing\n");
3332 break;
3333 }
3334
3335 if (sp_sview->need_swizzle) {
3336 float rgba_temp[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE];
3337 memcpy(rgba_temp, rgba, sizeof(rgba_temp));
3338 do_swizzling(&sp_sview->base, rgba_temp, rgba);
3339 }
3340 }
3341
3342
3343 void *
3344 softpipe_create_sampler_state(struct pipe_context *pipe,
3345 const struct pipe_sampler_state *sampler)
3346 {
3347 struct sp_sampler *samp = CALLOC_STRUCT(sp_sampler);
3348
3349 samp->base = *sampler;
3350
3351 /* Note that (for instance) linear_texcoord_s and
3352 * nearest_texcoord_s may be active at the same time, if the
3353 * sampler min_img_filter differs from its mag_img_filter.
3354 */
3355 if (sampler->normalized_coords) {
3356 samp->linear_texcoord_s = get_linear_wrap( sampler->wrap_s );
3357 samp->linear_texcoord_t = get_linear_wrap( sampler->wrap_t );
3358 samp->linear_texcoord_p = get_linear_wrap( sampler->wrap_r );
3359
3360 samp->nearest_texcoord_s = get_nearest_wrap( sampler->wrap_s );
3361 samp->nearest_texcoord_t = get_nearest_wrap( sampler->wrap_t );
3362 samp->nearest_texcoord_p = get_nearest_wrap( sampler->wrap_r );
3363 }
3364 else {
3365 samp->linear_texcoord_s = get_linear_unorm_wrap( sampler->wrap_s );
3366 samp->linear_texcoord_t = get_linear_unorm_wrap( sampler->wrap_t );
3367 samp->linear_texcoord_p = get_linear_unorm_wrap( sampler->wrap_r );
3368
3369 samp->nearest_texcoord_s = get_nearest_unorm_wrap( sampler->wrap_s );
3370 samp->nearest_texcoord_t = get_nearest_unorm_wrap( sampler->wrap_t );
3371 samp->nearest_texcoord_p = get_nearest_unorm_wrap( sampler->wrap_r );
3372 }
3373
3374 samp->min_img_filter = sampler->min_img_filter;
3375
3376 switch (sampler->min_mip_filter) {
3377 case PIPE_TEX_MIPFILTER_NONE:
3378 if (sampler->min_img_filter == sampler->mag_img_filter)
3379 samp->filter_funcs = &funcs_none_no_filter_select;
3380 else
3381 samp->filter_funcs = &funcs_none;
3382 break;
3383
3384 case PIPE_TEX_MIPFILTER_NEAREST:
3385 samp->filter_funcs = &funcs_nearest;
3386 break;
3387
3388 case PIPE_TEX_MIPFILTER_LINEAR:
3389 if (sampler->min_img_filter == sampler->mag_img_filter &&
3390 sampler->normalized_coords &&
3391 sampler->wrap_s == PIPE_TEX_WRAP_REPEAT &&
3392 sampler->wrap_t == PIPE_TEX_WRAP_REPEAT &&
3393 sampler->min_img_filter == PIPE_TEX_FILTER_LINEAR &&
3394 sampler->max_anisotropy <= 1) {
3395 samp->min_mag_equal_repeat_linear = TRUE;
3396 }
3397 samp->filter_funcs = &funcs_linear;
3398
3399 /* Anisotropic filtering extension. */
3400 if (sampler->max_anisotropy > 1) {
3401 samp->filter_funcs = &funcs_linear_aniso;
3402
3403 /* Override min_img_filter:
3404 * min_img_filter needs to be set to NEAREST since we need to access
3405 * each texture pixel as it is and weight it later; using linear
3406 * filters will have incorrect results.
