swr/rast: New GS state/context API
[mesa.git] / src / gallium / drivers / swr / rasterizer / core / state.h
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file state.h
24 *
25 * @brief Definitions for API state.
26 *
27 ******************************************************************************/
28 #pragma once
29
30 #include "common/formats.h"
31 #include "common/intrin.h"
32 using gfxptr_t = unsigned long long;
33 #include <functional>
34 #include <algorithm>
35
36 //////////////////////////////////////////////////////////////////////////
37 /// PRIMITIVE_TOPOLOGY.
38 //////////////////////////////////////////////////////////////////////////
39 enum PRIMITIVE_TOPOLOGY
40 {
41 TOP_UNKNOWN = 0x0,
42 TOP_POINT_LIST = 0x1,
43 TOP_LINE_LIST = 0x2,
44 TOP_LINE_STRIP = 0x3,
45 TOP_TRIANGLE_LIST = 0x4,
46 TOP_TRIANGLE_STRIP = 0x5,
47 TOP_TRIANGLE_FAN = 0x6,
48 TOP_QUAD_LIST = 0x7,
49 TOP_QUAD_STRIP = 0x8,
50 TOP_LINE_LIST_ADJ = 0x9,
51 TOP_LISTSTRIP_ADJ = 0xA,
52 TOP_TRI_LIST_ADJ = 0xB,
53 TOP_TRI_STRIP_ADJ = 0xC,
54 TOP_TRI_STRIP_REVERSE = 0xD,
55 TOP_POLYGON = 0xE,
56 TOP_RECT_LIST = 0xF,
57 TOP_LINE_LOOP = 0x10,
58 TOP_POINT_LIST_BF = 0x11,
59 TOP_LINE_STRIP_CONT = 0x12,
60 TOP_LINE_STRIP_BF = 0x13,
61 TOP_LINE_STRIP_CONT_BF = 0x14,
62 TOP_TRIANGLE_FAN_NOSTIPPLE = 0x16,
63 TOP_TRIANGLE_DISC = 0x17, /// @todo What is this??
64
65 TOP_PATCHLIST_BASE = 0x1F, // Invalid topology, used to calculate num verts for a patchlist.
66 TOP_PATCHLIST_1 = 0x20, // List of 1-vertex patches
67 TOP_PATCHLIST_2 = 0x21,
68 TOP_PATCHLIST_3 = 0x22,
69 TOP_PATCHLIST_4 = 0x23,
70 TOP_PATCHLIST_5 = 0x24,
71 TOP_PATCHLIST_6 = 0x25,
72 TOP_PATCHLIST_7 = 0x26,
73 TOP_PATCHLIST_8 = 0x27,
74 TOP_PATCHLIST_9 = 0x28,
75 TOP_PATCHLIST_10 = 0x29,
76 TOP_PATCHLIST_11 = 0x2A,
77 TOP_PATCHLIST_12 = 0x2B,
78 TOP_PATCHLIST_13 = 0x2C,
79 TOP_PATCHLIST_14 = 0x2D,
80 TOP_PATCHLIST_15 = 0x2E,
81 TOP_PATCHLIST_16 = 0x2F,
82 TOP_PATCHLIST_17 = 0x30,
83 TOP_PATCHLIST_18 = 0x31,
84 TOP_PATCHLIST_19 = 0x32,
85 TOP_PATCHLIST_20 = 0x33,
86 TOP_PATCHLIST_21 = 0x34,
87 TOP_PATCHLIST_22 = 0x35,
88 TOP_PATCHLIST_23 = 0x36,
89 TOP_PATCHLIST_24 = 0x37,
90 TOP_PATCHLIST_25 = 0x38,
91 TOP_PATCHLIST_26 = 0x39,
92 TOP_PATCHLIST_27 = 0x3A,
93 TOP_PATCHLIST_28 = 0x3B,
94 TOP_PATCHLIST_29 = 0x3C,
95 TOP_PATCHLIST_30 = 0x3D,
96 TOP_PATCHLIST_31 = 0x3E,
97 TOP_PATCHLIST_32 = 0x3F, // List of 32-vertex patches
98 };
99
100 //////////////////////////////////////////////////////////////////////////
101 /// SWR_SHADER_TYPE
102 //////////////////////////////////////////////////////////////////////////
103 enum SWR_SHADER_TYPE
104 {
105 SHADER_VERTEX,
106 SHADER_GEOMETRY,
107 SHADER_DOMAIN,
108 SHADER_HULL,
109 SHADER_PIXEL,
110 SHADER_COMPUTE,
111
112 NUM_SHADER_TYPES,
113 };
114
115 //////////////////////////////////////////////////////////////////////////
116 /// SWR_RENDERTARGET_ATTACHMENT
117 /// @todo Its not clear what an "attachment" means. Its not common term.
118 //////////////////////////////////////////////////////////////////////////
119 enum SWR_RENDERTARGET_ATTACHMENT
120 {
121 SWR_ATTACHMENT_COLOR0,
122 SWR_ATTACHMENT_COLOR1,
123 SWR_ATTACHMENT_COLOR2,
124 SWR_ATTACHMENT_COLOR3,
125 SWR_ATTACHMENT_COLOR4,
126 SWR_ATTACHMENT_COLOR5,
127 SWR_ATTACHMENT_COLOR6,
128 SWR_ATTACHMENT_COLOR7,
129 SWR_ATTACHMENT_DEPTH,
130 SWR_ATTACHMENT_STENCIL,
131
132 SWR_NUM_ATTACHMENTS
133 };
134
135 #define SWR_NUM_RENDERTARGETS 8
136
137 #define SWR_ATTACHMENT_COLOR0_BIT 0x001
138 #define SWR_ATTACHMENT_COLOR1_BIT 0x002
139 #define SWR_ATTACHMENT_COLOR2_BIT 0x004
140 #define SWR_ATTACHMENT_COLOR3_BIT 0x008
141 #define SWR_ATTACHMENT_COLOR4_BIT 0x010
142 #define SWR_ATTACHMENT_COLOR5_BIT 0x020
143 #define SWR_ATTACHMENT_COLOR6_BIT 0x040
144 #define SWR_ATTACHMENT_COLOR7_BIT 0x080
145 #define SWR_ATTACHMENT_DEPTH_BIT 0x100
146 #define SWR_ATTACHMENT_STENCIL_BIT 0x200
147 #define SWR_ATTACHMENT_MASK_ALL 0x3ff
148 #define SWR_ATTACHMENT_MASK_COLOR 0x0ff
149
150
151 //////////////////////////////////////////////////////////////////////////
152 /// @brief SWR Inner Tessellation factor ID
153 /// See above GetTessFactorOutputPosition code for documentation
154 enum SWR_INNER_TESSFACTOR_ID
155 {
156 SWR_QUAD_U_TRI_INSIDE,
157 SWR_QUAD_V_INSIDE,
158
159 SWR_NUM_INNER_TESS_FACTORS,
160 };
161
162 //////////////////////////////////////////////////////////////////////////
163 /// @brief SWR Outer Tessellation factor ID
164 /// See above GetTessFactorOutputPosition code for documentation
165 enum SWR_OUTER_TESSFACTOR_ID
166 {
167 SWR_QUAD_U_EQ0_TRI_U_LINE_DETAIL,
168 SWR_QUAD_V_EQ0_TRI_V_LINE_DENSITY,
169 SWR_QUAD_U_EQ1_TRI_W,
170 SWR_QUAD_V_EQ1,
171
172 SWR_NUM_OUTER_TESS_FACTORS,
173 };
174
175
176 /////////////////////////////////////////////////////////////////////////
177 /// simdvertex
178 /// @brief Defines a vertex element that holds all the data for SIMD vertices.
