swr/rast: Lower PERMD and PERMPS to x86.
[mesa.git] / src / gallium / drivers / swr / rasterizer / jitter / builder_misc.cpp
1 /****************************************************************************
2 * Copyright (C) 2014-2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * @file builder_misc.cpp
24 *
25 * @brief Implementation for miscellaneous builder functions
26 *
27 * Notes:
28 *
29 ******************************************************************************/
30 #include "jit_pch.hpp"
31 #include "builder.h"
32 #include "common/rdtsc_buckets.h"
33
34 #include <cstdarg>
35
36 extern "C" void CallPrint(const char* fmt, ...);
37
38 namespace SwrJit
39 {
40 //////////////////////////////////////////////////////////////////////////
41 /// @brief Convert an IEEE 754 32-bit single precision float to an
42 /// 16 bit float with 5 exponent bits and a variable
43 /// number of mantissa bits.
44 /// @param val - 32-bit float
45 /// @todo Maybe move this outside of this file into a header?
46 static uint16_t ConvertFloat32ToFloat16(float val)
47 {
48 uint32_t sign, exp, mant;
49 uint32_t roundBits;
50
51 // Extract the sign, exponent, and mantissa
52 uint32_t uf = *(uint32_t*)&val;
53 sign = (uf & 0x80000000) >> 31;
54 exp = (uf & 0x7F800000) >> 23;
55 mant = uf & 0x007FFFFF;
56
57 // Check for out of range
58 if (std::isnan(val))
59 {
60 exp = 0x1F;
61 mant = 0x200;
62 sign = 1; // set the sign bit for NANs
63 }
64 else if (std::isinf(val))
65 {
66 exp = 0x1f;
67 mant = 0x0;
68 }
69 else if (exp > (0x70 + 0x1E)) // Too big to represent -> max representable value
70 {
71 exp = 0x1E;
72 mant = 0x3FF;
73 }
74 else if ((exp <= 0x70) && (exp >= 0x66)) // It's a denorm
75 {
76 mant |= 0x00800000;
77 for (; exp <= 0x70; mant >>= 1, exp++)
78 ;
79 exp = 0;
80 mant = mant >> 13;
81 }
82 else if (exp < 0x66) // Too small to represent -> Zero
83 {
84 exp = 0;
85 mant = 0;
86 }
87 else
88 {
89 // Saves bits that will be shifted off for rounding
90 roundBits = mant & 0x1FFFu;
91 // convert exponent and mantissa to 16 bit format
92 exp = exp - 0x70;
93 mant = mant >> 13;
94
95 // Essentially RTZ, but round up if off by only 1 lsb
96 if (roundBits == 0x1FFFu)
97 {
98 mant++;
99 // check for overflow
100 if ((mant & 0xC00u) != 0)
101 exp++;
102 // make sure only the needed bits are used
103 mant &= 0x3FF;
104 }
105 }
106
107 uint32_t tmpVal = (sign << 15) | (exp << 10) | mant;
108 return (uint16_t)tmpVal;
109 }
110
111 //////////////////////////////////////////////////////////////////////////
112 /// @brief Convert an IEEE 754 16-bit float to an 32-bit single precision
113 /// float
114 /// @param val - 16-bit float
115 /// @todo Maybe move this outside of this file into a header?
