swr/rast: Fix read-back of viewport array index
[mesa.git] / src / gallium / drivers / swr / swr_shader.cpp
1 /****************************************************************************
2 * Copyright (C) 2015 Intel Corporation. All Rights Reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 ***************************************************************************/
23
24 // llvm redefines DEBUG
25 #pragma push_macro("DEBUG")
26 #undef DEBUG
27 #include "JitManager.h"
28 #include "llvm-c/Core.h"
29 #include "llvm/Support/CBindingWrapping.h"
30 #pragma pop_macro("DEBUG")
31
32 #include "state.h"
33 #include "gen_state_llvm.h"
34 #include "builder.h"
35
36 #include "tgsi/tgsi_strings.h"
37 #include "util/u_format.h"
38 #include "util/u_prim.h"
39 #include "gallivm/lp_bld_init.h"
40 #include "gallivm/lp_bld_flow.h"
41 #include "gallivm/lp_bld_struct.h"
42 #include "gallivm/lp_bld_tgsi.h"
43
44 #include "swr_context.h"
45 #include "gen_swr_context_llvm.h"
46 #include "swr_resource.h"
47 #include "swr_state.h"
48 #include "swr_screen.h"
49
50 using namespace SwrJit;
51 using namespace llvm;
52
53 static unsigned
54 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info);
55
56 bool operator==(const swr_jit_fs_key &lhs, const swr_jit_fs_key &rhs)
57 {
58 return !memcmp(&lhs, &rhs, sizeof(lhs));
59 }
60
61 bool operator==(const swr_jit_vs_key &lhs, const swr_jit_vs_key &rhs)
62 {
63 return !memcmp(&lhs, &rhs, sizeof(lhs));
64 }
65
66 bool operator==(const swr_jit_fetch_key &lhs, const swr_jit_fetch_key &rhs)
67 {
68 return !memcmp(&lhs, &rhs, sizeof(lhs));
69 }
70
71 bool operator==(const swr_jit_gs_key &lhs, const swr_jit_gs_key &rhs)
72 {
73 return !memcmp(&lhs, &rhs, sizeof(lhs));
74 }
75
76 static void
77 swr_generate_sampler_key(const struct lp_tgsi_info &info,
78 struct swr_context *ctx,
79 enum pipe_shader_type shader_type,
80 struct swr_jit_sampler_key &key)
81 {
82 key.nr_samplers = info.base.file_max[TGSI_FILE_SAMPLER] + 1;
83
84 for (unsigned i = 0; i < key.nr_samplers; i++) {
85 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
86 lp_sampler_static_sampler_state(
87 &key.sampler[i].sampler_state,
88 ctx->samplers[shader_type][i]);
89 }
90 }
91
92 /*
93 * XXX If TGSI_FILE_SAMPLER_VIEW exists assume all texture opcodes
94 * are dx10-style? Can't really have mixed opcodes, at least not
95 * if we want to skip the holes here (without rescanning tgsi).