179 /// Contains space for position, SGV, and 32 generic attributes
180 /////////////////////////////////////////////////////////////////////////
181 enum SWR_VTX_SLOTS
182 {
183 VERTEX_SGV_SLOT = 0,
184 VERTEX_SGV_RTAI_COMP = 0,
185 VERTEX_SGV_VAI_COMP = 1,
186 VERTEX_SGV_POINT_SIZE_COMP = 2,
187 VERTEX_POSITION_SLOT = 1,
188 VERTEX_POSITION_END_SLOT = 1,
189 VERTEX_CLIPCULL_DIST_LO_SLOT = (1 + VERTEX_POSITION_END_SLOT), // VS writes lower 4 clip/cull dist
190 VERTEX_CLIPCULL_DIST_HI_SLOT = (2 + VERTEX_POSITION_END_SLOT), // VS writes upper 4 clip/cull dist
191 VERTEX_ATTRIB_START_SLOT = (3 + VERTEX_POSITION_END_SLOT),
192 VERTEX_ATTRIB_END_SLOT = (34 + VERTEX_POSITION_END_SLOT),
193 SWR_VTX_NUM_SLOTS = (1 + VERTEX_ATTRIB_END_SLOT)
194 };
195
196 // SoAoSoA
197 struct simdvertex
198 {
199 simdvector attrib[SWR_VTX_NUM_SLOTS];
200 };
201
202 #if ENABLE_AVX512_SIMD16
203 struct simd16vertex
204 {
205 simd16vector attrib[SWR_VTX_NUM_SLOTS];
206 };
207
208 #endif
209
210 template<typename SIMD_T>
211 struct SIMDVERTEX_T
212 {
213 typename SIMD_T::Vec4 attrib[SWR_VTX_NUM_SLOTS];
214 };
215
216 //////////////////////////////////////////////////////////////////////////
217 /// SWR_VS_CONTEXT
218 /// @brief Input to vertex shader
219 /////////////////////////////////////////////////////////////////////////
220 struct SWR_VS_CONTEXT
221 {
222 simdvertex* pVin; // IN: SIMD input vertex data store
223 simdvertex* pVout; // OUT: SIMD output vertex data store
224
225 uint32_t InstanceID; // IN: Instance ID, constant across all verts of the SIMD
226 simdscalari VertexID; // IN: Vertex ID
227 simdscalari mask; // IN: Active mask for shader
228 #if USE_SIMD16_FRONTEND
229 uint32_t AlternateOffset; // IN: amount to offset for interleaving even/odd simd8 in simd16vertex output
230 #endif
231 };
232
233 /////////////////////////////////////////////////////////////////////////
234 /// ScalarCPoint
235 /// @brief defines a control point element as passed from the output
236 /// of the hull shader to the input of the domain shader
237 /////////////////////////////////////////////////////////////////////////
238 struct ScalarAttrib
239 {
240 float x;
241 float y;
242 float z;
243 float w;
244 };
245
246 struct ScalarCPoint
247 {
248 ScalarAttrib attrib[SWR_VTX_NUM_SLOTS];
249 };
250
251 //////////////////////////////////////////////////////////////////////////
252 /// SWR_TESSELLATION_FACTORS
253 /// @brief Tessellation factors structure (non-vector)
254 /////////////////////////////////////////////////////////////////////////
255 struct SWR_TESSELLATION_FACTORS
256 {
257 float OuterTessFactors[SWR_NUM_OUTER_TESS_FACTORS];
258 float InnerTessFactors[SWR_NUM_INNER_TESS_FACTORS];
259 };
260
261 #define MAX_NUM_VERTS_PER_PRIM 32 // support up to 32 control point patches
262 struct ScalarPatch
263 {
264 SWR_TESSELLATION_FACTORS tessFactors;
265 ScalarCPoint cp[MAX_NUM_VERTS_PER_PRIM];
266 ScalarCPoint patchData;
267 };
268
269 //////////////////////////////////////////////////////////////////////////
270 /// SWR_HS_CONTEXT
271 /// @brief Input to hull shader
272 /////////////////////////////////////////////////////////////////////////
273 struct SWR_HS_CONTEXT
274 {
275 simdvertex vert[MAX_NUM_VERTS_PER_PRIM]; // IN: (SIMD) input primitive data
276 simdscalari PrimitiveID; // IN: (SIMD) primitive ID generated from the draw call
277 simdscalari mask; // IN: Active mask for shader
278 ScalarPatch* pCPout; // OUT: Output control point patch
279 // SIMD-sized-array of SCALAR patches
280 };
281
282 //////////////////////////////////////////////////////////////////////////
283 /// SWR_DS_CONTEXT
284 /// @brief Input to domain shader
285 /////////////////////////////////////////////////////////////////////////
286 struct SWR_DS_CONTEXT
287 {
288 uint32_t PrimitiveID; // IN: (SCALAR) PrimitiveID for the patch associated with the DS invocation
289 uint32_t vectorOffset; // IN: (SCALAR) vector index offset into SIMD data.
290 uint32_t vectorStride; // IN: (SCALAR) stride (in vectors) of output data per attribute-component
291 ScalarPatch* pCpIn; // IN: (SCALAR) Control patch
292 simdscalar* pDomainU; // IN: (SIMD) Domain Point U coords
293 simdscalar* pDomainV; // IN: (SIMD) Domain Point V coords
294 simdscalari mask; // IN: Active mask for shader
295 simdscalar* pOutputData; // OUT: (SIMD) Vertex Attributes (2D array of vectors, one row per attribute-component)
296 };
297
298 //////////////////////////////////////////////////////////////////////////
299 /// SWR_GS_CONTEXT
300 /// @brief Input to geometry shader.