3407 * By setting the filter to NEAREST here, we can avoid calling the
3408 * generic img_filter_2d_nearest in the anisotropic filter function,
3409 * making it possible to use one of the accelerated implementations
3410 */
3411 samp->min_img_filter = PIPE_TEX_FILTER_NEAREST;
3412
3413 /* on first access create the lookup table containing the filter weights. */
3414 if (!weightLut) {
3415 create_filter_table();
3416 }
3417 }
3418 break;
3419 }
3420 if (samp->min_img_filter == sampler->mag_img_filter) {
3421 samp->min_mag_equal = TRUE;
3422 }
3423
3424 return (void *)samp;
3425 }
3426
3427
3428 compute_lambda_func
3429 softpipe_get_lambda_func(const struct pipe_sampler_view *view,
3430 enum pipe_shader_type shader)
3431 {
3432 if (shader != PIPE_SHADER_FRAGMENT)
3433 return compute_lambda_vert;
3434
3435 switch (view->target) {
3436 case PIPE_BUFFER:
3437 case PIPE_TEXTURE_1D:
3438 case PIPE_TEXTURE_1D_ARRAY:
3439 return compute_lambda_1d;
3440 case PIPE_TEXTURE_2D:
3441 case PIPE_TEXTURE_2D_ARRAY:
3442 case PIPE_TEXTURE_RECT:
3443 case PIPE_TEXTURE_CUBE:
3444 case PIPE_TEXTURE_CUBE_ARRAY:
3445 return compute_lambda_2d;
3446 case PIPE_TEXTURE_3D:
3447 return compute_lambda_3d;
3448 default:
3449 assert(0);
3450 return compute_lambda_1d;
3451 }
3452 }
3453
3454
3455 struct pipe_sampler_view *
3456 softpipe_create_sampler_view(struct pipe_context *pipe,
3457 struct pipe_resource *resource,
3458 const struct pipe_sampler_view *templ)
3459 {
3460 struct sp_sampler_view *sview = CALLOC_STRUCT(sp_sampler_view);
3461 const struct softpipe_resource *spr = (struct softpipe_resource *)resource;
3462
3463 if (sview) {
3464 struct pipe_sampler_view *view = &sview->base;
3465 *view = *templ;
3466 view->reference.count = 1;
3467 view->texture = NULL;
3468 pipe_resource_reference(&view->texture, resource);
3469 view->context = pipe;
3470
3471 #ifdef DEBUG
3472 /*
3473 * This is possibly too lenient, but the primary reason is just
3474 * to catch state trackers which forget to initialize this, so
3475 * it only catches clearly impossible view targets.
3476 */
3477 if (view->target != resource->target) {
3478 if (view->target == PIPE_TEXTURE_1D)
3479 assert(resource->target == PIPE_TEXTURE_1D_ARRAY);
3480 else if (view->target == PIPE_TEXTURE_1D_ARRAY)
3481 assert(resource->target == PIPE_TEXTURE_1D);
3482 else if (view->target == PIPE_TEXTURE_2D)
3483 assert(resource->target == PIPE_TEXTURE_2D_ARRAY ||
3484 resource->target == PIPE_TEXTURE_CUBE ||
3485 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3486 else if (view->target == PIPE_TEXTURE_2D_ARRAY)
3487 assert(resource->target == PIPE_TEXTURE_2D ||
3488 resource->target == PIPE_TEXTURE_CUBE ||
3489 resource->target == PIPE_TEXTURE_CUBE_ARRAY);
3490 else if (view->target == PIPE_TEXTURE_CUBE)
3491 assert(resource->target == PIPE_TEXTURE_CUBE_ARRAY ||
3492 resource->target == PIPE_TEXTURE_2D_ARRAY);
3493 else if (view->target == PIPE_TEXTURE_CUBE_ARRAY)
3494 assert(resource->target == PIPE_TEXTURE_CUBE ||
3495 resource->target == PIPE_TEXTURE_2D_ARRAY);
3496 else
3497 assert(0);
3498 }
3499 #endif
3500
3501 if (any_swizzle(view)) {
3502 sview->need_swizzle = TRUE;