96 */
97 if (info.base.file_max[TGSI_FILE_SAMPLER_VIEW] != -1) {
98 key.nr_sampler_views =
99 info.base.file_max[TGSI_FILE_SAMPLER_VIEW] + 1;
100 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
101 if (info.base.file_mask[TGSI_FILE_SAMPLER_VIEW] & (1 << i)) {
102 const struct pipe_sampler_view *view =
103 ctx->sampler_views[shader_type][i];
104 lp_sampler_static_texture_state(
105 &key.sampler[i].texture_state, view);
106 if (view) {
107 struct swr_resource *swr_res = swr_resource(view->texture);
108 const struct util_format_description *desc =
109 util_format_description(view->format);
110 if (swr_res->has_depth && swr_res->has_stencil &&
111 !util_format_has_depth(desc))
112 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
113 }
114 }
115 }
116 } else {
117 key.nr_sampler_views = key.nr_samplers;
118 for (unsigned i = 0; i < key.nr_sampler_views; i++) {
119 if (info.base.file_mask[TGSI_FILE_SAMPLER] & (1 << i)) {
120 const struct pipe_sampler_view *view =
121 ctx->sampler_views[shader_type][i];
122 lp_sampler_static_texture_state(
123 &key.sampler[i].texture_state, view);
124 if (view) {
125 struct swr_resource *swr_res = swr_resource(view->texture);
126 const struct util_format_description *desc =
127 util_format_description(view->format);
128 if (swr_res->has_depth && swr_res->has_stencil &&
129 !util_format_has_depth(desc))
130 key.sampler[i].texture_state.format = PIPE_FORMAT_S8_UINT;
131 }
132 }
133 }
134 }
135 }
136
137 void
138 swr_generate_fs_key(struct swr_jit_fs_key &key,
139 struct swr_context *ctx,
140 swr_fragment_shader *swr_fs)
141 {
142 memset(&key, 0, sizeof(key));
143
144 key.nr_cbufs = ctx->framebuffer.nr_cbufs;
145 key.light_twoside = ctx->rasterizer->light_twoside;
146 key.sprite_coord_enable = ctx->rasterizer->sprite_coord_enable;
147
148 struct tgsi_shader_info *pPrevShader;
149 if (ctx->gs)
150 pPrevShader = &ctx->gs->info.base;
151 else
152 pPrevShader = &ctx->vs->info.base;
153
154 memcpy(&key.vs_output_semantic_name,
155 &pPrevShader->output_semantic_name,
156 sizeof(key.vs_output_semantic_name));
157 memcpy(&key.vs_output_semantic_idx,
158 &pPrevShader->output_semantic_index,
159 sizeof(key.vs_output_semantic_idx));
160
161 swr_generate_sampler_key(swr_fs->info, ctx, PIPE_SHADER_FRAGMENT, key);
162
163 key.poly_stipple_enable = ctx->rasterizer->poly_stipple_enable &&
164 ctx->poly_stipple.prim_is_poly;
165 }
166
167 void
168 swr_generate_vs_key(struct swr_jit_vs_key &key,
169 struct swr_context *ctx,
170 swr_vertex_shader *swr_vs)
171 {
172 memset(&key, 0, sizeof(key));
173
174 key.clip_plane_mask =
175 swr_vs->info.base.clipdist_writemask ?
176 swr_vs->info.base.clipdist_writemask & ctx->rasterizer->clip_plane_enable :
177 ctx->rasterizer->clip_plane_enable;
178
179 swr_generate_sampler_key(swr_vs->info, ctx, PIPE_SHADER_VERTEX, key);
180 }
181
182 void
183 swr_generate_fetch_key(struct swr_jit_fetch_key &key,
184 struct swr_vertex_element_state *velems)
185 {
186 memset(&key, 0, sizeof(key));
187
188 key.fsState = velems->fsState;
189 }
190
191 void
192 swr_generate_gs_key(struct swr_jit_gs_key &key,
193 struct swr_context *ctx,
194 swr_geometry_shader *swr_gs)
195 {
196 memset(&key, 0, sizeof(key));
197
198 struct tgsi_shader_info *pPrevShader = &ctx->vs->info.base;
199
200 memcpy(&key.vs_output_semantic_name,
201 &pPrevShader->output_semantic_name,
202 sizeof(key.vs_output_semantic_name));
203 memcpy(&key.vs_output_semantic_idx,
