swr: Report format max_samples=1 to maintain support for "fake" msaa.
[mesa.git] / src / gallium / drivers / swr / swr_screen.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 #include "swr_context.h"
25 #include "swr_public.h"
26 #include "swr_screen.h"
27 #include "swr_resource.h"
28 #include "swr_fence.h"
29 #include "gen_knobs.h"
30
31 #include "pipe/p_screen.h"
32 #include "pipe/p_defines.h"
33 #include "util/u_memory.h"
34 #include "util/u_format.h"
35 #include "util/u_inlines.h"
36 #include "util/u_cpu_detect.h"
37 #include "util/u_format_s3tc.h"
38 #include "util/u_string.h"
39
40 #include "state_tracker/sw_winsys.h"
41
42 #include "jit_api.h"
43
44 #include "memory/TilingFunctions.h"
45
46 #include <stdio.h>
47 #include <map>
48
49 /*
50 * Max texture sizes
51 * XXX Check max texture size values against core and sampler.
52 */
53 #define SWR_MAX_TEXTURE_SIZE (4 * 1024 * 1024 * 1024ULL) /* 4GB */
54 #define SWR_MAX_TEXTURE_2D_LEVELS 14 /* 8K x 8K for now */
55 #define SWR_MAX_TEXTURE_3D_LEVELS 12 /* 2K x 2K x 2K for now */
56 #define SWR_MAX_TEXTURE_CUBE_LEVELS 14 /* 8K x 8K for now */
57 #define SWR_MAX_TEXTURE_ARRAY_LAYERS 512 /* 8K x 512 / 8K x 8K x 512 */
58
59 /* Default max client_copy_limit */
60 #define SWR_CLIENT_COPY_LIMIT 32768
61
62 /* Flag indicates creation of alternate surface, to prevent recursive loop
63 * in resource creation when msaa_force_enable is set. */
64 #define SWR_RESOURCE_FLAG_ALT_SURFACE (PIPE_RESOURCE_FLAG_DRV_PRIV << 0)
65
66
67 static const char *
68 swr_get_name(struct pipe_screen *screen)
69 {
70 static char buf[100];
71 util_snprintf(buf, sizeof(buf), "SWR (LLVM %u.%u, %u bits)",
72 HAVE_LLVM >> 8, HAVE_LLVM & 0xff,
73 lp_native_vector_width );
74 return buf;
75 }
76
77 static const char *
78 swr_get_vendor(struct pipe_screen *screen)
79 {
80 return "Intel Corporation";
81 }
82
83 static boolean
84 swr_is_format_supported(struct pipe_screen *_screen,
85 enum pipe_format format,
86 enum pipe_texture_target target,
87 unsigned sample_count,
88 unsigned bind)
89 {
90 struct swr_screen *screen = swr_screen(_screen);
91 struct sw_winsys *winsys = screen->winsys;
92 const struct util_format_description *format_desc;
93
94 assert(target == PIPE_BUFFER || target == PIPE_TEXTURE_1D
95 || target == PIPE_TEXTURE_1D_ARRAY
96 || target == PIPE_TEXTURE_2D
97 || target == PIPE_TEXTURE_2D_ARRAY
98 || target == PIPE_TEXTURE_RECT
99 || target == PIPE_TEXTURE_3D
100 || target == PIPE_TEXTURE_CUBE
101 || target == PIPE_TEXTURE_CUBE_ARRAY);
102
103 format_desc = util_format_description(format);
104 if (!format_desc)
105 return FALSE;
106
107 if ((sample_count > screen->msaa_max_count)
108 || !util_is_power_of_two(sample_count))
109 return FALSE;
110
111 if (bind & PIPE_BIND_DISPLAY_TARGET) {
112 if (!winsys->is_displaytarget_format_supported(winsys, bind, format))
113 return FALSE;
114 }
115
116 if (bind & PIPE_BIND_RENDER_TARGET) {
117 if (format_desc->colorspace == UTIL_FORMAT_COLORSPACE_ZS)
118 return FALSE;
119
120 if (mesa_to_swr_format(format) == (SWR_FORMAT)-1)
121 return FALSE;
122
123 /*
124 * Although possible, it is unnatural to render into compressed or YUV
125 * surfaces. So disable these here to avoid going into weird paths
126 * inside the state trackers.
127 */
128 if (format_desc->block.width != 1 || format_desc->block.height != 1)
129 return FALSE;
130 }
131
132 if (bind & PIPE_BIND_DEPTH_STENCIL) {
133 if (format_desc->colorspace != UTIL_FORMAT_COLORSPACE_ZS)
134 return FALSE;
135
136 if (mesa_to_swr_format(format) == (SWR_FORMAT)-1)
137 return FALSE;
138 }
139
140 if (format_desc->layout == UTIL_FORMAT_LAYOUT_BPTC ||
141 format_desc->layout == UTIL_FORMAT_LAYOUT_ASTC) {
142 return FALSE;
143 }
144
145 if (format_desc->layout == UTIL_FORMAT_LAYOUT_ETC &&
146 format != PIPE_FORMAT_ETC1_RGB8) {
147 return FALSE;
148 }
149
150 if (format_desc->layout == UTIL_FORMAT_LAYOUT_S3TC) {
151 return util_format_s3tc_enabled;
152 }
153
154 return TRUE;
155 }
156
157 static int
158 swr_get_param(struct pipe_screen *screen, enum pipe_cap param)
159 {
160 switch (param) {
161 /* limits */
162 case PIPE_CAP_MAX_RENDER_TARGETS:
163 return PIPE_MAX_COLOR_BUFS;
164 case PIPE_CAP_MAX_TEXTURE_2D_LEVELS:
165 return SWR_MAX_TEXTURE_2D_LEVELS;
166 case PIPE_CAP_MAX_TEXTURE_3D_LEVELS:
167 return SWR_MAX_TEXTURE_3D_LEVELS;
168 case PIPE_CAP_MAX_TEXTURE_CUBE_LEVELS:
169 return SWR_MAX_TEXTURE_CUBE_LEVELS;
170 case PIPE_CAP_MAX_STREAM_OUTPUT_BUFFERS:
171 return MAX_SO_STREAMS;
172 case PIPE_CAP_MAX_STREAM_OUTPUT_SEPARATE_COMPONENTS:
173 case PIPE_CAP_MAX_STREAM_OUTPUT_INTERLEAVED_COMPONENTS:
174 return MAX_ATTRIBUTES * 4;
175 case PIPE_CAP_MAX_GEOMETRY_OUTPUT_VERTICES:
176 case PIPE_CAP_MAX_GEOMETRY_TOTAL_OUTPUT_COMPONENTS:
177 return 1024;
178 case PIPE_CAP_MAX_VERTEX_STREAMS:
179 return 1;
180 case PIPE_CAP_MAX_VERTEX_ATTRIB_STRIDE:
181 return 2048;
182 case PIPE_CAP_MAX_TEXTURE_ARRAY_LAYERS:
183 return SWR_MAX_TEXTURE_ARRAY_LAYERS;
184 case PIPE_CAP_MIN_TEXEL_OFFSET:
185 return -8;
186 case PIPE_CAP_MAX_TEXEL_OFFSET:
187 return 7;
188 case PIPE_CAP_GLSL_FEATURE_LEVEL:
189 return 330;
190 case PIPE_CAP_CONSTANT_BUFFER_OFFSET_ALIGNMENT:
191 return 16;
192 case PIPE_CAP_MIN_MAP_BUFFER_ALIGNMENT:
193 return 64;
194 case PIPE_CAP_MAX_TEXTURE_BUFFER_SIZE:
195 return 65536;
196 case PIPE_CAP_TEXTURE_BUFFER_OFFSET_ALIGNMENT:
197 return 0;
198 case PIPE_CAP_MAX_VIEWPORTS:
199 return 1;
200 case PIPE_CAP_ENDIANNESS:
201 return PIPE_ENDIAN_NATIVE;
202 case PIPE_CAP_MIN_TEXTURE_GATHER_OFFSET:
203 case PIPE_CAP_MAX_TEXTURE_GATHER_OFFSET:
204 return 0;
205
206 /* supported features */
207 case PIPE_CAP_NPOT_TEXTURES:
208 case PIPE_CAP_MIXED_FRAMEBUFFER_SIZES:
209 case PIPE_CAP_MIXED_COLOR_DEPTH_BITS:
210 case PIPE_CAP_TWO_SIDED_STENCIL:
211 case PIPE_CAP_SM3:
212 case PIPE_CAP_POINT_SPRITE:
213 case PIPE_CAP_MAX_DUAL_SOURCE_RENDER_TARGETS:
214 case PIPE_CAP_OCCLUSION_QUERY:
215 case PIPE_CAP_QUERY_TIME_ELAPSED:
216 case PIPE_CAP_QUERY_PIPELINE_STATISTICS:
217 case PIPE_CAP_TEXTURE_MIRROR_CLAMP:
218 case PIPE_CAP_TEXTURE_SHADOW_MAP:
219 case PIPE_CAP_TEXTURE_SWIZZLE:
220 case PIPE_CAP_BLEND_EQUATION_SEPARATE:
221 case PIPE_CAP_INDEP_BLEND_ENABLE:
222 case PIPE_CAP_INDEP_BLEND_FUNC:
223 case PIPE_CAP_TGSI_FS_COORD_ORIGIN_UPPER_LEFT:
224 case PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER:
225 case PIPE_CAP_TGSI_FS_COORD_PIXEL_CENTER_INTEGER:
226 case PIPE_CAP_DEPTH_CLIP_DISABLE:
227 case PIPE_CAP_PRIMITIVE_RESTART:
228 case PIPE_CAP_TGSI_INSTANCEID:
229 case PIPE_CAP_VERTEX_ELEMENT_INSTANCE_DIVISOR:
230 case PIPE_CAP_START_INSTANCE:
231 case PIPE_CAP_SEAMLESS_CUBE_MAP:
232 case PIPE_CAP_SEAMLESS_CUBE_MAP_PER_TEXTURE:
233 case PIPE_CAP_CONDITIONAL_RENDER:
234 case PIPE_CAP_VERTEX_COLOR_UNCLAMPED:
235 case PIPE_CAP_MIXED_COLORBUFFER_FORMATS:
236 case PIPE_CAP_QUADS_FOLLOW_PROVOKING_VERTEX_CONVENTION:
237 case PIPE_CAP_USER_VERTEX_BUFFERS:
238 case PIPE_CAP_USER_CONSTANT_BUFFERS:
239 case PIPE_CAP_STREAM_OUTPUT_INTERLEAVE_BUFFERS:
240 case PIPE_CAP_QUERY_TIMESTAMP:
241 case PIPE_CAP_TEXTURE_BUFFER_OBJECTS:
242 case PIPE_CAP_BUFFER_MAP_PERSISTENT_COHERENT:
243 case PIPE_CAP_DRAW_INDIRECT:
244 case PIPE_CAP_UMA:
245 case PIPE_CAP_CONDITIONAL_RENDER_INVERTED:
246 case PIPE_CAP_CLIP_HALFZ:
247 case PIPE_CAP_POLYGON_OFFSET_CLAMP:
248 case PIPE_CAP_DEPTH_BOUNDS_TEST:
249 case PIPE_CAP_CLEAR_TEXTURE:
250 case PIPE_CAP_TEXTURE_FLOAT_LINEAR:
251 case PIPE_CAP_TEXTURE_HALF_FLOAT_LINEAR:
252 case PIPE_CAP_CULL_DISTANCE:
253 case PIPE_CAP_CUBE_MAP_ARRAY:
254 case PIPE_CAP_DOUBLES:
255 return 1;
256
257 /* MSAA support
258 * If user has explicitly set max_sample_count = 1 (via SWR_MSAA_MAX_COUNT)
259 * then disable all MSAA support and go back to old (FAKE_SW_MSAA) caps. */
260 case PIPE_CAP_TEXTURE_MULTISAMPLE:
261 case PIPE_CAP_MULTISAMPLE_Z_RESOLVE:
262 return (swr_screen(screen)->msaa_max_count > 1) ? 1 : 0;
263 case PIPE_CAP_FAKE_SW_MSAA:
264 return (swr_screen(screen)->msaa_max_count > 1) ? 0 : 1;
265
266 /* unsupported features */
267 case PIPE_CAP_ANISOTROPIC_FILTER:
268 case PIPE_CAP_TEXTURE_BORDER_COLOR_QUIRK:
269 case PIPE_CAP_TGSI_FS_COORD_ORIGIN_LOWER_LEFT:
270 case PIPE_CAP_SHADER_STENCIL_EXPORT:
271 case PIPE_CAP_TEXTURE_BARRIER:
272 case PIPE_CAP_FRAGMENT_COLOR_CLAMPED:
273 case PIPE_CAP_VERTEX_COLOR_CLAMPED:
274 case PIPE_CAP_COMPUTE:
275 case PIPE_CAP_TGSI_VS_LAYER_VIEWPORT:
276 case PIPE_CAP_TGSI_CAN_COMPACT_CONSTANTS:
277 case PIPE_CAP_VERTEX_BUFFER_OFFSET_4BYTE_ALIGNED_ONLY:
278 case PIPE_CAP_VERTEX_BUFFER_STRIDE_4BYTE_ALIGNED_ONLY:
279 case PIPE_CAP_VERTEX_ELEMENT_SRC_OFFSET_4BYTE_ALIGNED_ONLY:
280 case PIPE_CAP_TGSI_TEXCOORD:
281 case PIPE_CAP_PREFER_BLIT_BASED_TEXTURE_TRANSFER:
282 case PIPE_CAP_MAX_TEXTURE_GATHER_COMPONENTS:
283 case PIPE_CAP_TEXTURE_GATHER_SM5:
284 case PIPE_CAP_TEXTURE_QUERY_LOD:
285 case PIPE_CAP_SAMPLE_SHADING:
286 case PIPE_CAP_TEXTURE_GATHER_OFFSETS:
287 case PIPE_CAP_TGSI_VS_WINDOW_SPACE_POSITION:
288 case PIPE_CAP_TGSI_FS_FINE_DERIVATIVE:
289 case PIPE_CAP_SAMPLER_VIEW_TARGET:
290 case PIPE_CAP_VERTEXID_NOBASE:
291 case PIPE_CAP_RESOURCE_FROM_USER_MEMORY:
292 case PIPE_CAP_DEVICE_RESET_STATUS_QUERY:
293 case PIPE_CAP_MAX_SHADER_PATCH_VARYINGS:
294 case PIPE_CAP_TGSI_TXQS:
295 case PIPE_CAP_FORCE_PERSAMPLE_INTERP:
296 case PIPE_CAP_SHAREABLE_SHADERS:
297 case PIPE_CAP_COPY_BETWEEN_COMPRESSED_AND_PLAIN_FORMATS:
298 case PIPE_CAP_DRAW_PARAMETERS:
299 case PIPE_CAP_TGSI_PACK_HALF_FLOAT:
300 case PIPE_CAP_MULTI_DRAW_INDIRECT:
301 case PIPE_CAP_MULTI_DRAW_INDIRECT_PARAMS:
302 case PIPE_CAP_TGSI_FS_POSITION_IS_SYSVAL:
303 case PIPE_CAP_TGSI_FS_FACE_IS_INTEGER_SYSVAL:
304 case PIPE_CAP_SHADER_BUFFER_OFFSET_ALIGNMENT:
305 case PIPE_CAP_INVALIDATE_BUFFER:
306 case PIPE_CAP_GENERATE_MIPMAP:
307 case PIPE_CAP_STRING_MARKER:
308 case PIPE_CAP_BUFFER_SAMPLER_VIEW_RGBA_ONLY:
309 case PIPE_CAP_SURFACE_REINTERPRET_BLOCKS:
310 case PIPE_CAP_QUERY_BUFFER_OBJECT:
311 case PIPE_CAP_QUERY_MEMORY_INFO:
312 case PIPE_CAP_ROBUST_BUFFER_ACCESS_BEHAVIOR:
313 case PIPE_CAP_PCI_GROUP:
314 case PIPE_CAP_PCI_BUS:
315 case PIPE_CAP_PCI_DEVICE:
316 case PIPE_CAP_PCI_FUNCTION:
317 case PIPE_CAP_FRAMEBUFFER_NO_ATTACHMENT:
318 case PIPE_CAP_PRIMITIVE_RESTART_FOR_PATCHES:
319 case PIPE_CAP_TGSI_VOTE:
320 case PIPE_CAP_MAX_WINDOW_RECTANGLES:
321 case PIPE_CAP_POLYGON_OFFSET_UNITS_UNSCALED:
322 case PIPE_CAP_VIEWPORT_SUBPIXEL_BITS:
323 case PIPE_CAP_TGSI_ARRAY_COMPONENTS:
324 case PIPE_CAP_TGSI_CAN_READ_OUTPUTS:
325 case PIPE_CAP_STREAM_OUTPUT_PAUSE_RESUME:
326 case PIPE_CAP_NATIVE_FENCE_FD:
327 case PIPE_CAP_GLSL_OPTIMIZE_CONSERVATIVELY:
328 case PIPE_CAP_TGSI_FS_FBFETCH:
329 case PIPE_CAP_TGSI_MUL_ZERO_WINS:
330 case PIPE_CAP_INT64:
331 case PIPE_CAP_INT64_DIVMOD:
332 case PIPE_CAP_TGSI_TEX_TXF_LZ:
333 case PIPE_CAP_TGSI_CLOCK:
334 case PIPE_CAP_POLYGON_MODE_FILL_RECTANGLE:
335 case PIPE_CAP_SPARSE_BUFFER_PAGE_SIZE:
336 case PIPE_CAP_TGSI_BALLOT:
337 case PIPE_CAP_TGSI_TES_LAYER_VIEWPORT:
338 case PIPE_CAP_CAN_BIND_CONST_BUFFER_AS_VERTEX:
339 case PIPE_CAP_ALLOW_MAPPED_BUFFERS_DURING_EXECUTION:
340 case PIPE_CAP_POST_DEPTH_COVERAGE:
341 case PIPE_CAP_BINDLESS_TEXTURE:
342 case PIPE_CAP_NIR_SAMPLERS_AS_DEREF:
343 case PIPE_CAP_QUERY_SO_OVERFLOW:
344 case PIPE_CAP_MEMOBJ:
345 return 0;
346
347 case PIPE_CAP_VENDOR_ID:
348 return 0xFFFFFFFF;
349 case PIPE_CAP_DEVICE_ID:
350 return 0xFFFFFFFF;
351 case PIPE_CAP_ACCELERATED:
352 return 0;
353 case PIPE_CAP_VIDEO_MEMORY: {
354 /* XXX: Do we want to return the full amount of system memory ? */
355 uint64_t system_memory;
356
357 if (!os_get_total_physical_memory(&system_memory))
358 return 0;
359
360 return (int)(system_memory >> 20);
361 }
362 }
363
364 /* should only get here on unhandled cases */
365 debug_printf("Unexpected PIPE_CAP %d query\n", param);
366 return 0;
367 }
368
369 static int
370 swr_get_shader_param(struct pipe_screen *screen,
371 enum pipe_shader_type shader,
372 enum pipe_shader_cap param)
373 {
374 if (shader == PIPE_SHADER_VERTEX ||
375 shader == PIPE_SHADER_FRAGMENT ||
376 shader == PIPE_SHADER_GEOMETRY)
377 return gallivm_get_shader_param(param);
378
379 // Todo: tesselation, compute
380 return 0;
381 }
382
383
384 static float
385 swr_get_paramf(struct pipe_screen *screen, enum pipe_capf param)
386 {
387 switch (param) {
388 case PIPE_CAPF_MAX_LINE_WIDTH:
389 case PIPE_CAPF_MAX_LINE_WIDTH_AA:
390 case PIPE_CAPF_MAX_POINT_WIDTH:
391 return 255.0; /* arbitrary */
392 case PIPE_CAPF_MAX_POINT_WIDTH_AA:
393 return 0.0;
394 case PIPE_CAPF_MAX_TEXTURE_ANISOTROPY:
395 return 0.0;
396 case PIPE_CAPF_MAX_TEXTURE_LOD_BIAS:
397 return 16.0; /* arbitrary */
398 case PIPE_CAPF_GUARD_BAND_LEFT:
399 case PIPE_CAPF_GUARD_BAND_TOP:
400 case PIPE_CAPF_GUARD_BAND_RIGHT:
401 case PIPE_CAPF_GUARD_BAND_BOTTOM:
402 return 0.0;
403 }
404 /* should only get here on unhandled cases */
405 debug_printf("Unexpected PIPE_CAPF %d query\n", param);
406 return 0.0;
407 }
408
409 SWR_FORMAT
410 mesa_to_swr_format(enum pipe_format format)
411 {
412 static const std::map<pipe_format,SWR_FORMAT> mesa2swr = {
413 /* depth / stencil */
414 {PIPE_FORMAT_Z16_UNORM, R16_UNORM}, // z
415 {PIPE_FORMAT_Z32_FLOAT, R32_FLOAT}, // z