116 static float ConvertFloat16ToFloat32(uint32_t val)
117 {
118 uint32_t result;
119 if ((val & 0x7fff) == 0)
120 {
121 result = ((uint32_t)(val & 0x8000)) << 16;
122 }
123 else if ((val & 0x7c00) == 0x7c00)
124 {
125 result = ((val & 0x3ff) == 0) ? 0x7f800000 : 0x7fc00000;
126 result |= ((uint32_t)val & 0x8000) << 16;
127 }
128 else
129 {
130 uint32_t sign = (val & 0x8000) << 16;
131 uint32_t mant = (val & 0x3ff) << 13;
132 uint32_t exp = (val >> 10) & 0x1f;
133 if ((exp == 0) && (mant != 0)) // Adjust exponent and mantissa for denormals
134 {
135 mant <<= 1;
136 while (mant < (0x400 << 13))
137 {
138 exp--;
139 mant <<= 1;
140 }
141 mant &= (0x3ff << 13);
142 }
143 exp = ((exp - 15 + 127) & 0xff) << 23;
144 result = sign | exp | mant;
145 }
146
147 return *(float*)&result;
148 }
149
150 Constant *Builder::C(bool i)
151 {
152 return ConstantInt::get(IRB()->getInt1Ty(), (i ? 1 : 0));
153 }
154
155 Constant *Builder::C(char i)
156 {
157 return ConstantInt::get(IRB()->getInt8Ty(), i);
158 }
159
160 Constant *Builder::C(uint8_t i)
161 {
162 return ConstantInt::get(IRB()->getInt8Ty(), i);
163 }
164
165 Constant *Builder::C(int i)
166 {
167 return ConstantInt::get(IRB()->getInt32Ty(), i);
168 }
169
170 Constant *Builder::C(int64_t i)
171 {
172 return ConstantInt::get(IRB()->getInt64Ty(), i);
173 }
174
175 Constant *Builder::C(uint16_t i)
176 {
177 return ConstantInt::get(mInt16Ty,i);
178 }
179
180 Constant *Builder::C(uint32_t i)
181 {
182 return ConstantInt::get(IRB()->getInt32Ty(), i);
183 }
184
185 Constant *Builder::C(float i)
186 {
187 return ConstantFP::get(IRB()->getFloatTy(), i);
188 }
189
190 Constant *Builder::PRED(bool pred)
191 {
192 return ConstantInt::get(IRB()->getInt1Ty(), (pred ? 1 : 0));
193 }
194
195 Value *Builder::VIMMED1(int i)
196 {
197 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
198 }
199
200 Value *Builder::VIMMED1_16(int i)
201 {
202 return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
203 }
204
205 Value *Builder::VIMMED1(uint32_t i)
206 {
207 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
208 }
209
210 Value *Builder::VIMMED1_16(uint32_t i)
211 {
212 return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
213 }
214
215 Value *Builder::VIMMED1(float i)
216 {
217 return ConstantVector::getSplat(mVWidth, cast<ConstantFP>(C(i)));
218 }
219
220 Value *Builder::VIMMED1_16(float i)
221 {
222 return ConstantVector::getSplat(mVWidth16, cast<ConstantFP>(C(i)));
223 }
224
225 Value *Builder::VIMMED1(bool i)
226 {
227 return ConstantVector::getSplat(mVWidth, cast<ConstantInt>(C(i)));
228 }
229
230 Value *Builder::VIMMED1_16(bool i)
231 {
232 return ConstantVector::getSplat(mVWidth16, cast<ConstantInt>(C(i)));
233 }
234
235 Value *Builder::VUNDEF_IPTR()
236 {
237 return UndefValue::get(VectorType::get(mInt32PtrTy,mVWidth));
238 }
239
240 Value *Builder::VUNDEF(Type* t)
241 {
242 return UndefValue::get(VectorType::get(t, mVWidth));
243 }
244
245 Value *Builder::VUNDEF_I()
246 {
247 return UndefValue::get(VectorType::get(mInt32Ty, mVWidth));
248 }
249
250 Value *Builder::VUNDEF_I_16()
251 {
252 return UndefValue::get(VectorType::get(mInt32Ty, mVWidth16));
253 }
254
255 Value *Builder::VUNDEF_F()
256 {
257 return UndefValue::get(VectorType::get(mFP32Ty, mVWidth));
258 }
259
260 Value *Builder::VUNDEF_F_16()
261 {
262 return UndefValue::get(VectorType::get(mFP32Ty, mVWidth16));
263 }