301 /////////////////////////////////////////////////////////////////////////
302 struct SWR_GS_CONTEXT
303 {
304 simdvector* pVerts; // IN: input primitive data for SIMD prims
305 uint32_t inputVertStride; // IN: input vertex stride, in attributes
306 simdscalari PrimitiveID; // IN: input primitive ID generated from the draw call
307 uint32_t InstanceID; // IN: input instance ID
308 simdscalari mask; // IN: Active mask for shader
309 uint8_t* pStreams[KNOB_SIMD_WIDTH]; // OUT: output stream (contains vertices for all output streams)
310 };
311
312 struct PixelPositions
313 {
314 simdscalar UL;
315 simdscalar center;
316 simdscalar sample;
317 simdscalar centroid;
318 };
319
320 #define SWR_MAX_NUM_MULTISAMPLES 16
321
322 //////////////////////////////////////////////////////////////////////////
323 /// SWR_PS_CONTEXT
324 /// @brief Input to pixel shader.
325 /////////////////////////////////////////////////////////////////////////
326 struct SWR_PS_CONTEXT
327 {
328 PixelPositions vX; // IN: x location(s) of pixels
329 PixelPositions vY; // IN: x location(s) of pixels
330 simdscalar vZ; // INOUT: z location of pixels
331 simdscalari activeMask; // OUT: mask for kill
332 simdscalar inputMask; // IN: input coverage mask for all samples
333 simdscalari oMask; // OUT: mask for output coverage
334
335 PixelPositions vI; // barycentric coords evaluated at pixel center, sample position, centroid
336 PixelPositions vJ;
337 PixelPositions vOneOverW; // IN: 1/w
338
339 const float* pAttribs; // IN: pointer to attribute barycentric coefficients
340 const float* pPerspAttribs; // IN: pointer to attribute/w barycentric coefficients
341 const float* pRecipW; // IN: pointer to 1/w coord for each vertex
342 const float *I; // IN: Barycentric A, B, and C coefs used to compute I
343 const float *J; // IN: Barycentric A, B, and C coefs used to compute J
344 float recipDet; // IN: 1/Det, used when barycentric interpolating attributes
345 const float* pSamplePosX; // IN: array of sample positions
346 const float* pSamplePosY; // IN: array of sample positions
347 simdvector shaded[SWR_NUM_RENDERTARGETS];
348 // OUT: result color per rendertarget
349
350 uint32_t frontFace; // IN: front- 1, back- 0
351 uint32_t sampleIndex; // IN: sampleIndex
352 uint32_t renderTargetArrayIndex; // IN: render target array index from GS
353 uint32_t rasterizerSampleCount; // IN: sample count used by the rasterizer
354
355 uint8_t* pColorBuffer[SWR_NUM_RENDERTARGETS]; // IN: Pointers to render target hottiles
356 };
357
358 //////////////////////////////////////////////////////////////////////////
359 /// SWR_CS_CONTEXT
360 /// @brief Input to compute shader.
361 /////////////////////////////////////////////////////////////////////////
362 struct SWR_CS_CONTEXT
363 {
364 // The ThreadGroupId is the current thread group index relative
365 // to all thread groups in the Dispatch call. The ThreadId, ThreadIdInGroup,
366 // and ThreadIdInGroupFlattened can be derived from ThreadGroupId in the shader.
367
368 // Compute shader accepts the following system values.
369 // o ThreadId - Current thread id relative to all other threads in dispatch.
370 // o ThreadGroupId - Current thread group id relative to all other groups in dispatch.
371 // o ThreadIdInGroup - Current thread relative to all threads in the current thread group.
372 // o ThreadIdInGroupFlattened - Flattened linear id derived from ThreadIdInGroup.
373 //
374 // All of these system values can be computed in the shader. They will be
375 // derived from the current tile counter. The tile counter is an atomic counter that
376 // resides in the draw context and is initialized to the product of the dispatch dims.
377 //
378 // tileCounter = dispatchDims.x * dispatchDims.y * dispatchDims.z
379 //
380 // Each CPU worker thread will atomically decrement this counter and passes the current
381 // count into the shader. When the count reaches 0 then all thread groups in the
382 // dispatch call have been completed.
383
384 uint32_t tileCounter; // The tile counter value for this thread group.
385
386 // Dispatch dimensions used by shader to compute system values from the tile counter.
387 uint32_t dispatchDims[3];
388
389 uint8_t* pTGSM; // Thread Group Shared Memory pointer.
390
391 uint8_t* pSpillFillBuffer; // Spill/fill buffer for barrier support
392
393 uint8_t* pScratchSpace; // Pointer to scratch space buffer used by the shader, shader is responsible
394 // for subdividing scratch space per instance/simd
395
396 uint32_t scratchSpacePerSimd; // Scratch space per work item x SIMD_WIDTH
397 };
398
399 // enums
400 enum SWR_TILE_MODE
401 {
402 SWR_TILE_NONE = 0x0, // Linear mode (no tiling)
403 SWR_TILE_MODE_WMAJOR, // W major tiling
404 SWR_TILE_MODE_XMAJOR, // X major tiling
405 SWR_TILE_MODE_YMAJOR, // Y major tiling
406 SWR_TILE_SWRZ, // SWR-Z tiling
407
408 SWR_TILE_MODE_COUNT
409 };
410
411 enum SWR_SURFACE_TYPE
412 {
413 SURFACE_1D = 0,
414 SURFACE_2D = 1,
415 SURFACE_3D = 2,
416 SURFACE_CUBE = 3,
417 SURFACE_BUFFER = 4,
418 SURFACE_STRUCTURED_BUFFER = 5,
419 SURFACE_NULL = 7
420 };
421
422 enum SWR_ZFUNCTION
423 {
424 ZFUNC_ALWAYS,
425 ZFUNC_NEVER,
426 ZFUNC_LT,
427 ZFUNC_EQ,
428 ZFUNC_LE,
429 ZFUNC_GT,
430 ZFUNC_NE,
431 ZFUNC_GE,
432 NUM_ZFUNC
433 };
434
435 enum SWR_STENCILOP
436 {
437 STENCILOP_KEEP,
438 STENCILOP_ZERO,
439 STENCILOP_REPLACE,
440 STENCILOP_INCRSAT,