416 {PIPE_FORMAT_Z24_UNORM_S8_UINT, R24_UNORM_X8_TYPELESS}, // z
417 {PIPE_FORMAT_Z24X8_UNORM, R24_UNORM_X8_TYPELESS}, // z
418 {PIPE_FORMAT_Z32_FLOAT_S8X24_UINT, R32_FLOAT_X8X24_TYPELESS}, // z
419
420 /* alpha */
421 {PIPE_FORMAT_A8_UNORM, A8_UNORM},
422 {PIPE_FORMAT_A16_UNORM, A16_UNORM},
423 {PIPE_FORMAT_A16_FLOAT, A16_FLOAT},
424 {PIPE_FORMAT_A32_FLOAT, A32_FLOAT},
425
426 /* odd sizes, bgr */
427 {PIPE_FORMAT_B5G6R5_UNORM, B5G6R5_UNORM},
428 {PIPE_FORMAT_B5G6R5_SRGB, B5G6R5_UNORM_SRGB},
429 {PIPE_FORMAT_B5G5R5A1_UNORM, B5G5R5A1_UNORM},
430 {PIPE_FORMAT_B5G5R5X1_UNORM, B5G5R5X1_UNORM},
431 {PIPE_FORMAT_B4G4R4A4_UNORM, B4G4R4A4_UNORM},
432 {PIPE_FORMAT_B8G8R8A8_UNORM, B8G8R8A8_UNORM},
433 {PIPE_FORMAT_B8G8R8A8_SRGB, B8G8R8A8_UNORM_SRGB},
434 {PIPE_FORMAT_B8G8R8X8_UNORM, B8G8R8X8_UNORM},
435 {PIPE_FORMAT_B8G8R8X8_SRGB, B8G8R8X8_UNORM_SRGB},
436
437 /* rgb10a2 */
438 {PIPE_FORMAT_R10G10B10A2_UNORM, R10G10B10A2_UNORM},
439 {PIPE_FORMAT_R10G10B10A2_SNORM, R10G10B10A2_SNORM},
440 {PIPE_FORMAT_R10G10B10A2_USCALED, R10G10B10A2_USCALED},
441 {PIPE_FORMAT_R10G10B10A2_SSCALED, R10G10B10A2_SSCALED},
442 {PIPE_FORMAT_R10G10B10A2_UINT, R10G10B10A2_UINT},
443
444 /* rgb10x2 */
445 {PIPE_FORMAT_R10G10B10X2_USCALED, R10G10B10X2_USCALED},
446
447 /* bgr10a2 */
448 {PIPE_FORMAT_B10G10R10A2_UNORM, B10G10R10A2_UNORM},
449 {PIPE_FORMAT_B10G10R10A2_SNORM, B10G10R10A2_SNORM},
450 {PIPE_FORMAT_B10G10R10A2_USCALED, B10G10R10A2_USCALED},
451 {PIPE_FORMAT_B10G10R10A2_SSCALED, B10G10R10A2_SSCALED},
452 {PIPE_FORMAT_B10G10R10A2_UINT, B10G10R10A2_UINT},
453
454 /* bgr10x2 */
455 {PIPE_FORMAT_B10G10R10X2_UNORM, B10G10R10X2_UNORM},
456
457 /* r11g11b10 */
458 {PIPE_FORMAT_R11G11B10_FLOAT, R11G11B10_FLOAT},
459
460 /* 32 bits per component */
461 {PIPE_FORMAT_R32_FLOAT, R32_FLOAT},
462 {PIPE_FORMAT_R32G32_FLOAT, R32G32_FLOAT},
463 {PIPE_FORMAT_R32G32B32_FLOAT, R32G32B32_FLOAT},
464 {PIPE_FORMAT_R32G32B32A32_FLOAT, R32G32B32A32_FLOAT},
465 {PIPE_FORMAT_R32G32B32X32_FLOAT, R32G32B32X32_FLOAT},
466
467 {PIPE_FORMAT_R32_USCALED, R32_USCALED},
468 {PIPE_FORMAT_R32G32_USCALED, R32G32_USCALED},
469 {PIPE_FORMAT_R32G32B32_USCALED, R32G32B32_USCALED},
470 {PIPE_FORMAT_R32G32B32A32_USCALED, R32G32B32A32_USCALED},
471
472 {PIPE_FORMAT_R32_SSCALED, R32_SSCALED},
473 {PIPE_FORMAT_R32G32_SSCALED, R32G32_SSCALED},
474 {PIPE_FORMAT_R32G32B32_SSCALED, R32G32B32_SSCALED},
475 {PIPE_FORMAT_R32G32B32A32_SSCALED, R32G32B32A32_SSCALED},
476
477 {PIPE_FORMAT_R32_UINT, R32_UINT},
478 {PIPE_FORMAT_R32G32_UINT, R32G32_UINT},
479 {PIPE_FORMAT_R32G32B32_UINT, R32G32B32_UINT},
480 {PIPE_FORMAT_R32G32B32A32_UINT, R32G32B32A32_UINT},
481
482 {PIPE_FORMAT_R32_SINT, R32_SINT},
483 {PIPE_FORMAT_R32G32_SINT, R32G32_SINT},
484 {PIPE_FORMAT_R32G32B32_SINT, R32G32B32_SINT},
485 {PIPE_FORMAT_R32G32B32A32_SINT, R32G32B32A32_SINT},
486
487 /* 16 bits per component */
488 {PIPE_FORMAT_R16_UNORM, R16_UNORM},
489 {PIPE_FORMAT_R16G16_UNORM, R16G16_UNORM},
490 {PIPE_FORMAT_R16G16B16_UNORM, R16G16B16_UNORM},
491 {PIPE_FORMAT_R16G16B16A16_UNORM, R16G16B16A16_UNORM},
492 {PIPE_FORMAT_R16G16B16X16_UNORM, R16G16B16X16_UNORM},
493
494 {PIPE_FORMAT_R16_USCALED, R16_USCALED},
495 {PIPE_FORMAT_R16G16_USCALED, R16G16_USCALED},
496 {PIPE_FORMAT_R16G16B16_USCALED, R16G16B16_USCALED},
497 {PIPE_FORMAT_R16G16B16A16_USCALED, R16G16B16A16_USCALED},
498
499 {PIPE_FORMAT_R16_SNORM, R16_SNORM},
500 {PIPE_FORMAT_R16G16_SNORM, R16G16_SNORM},
501 {PIPE_FORMAT_R16G16B16_SNORM, R16G16B16_SNORM},
502 {PIPE_FORMAT_R16G16B16A16_SNORM, R16G16B16A16_SNORM},
503
504 {PIPE_FORMAT_R16_SSCALED, R16_SSCALED},
505 {PIPE_FORMAT_R16G16_SSCALED, R16G16_SSCALED},
506 {PIPE_FORMAT_R16G16B16_SSCALED, R16G16B16_SSCALED},
507 {PIPE_FORMAT_R16G16B16A16_SSCALED, R16G16B16A16_SSCALED},
508
509 {PIPE_FORMAT_R16_UINT, R16_UINT},
510 {PIPE_FORMAT_R16G16_UINT, R16G16_UINT},
511 {PIPE_FORMAT_R16G16B16_UINT, R16G16B16_UINT},
512 {PIPE_FORMAT_R16G16B16A16_UINT, R16G16B16A16_UINT},
513
514 {PIPE_FORMAT_R16_SINT, R16_SINT},
515 {PIPE_FORMAT_R16G16_SINT, R16G16_SINT},
516 {PIPE_FORMAT_R16G16B16_SINT, R16G16B16_SINT},
517 {PIPE_FORMAT_R16G16B16A16_SINT, R16G16B16A16_SINT},
518
519 {PIPE_FORMAT_R16_FLOAT, R16_FLOAT},
520 {PIPE_FORMAT_R16G16_FLOAT, R16G16_FLOAT},
521 {PIPE_FORMAT_R16G16B16_FLOAT, R16G16B16_FLOAT},
522 {PIPE_FORMAT_R16G16B16A16_FLOAT, R16G16B16A16_FLOAT},
523 {PIPE_FORMAT_R16G16B16X16_FLOAT, R16G16B16X16_FLOAT},