204 &pPrevShader->output_semantic_index,
205 sizeof(key.vs_output_semantic_idx));
206
207 swr_generate_sampler_key(swr_gs->info, ctx, PIPE_SHADER_GEOMETRY, key);
208 }
209
210 struct BuilderSWR : public Builder {
211 BuilderSWR(JitManager *pJitMgr, const char *pName)
212 : Builder(pJitMgr)
213 {
214 pJitMgr->SetupNewModule();
215 gallivm = gallivm_create(pName, wrap(&JM()->mContext));
216 pJitMgr->mpCurrentModule = unwrap(gallivm->module);
217 }
218
219 ~BuilderSWR() {
220 gallivm_free_ir(gallivm);
221 }
222
223 void WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput,
224 unsigned slot, unsigned channel);
225
226 struct gallivm_state *gallivm;
227 PFN_VERTEX_FUNC CompileVS(struct swr_context *ctx, swr_jit_vs_key &key);
228 PFN_PIXEL_KERNEL CompileFS(struct swr_context *ctx, swr_jit_fs_key &key);
229 PFN_GS_FUNC CompileGS(struct swr_context *ctx, swr_jit_gs_key &key);
230
231 LLVMValueRef
232 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
233 struct lp_build_tgsi_context * bld_base,
234 boolean is_vindex_indirect,
235 LLVMValueRef vertex_index,
236 boolean is_aindex_indirect,
237 LLVMValueRef attrib_index,
238 LLVMValueRef swizzle_index);
239 void
240 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
241 struct lp_build_tgsi_context * bld_base,
242 LLVMValueRef (*outputs)[4],
243 LLVMValueRef emitted_vertices_vec);
244
245 void
246 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
247 struct lp_build_tgsi_context * bld_base,
248 LLVMValueRef verts_per_prim_vec,
249 LLVMValueRef emitted_prims_vec);
250
251 void
252 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
253 struct lp_build_tgsi_context * bld_base,
254 LLVMValueRef total_emitted_vertices_vec,
255 LLVMValueRef emitted_prims_vec);
256
257 };
258
259 struct swr_gs_llvm_iface {
260 struct lp_build_tgsi_gs_iface base;
261 struct tgsi_shader_info *info;
262
263 BuilderSWR *pBuilder;
264
265 Value *pGsCtx;
266 SWR_GS_STATE *pGsState;
267 uint32_t num_outputs;
268 uint32_t num_verts_per_prim;
269
270 Value *pVtxAttribMap;
271 };
272
273 // trampoline functions so we can use the builder llvm construction methods
274 static LLVMValueRef
275 swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
276 struct lp_build_tgsi_context * bld_base,
277 boolean is_vindex_indirect,
278 LLVMValueRef vertex_index,
279 boolean is_aindex_indirect,
280 LLVMValueRef attrib_index,
281 LLVMValueRef swizzle_index)
282 {
283 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
284
285 return iface->pBuilder->swr_gs_llvm_fetch_input(gs_iface, bld_base,
286 is_vindex_indirect,
287 vertex_index,
288 is_aindex_indirect,
289 attrib_index,
290 swizzle_index);
291 }
292
293 static void
294 swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
295 struct lp_build_tgsi_context * bld_base,
296 LLVMValueRef (*outputs)[4],
297 LLVMValueRef emitted_vertices_vec)
298 {
299 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
300
301 iface->pBuilder->swr_gs_llvm_emit_vertex(gs_base, bld_base,
302 outputs,
303 emitted_vertices_vec);
304 }
305
306 static void
307 swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
308 struct lp_build_tgsi_context * bld_base,
309 LLVMValueRef verts_per_prim_vec,
310 LLVMValueRef emitted_prims_vec)
311 {
312 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
313
314 iface->pBuilder->swr_gs_llvm_end_primitive(gs_base, bld_base,
315 verts_per_prim_vec,