441 STENCILOP_DECRSAT,
442 STENCILOP_INCR,
443 STENCILOP_DECR,
444 STENCILOP_INVERT
445 };
446
447 enum SWR_BLEND_FACTOR
448 {
449 BLENDFACTOR_ONE,
450 BLENDFACTOR_SRC_COLOR,
451 BLENDFACTOR_SRC_ALPHA,
452 BLENDFACTOR_DST_ALPHA,
453 BLENDFACTOR_DST_COLOR,
454 BLENDFACTOR_SRC_ALPHA_SATURATE,
455 BLENDFACTOR_CONST_COLOR,
456 BLENDFACTOR_CONST_ALPHA,
457 BLENDFACTOR_SRC1_COLOR,
458 BLENDFACTOR_SRC1_ALPHA,
459 BLENDFACTOR_ZERO,
460 BLENDFACTOR_INV_SRC_COLOR,
461 BLENDFACTOR_INV_SRC_ALPHA,
462 BLENDFACTOR_INV_DST_ALPHA,
463 BLENDFACTOR_INV_DST_COLOR,
464 BLENDFACTOR_INV_CONST_COLOR,
465 BLENDFACTOR_INV_CONST_ALPHA,
466 BLENDFACTOR_INV_SRC1_COLOR,
467 BLENDFACTOR_INV_SRC1_ALPHA
468 };
469
470 enum SWR_BLEND_OP
471 {
472 BLENDOP_ADD,
473 BLENDOP_SUBTRACT,
474 BLENDOP_REVSUBTRACT,
475 BLENDOP_MIN,
476 BLENDOP_MAX,
477 };
478
479 enum SWR_LOGIC_OP
480 {
481 LOGICOP_CLEAR,
482 LOGICOP_NOR,
483 LOGICOP_AND_INVERTED,
484 LOGICOP_COPY_INVERTED,
485 LOGICOP_AND_REVERSE,
486 LOGICOP_INVERT,
487 LOGICOP_XOR,
488 LOGICOP_NAND,
489 LOGICOP_AND,
490 LOGICOP_EQUIV,
491 LOGICOP_NOOP,
492 LOGICOP_OR_INVERTED,
493 LOGICOP_COPY,
494 LOGICOP_OR_REVERSE,
495 LOGICOP_OR,
496 LOGICOP_SET,
497 };
498
499 //////////////////////////////////////////////////////////////////////////
500 /// SWR_AUX_MODE
501 /// @brief Specifies how the auxiliary buffer is used by the driver.
502 //////////////////////////////////////////////////////////////////////////
503 enum SWR_AUX_MODE
504 {
505 AUX_MODE_NONE,
506 AUX_MODE_COLOR,
507 AUX_MODE_UAV,
508 AUX_MODE_DEPTH,
509 };
510
511 //////////////////////////////////////////////////////////////////////////
512 /// SWR_SURFACE_STATE
513 //////////////////////////////////////////////////////////////////////////
514 struct SWR_SURFACE_STATE
515 {
516 gfxptr_t xpBaseAddress;
517 SWR_SURFACE_TYPE type; // @llvm_enum
518 SWR_FORMAT format; // @llvm_enum
519 uint32_t width;
520 uint32_t height;
521 uint32_t depth;
522 uint32_t numSamples;
523 uint32_t samplePattern;
524 uint32_t pitch;
525 uint32_t qpitch;
526 uint32_t minLod; // for sampled surfaces, the most detailed LOD that can be accessed by sampler
527 uint32_t maxLod; // for sampled surfaces, the max LOD that can be accessed
528 float resourceMinLod; // for sampled surfaces, the most detailed fractional mip that can be accessed by sampler
529 uint32_t lod; // for render targets, the lod being rendered to
530 uint32_t arrayIndex; // for render targets, the array index being rendered to for arrayed surfaces
531 SWR_TILE_MODE tileMode; // @llvm_enum
532 uint32_t halign;
533 uint32_t valign;
534 uint32_t xOffset;
535 uint32_t yOffset;
536
537 uint32_t lodOffsets[2][15]; // lod offsets for sampled surfaces
538
539 gfxptr_t xpAuxBaseAddress; // Used for compression, append/consume counter, etc.
540 SWR_AUX_MODE auxMode; // @llvm_enum
541
542
543 bool bInterleavedSamples; // are MSAA samples stored interleaved or planar
544 };
545
546 // vertex fetch state
547 // WARNING- any changes to this struct need to be reflected
548 // in the fetch shader jit
549 struct SWR_VERTEX_BUFFER_STATE
550 {
551 uint32_t index;
552 uint32_t pitch;
553 const uint8_t *pData;
554 uint32_t size;
555 uint32_t numaNode;
556 uint32_t minVertex; // min vertex (for bounds checking)
557 uint32_t maxVertex; // size / pitch. precalculated value used by fetch shader for OOB checks
558 uint32_t partialInboundsSize; // size % pitch. precalculated value used by fetch shader for partially OOB vertices
559 };
560
561 struct SWR_INDEX_BUFFER_STATE
562 {
563 // Format type for indices (e.g. UINT16, UINT32, etc.)
564 SWR_FORMAT format; // @llvm_enum
565 const void *pIndices;
566 uint32_t size;
567 };
568
569
570 //////////////////////////////////////////////////////////////////////////
571 /// SWR_FETCH_CONTEXT
572 /// @brief Input to fetch shader.
573 /// @note WARNING - Changes to this struct need to be reflected in the
574 /// fetch shader jit.
575 /////////////////////////////////////////////////////////////////////////
576 struct SWR_FETCH_CONTEXT
577 {
578 const SWR_VERTEX_BUFFER_STATE* pStreams; // IN: array of bound vertex buffers
579 const int32_t* pIndices; // IN: pointer to index buffer for indexed draws
580 const int32_t* pLastIndex; // IN: pointer to end of index buffer, used for bounds checking
581 uint32_t CurInstance; // IN: current instance
582 uint32_t BaseVertex; // IN: base vertex
583 uint32_t StartVertex; // IN: start vertex
584 uint32_t StartInstance; // IN: start instance
585 simdscalari VertexID; // OUT: vector of vertex IDs
586 simdscalari CutMask; // OUT: vector mask of indices which have the cut index value
587 #if USE_SIMD16_SHADERS
588 // simd16scalari VertexID; // OUT: vector of vertex IDs
589 // simd16scalari CutMask; // OUT: vector mask of indices which have the cut index value
590 simdscalari VertexID2; // OUT: vector of vertex IDs
591 simdscalari CutMask2; // OUT: vector mask of indices which have the cut index value
592 #endif
593 };
594
595 //////////////////////////////////////////////////////////////////////////
596 /// SWR_STATS
597 ///
598 /// @brief All statistics generated by SWR go here. These are public
599 /// to driver.
600 /////////////////////////////////////////////////////////////////////////
601 OSALIGNLINE(struct) SWR_STATS
602 {
603 // Occlusion Query
604 uint64_t DepthPassCount; // Number of passing depth tests. Not exact.