264
265 Value *Builder::VUNDEF(Type *ty, uint32_t size)
266 {
267 return UndefValue::get(VectorType::get(ty, size));
268 }
269
270 Value *Builder::VBROADCAST(Value *src, const llvm::Twine& name)
271 {
272 // check if src is already a vector
273 if (src->getType()->isVectorTy())
274 {
275 return src;
276 }
277
278 return VECTOR_SPLAT(mVWidth, src, name);
279 }
280
281 Value *Builder::VBROADCAST_16(Value *src)
282 {
283 // check if src is already a vector
284 if (src->getType()->isVectorTy())
285 {
286 return src;
287 }
288
289 return VECTOR_SPLAT(mVWidth16, src);
290 }
291
292 uint32_t Builder::IMMED(Value* v)
293 {
294 SWR_ASSERT(isa<ConstantInt>(v));
295 ConstantInt *pValConst = cast<ConstantInt>(v);
296 return pValConst->getZExtValue();
297 }
298
299 int32_t Builder::S_IMMED(Value* v)
300 {
301 SWR_ASSERT(isa<ConstantInt>(v));
302 ConstantInt *pValConst = cast<ConstantInt>(v);
303 return pValConst->getSExtValue();
304 }
305
306 CallInst *Builder::CALL(Value *Callee, const std::initializer_list<Value*> &argsList, const llvm::Twine& name)
307 {
308 std::vector<Value*> args;
309 for (auto arg : argsList)
310 args.push_back(arg);
311 return CALLA(Callee, args, name);
312 }
313
314 CallInst *Builder::CALL(Value *Callee, Value* arg)
315 {
316 std::vector<Value*> args;
317 args.push_back(arg);
318 return CALLA(Callee, args);
319 }
320
321 CallInst *Builder::CALL2(Value *Callee, Value* arg1, Value* arg2)
322 {
323 std::vector<Value*> args;
324 args.push_back(arg1);
325 args.push_back(arg2);
326 return CALLA(Callee, args);
327 }
328
329 CallInst *Builder::CALL3(Value *Callee, Value* arg1, Value* arg2, Value* arg3)
330 {
331 std::vector<Value*> args;
332 args.push_back(arg1);
333 args.push_back(arg2);
334 args.push_back(arg3);
335 return CALLA(Callee, args);
336 }
337
338 Value *Builder::VRCP(Value *va, const llvm::Twine& name)
339 {
340 return FDIV(VIMMED1(1.0f), va, name); // 1 / a
341 }
342
343 Value *Builder::VPLANEPS(Value* vA, Value* vB, Value* vC, Value* &vX, Value* &vY)
344 {
345 Value* vOut = FMADDPS(vA, vX, vC);
346 vOut = FMADDPS(vB, vY, vOut);
347 return vOut;
348 }
349
350 //////////////////////////////////////////////////////////////////////////
351 /// @brief insert a JIT call to CallPrint
352 /// - outputs formatted string to both stdout and VS output window
353 /// - DEBUG builds only
354 /// Usage example:
355 /// PRINT("index %d = 0x%p\n",{C(lane), pIndex});
356 /// where C(lane) creates a constant value to print, and pIndex is the Value*
357 /// result from a GEP, printing out the pointer to memory
358 /// @param printStr - constant string to print, which includes format specifiers
359 /// @param printArgs - initializer list of Value*'s to print to std out
360 CallInst *Builder::PRINT(const std::string &printStr,const std::initializer_list<Value*> &printArgs)
361 {
362 // push the arguments to CallPrint into a vector
363 std::vector<Value*> printCallArgs;
364 // save room for the format string. we still need to modify it for vectors
365 printCallArgs.resize(1);
366
367 // search through the format string for special processing
368 size_t pos = 0;
369 std::string tempStr(printStr);
370 pos = tempStr.find('%', pos);
371 auto v = printArgs.begin();
372
373 while ((pos != std::string::npos) && (v != printArgs.end()))
374 {
375 Value* pArg = *v;
376 Type* pType = pArg->getType();
377
378 if (pType->isVectorTy())