524
525 /* 8 bits per component */
526 {PIPE_FORMAT_R8_UNORM, R8_UNORM},
527 {PIPE_FORMAT_R8G8_UNORM, R8G8_UNORM},
528 {PIPE_FORMAT_R8G8B8_UNORM, R8G8B8_UNORM},
529 {PIPE_FORMAT_R8G8B8_SRGB, R8G8B8_UNORM_SRGB},
530 {PIPE_FORMAT_R8G8B8A8_UNORM, R8G8B8A8_UNORM},
531 {PIPE_FORMAT_R8G8B8A8_SRGB, R8G8B8A8_UNORM_SRGB},
532 {PIPE_FORMAT_R8G8B8X8_UNORM, R8G8B8X8_UNORM},
533 {PIPE_FORMAT_R8G8B8X8_SRGB, R8G8B8X8_UNORM_SRGB},
534
535 {PIPE_FORMAT_R8_USCALED, R8_USCALED},
536 {PIPE_FORMAT_R8G8_USCALED, R8G8_USCALED},
537 {PIPE_FORMAT_R8G8B8_USCALED, R8G8B8_USCALED},
538 {PIPE_FORMAT_R8G8B8A8_USCALED, R8G8B8A8_USCALED},
539
540 {PIPE_FORMAT_R8_SNORM, R8_SNORM},
541 {PIPE_FORMAT_R8G8_SNORM, R8G8_SNORM},
542 {PIPE_FORMAT_R8G8B8_SNORM, R8G8B8_SNORM},
543 {PIPE_FORMAT_R8G8B8A8_SNORM, R8G8B8A8_SNORM},
544
545 {PIPE_FORMAT_R8_SSCALED, R8_SSCALED},
546 {PIPE_FORMAT_R8G8_SSCALED, R8G8_SSCALED},
547 {PIPE_FORMAT_R8G8B8_SSCALED, R8G8B8_SSCALED},
548 {PIPE_FORMAT_R8G8B8A8_SSCALED, R8G8B8A8_SSCALED},
549
550 {PIPE_FORMAT_R8_UINT, R8_UINT},
551 {PIPE_FORMAT_R8G8_UINT, R8G8_UINT},
552 {PIPE_FORMAT_R8G8B8_UINT, R8G8B8_UINT},
553 {PIPE_FORMAT_R8G8B8A8_UINT, R8G8B8A8_UINT},
554
555 {PIPE_FORMAT_R8_SINT, R8_SINT},
556 {PIPE_FORMAT_R8G8_SINT, R8G8_SINT},
557 {PIPE_FORMAT_R8G8B8_SINT, R8G8B8_SINT},
558 {PIPE_FORMAT_R8G8B8A8_SINT, R8G8B8A8_SINT},
559
560 /* These formats are valid for vertex data, but should not be used
561 * for render targets.
562 */
563
564 {PIPE_FORMAT_R32_FIXED, R32_SFIXED},
565 {PIPE_FORMAT_R32G32_FIXED, R32G32_SFIXED},
566 {PIPE_FORMAT_R32G32B32_FIXED, R32G32B32_SFIXED},
567 {PIPE_FORMAT_R32G32B32A32_FIXED, R32G32B32A32_SFIXED},
568
569 {PIPE_FORMAT_R64_FLOAT, R64_FLOAT},
570 {PIPE_FORMAT_R64G64_FLOAT, R64G64_FLOAT},
571 {PIPE_FORMAT_R64G64B64_FLOAT, R64G64B64_FLOAT},
572 {PIPE_FORMAT_R64G64B64A64_FLOAT, R64G64B64A64_FLOAT},
573
574 /* These formats have entries in SWR but don't have Load/StoreTile
575 * implementations. That means these aren't renderable, and thus having
576 * a mapping entry here is detrimental.
577 */
578 /*
579
580 {PIPE_FORMAT_L8_UNORM, L8_UNORM},
581 {PIPE_FORMAT_I8_UNORM, I8_UNORM},
582 {PIPE_FORMAT_L8A8_UNORM, L8A8_UNORM},
583 {PIPE_FORMAT_L16_UNORM, L16_UNORM},
584 {PIPE_FORMAT_UYVY, YCRCB_SWAPUVY},
585
586 {PIPE_FORMAT_L8_SRGB, L8_UNORM_SRGB},
587 {PIPE_FORMAT_L8A8_SRGB, L8A8_UNORM_SRGB},
588
589 {PIPE_FORMAT_DXT1_RGBA, BC1_UNORM},
590 {PIPE_FORMAT_DXT3_RGBA, BC2_UNORM},
591 {PIPE_FORMAT_DXT5_RGBA, BC3_UNORM},
592
593 {PIPE_FORMAT_DXT1_SRGBA, BC1_UNORM_SRGB},
594 {PIPE_FORMAT_DXT3_SRGBA, BC2_UNORM_SRGB},
595 {PIPE_FORMAT_DXT5_SRGBA, BC3_UNORM_SRGB},
596
597 {PIPE_FORMAT_RGTC1_UNORM, BC4_UNORM},
598 {PIPE_FORMAT_RGTC1_SNORM, BC4_SNORM},
599 {PIPE_FORMAT_RGTC2_UNORM, BC5_UNORM},
600 {PIPE_FORMAT_RGTC2_SNORM, BC5_SNORM},
601
602 {PIPE_FORMAT_L16A16_UNORM, L16A16_UNORM},
603 {PIPE_FORMAT_I16_UNORM, I16_UNORM},
604 {PIPE_FORMAT_L16_FLOAT, L16_FLOAT},
605 {PIPE_FORMAT_L16A16_FLOAT, L16A16_FLOAT},
606 {PIPE_FORMAT_I16_FLOAT, I16_FLOAT},
607 {PIPE_FORMAT_L32_FLOAT, L32_FLOAT},
608 {PIPE_FORMAT_L32A32_FLOAT, L32A32_FLOAT},
609 {PIPE_FORMAT_I32_FLOAT, I32_FLOAT},
610
611 {PIPE_FORMAT_I8_UINT, I8_UINT},
612 {PIPE_FORMAT_L8_UINT, L8_UINT},
613 {PIPE_FORMAT_L8A8_UINT, L8A8_UINT},
614
615 {PIPE_FORMAT_I8_SINT, I8_SINT},
616 {PIPE_FORMAT_L8_SINT, L8_SINT},
617 {PIPE_FORMAT_L8A8_SINT, L8A8_SINT},
618
619 */
620 };
621
622 auto it = mesa2swr.find(format);
623 if (it == mesa2swr.end())
624 return (SWR_FORMAT)-1;
625 else
626 return it->second;
627 }
628
629 static boolean
630 swr_displaytarget_layout(struct swr_screen *screen, struct swr_resource *res)
631 {
632 struct sw_winsys *winsys = screen->winsys;
633 struct sw_displaytarget *dt;
634
635 const unsigned width = align(res->swr.width, res->swr.halign);
636 const unsigned height = align(res->swr.height, res->swr.valign);
637
638 UINT stride;
639 dt = winsys->displaytarget_create(winsys,
640 res->base.bind,
641 res->base.format,
642 width, height,
643 64, NULL,
644 &stride);
645
646 if (dt == NULL)
647 return FALSE;
648
649 void *map = winsys->displaytarget_map(winsys, dt, 0);
650
651 res->display_target = dt;
652 res->swr.pBaseAddress = (uint8_t*) map;
653
654 /* Clear the display target surface */
655 if (map)
656 memset(map, 0, height * stride);
657
658 winsys->displaytarget_unmap(winsys, dt);
659
660 return TRUE;