605
606 // Pipeline Stats
607 uint64_t PsInvocations; // Number of Pixel Shader invocations
608 uint64_t CsInvocations; // Number of Compute Shader invocations
609
610 };
611
612 //////////////////////////////////////////////////////////////////////////
613 /// SWR_STATS
614 ///
615 /// @brief All statistics generated by FE.
616 /////////////////////////////////////////////////////////////////////////
617 OSALIGNLINE(struct) SWR_STATS_FE
618 {
619 uint64_t IaVertices; // Number of Fetch Shader vertices
620 uint64_t IaPrimitives; // Number of PA primitives.
621 uint64_t VsInvocations; // Number of Vertex Shader invocations
622 uint64_t HsInvocations; // Number of Hull Shader invocations
623 uint64_t DsInvocations; // Number of Domain Shader invocations
624 uint64_t GsInvocations; // Number of Geometry Shader invocations
625 uint64_t GsPrimitives; // Number of prims GS outputs.
626 uint64_t CInvocations; // Number of clipper invocations
627 uint64_t CPrimitives; // Number of clipper primitives.
628
629 // Streamout Stats
630 uint64_t SoPrimStorageNeeded[4];
631 uint64_t SoNumPrimsWritten[4];
632 };
633
634 //////////////////////////////////////////////////////////////////////////
635 /// STREAMOUT_BUFFERS
636 /////////////////////////////////////////////////////////////////////////
637
638 #define MAX_SO_STREAMS 4
639 #define MAX_SO_BUFFERS 4
640 #define MAX_ATTRIBUTES 32
641
642 struct SWR_STREAMOUT_BUFFER
643 {
644 bool enable;
645 bool soWriteEnable;
646
647 // Pointers to streamout buffers.
648 uint32_t* pBuffer;
649
650 // Size of buffer in dwords.
651 uint32_t bufferSize;
652
653 // Vertex pitch of buffer in dwords.
654 uint32_t pitch;
655
656 // Offset into buffer in dwords. SOS will increment this offset.
657 uint32_t streamOffset;
658
659 // Offset to the SO write offset. If not null then we update offset here.
660 uint32_t* pWriteOffset;
661
662 };
663
664 //////////////////////////////////////////////////////////////////////////
665 /// STREAMOUT_STATE
666 /////////////////////////////////////////////////////////////////////////
667 struct SWR_STREAMOUT_STATE
668 {
669 // This disables stream output.
670 bool soEnable;
671
672 // which streams are enabled for streamout
673 bool streamEnable[MAX_SO_STREAMS];
674
675 // If set then do not send any streams to the rasterizer.
676 bool rasterizerDisable;
677
678 // Specifies which stream to send to the rasterizer.
679 uint32_t streamToRasterizer;
680
681 // The stream masks specify which attributes are sent to which streams.
682 // These masks help the FE to setup the pPrimData buffer that is passed
683 // the Stream Output Shader (SOS) function.
684 uint32_t streamMasks[MAX_SO_STREAMS];
685
686 // Number of attributes, including position, per vertex that are streamed out.
687 // This should match number of bits in stream mask.
688 uint32_t streamNumEntries[MAX_SO_STREAMS];
689
690 // Offset to the start of the attributes of the input vertices, in simdvector units
691 uint32_t vertexAttribOffset[MAX_SO_STREAMS];
692 };
693
694 //////////////////////////////////////////////////////////////////////////
695 /// STREAMOUT_CONTEXT - Passed to SOS
696 /////////////////////////////////////////////////////////////////////////
697 struct SWR_STREAMOUT_CONTEXT
698 {
699 uint32_t* pPrimData;
700 SWR_STREAMOUT_BUFFER* pBuffer[MAX_SO_STREAMS];
701
702 // Num prims written for this stream
703 uint32_t numPrimsWritten;
704
705 // Num prims that should have been written if there were no overflow.
706 uint32_t numPrimStorageNeeded;
707 };
708
709 //////////////////////////////////////////////////////////////////////////
710 /// SWR_GS_STATE - Geometry shader state
711 /////////////////////////////////////////////////////////////////////////
712 struct SWR_GS_STATE
713 {
714 bool gsEnable;
715
716 // Number of input attributes per vertex. Used by the frontend to
717 // optimize assembling primitives for GS
718 uint32_t numInputAttribs;
719
720 // Stride of incoming verts in attributes
721 uint32_t inputVertStride;
722
723 // Output topology - can be point, tristrip, or linestrip
724 PRIMITIVE_TOPOLOGY outputTopology; // @llvm_enum
725
726 // Maximum number of verts that can be emitted by a single instance of the GS
727 uint32_t maxNumVerts;
728
729 // Instance count
730 uint32_t instanceCount;
731
732 // If true, geometry shader emits a single stream, with separate cut buffer.
733 // If false, geometry shader emits vertices for multiple streams to the stream buffer, with a separate StreamID buffer
734 // to map vertices to streams
735 bool isSingleStream;
736
737 // When single stream is enabled, singleStreamID dictates which stream is being output.
738 // field ignored if isSingleStream is false
739 uint32_t singleStreamID;
740
741 // Total amount of memory to allocate for one instance of the shader output in bytes
742 uint32_t allocationSize;
743
744 // Offset to the start of the attributes of the input vertices, in simdvector units, as read by the GS
745 uint32_t vertexAttribOffset;
746
747 // Offset to the attributes as stored by the preceding shader stage.
748 uint32_t srcVertexAttribOffset;
749
750 // Size of the control data section which contains cut or streamID data, in simdscalar units. Should be sized to handle
751 // the maximum number of verts output by the GS. Can be 0 if there are no cuts or streamID bits.
752 uint32_t controlDataSize;
753
754 // Offset to the control data section, in bytes
755 uint32_t controlDataOffset;
756
757 // Total size of an output vertex, in simdvector units
758 uint32_t outputVertexSize;
759
760 // Offset to the start of the vertex section, in bytes
761 uint32_t outputVertexOffset;
762
763 // Set this to non-zero to indicate that the shader outputs a static number of verts. If zero, shader is
764 // expected to store the final vertex count in the first dword of the gs output stream.