379 {
380 Type* pContainedType = pType->getContainedType(0);
381
382 if (toupper(tempStr[pos + 1]) == 'X')
383 {
384 tempStr[pos] = '0';
385 tempStr[pos + 1] = 'x';
386 tempStr.insert(pos + 2, "%08X ");
387 pos += 7;
388
389 printCallArgs.push_back(VEXTRACT(pArg, C(0)));
390
391 std::string vectorFormatStr;
392 for (uint32_t i = 1; i < pType->getVectorNumElements(); ++i)
393 {
394 vectorFormatStr += "0x%08X ";
395 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
396 }
397
398 tempStr.insert(pos, vectorFormatStr);
399 pos += vectorFormatStr.size();
400 }
401 else if ((tempStr[pos + 1] == 'f') && (pContainedType->isFloatTy()))
402 {
403 uint32_t i = 0;
404 for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
405 {
406 tempStr.insert(pos, std::string("%f "));
407 pos += 3;
408 printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
409 }
410 printCallArgs.push_back(FP_EXT(VEXTRACT(pArg, C(i)), Type::getDoubleTy(JM()->mContext)));
411 }
412 else if ((tempStr[pos + 1] == 'd') && (pContainedType->isIntegerTy()))
413 {
414 uint32_t i = 0;
415 for (; i < (pArg->getType()->getVectorNumElements()) - 1; i++)
416 {
417 tempStr.insert(pos, std::string("%d "));
418 pos += 3;
419 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
420 }
421 printCallArgs.push_back(VEXTRACT(pArg, C(i)));
422 }
423 }
424 else
425 {
426 if (toupper(tempStr[pos + 1]) == 'X')
427 {
428 tempStr[pos] = '0';
429 tempStr.insert(pos + 1, "x%08");
430 printCallArgs.push_back(pArg);
431 pos += 3;
432 }
433 // for %f we need to cast float Values to doubles so that they print out correctly
434 else if ((tempStr[pos + 1] == 'f') && (pType->isFloatTy()))
435 {
436 printCallArgs.push_back(FP_EXT(pArg, Type::getDoubleTy(JM()->mContext)));
437 pos++;
438 }
439 else
440 {
441 printCallArgs.push_back(pArg);
442 }
443 }
444
445 // advance to the next arguement
446 v++;
447 pos = tempStr.find('%', ++pos);
448 }
449
450 // create global variable constant string
451 Constant *constString = ConstantDataArray::getString(JM()->mContext,tempStr,true);
452 GlobalVariable *gvPtr = new GlobalVariable(constString->getType(),true,GlobalValue::InternalLinkage,constString,"printStr");
453 JM()->mpCurrentModule->getGlobalList().push_back(gvPtr);
454
455 // get a pointer to the first character in the constant string array
456 std::vector<Constant*> geplist{C(0),C(0)};
457 Constant *strGEP = ConstantExpr::getGetElementPtr(nullptr, gvPtr,geplist,false);
458
459 // insert the pointer to the format string in the argument vector
460 printCallArgs[0] = strGEP;
461
462 // get pointer to CallPrint function and insert decl into the module if needed
463 std::vector<Type*> args;
464 args.push_back(PointerType::get(mInt8Ty,0));
465 FunctionType* callPrintTy = FunctionType::get(Type::getVoidTy(JM()->mContext),args,true);
466 Function *callPrintFn = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("CallPrint", callPrintTy));
467
468 // if we haven't yet added the symbol to the symbol table
469 if((sys::DynamicLibrary::SearchForAddressOfSymbol("CallPrint")) == nullptr)
470 {
471 sys::DynamicLibrary::AddSymbol("CallPrint", (void *)&CallPrint);
472 }
473
474 // insert a call to CallPrint
475 return CALLA(callPrintFn,printCallArgs);
476 }
477
478 //////////////////////////////////////////////////////////////////////////
479 /// @brief Wrapper around PRINT with initializer list.