661 }
662
663 static bool
664 swr_texture_layout(struct swr_screen *screen,
665 struct swr_resource *res,
666 boolean allocate)
667 {
668 struct pipe_resource *pt = &res->base;
669
670 pipe_format fmt = pt->format;
671 const struct util_format_description *desc = util_format_description(fmt);
672
673 res->has_depth = util_format_has_depth(desc);
674 res->has_stencil = util_format_has_stencil(desc);
675
676 if (res->has_stencil && !res->has_depth)
677 fmt = PIPE_FORMAT_R8_UINT;
678
679 /* We always use the SWR layout. For 2D and 3D textures this looks like:
680 *
681 * |<------- pitch ------->|
682 * +=======================+-------
683 * |Array 0 | ^
684 * | | |
685 * | Level 0 | |
686 * | | |
687 * | | qpitch
688 * +-----------+-----------+ |
689 * | | L2L2L2L2 | |
690 * | Level 1 | L3L3 | |
691 * | | L4 | v
692 * +===========+===========+-------
693 * |Array 1 |
694 * | |
695 * | Level 0 |
696 * | |
697 * | |
698 * +-----------+-----------+
699 * | | L2L2L2L2 |
700 * | Level 1 | L3L3 |
701 * | | L4 |
702 * +===========+===========+
703 *
704 * The overall width in bytes is known as the pitch, while the overall
705 * height in rows is the qpitch. Array slices are laid out logically below
706 * one another, qpitch rows apart. For 3D surfaces, the "level" values are
707 * just invalid for the higher array numbers (since depth is also
708 * minified). 1D and 1D array surfaces are stored effectively the same way,
709 * except that pitch never plays into it. All the levels are logically
710 * adjacent to each other on the X axis. The qpitch becomes the number of
711 * elements between array slices, while the pitch is unused.
712 *
713 * Each level's sizes are subject to the valign and halign settings of the
714 * surface. For compressed formats that swr is unaware of, we will use an
715 * appropriately-sized uncompressed format, and scale the widths/heights.
716 *
717 * This surface is stored inside res->swr. For depth/stencil textures,
718 * res->secondary will have an identically-laid-out but R8_UINT-formatted
719 * stencil tree. In the Z32F_S8 case, the primary surface still has 64-bpp
720 * texels, to simplify map/unmap logic which copies the stencil values
721 * in/out.
722 */
723
724 res->swr.width = pt->width0;
725 res->swr.height = pt->height0;
726 res->swr.type = swr_convert_target_type(pt->target);
727 res->swr.tileMode = SWR_TILE_NONE;
728 res->swr.format = mesa_to_swr_format(fmt);
729 res->swr.numSamples = std::max(1u, pt->nr_samples);
730
731 if (pt->bind & (PIPE_BIND_RENDER_TARGET | PIPE_BIND_DEPTH_STENCIL)) {
732 res->swr.halign = KNOB_MACROTILE_X_DIM;
733 res->swr.valign = KNOB_MACROTILE_Y_DIM;
734
735 /* If SWR_MSAA_FORCE_ENABLE is set, turn on MSAA and override requested
736 * surface sample count. */
737 if (screen->msaa_force_enable) {
738 res->swr.numSamples = screen->msaa_max_count;
739 fprintf(stderr,"swr_texture_layout: forcing sample count: %d\n",
740 res->swr.numSamples);
741 }
742 } else {
743 res->swr.halign = 1;
744 res->swr.valign = 1;
745 }
746
747 unsigned halign = res->swr.halign * util_format_get_blockwidth(fmt);
748 unsigned width = align(pt->width0, halign);
749 if (pt->target == PIPE_TEXTURE_1D || pt->target == PIPE_TEXTURE_1D_ARRAY) {
750 for (int level = 1; level <= pt->last_level; level++)
751 width += align(u_minify(pt->width0, level), halign);
752 res->swr.pitch = util_format_get_blocksize(fmt);
753 res->swr.qpitch = util_format_get_nblocksx(fmt, width);
754 } else {
755 // The pitch is the overall width of the texture in bytes. Most of the
756 // time this is the pitch of level 0 since all the other levels fit
757 // underneath it. However in some degenerate situations, the width of
758 // level1 + level2 may be larger. In that case, we use those
759 // widths. This can happen if, e.g. halign is 32, and the width of level
760 // 0 is 32 or less. In that case, the aligned levels 1 and 2 will also
761 // be 32 each, adding up to 64.
762 unsigned valign = res->swr.valign * util_format_get_blockheight(fmt);
763 if (pt->last_level > 1) {
764 width = std::max<uint32_t>(
765 width,
766 align(u_minify(pt->width0, 1), halign) +
767 align(u_minify(pt->width0, 2), halign));
768 }
769 res->swr.pitch = util_format_get_stride(fmt, width);
770
771 // The qpitch is controlled by either the height of the second LOD, or
772 // the combination of all the later LODs.