765 uint32_t staticVertexCount;
766 };
767
768
769 //////////////////////////////////////////////////////////////////////////
770 /// SWR_TS_OUTPUT_TOPOLOGY - Defines data output by the tessellator / DS
771 /////////////////////////////////////////////////////////////////////////
772 enum SWR_TS_OUTPUT_TOPOLOGY
773 {
774 SWR_TS_OUTPUT_POINT,
775 SWR_TS_OUTPUT_LINE,
776 SWR_TS_OUTPUT_TRI_CW,
777 SWR_TS_OUTPUT_TRI_CCW,
778
779 SWR_TS_OUTPUT_TOPOLOGY_COUNT
780 };
781
782 //////////////////////////////////////////////////////////////////////////
783 /// SWR_TS_PARTITIONING - Defines tessellation algorithm
784 /////////////////////////////////////////////////////////////////////////
785 enum SWR_TS_PARTITIONING
786 {
787 SWR_TS_INTEGER,
788 SWR_TS_ODD_FRACTIONAL,
789 SWR_TS_EVEN_FRACTIONAL,
790
791 SWR_TS_PARTITIONING_COUNT
792 };
793
794 //////////////////////////////////////////////////////////////////////////
795 /// SWR_TS_DOMAIN - Defines Tessellation Domain
796 /////////////////////////////////////////////////////////////////////////
797 enum SWR_TS_DOMAIN
798 {
799 SWR_TS_QUAD,
800 SWR_TS_TRI,
801 SWR_TS_ISOLINE,
802
803 SWR_TS_DOMAIN_COUNT
804 };
805
806 //////////////////////////////////////////////////////////////////////////
807 /// SWR_TS_STATE - Tessellation state
808 /////////////////////////////////////////////////////////////////////////
809 struct SWR_TS_STATE
810 {
811 bool tsEnable;
812 SWR_TS_OUTPUT_TOPOLOGY tsOutputTopology; // @llvm_enum
813 SWR_TS_PARTITIONING partitioning; // @llvm_enum
814 SWR_TS_DOMAIN domain; // @llvm_enum
815
816 PRIMITIVE_TOPOLOGY postDSTopology; // @llvm_enum
817
818 uint32_t numHsInputAttribs;
819 uint32_t numHsOutputAttribs;
820 uint32_t numDsOutputAttribs;
821
822 // Offset to the start of the attributes of the input vertices, in simdvector units
823 uint32_t vertexAttribOffset;
824 };
825
826 // output merger state
827 struct SWR_RENDER_TARGET_BLEND_STATE
828 {
829 uint8_t writeDisableRed : 1;
830 uint8_t writeDisableGreen : 1;
831 uint8_t writeDisableBlue : 1;
832 uint8_t writeDisableAlpha : 1;
833 };
834 static_assert(sizeof(SWR_RENDER_TARGET_BLEND_STATE) == 1, "Invalid SWR_RENDER_TARGET_BLEND_STATE size");
835
836 enum SWR_MULTISAMPLE_COUNT
837 {
838 SWR_MULTISAMPLE_1X = 0,
839 SWR_MULTISAMPLE_2X,
840 SWR_MULTISAMPLE_4X,
841 SWR_MULTISAMPLE_8X,
842 SWR_MULTISAMPLE_16X,
843 SWR_MULTISAMPLE_TYPE_COUNT
844 };
845
846 INLINE uint32_t GetNumSamples(SWR_MULTISAMPLE_COUNT sampleCount) // @llvm_func_start
847 {
848 static const uint32_t sampleCountLUT[SWR_MULTISAMPLE_TYPE_COUNT] {1, 2, 4, 8, 16};
849 assert(sampleCount < SWR_MULTISAMPLE_TYPE_COUNT);
850 return sampleCountLUT[sampleCount];
851 } // @llvm_func_end
852
853 struct SWR_BLEND_STATE
854 {
855 // constant blend factor color in RGBA float
856 float constantColor[4];
857
858 // alpha test reference value in unorm8 or float32
859 uint32_t alphaTestReference;
860 uint32_t sampleMask;
861 // all RT's have the same sample count
862 ///@todo move this to Output Merger state when we refactor
863 SWR_MULTISAMPLE_COUNT sampleCount; // @llvm_enum
864
865 SWR_RENDER_TARGET_BLEND_STATE renderTarget[SWR_NUM_RENDERTARGETS];
866 };
867 static_assert(sizeof(SWR_BLEND_STATE) == 36, "Invalid SWR_BLEND_STATE size");
868
869 //////////////////////////////////////////////////////////////////////////
870 /// FUNCTION POINTERS FOR SHADERS
871
872 #if USE_SIMD16_SHADERS
873 typedef void(__cdecl *PFN_FETCH_FUNC)(SWR_FETCH_CONTEXT& fetchInfo, simd16vertex& out);
874 #else
875 typedef void(__cdecl *PFN_FETCH_FUNC)(SWR_FETCH_CONTEXT& fetchInfo, simdvertex& out);
876 #endif
877 typedef void(__cdecl *PFN_VERTEX_FUNC)(HANDLE hPrivateData, SWR_VS_CONTEXT* pVsContext);
878 typedef void(__cdecl *PFN_HS_FUNC)(HANDLE hPrivateData, SWR_HS_CONTEXT* pHsContext);
879 typedef void(__cdecl *PFN_DS_FUNC)(HANDLE hPrivateData, SWR_DS_CONTEXT* pDsContext);
880 typedef void(__cdecl *PFN_GS_FUNC)(HANDLE hPrivateData, SWR_GS_CONTEXT* pGsContext);
881 typedef void(__cdecl *PFN_CS_FUNC)(HANDLE hPrivateData, SWR_CS_CONTEXT* pCsContext);
882 typedef void(__cdecl *PFN_SO_FUNC)(SWR_STREAMOUT_CONTEXT& soContext);
883 typedef void(__cdecl *PFN_PIXEL_KERNEL)(HANDLE hPrivateData, SWR_PS_CONTEXT *pContext);
884 typedef void(__cdecl *PFN_CPIXEL_KERNEL)(HANDLE hPrivateData, SWR_PS_CONTEXT *pContext);
885 typedef void(__cdecl *PFN_BLEND_JIT_FUNC)(const SWR_BLEND_STATE*,
886 simdvector& vSrc, simdvector& vSrc1, simdscalar& vSrc0Alpha, uint32_t sample,
887 uint8_t* pDst, simdvector& vResult, simdscalari* vOMask, simdscalari* vCoverageMask);
888 typedef simdscalar(*PFN_QUANTIZE_DEPTH)(simdscalar const &);
889
890
891
892 //////////////////////////////////////////////////////////////////////////
893 /// FRONTEND_STATE
894 /////////////////////////////////////////////////////////////////////////
895 struct SWR_FRONTEND_STATE
896 {
897 // skip clip test, perspective divide, and viewport transform
898 // intended for verts in screen space
899 bool vpTransformDisable;
900 bool bEnableCutIndex;
901 union
902 {
903 struct
904 {
905 uint32_t triFan : 2;
906 uint32_t lineStripList : 1;
907 uint32_t triStripList : 2;
908 };
909 uint32_t bits;
910 } provokingVertex;
911 uint32_t topologyProvokingVertex; // provoking vertex for the draw topology
912
913 // Size of a vertex in simdvector units. Should be sized to the
914 // maximum of the input/output of the vertex shader.