480 CallInst* Builder::PRINT(const std::string &printStr)
481 {
482 return PRINT(printStr, {});
483 }
484
485 Value *Builder::EXTRACT_16(Value *x, uint32_t imm)
486 {
487 if (imm == 0)
488 {
489 return VSHUFFLE(x, UndefValue::get(x->getType()), { 0, 1, 2, 3, 4, 5, 6, 7 });
490 }
491 else
492 {
493 return VSHUFFLE(x, UndefValue::get(x->getType()), { 8, 9, 10, 11, 12, 13, 14, 15 });
494 }
495 }
496
497 Value *Builder::JOIN_16(Value *a, Value *b)
498 {
499 return VSHUFFLE(a, b, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 });
500 }
501
502 //////////////////////////////////////////////////////////////////////////
503 /// @brief convert x86 <N x float> mask to llvm <N x i1> mask
504 Value *Builder::MASK(Value *vmask)
505 {
506 Value *src = BITCAST(vmask, mSimdInt32Ty);
507 return ICMP_SLT(src, VIMMED1(0));
508 }
509
510 Value *Builder::MASK_16(Value *vmask)
511 {
512 Value *src = BITCAST(vmask, mSimd16Int32Ty);
513 return ICMP_SLT(src, VIMMED1_16(0));
514 }
515
516 //////////////////////////////////////////////////////////////////////////
517 /// @brief convert llvm <N x i1> mask to x86 <N x i32> mask
518 Value *Builder::VMASK(Value *mask)
519 {
520 return S_EXT(mask, mSimdInt32Ty);
521 }
522
523 Value *Builder::VMASK_16(Value *mask)
524 {
525 return S_EXT(mask, mSimd16Int32Ty);
526 }
527
528 //////////////////////////////////////////////////////////////////////////
529 /// @brief Generate a VPSHUFB operation in LLVM IR. If not
530 /// supported on the underlying platform, emulate it
531 /// @param a - 256bit SIMD(32x8bit) of 8bit integer values
532 /// @param b - 256bit SIMD(32x8bit) of 8bit integer mask values
533 /// Byte masks in lower 128 lane of b selects 8 bit values from lower
534 /// 128bits of a, and vice versa for the upper lanes. If the mask
535 /// value is negative, '0' is inserted.
536 Value *Builder::PSHUFB(Value* a, Value* b)
537 {
538 Value* res;
539 // use avx2 pshufb instruction if available
540 if(JM()->mArch.AVX2())
541 {
542 res = VPSHUFB(a, b);
543 }
544 else
545 {
546 Constant* cB = dyn_cast<Constant>(b);
547 // number of 8 bit elements in b
548 uint32_t numElms = cast<VectorType>(cB->getType())->getNumElements();
549 // output vector
550 Value* vShuf = UndefValue::get(VectorType::get(mInt8Ty, numElms));
551
552 // insert an 8 bit value from the high and low lanes of a per loop iteration
553 numElms /= 2;
554 for(uint32_t i = 0; i < numElms; i++)
555 {
556 ConstantInt* cLow128b = cast<ConstantInt>(cB->getAggregateElement(i));
557 ConstantInt* cHigh128b = cast<ConstantInt>(cB->getAggregateElement(i + numElms));
558
559 // extract values from constant mask
560 char valLow128bLane = (char)(cLow128b->getSExtValue());
561 char valHigh128bLane = (char)(cHigh128b->getSExtValue());
562
563 Value* insertValLow128b;
564 Value* insertValHigh128b;
565
566 // if the mask value is negative, insert a '0' in the respective output position
567 // otherwise, lookup the value at mask position (bits 3..0 of the respective mask byte) in a and insert in output vector
568 insertValLow128b = (valLow128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valLow128bLane & 0xF)));
569 insertValHigh128b = (valHigh128bLane < 0) ? C((char)0) : VEXTRACT(a, C((valHigh128bLane & 0xF) + numElms));
570
571 vShuf = VINSERT(vShuf, insertValLow128b, i);
572 vShuf = VINSERT(vShuf, insertValHigh128b, (i + numElms));
573 }
574 res = vShuf;
575 }
576 return res;
577 }
578
579 //////////////////////////////////////////////////////////////////////////
580 /// @brief Generate a VPSHUFB operation (sign extend 8 8bit values to 32
581 /// bits)in LLVM IR. If not supported on the underlying platform, emulate it
582 /// @param a - 128bit SIMD lane(16x8bit) of 8bit integer values. Only
583 /// lower 8 values are used.