316 emitted_prims_vec);
317 }
318
319 static void
320 swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
321 struct lp_build_tgsi_context * bld_base,
322 LLVMValueRef total_emitted_vertices_vec,
323 LLVMValueRef emitted_prims_vec)
324 {
325 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
326
327 iface->pBuilder->swr_gs_llvm_epilogue(gs_base, bld_base,
328 total_emitted_vertices_vec,
329 emitted_prims_vec);
330 }
331
332 LLVMValueRef
333 BuilderSWR::swr_gs_llvm_fetch_input(const struct lp_build_tgsi_gs_iface *gs_iface,
334 struct lp_build_tgsi_context * bld_base,
335 boolean is_vindex_indirect,
336 LLVMValueRef vertex_index,
337 boolean is_aindex_indirect,
338 LLVMValueRef attrib_index,
339 LLVMValueRef swizzle_index)
340 {
341 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_iface;
342
343 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
344
345 assert(is_vindex_indirect == false && is_aindex_indirect == false);
346
347 Value *attrib =
348 LOAD(GEP(iface->pVtxAttribMap, {C(0), unwrap(attrib_index)}));
349
350 Value *pInput =
351 LOAD(GEP(iface->pGsCtx,
352 {C(0),
353 C(SWR_GS_CONTEXT_vert),
354 unwrap(vertex_index),
355 C(0),
356 attrib,
357 unwrap(swizzle_index)}));
358
359 return wrap(pInput);
360 }
361
362 void
363 BuilderSWR::swr_gs_llvm_emit_vertex(const struct lp_build_tgsi_gs_iface *gs_base,
364 struct lp_build_tgsi_context * bld_base,
365 LLVMValueRef (*outputs)[4],
366 LLVMValueRef emitted_vertices_vec)
367 {
368 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
369 SWR_GS_STATE *pGS = iface->pGsState;
370
371 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
372
373 #if USE_SIMD16_FRONTEND
374 const uint32_t simdVertexStride = sizeof(simdvertex) * 2;
375 const uint32_t numSimdBatches = (pGS->maxNumVerts + (mVWidth * 2) - 1) / (mVWidth * 2);
376 #else
377 const uint32_t simdVertexStride = sizeof(simdvertex);
378 const uint32_t numSimdBatches = (pGS->maxNumVerts + mVWidth - 1) / mVWidth;
379 #endif
380 const uint32_t inputPrimStride = numSimdBatches * simdVertexStride;
381
382 Value *pStream = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_pStream });
383 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
384 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
385
386 Value *vOffsets = C({
387 inputPrimStride * 0,
388 inputPrimStride * 1,
389 inputPrimStride * 2,
390 inputPrimStride * 3,
391 inputPrimStride * 4,
392 inputPrimStride * 5,
393 inputPrimStride * 6,
394 inputPrimStride * 7 } );
395
396 #if USE_SIMD16_FRONTEND
397 const uint32_t simdShift = log2(mVWidth * 2);
398 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), (mVWidth * 2) - 1);
399 #else
400 const uint32_t simdShift = log2(mVWidth);
401 Value *vSimdSlot = AND(unwrap(emitted_vertices_vec), mVWidth - 1);
402 #endif
403 Value *vVertexSlot = ASHR(unwrap(emitted_vertices_vec), simdShift);
404
405 for (uint32_t attrib = 0; attrib < iface->num_outputs; ++attrib) {
406 uint32_t attribSlot = attrib;
407 uint32_t sgvChannel = 0;
408 if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
409 attribSlot = VERTEX_SGV_SLOT;
410 sgvChannel = VERTEX_SGV_POINT_SIZE_COMP;
411 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_LAYER) {
412 attribSlot = VERTEX_SGV_SLOT;
413 sgvChannel = VERTEX_SGV_RTAI_COMP;
414 } else if (iface->info->output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
415 attribSlot = VERTEX_POSITION_SLOT;
416 } else {