915 uint32_t vsVertexSize;
916 };
917
918 //////////////////////////////////////////////////////////////////////////
919 /// VIEWPORT_MATRIX
920 /////////////////////////////////////////////////////////////////////////
921 struct SWR_VIEWPORT_MATRIX
922 {
923 float m00;
924 float m11;
925 float m22;
926 float m30;
927 float m31;
928 float m32;
929 };
930
931 //////////////////////////////////////////////////////////////////////////
932 /// VIEWPORT_MATRIXES
933 /////////////////////////////////////////////////////////////////////////
934 struct SWR_VIEWPORT_MATRICES
935 {
936 float m00[KNOB_NUM_VIEWPORTS_SCISSORS];
937 float m11[KNOB_NUM_VIEWPORTS_SCISSORS];
938 float m22[KNOB_NUM_VIEWPORTS_SCISSORS];
939 float m30[KNOB_NUM_VIEWPORTS_SCISSORS];
940 float m31[KNOB_NUM_VIEWPORTS_SCISSORS];
941 float m32[KNOB_NUM_VIEWPORTS_SCISSORS];
942 };
943
944 //////////////////////////////////////////////////////////////////////////
945 /// SWR_VIEWPORT
946 /////////////////////////////////////////////////////////////////////////
947 struct SWR_VIEWPORT
948 {
949 float x;
950 float y;
951 float width;
952 float height;
953 float minZ;
954 float maxZ;
955 };
956
957 //////////////////////////////////////////////////////////////////////////
958 /// SWR_CULLMODE
959 //////////////////////////////////////////////////////////////////////////
960 enum SWR_CULLMODE
961 {
962 SWR_CULLMODE_BOTH,
963 SWR_CULLMODE_NONE,
964 SWR_CULLMODE_FRONT,
965 SWR_CULLMODE_BACK
966 };
967
968 enum SWR_FILLMODE
969 {
970 SWR_FILLMODE_POINT,
971 SWR_FILLMODE_WIREFRAME,
972 SWR_FILLMODE_SOLID
973 };
974
975 enum SWR_FRONTWINDING
976 {
977 SWR_FRONTWINDING_CW,
978 SWR_FRONTWINDING_CCW
979 };
980
981
982 enum SWR_PIXEL_LOCATION
983 {
984 SWR_PIXEL_LOCATION_CENTER,
985 SWR_PIXEL_LOCATION_UL,
986 };
987
988 // fixed point screen space sample locations within a pixel
989 struct SWR_MULTISAMPLE_POS
990 {
991 public:
992 INLINE void SetXi(uint32_t sampleNum, uint32_t val) { _xi[sampleNum] = val; }; // @llvm_func
993 INLINE void SetYi(uint32_t sampleNum, uint32_t val) { _yi[sampleNum] = val; }; // @llvm_func
994 INLINE uint32_t Xi(uint32_t sampleNum) const { return _xi[sampleNum]; }; // @llvm_func
995 INLINE uint32_t Yi(uint32_t sampleNum) const { return _yi[sampleNum]; }; // @llvm_func
996 INLINE void SetX(uint32_t sampleNum, float val) { _x[sampleNum] = val; }; // @llvm_func
997 INLINE void SetY(uint32_t sampleNum, float val) { _y[sampleNum] = val; }; // @llvm_func
998 INLINE float X(uint32_t sampleNum) const { return _x[sampleNum]; }; // @llvm_func
999 INLINE float Y(uint32_t sampleNum) const { return _y[sampleNum]; }; // @llvm_func
1000 typedef const float(&sampleArrayT)[SWR_MAX_NUM_MULTISAMPLES]; //@llvm_typedef
1001 INLINE sampleArrayT X() const { return _x; }; // @llvm_func
1002 INLINE sampleArrayT Y() const { return _y; }; // @llvm_func
1003 INLINE const __m128i& vXi(uint32_t sampleNum) const { return _vXi[sampleNum]; }; // @llvm_func
1004 INLINE const __m128i& vYi(uint32_t sampleNum) const { return _vYi[sampleNum]; }; // @llvm_func
1005 INLINE const simdscalar& vX(uint32_t sampleNum) const { return _vX[sampleNum]; }; // @llvm_func
1006 INLINE const simdscalar& vY(uint32_t sampleNum) const { return _vY[sampleNum]; }; // @llvm_func
1007 INLINE const __m128i& TileSampleOffsetsX() const { return tileSampleOffsetsX; }; // @llvm_func
1008 INLINE const __m128i& TileSampleOffsetsY() const { return tileSampleOffsetsY; }; // @llvm_func
1009
1010 INLINE void PrecalcSampleData(int numSamples); //@llvm_func
1011
1012 private:
1013 template <typename MaskT>
1014 INLINE __m128i expandThenBlend4(uint32_t* min, uint32_t* max); // @llvm_func
1015 INLINE void CalcTileSampleOffsets(int numSamples); // @llvm_func
1016
1017 // scalar sample values
1018 uint32_t _xi[SWR_MAX_NUM_MULTISAMPLES];
1019 uint32_t _yi[SWR_MAX_NUM_MULTISAMPLES];
1020 float _x[SWR_MAX_NUM_MULTISAMPLES];
1021 float _y[SWR_MAX_NUM_MULTISAMPLES];
1022
1023 // precalc'd / vectorized samples
1024 __m128i _vXi[SWR_MAX_NUM_MULTISAMPLES];
1025 __m128i _vYi[SWR_MAX_NUM_MULTISAMPLES];
1026 simdscalar _vX[SWR_MAX_NUM_MULTISAMPLES];
1027 simdscalar _vY[SWR_MAX_NUM_MULTISAMPLES];
1028 __m128i tileSampleOffsetsX;
1029 __m128i tileSampleOffsetsY;
1030 };
1031
1032 //////////////////////////////////////////////////////////////////////////
1033 /// SWR_RASTSTATE
1034 //////////////////////////////////////////////////////////////////////////
1035 struct SWR_RASTSTATE
1036 {
1037 uint32_t cullMode : 2;
1038 uint32_t fillMode : 2;
1039 uint32_t frontWinding : 1;
1040 uint32_t scissorEnable : 1;
1041 uint32_t depthClipEnable : 1;
1042 uint32_t clipHalfZ : 1;
1043 uint32_t pointParam : 1;
1044 uint32_t pointSpriteEnable : 1;
1045 uint32_t pointSpriteTopOrigin : 1;
1046 uint32_t forcedSampleCount : 1;
1047 uint32_t pixelOffset : 1;
1048 uint32_t depthBiasPreAdjusted : 1; ///< depth bias constant is in float units, not per-format Z units
1049 uint32_t conservativeRast : 1;
1050