584 Value *Builder::PMOVSXBD(Value* a)
585 {
586 // VPMOVSXBD output type
587 Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
588 // Extract 8 values from 128bit lane and sign extend
589 return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
590 }
591
592 //////////////////////////////////////////////////////////////////////////
593 /// @brief Generate a VPSHUFB operation (sign extend 8 16bit values to 32
594 /// bits)in LLVM IR. If not supported on the underlying platform, emulate it
595 /// @param a - 128bit SIMD lane(8x16bit) of 16bit integer values.
596 Value *Builder::PMOVSXWD(Value* a)
597 {
598 // VPMOVSXWD output type
599 Type* v8x32Ty = VectorType::get(mInt32Ty, 8);
600 // Extract 8 values from 128bit lane and sign extend
601 return S_EXT(VSHUFFLE(a, a, C<int>({0, 1, 2, 3, 4, 5, 6, 7})), v8x32Ty);
602 }
603
604 //////////////////////////////////////////////////////////////////////////
605 /// @brief Generate a VCVTPH2PS operation (float16->float32 conversion)
606 /// in LLVM IR. If not supported on the underlying platform, emulate it
607 /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
608 Value *Builder::CVTPH2PS(Value* a, const llvm::Twine& name)
609 {
610 if (JM()->mArch.F16C())
611 {
612 return VCVTPH2PS(a, name);
613 }
614 else
615 {
616 FunctionType* pFuncTy = FunctionType::get(mFP32Ty, mInt16Ty);
617 Function* pCvtPh2Ps = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat16ToFloat32", pFuncTy));
618
619 if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat16ToFloat32") == nullptr)
620 {
621 sys::DynamicLibrary::AddSymbol("ConvertFloat16ToFloat32", (void *)&ConvertFloat16ToFloat32);
622 }
623
624 Value* pResult = UndefValue::get(mSimdFP32Ty);
625 for (uint32_t i = 0; i < mVWidth; ++i)
626 {
627 Value* pSrc = VEXTRACT(a, C(i));
628 Value* pConv = CALL(pCvtPh2Ps, std::initializer_list<Value*>{pSrc});
629 pResult = VINSERT(pResult, pConv, C(i));
630 }
631
632 pResult->setName(name);
633 return pResult;
634 }
635 }
636
637 //////////////////////////////////////////////////////////////////////////
638 /// @brief Generate a VCVTPS2PH operation (float32->float16 conversion)
639 /// in LLVM IR. If not supported on the underlying platform, emulate it
640 /// @param a - 128bit SIMD lane(8x16bit) of float16 in int16 format.