417 attribSlot = VERTEX_ATTRIB_START_SLOT + attrib - 1;
418 }
419
420 #if USE_SIMD16_FRONTEND
421 Value *vOffsetsAttrib =
422 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex) * 2)));
423 vOffsetsAttrib =
424 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector) * 2)));
425 #else
426 Value *vOffsetsAttrib =
427 ADD(vOffsets, MUL(vVertexSlot, VIMMED1((uint32_t)sizeof(simdvertex))));
428 vOffsetsAttrib =
429 ADD(vOffsetsAttrib, VIMMED1((uint32_t)(attribSlot*sizeof(simdvector))));
430 #endif
431 vOffsetsAttrib =
432 ADD(vOffsetsAttrib, MUL(vSimdSlot, VIMMED1((uint32_t)sizeof(float))));
433
434 for (uint32_t channel = 0; channel < 4; ++channel) {
435 Value *vPtrs = GEP(pStream, vOffsetsAttrib);
436 Value *vData;
437
438 if (attribSlot == VERTEX_SGV_SLOT)
439 vData = LOAD(unwrap(outputs[attrib][0]));
440 else
441 vData = LOAD(unwrap(outputs[attrib][channel]));
442
443 if (attribSlot != VERTEX_SGV_SLOT ||
444 sgvChannel == channel) {
445 vPtrs = BITCAST(vPtrs,
446 VectorType::get(PointerType::get(mFP32Ty, 0), 8));
447
448 MASKED_SCATTER(vData, vPtrs, 32, vMask1);
449 }
450
451 #if USE_SIMD16_FRONTEND
452 vOffsetsAttrib =
453 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar) * 2));
454 #else
455 vOffsetsAttrib =
456 ADD(vOffsetsAttrib, VIMMED1((uint32_t)sizeof(simdscalar)));
457 #endif
458 }
459 }
460 }
461
462 void
463 BuilderSWR::swr_gs_llvm_end_primitive(const struct lp_build_tgsi_gs_iface *gs_base,
464 struct lp_build_tgsi_context * bld_base,
465 LLVMValueRef verts_per_prim_vec,
466 LLVMValueRef emitted_prims_vec)
467 {
468 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
469 SWR_GS_STATE *pGS = iface->pGsState;
470
471 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
472
473 Value *pCutBuffer =
474 LOAD(iface->pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer});
475 Value *vMask = LOAD(iface->pGsCtx, { 0, SWR_GS_CONTEXT_mask });
476 Value *vMask1 = TRUNC(vMask, VectorType::get(mInt1Ty, 8));
477
478 uint32_t vertsPerPrim = iface->num_verts_per_prim;
479
480 Value *vCount =
481 ADD(MUL(unwrap(emitted_prims_vec), VIMMED1(vertsPerPrim)),
482 unwrap(verts_per_prim_vec));
483
484 struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
485 vCount = LOAD(unwrap(bld->total_emitted_vertices_vec_ptr));
486
487 struct lp_exec_mask *exec_mask = &bld->exec_mask;
488 Value *mask = unwrap(lp_build_mask_value(bld->mask));
489 if (exec_mask->has_mask)
490 mask = AND(mask, unwrap(exec_mask->exec_mask));
491
492 Value *cmpMask = VMASK(ICMP_NE(unwrap(verts_per_prim_vec), VIMMED1(0)));
493 mask = AND(mask, cmpMask);
494 vMask1 = TRUNC(mask, VectorType::get(mInt1Ty, 8));
495
496 const uint32_t cutPrimStride =
497 (pGS->maxNumVerts + JM()->mVWidth - 1) / JM()->mVWidth;
498 Value *vOffsets = C({
499 (uint32_t)(cutPrimStride * 0),
500 (uint32_t)(cutPrimStride * 1),
501 (uint32_t)(cutPrimStride * 2),
502 (uint32_t)(cutPrimStride * 3),
503 (uint32_t)(cutPrimStride * 4),
504 (uint32_t)(cutPrimStride * 5),
505 (uint32_t)(cutPrimStride * 6),
506 (uint32_t)(cutPrimStride * 7) } );
507
508 vCount = SUB(vCount, VIMMED1(1));
509 Value *vOffset = ADD(UDIV(vCount, VIMMED1(8)), vOffsets);
510 Value *vValue = SHL(VIMMED1(1), UREM(vCount, VIMMED1(8)));
511
512 vValue = TRUNC(vValue, VectorType::get(mInt8Ty, 8));
513
514 Value *vPtrs = GEP(pCutBuffer, vOffset);
515 vPtrs =
516 BITCAST(vPtrs, VectorType::get(PointerType::get(mInt8Ty, 0), JM()->mVWidth));
517