3503 }
3504
3505 sview->need_cube_convert = (view->target == PIPE_TEXTURE_CUBE ||
3506 view->target == PIPE_TEXTURE_CUBE_ARRAY);
3507 sview->pot2d = spr->pot &&
3508 (view->target == PIPE_TEXTURE_2D ||
3509 view->target == PIPE_TEXTURE_RECT);
3510
3511 sview->xpot = util_logbase2( resource->width0 );
3512 sview->ypot = util_logbase2( resource->height0 );
3513 }
3514
3515 return (struct pipe_sampler_view *) sview;
3516 }
3517
3518
3519 static inline const struct sp_tgsi_sampler *
3520 sp_tgsi_sampler_cast_c(const struct tgsi_sampler *sampler)
3521 {
3522 return (const struct sp_tgsi_sampler *)sampler;
3523 }
3524
3525
3526 static void
3527 sp_tgsi_get_dims(struct tgsi_sampler *tgsi_sampler,
3528 const unsigned sview_index,
3529 int level, int dims[4])
3530 {
3531 const struct sp_tgsi_sampler *sp_samp =
3532 sp_tgsi_sampler_cast_c(tgsi_sampler);
3533
3534 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3535 /* always have a view here but texture is NULL if no sampler view was set. */
3536 if (!sp_samp->sp_sview[sview_index].base.texture) {
3537 dims[0] = dims[1] = dims[2] = dims[3] = 0;
3538 return;
3539 }
3540 sp_get_dims(&sp_samp->sp_sview[sview_index], level, dims);
3541 }
3542
3543
3544 static void
3545 sp_tgsi_get_samples(struct tgsi_sampler *tgsi_sampler,
3546 const unsigned sview_index,
3547 const unsigned sampler_index,
3548 const float s[TGSI_QUAD_SIZE],
3549 const float t[TGSI_QUAD_SIZE],
3550 const float p[TGSI_QUAD_SIZE],
3551 const float c0[TGSI_QUAD_SIZE],
3552 const float lod[TGSI_QUAD_SIZE],
3553 float derivs[3][2][TGSI_QUAD_SIZE],
3554 const int8_t offset[3],
3555 enum tgsi_sampler_control control,
3556 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3557 {
3558 const struct sp_tgsi_sampler *sp_tgsi_samp =
3559 sp_tgsi_sampler_cast_c(tgsi_sampler);
3560 const struct sp_sampler_view *sp_sview;
3561 const struct sp_sampler *sp_samp;
3562 struct filter_args filt_args;
3563
3564 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3565 assert(sampler_index < PIPE_MAX_SAMPLERS);
3566 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3567
3568 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3569 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3570 /* always have a view here but texture is NULL if no sampler view was set. */
3571 if (!sp_sview->base.texture) {
3572 int i, j;
3573 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3574 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3575 rgba[j][i] = 0.0f;
3576 }
3577 }
3578 return;
3579 }
3580
3581 filt_args.control = control;
3582 filt_args.offset = offset;
3583
3584 if (sp_sview->need_cube_convert) {
3585 float cs[TGSI_QUAD_SIZE];
3586 float ct[TGSI_QUAD_SIZE];
3587 float cp[TGSI_QUAD_SIZE];
3588 uint faces[TGSI_QUAD_SIZE];
3589
3590 convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, faces);
3591
3592 filt_args.faces = faces;
3593 sample_mip(sp_sview, sp_samp, cs, ct, cp, c0, lod, &filt_args, rgba);
3594 } else {
3595 static const uint zero_faces[TGSI_QUAD_SIZE] = {0, 0, 0, 0};
3596
3597 filt_args.faces = zero_faces;
3598 sample_mip(sp_sview, sp_samp, s, t, p, c0, lod, &filt_args, rgba);
3599 }