641 Value *Builder::CVTPS2PH(Value* a, Value* rounding)
642 {
643 if (JM()->mArch.F16C())
644 {
645 return VCVTPS2PH(a, rounding);
646 }
647 else
648 {
649 // call scalar C function for now
650 FunctionType* pFuncTy = FunctionType::get(mInt16Ty, mFP32Ty);
651 Function* pCvtPs2Ph = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("ConvertFloat32ToFloat16", pFuncTy));
652
653 if (sys::DynamicLibrary::SearchForAddressOfSymbol("ConvertFloat32ToFloat16") == nullptr)
654 {
655 sys::DynamicLibrary::AddSymbol("ConvertFloat32ToFloat16", (void *)&ConvertFloat32ToFloat16);
656 }
657
658 Value* pResult = UndefValue::get(mSimdInt16Ty);
659 for (uint32_t i = 0; i < mVWidth; ++i)
660 {
661 Value* pSrc = VEXTRACT(a, C(i));
662 Value* pConv = CALL(pCvtPs2Ph, std::initializer_list<Value*>{pSrc});
663 pResult = VINSERT(pResult, pConv, C(i));
664 }
665
666 return pResult;
667 }
668 }
669
670 Value *Builder::PMAXSD(Value* a, Value* b)
671 {
672 Value* cmp = ICMP_SGT(a, b);
673 return SELECT(cmp, a, b);
674 }
675
676 Value *Builder::PMINSD(Value* a, Value* b)
677 {
678 Value* cmp = ICMP_SLT(a, b);
679 return SELECT(cmp, a, b);
680 }
681
682 Value *Builder::PMAXUD(Value* a, Value* b)
683 {
684 Value* cmp = ICMP_UGT(a, b);
685 return SELECT(cmp, a, b);
686 }
687
688 Value *Builder::PMINUD(Value* a, Value* b)
689 {
690 Value* cmp = ICMP_ULT(a, b);
691 return SELECT(cmp, a, b);
692 }
693
694 // Helper function to create alloca in entry block of function
695 Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType)
696 {
697 auto saveIP = IRB()->saveIP();
698 IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
699 pFunc->getEntryBlock().begin());
700 Value* pAlloca = ALLOCA(pType);
701 if (saveIP.isSet()) IRB()->restoreIP(saveIP);
702 return pAlloca;
703 }
704
705 Value* Builder::CreateEntryAlloca(Function* pFunc, Type* pType, Value* pArraySize)
706 {
707 auto saveIP = IRB()->saveIP();
708 IRB()->SetInsertPoint(&pFunc->getEntryBlock(),
709 pFunc->getEntryBlock().begin());
710 Value* pAlloca = ALLOCA(pType, pArraySize);
711 if (saveIP.isSet()) IRB()->restoreIP(saveIP);
712 return pAlloca;
713 }
714
715 Value* Builder::VABSPS(Value* a)
716 {
717 Value* asInt = BITCAST(a, mSimdInt32Ty);
718 Value* result = BITCAST(AND(asInt, VIMMED1(0x7fffffff)), mSimdFP32Ty);
719 return result;
720 }
721
722 Value *Builder::ICLAMP(Value* src, Value* low, Value* high, const llvm::Twine& name)
723 {
724 Value *lowCmp = ICMP_SLT(src, low);
725 Value *ret = SELECT(lowCmp, low, src);
726
727 Value *highCmp = ICMP_SGT(ret, high);
728 ret = SELECT(highCmp, high, ret, name);
729
730 return ret;
731 }
732
733 Value *Builder::FCLAMP(Value* src, Value* low, Value* high)
734 {
735 Value *lowCmp = FCMP_OLT(src, low);
736 Value *ret = SELECT(lowCmp, low, src);
737
738 Value *highCmp = FCMP_OGT(ret, high);
739 ret = SELECT(highCmp, high, ret);
740
741 return ret;
742 }
743
744 Value *Builder::FCLAMP(Value* src, float low, float high)
745 {
746 Value* result = VMAXPS(src, VIMMED1(low));
747 result = VMINPS(result, VIMMED1(high));
748
749 return result;
750 }
751
752 Value *Builder::FMADDPS(Value* a, Value* b, Value* c)
753 {
754 Value* vOut;
755 // use FMADs if available
756 if(JM()->mArch.AVX2())
757 {
758 vOut = VFMADDPS(a, b, c);
759 }
760 else
761 {
762 vOut = FADD(FMUL(a, b), c);
763 }
764 return vOut;
765 }
766
767 //////////////////////////////////////////////////////////////////////////
768 /// @brief pop count on vector mask (e.g. <8 x i1>)
769 Value* Builder::VPOPCNT(Value* a)
770 {
771 Value* b = BITCAST(VMASK(a), mSimdFP32Ty);