1051 float pointSize;
1052 float lineWidth;
1053
1054 float depthBias;
1055 float slopeScaledDepthBias;
1056 float depthBiasClamp;
1057 SWR_FORMAT depthFormat; // @llvm_enum
1058
1059 // sample count the rasterizer is running at
1060 SWR_MULTISAMPLE_COUNT sampleCount; // @llvm_enum
1061 uint32_t pixelLocation; // UL or Center
1062 SWR_MULTISAMPLE_POS samplePositions; // @llvm_struct
1063 bool bIsCenterPattern; // @llvm_enum
1064 };
1065
1066
1067 enum SWR_CONSTANT_SOURCE
1068 {
1069 SWR_CONSTANT_SOURCE_CONST_0000,
1070 SWR_CONSTANT_SOURCE_CONST_0001_FLOAT,
1071 SWR_CONSTANT_SOURCE_CONST_1111_FLOAT,
1072 SWR_CONSTANT_SOURCE_PRIM_ID
1073 };
1074
1075 struct SWR_ATTRIB_SWIZZLE
1076 {
1077 uint16_t sourceAttrib : 5; // source attribute
1078 uint16_t constantSource : 2; // constant source to apply
1079 uint16_t componentOverrideMask : 4; // override component with constant source
1080 };
1081
1082 // backend state
1083 struct SWR_BACKEND_STATE
1084 {
1085 uint32_t constantInterpolationMask; // bitmask indicating which attributes have constant interpolation
1086 uint32_t pointSpriteTexCoordMask; // bitmask indicating the attribute(s) which should be interpreted as tex coordinates
1087
1088 uint8_t numAttributes; // total number of attributes to send to backend (up to 32)
1089 uint8_t numComponents[32]; // number of components to setup per attribute, this reduces some calculations for unneeded components
1090
1091 bool swizzleEnable; // when enabled, core will parse the swizzle map when
1092 // setting up attributes for the backend, otherwise
1093 // all attributes up to numAttributes will be sent
1094 SWR_ATTRIB_SWIZZLE swizzleMap[32];
1095
1096 bool readRenderTargetArrayIndex; // Forward render target array index from last FE stage to the backend
1097 bool readViewportArrayIndex; // Read viewport array index from last FE stage during binning
1098
1099 // Offset to the start of the attributes of the input vertices, in simdvector units
1100 uint32_t vertexAttribOffset;
1101
1102 // User clip/cull distance enables
1103 uint8_t cullDistanceMask;
1104 uint8_t clipDistanceMask;
1105
1106 // Offset to clip/cull attrib section of the vertex, in simdvector units
1107 uint32_t vertexClipCullOffset;
1108 };
1109
1110
1111 union SWR_DEPTH_STENCIL_STATE
1112 {
1113 struct
1114 {
1115 // dword 0
1116 uint32_t depthWriteEnable : 1;
1117 uint32_t depthTestEnable : 1;
1118 uint32_t stencilWriteEnable : 1;
1119 uint32_t stencilTestEnable : 1;
1120 uint32_t doubleSidedStencilTestEnable : 1;
1121
1122 uint32_t depthTestFunc : 3;
1123 uint32_t stencilTestFunc : 3;
1124
1125 uint32_t backfaceStencilPassDepthPassOp : 3;
1126 uint32_t backfaceStencilPassDepthFailOp : 3;
1127 uint32_t backfaceStencilFailOp : 3;
1128 uint32_t backfaceStencilTestFunc : 3;
1129 uint32_t stencilPassDepthPassOp : 3;
1130 uint32_t stencilPassDepthFailOp : 3;
1131 uint32_t stencilFailOp : 3;
1132
1133 // dword 1
1134 uint8_t backfaceStencilWriteMask;
1135 uint8_t backfaceStencilTestMask;
1136 uint8_t stencilWriteMask;
1137 uint8_t stencilTestMask;
1138
1139 // dword 2
1140 uint8_t backfaceStencilRefValue;
1141 uint8_t stencilRefValue;
1142 };
1143 uint32_t value[3];
1144 };
1145
1146 enum SWR_SHADING_RATE
1147 {
1148 SWR_SHADING_RATE_PIXEL,
1149 SWR_SHADING_RATE_SAMPLE,
1150 SWR_SHADING_RATE_COUNT,
1151 };
1152
1153 enum SWR_INPUT_COVERAGE
1154 {
1155 SWR_INPUT_COVERAGE_NONE,
1156 SWR_INPUT_COVERAGE_NORMAL,
1157 SWR_INPUT_COVERAGE_INNER_CONSERVATIVE,
1158 SWR_INPUT_COVERAGE_COUNT,
1159 };
1160
1161 enum SWR_PS_POSITION_OFFSET
1162 {
1163 SWR_PS_POSITION_SAMPLE_NONE,
1164 SWR_PS_POSITION_SAMPLE_OFFSET,
1165 SWR_PS_POSITION_CENTROID_OFFSET,
1166 SWR_PS_POSITION_OFFSET_COUNT,
1167 };
1168
1169 enum SWR_BARYCENTRICS_MASK
1170 {
1171 SWR_BARYCENTRIC_PER_PIXEL_MASK = 0x1,
1172 SWR_BARYCENTRIC_CENTROID_MASK = 0x2,
1173 SWR_BARYCENTRIC_PER_SAMPLE_MASK = 0x4,
1174 };
1175
1176 // pixel shader state
1177 struct SWR_PS_STATE
1178 {
1179 // dword 0-1
1180 PFN_PIXEL_KERNEL pfnPixelShader; // @llvm_pfn
1181
1182 // dword 2
1183 uint32_t killsPixel : 1; // pixel shader can kill pixels
1184 uint32_t inputCoverage : 2; // ps uses input coverage
1185 uint32_t writesODepth : 1; // pixel shader writes to depth
1186 uint32_t usesSourceDepth : 1; // pixel shader reads depth
1187 uint32_t shadingRate : 2; // shading per pixel / sample / coarse pixel
1188 uint32_t posOffset : 2; // type of offset (none, sample, centroid) to add to pixel position
1189 uint32_t barycentricsMask : 3; // which type(s) of barycentric coords does the PS interpolate attributes with
1190 uint32_t usesUAV : 1; // pixel shader accesses UAV
1191 uint32_t forceEarlyZ : 1; // force execution of early depth/stencil test
1192
1193 uint8_t renderTargetMask; // Mask of render targets written
1194 };
1195
1196 // depth bounds state
1197 struct SWR_DEPTH_BOUNDS_STATE
1198 {
1199 bool depthBoundsTestEnable;
1200 float depthBoundsTestMinValue;
1201 float depthBoundsTestMaxValue;
1202 };
1203