3600 }
3601
3602 static void
3603 sp_tgsi_query_lod(const struct tgsi_sampler *tgsi_sampler,
3604 const unsigned sview_index,
3605 const unsigned sampler_index,
3606 const float s[TGSI_QUAD_SIZE],
3607 const float t[TGSI_QUAD_SIZE],
3608 const float p[TGSI_QUAD_SIZE],
3609 const float c0[TGSI_QUAD_SIZE],
3610 const enum tgsi_sampler_control control,
3611 float mipmap[TGSI_QUAD_SIZE],
3612 float lod[TGSI_QUAD_SIZE])
3613 {
3614 static const float lod_in[TGSI_QUAD_SIZE] = { 0.0, 0.0, 0.0, 0.0 };
3615
3616 const struct sp_tgsi_sampler *sp_tgsi_samp =
3617 sp_tgsi_sampler_cast_c(tgsi_sampler);
3618 const struct sp_sampler_view *sp_sview;
3619 const struct sp_sampler *sp_samp;
3620 const struct sp_filter_funcs *funcs;
3621 int i;
3622
3623 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3624 assert(sampler_index < PIPE_MAX_SAMPLERS);
3625 assert(sp_tgsi_samp->sp_sampler[sampler_index]);
3626
3627 sp_sview = &sp_tgsi_samp->sp_sview[sview_index];
3628 sp_samp = sp_tgsi_samp->sp_sampler[sampler_index];
3629 /* always have a view here but texture is NULL if no sampler view was
3630 * set. */
3631 if (!sp_sview->base.texture) {
3632 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3633 mipmap[i] = 0.0f;
3634 lod[i] = 0.0f;
3635 }
3636 return;
3637 }
3638
3639 if (sp_sview->need_cube_convert) {
3640 float cs[TGSI_QUAD_SIZE];
3641 float ct[TGSI_QUAD_SIZE];
3642 float cp[TGSI_QUAD_SIZE];
3643 uint unused_faces[TGSI_QUAD_SIZE];
3644
3645 convert_cube(sp_sview, sp_samp, s, t, p, c0, cs, ct, cp, unused_faces);
3646 compute_lambda_lod_unclamped(sp_sview, sp_samp,
3647 cs, ct, cp, lod_in, control, lod);
3648 } else {
3649 compute_lambda_lod_unclamped(sp_sview, sp_samp,
3650 s, t, p, lod_in, control, lod);
3651 }
3652
3653 get_filters(sp_sview, sp_samp, control, &funcs, NULL, NULL);
3654 funcs->relative_level(sp_sview, sp_samp, lod, mipmap);
3655 }
3656
3657 static void
3658 sp_tgsi_get_texel(struct tgsi_sampler *tgsi_sampler,
3659 const unsigned sview_index,
3660 const int i[TGSI_QUAD_SIZE],
3661 const int j[TGSI_QUAD_SIZE], const int k[TGSI_QUAD_SIZE],
3662 const int lod[TGSI_QUAD_SIZE], const int8_t offset[3],
3663 float rgba[TGSI_NUM_CHANNELS][TGSI_QUAD_SIZE])
3664 {
3665 const struct sp_tgsi_sampler *sp_samp =
3666 sp_tgsi_sampler_cast_c(tgsi_sampler);
3667
3668 assert(sview_index < PIPE_MAX_SHADER_SAMPLER_VIEWS);
3669 /* always have a view here but texture is NULL if no sampler view was set. */
3670 if (!sp_samp->sp_sview[sview_index].base.texture) {
3671 int i, j;
3672 for (j = 0; j < TGSI_NUM_CHANNELS; j++) {
3673 for (i = 0; i < TGSI_QUAD_SIZE; i++) {
3674 rgba[j][i] = 0.0f;
3675 }
3676 }
3677 return;
3678 }
3679 sp_get_texels(&sp_samp->sp_sview[sview_index], i, j, k, lod, offset, rgba);
3680 }
3681
3682
3683 struct sp_tgsi_sampler *
3684 sp_create_tgsi_sampler(void)
3685 {
3686 struct sp_tgsi_sampler *samp = CALLOC_STRUCT(sp_tgsi_sampler);
3687 if (!samp)
3688 return NULL;
3689
3690 samp->base.get_dims = sp_tgsi_get_dims;
3691 samp->base.get_samples = sp_tgsi_get_samples;
3692 samp->base.get_texel = sp_tgsi_get_texel;
3693 samp->base.query_lod = sp_tgsi_query_lod;
3694
3695 return samp;
3696 }