772 return POPCNT(VMOVMSKPS(b));
773 }
774
775 //////////////////////////////////////////////////////////////////////////
776 /// @brief C functions called by LLVM IR
777 //////////////////////////////////////////////////////////////////////////
778
779 Value *Builder::VEXTRACTI128(Value* a, Constant* imm8)
780 {
781 bool flag = !imm8->isZeroValue();
782 SmallVector<Constant*,8> idx;
783 for (unsigned i = 0; i < mVWidth / 2; i++) {
784 idx.push_back(C(flag ? i + mVWidth / 2 : i));
785 }
786 return VSHUFFLE(a, VUNDEF_I(), ConstantVector::get(idx));
787 }
788
789 Value *Builder::VINSERTI128(Value* a, Value* b, Constant* imm8)
790 {
791 bool flag = !imm8->isZeroValue();
792 SmallVector<Constant*,8> idx;
793 for (unsigned i = 0; i < mVWidth; i++) {
794 idx.push_back(C(i));
795 }
796 Value *inter = VSHUFFLE(b, VUNDEF_I(), ConstantVector::get(idx));
797
798 SmallVector<Constant*,8> idx2;
799 for (unsigned i = 0; i < mVWidth / 2; i++) {
800 idx2.push_back(C(flag ? i : i + mVWidth));
801 }
802 for (unsigned i = mVWidth / 2; i < mVWidth; i++) {
803 idx2.push_back(C(flag ? i + mVWidth / 2 : i));
804 }
805 return VSHUFFLE(a, inter, ConstantVector::get(idx2));
806 }
807
808 // rdtsc buckets macros
809 void Builder::RDTSC_START(Value* pBucketMgr, Value* pId)
810 {
811 // @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
812 // buckets framework when single threaded
813 if (KNOB_SINGLE_THREADED)
814 {
815 std::vector<Type*> args{
816 PointerType::get(mInt32Ty, 0), // pBucketMgr
817 mInt32Ty // id
818 };
819
820 FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
821 Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StartBucket", pFuncTy));
822 if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StartBucket") == nullptr)
823 {
824 sys::DynamicLibrary::AddSymbol("BucketManager_StartBucket", (void*)&BucketManager_StartBucket);
825 }
826
827 CALL(pFunc, { pBucketMgr, pId });
828 }
829 }
830
831 void Builder::RDTSC_STOP(Value* pBucketMgr, Value* pId)
832 {
833 // @todo due to an issue with thread local storage propagation in llvm, we can only safely call into
834 // buckets framework when single threaded
835 if (KNOB_SINGLE_THREADED)
836 {
837 std::vector<Type*> args{
838 PointerType::get(mInt32Ty, 0), // pBucketMgr
839 mInt32Ty // id
840 };
841
842 FunctionType* pFuncTy = FunctionType::get(Type::getVoidTy(JM()->mContext), args, false);
843 Function* pFunc = cast<Function>(JM()->mpCurrentModule->getOrInsertFunction("BucketManager_StopBucket", pFuncTy));
844 if (sys::DynamicLibrary::SearchForAddressOfSymbol("BucketManager_StopBucket") == nullptr)
845 {
846 sys::DynamicLibrary::AddSymbol("BucketManager_StopBucket", (void*)&BucketManager_StopBucket);
847 }
848
849 CALL(pFunc, { pBucketMgr, pId });
850 }
851 }
852
853 uint32_t Builder::GetTypeSize(Type* pType)
854 {
855 if (pType->isStructTy())
856 {
857 uint32_t numElems = pType->getStructNumElements();
858 Type* pElemTy = pType->getStructElementType(0);
859 return numElems * GetTypeSize(pElemTy);
860 }
861
862 if (pType->isArrayTy())
863 {
864 uint32_t numElems = pType->getArrayNumElements();
865 Type* pElemTy = pType->getArrayElementType();
866 return numElems * GetTypeSize(pElemTy);
867 }
868
869 if (pType->isIntegerTy())
870 {
871 uint32_t bitSize = pType->getIntegerBitWidth();
872 return bitSize / 8;
873 }
874
875 if (pType->isFloatTy())
876 {
877 return 4;
878 }
879
880 if (pType->isHalfTy())
881 {
882 return 2;
883 }
884
885 if (pType->isDoubleTy())
886 {
887 return 8;
888 }
889
890 SWR_ASSERT(false, "Unimplemented type.");
891 return 0;
892 }
893 }