773 unsigned height = align(pt->height0, valign);
774 if (pt->last_level == 1) {
775 height += align(u_minify(pt->height0, 1), valign);
776 } else if (pt->last_level > 1) {
777 unsigned level1 = align(u_minify(pt->height0, 1), valign);
778 unsigned level2 = 0;
779 for (int level = 2; level <= pt->last_level; level++) {
780 level2 += align(u_minify(pt->height0, level), valign);
781 }
782 height += std::max(level1, level2);
783 }
784 res->swr.qpitch = util_format_get_nblocksy(fmt, height);
785 }
786
787 if (pt->target == PIPE_TEXTURE_3D)
788 res->swr.depth = pt->depth0;
789 else
790 res->swr.depth = pt->array_size;
791
792 // Fix up swr format if necessary so that LOD offset computation works
793 if (res->swr.format == (SWR_FORMAT)-1) {
794 switch (util_format_get_blocksize(fmt)) {
795 default:
796 unreachable("Unexpected format block size");
797 case 1: res->swr.format = R8_UINT; break;
798 case 2: res->swr.format = R16_UINT; break;
799 case 4: res->swr.format = R32_UINT; break;
800 case 8:
801 if (util_format_is_compressed(fmt))
802 res->swr.format = BC4_UNORM;
803 else
804 res->swr.format = R32G32_UINT;
805 break;
806 case 16:
807 if (util_format_is_compressed(fmt))
808 res->swr.format = BC5_UNORM;
809 else
810 res->swr.format = R32G32B32A32_UINT;
811 break;
812 }
813 }
814
815 for (int level = 0; level <= pt->last_level; level++) {
816 res->mip_offsets[level] =
817 ComputeSurfaceOffset<false>(0, 0, 0, 0, 0, level, &res->swr);
818 }
819
820 size_t total_size = res->swr.depth * res->swr.qpitch * res->swr.pitch *
821 res->swr.numSamples;
822 if (total_size > SWR_MAX_TEXTURE_SIZE)
823 return false;
824
825 if (allocate) {
826 res->swr.pBaseAddress = (uint8_t *)AlignedMalloc(total_size, 64);
827
828 if (res->has_depth && res->has_stencil) {
829 res->secondary = res->swr;
830 res->secondary.format = R8_UINT;
831 res->secondary.pitch = res->swr.pitch / util_format_get_blocksize(fmt);
832
833 for (int level = 0; level <= pt->last_level; level++) {
834 res->secondary_mip_offsets[level] =
835 ComputeSurfaceOffset<false>(0, 0, 0, 0, 0, level, &res->secondary);
836 }
837
838 total_size = res->secondary.depth * res->secondary.qpitch *
839 res->secondary.pitch * res->secondary.numSamples;
840
841 res->secondary.pBaseAddress = (uint8_t *) AlignedMalloc(total_size,
842 64);
843 }
844 }
845
846 return true;
847 }
848
849 static boolean
850 swr_can_create_resource(struct pipe_screen *screen,
851 const struct pipe_resource *templat)
852 {
853 struct swr_resource res;
854 memset(&res, 0, sizeof(res));
855 res.base = *templat;
856 return swr_texture_layout(swr_screen(screen), &res, false);
857 }
858
859 /* Helper function that conditionally creates a single-sample resolve resource
860 * and attaches it to main multisample resource. */
861 static boolean
862 swr_create_resolve_resource(struct pipe_screen *_screen,
863 struct swr_resource *msaa_res)
864 {
865 struct swr_screen *screen = swr_screen(_screen);
866
867 /* If resource is multisample, create a single-sample resolve resource */
868 if (msaa_res->base.nr_samples > 1 || (screen->msaa_force_enable &&
869 !(msaa_res->base.flags & SWR_RESOURCE_FLAG_ALT_SURFACE))) {
870
871 /* Create a single-sample copy of the resource. Copy the original
872 * resource parameters and set flag to prevent recursion when re-calling
873 * resource_create */
874 struct pipe_resource alt_template = msaa_res->base;
875 alt_template.nr_samples = 0;
876 alt_template.flags |= SWR_RESOURCE_FLAG_ALT_SURFACE;
877
878 /* Note: Display_target is a special single-sample resource, only the
879 * display_target has been created already. */
880 if (msaa_res->base.bind & (PIPE_BIND_DISPLAY_TARGET | PIPE_BIND_SCANOUT
881 | PIPE_BIND_SHARED)) {
882 /* Allocate the multisample buffers. */
883 if (!swr_texture_layout(screen, msaa_res, true))
884 return false;
885
886 /* Alt resource will only be bound as PIPE_BIND_RENDER_TARGET
887 * remove the DISPLAY_TARGET, SCANOUT, and SHARED bindings */
888 alt_template.bind = PIPE_BIND_RENDER_TARGET;
889 }
890
891 /* Allocate single-sample resolve surface */
892 struct pipe_resource *alt;
893 alt = _screen->resource_create(_screen, &alt_template);
894 if (!alt)
895 return false;
896
897 /* Attach it to the multisample resource */
898 msaa_res->resolve_target = alt;
899
900 /* Hang resolve surface state off the multisample surface state to so
901 * StoreTiles knows where to resolve the surface. */
902 msaa_res->swr.pAuxBaseAddress = (uint8_t *)&swr_resource(alt)->swr;
903 }
904
905 return true; /* success */
906 }
907
908 static struct pipe_resource *
909 swr_resource_create(struct pipe_screen *_screen,
910 const struct pipe_resource *templat)
911 {
912 struct swr_screen *screen = swr_screen(_screen);
913 struct swr_resource *res = CALLOC_STRUCT(swr_resource);
914 if (!res)
915 return NULL;
916
917 res->base = *templat;
918 pipe_reference_init(&res->base.reference, 1);
919 res->base.screen = &screen->base;
920
921 if (swr_resource_is_texture(&res->base)) {
922 if (res->base.bind & (PIPE_BIND_DISPLAY_TARGET | PIPE_BIND_SCANOUT
923 | PIPE_BIND_SHARED)) {
924 /* displayable surface
925 * first call swr_texture_layout without allocating to finish
926 * filling out the SWR_SURFACE_STATE in res */
927 swr_texture_layout(screen, res, false);
928 if (!swr_displaytarget_layout(screen, res))
929 goto fail;
930 } else {
931 /* texture map */
932 if (!swr_texture_layout(screen, res, true))
933 goto fail;
934 }
935
936 /* If resource was multisample, create resolve resource and attach
937 * it to multisample resource. */
938 if (!swr_create_resolve_resource(_screen, res))
939 goto fail;
940
941 } else {
942 /* other data (vertex buffer, const buffer, etc) */
943 assert(util_format_get_blocksize(templat->format) == 1);
944 assert(templat->height0 == 1);
945 assert(templat->depth0 == 1);
946 assert(templat->last_level == 0);
947
948 /* Easiest to just call swr_texture_layout, as it sets up
949 * SWR_SURFACE_STATE in res */
950 if (!swr_texture_layout(screen, res, true))
951 goto fail;
952 }
953
954 return &res->base;
955
956 fail:
957 FREE(res);
958 return NULL;
959 }
960
961 static void
962 swr_resource_destroy(struct pipe_screen *p_screen, struct pipe_resource *pt)
963 {
964 struct swr_screen *screen = swr_screen(p_screen);
965 struct swr_resource *spr = swr_resource(pt);
966
967 if (spr->display_target) {
968 /* If resource is display target, winsys manages the buffer and will
969 * free it on displaytarget_destroy. */
970 swr_fence_finish(p_screen, NULL, screen->flush_fence, 0);
971
972 struct sw_winsys *winsys = screen->winsys;
973 winsys->displaytarget_destroy(winsys, spr->display_target);
974
975 if (spr->swr.numSamples > 1) {
976 /* Free an attached resolve resource */
977 struct swr_resource *alt = swr_resource(spr->resolve_target);
978 swr_fence_work_free(screen->flush_fence, alt->swr.pBaseAddress, true);
979
980 /* Free multisample buffer */
981 swr_fence_work_free(screen->flush_fence, spr->swr.pBaseAddress, true);
982 }
983 } else {
984 /* For regular resources, defer deletion */
985 swr_resource_unused(pt);
986
987 if (spr->swr.numSamples > 1) {
988 /* Free an attached resolve resource */
989 struct swr_resource *alt = swr_resource(spr->resolve_target);
990 swr_fence_work_free(screen->flush_fence, alt->swr.pBaseAddress, true);
991 }
992
993 swr_fence_work_free(screen->flush_fence, spr->swr.pBaseAddress, true);
994 swr_fence_work_free(screen->flush_fence,
995 spr->secondary.pBaseAddress, true);
996
997 /* If work queue grows too large, submit a fence to force queue to
998 * drain. This is mainly to decrease the amount of memory used by the
999 * piglit streaming-texture-leak test */
1000 if (screen->pipe && swr_fence(screen->flush_fence)->work.count > 64)
1001 swr_fence_submit(swr_context(screen->pipe), screen->flush_fence);
1002 }
1003
1004 FREE(spr);
1005 }
1006
1007
1008 static void
1009 swr_flush_frontbuffer(struct pipe_screen *p_screen,
1010 struct pipe_resource *resource,
1011 unsigned level,
1012 unsigned layer,
1013 void *context_private,
1014 struct pipe_box *sub_box)
1015 {
1016 struct swr_screen *screen = swr_screen(p_screen);
1017 struct sw_winsys *winsys = screen->winsys;
1018 struct swr_resource *spr = swr_resource(resource);
1019 struct pipe_context *pipe = screen->pipe;
1020 struct swr_context *ctx = swr_context(pipe);
1021
1022 if (pipe) {
1023 swr_fence_finish(p_screen, NULL, screen->flush_fence, 0);
1024 swr_resource_unused(resource);
1025 ctx->api.pfnSwrEndFrame(ctx->swrContext);
1026 }
1027
1028 /* Multisample resolved into resolve_target at flush with store_resource */
1029 if (pipe && spr->swr.numSamples > 1) {
1030 struct pipe_resource *resolve_target = spr->resolve_target;
1031
1032 /* Once resolved, copy into display target */
1033 SWR_SURFACE_STATE *resolve = &swr_resource(resolve_target)->swr;
1034
1035 void *map = winsys->displaytarget_map(winsys, spr->display_target,
1036 PIPE_TRANSFER_WRITE);
1037 memcpy(map, resolve->pBaseAddress, resolve->pitch * resolve->height);
1038 winsys->displaytarget_unmap(winsys, spr->display_target);
1039 }
1040
1041 debug_assert(spr->display_target);
1042 if (spr->display_target)
1043 winsys->displaytarget_display(
1044 winsys, spr->display_target, context_private, sub_box);
1045 }
1046
1047
1048 static void
1049 swr_destroy_screen(struct pipe_screen *p_screen)
1050 {
1051 struct swr_screen *screen = swr_screen(p_screen);
1052 struct sw_winsys *winsys = screen->winsys;
1053
1054 fprintf(stderr, "SWR destroy screen!\n");
1055
1056 swr_fence_finish(p_screen, NULL, screen->flush_fence, 0);
1057 swr_fence_reference(p_screen, &screen->flush_fence, NULL);
1058
1059 JitDestroyContext(screen->hJitMgr);
1060
1061 if (winsys->destroy)
1062 winsys->destroy(winsys);
1063
1064 FREE(screen);
1065 }
1066
1067
1068 static void
1069 swr_validate_env_options(struct swr_screen *screen)
1070 {
1071 /* The client_copy_limit sets a maximum on the amount of user-buffer memory
1072 * copied to scratch space on a draw. Past this, the draw will access
1073 * user-buffer directly and then block. This is faster than queuing many
1074 * large client draws. */
1075 screen->client_copy_limit = SWR_CLIENT_COPY_LIMIT;
1076 int client_copy_limit =
1077 debug_get_num_option("SWR_CLIENT_COPY_LIMIT", SWR_CLIENT_COPY_LIMIT);
1078 if (client_copy_limit > 0)
1079 screen->client_copy_limit = client_copy_limit;
1080
1081 /* XXX msaa under development, disable by default for now */
1082 screen->msaa_max_count = 1; /* was SWR_MAX_NUM_MULTISAMPLES; */
1083
1084 /* validate env override values, within range and power of 2 */
1085 int msaa_max_count = debug_get_num_option("SWR_MSAA_MAX_COUNT", 1);
1086 if (msaa_max_count != 1) {
1087 if ((msaa_max_count < 1) || (msaa_max_count > SWR_MAX_NUM_MULTISAMPLES)
1088 || !util_is_power_of_two(msaa_max_count)) {
1089 fprintf(stderr, "SWR_MSAA_MAX_COUNT invalid: %d\n", msaa_max_count);
1090 fprintf(stderr, "must be power of 2 between 1 and %d" \
1091 " (or 1 to disable msaa)\n",
1092 SWR_MAX_NUM_MULTISAMPLES);
1093 msaa_max_count = 1;
1094 }
1095
1096 fprintf(stderr, "SWR_MSAA_MAX_COUNT: %d\n", msaa_max_count);
1097 if (msaa_max_count == 1)
1098 fprintf(stderr, "(msaa disabled)\n");
1099
1100 screen->msaa_max_count = msaa_max_count;
1101 }
1102
1103 screen->msaa_force_enable = debug_get_bool_option(
1104 "SWR_MSAA_FORCE_ENABLE", false);
1105 if (screen->msaa_force_enable)
1106 fprintf(stderr, "SWR_MSAA_FORCE_ENABLE: true\n");
1107 }
1108
1109
1110 PUBLIC
1111 struct pipe_screen *
1112 swr_create_screen_internal(struct sw_winsys *winsys)
1113 {
1114 struct swr_screen *screen = CALLOC_STRUCT(swr_screen);
1115
1116 if (!screen)
1117 return NULL;
1118
1119 if (!lp_build_init()) {
1120 FREE(screen);
1121 return NULL;
1122 }
1123
1124 screen->winsys = winsys;
1125 screen->base.get_name = swr_get_name;
1126 screen->base.get_vendor = swr_get_vendor;
1127 screen->base.is_format_supported = swr_is_format_supported;
1128 screen->base.context_create = swr_create_context;
1129 screen->base.can_create_resource = swr_can_create_resource;
1130
1131 screen->base.destroy = swr_destroy_screen;
1132 screen->base.get_param = swr_get_param;
1133 screen->base.get_shader_param = swr_get_shader_param;
1134 screen->base.get_paramf = swr_get_paramf;
1135
1136 screen->base.resource_create = swr_resource_create;
1137 screen->base.resource_destroy = swr_resource_destroy;
1138
1139 screen->base.flush_frontbuffer = swr_flush_frontbuffer;
1140
1141 // Pass in "" for architecture for run-time determination
1142 screen->hJitMgr = JitCreateContext(KNOB_SIMD_WIDTH, "", "swr");
1143
1144 swr_fence_init(&screen->base);
1145
1146 util_format_s3tc_init();
1147
1148 swr_validate_env_options(screen);
1149
1150 return &screen->base;
1151 }
1152