518 Value *vGather = MASKED_GATHER(vPtrs, 32, vMask1);
519 vValue = OR(vGather, vValue);
520 MASKED_SCATTER(vValue, vPtrs, 32, vMask1);
521 }
522
523 void
524 BuilderSWR::swr_gs_llvm_epilogue(const struct lp_build_tgsi_gs_iface *gs_base,
525 struct lp_build_tgsi_context * bld_base,
526 LLVMValueRef total_emitted_vertices_vec,
527 LLVMValueRef emitted_prims_vec)
528 {
529 swr_gs_llvm_iface *iface = (swr_gs_llvm_iface*)gs_base;
530
531 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
532
533 STORE(unwrap(total_emitted_vertices_vec), iface->pGsCtx, {0, SWR_GS_CONTEXT_vertexCount});
534 }
535
536 PFN_GS_FUNC
537 BuilderSWR::CompileGS(struct swr_context *ctx, swr_jit_gs_key &key)
538 {
539 SWR_GS_STATE *pGS = &ctx->gs->gsState;
540 struct tgsi_shader_info *info = &ctx->gs->info.base;
541
542 pGS->gsEnable = true;
543
544 pGS->numInputAttribs = info->num_inputs;
545 pGS->outputTopology =
546 swr_convert_prim_topology(info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
547 pGS->maxNumVerts = info->properties[TGSI_PROPERTY_GS_MAX_OUTPUT_VERTICES];
548 pGS->instanceCount = info->properties[TGSI_PROPERTY_GS_INVOCATIONS];
549
550 // XXX: single stream for now...
551 pGS->isSingleStream = true;
552 pGS->singleStreamID = 0;
553
554 struct swr_geometry_shader *gs = ctx->gs;
555
556 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
557 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
558
559 memset(outputs, 0, sizeof(outputs));
560
561 AttrBuilder attrBuilder;
562 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
563
564 std::vector<Type *> gsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
565 PointerType::get(Gen_SWR_GS_CONTEXT(JM()), 0)};
566 FunctionType *vsFuncType =
567 FunctionType::get(Type::getVoidTy(JM()->mContext), gsArgs, false);
568
569 // create new vertex shader function
570 auto pFunction = Function::Create(vsFuncType,
571 GlobalValue::ExternalLinkage,
572 "GS",
573 JM()->mpCurrentModule);
574 #if HAVE_LLVM < 0x0500
575 AttributeSet attrSet = AttributeSet::get(
576 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
577 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
578 #else
579 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
580 #endif
581
582 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
583 IRB()->SetInsertPoint(block);
584 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
585
586 auto argitr = pFunction->arg_begin();
587 Value *hPrivateData = &*argitr++;
588 hPrivateData->setName("hPrivateData");
589 Value *pGsCtx = &*argitr++;
590 pGsCtx->setName("gsCtx");
591
592 Value *consts_ptr =
593 GEP(hPrivateData, {C(0), C(swr_draw_context_constantGS)});
594 consts_ptr->setName("gs_constants");
595 Value *const_sizes_ptr =
596 GEP(hPrivateData, {0, swr_draw_context_num_constantsGS});
597 const_sizes_ptr->setName("num_gs_constants");
598
599 struct lp_build_sampler_soa *sampler =
600 swr_sampler_soa_create(key.sampler, PIPE_SHADER_GEOMETRY);
601
602 struct lp_bld_tgsi_system_values system_values;
603 memset(&system_values, 0, sizeof(system_values));
604 system_values.prim_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_PrimitiveID}));
605 system_values.instance_id = wrap(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_InstanceID}));
606
607 std::vector<Constant*> mapConstants;
608 Value *vtxAttribMap = ALLOCA(ArrayType::get(mInt32Ty, PIPE_MAX_SHADER_INPUTS));
609 for (unsigned slot = 0; slot < info->num_inputs; slot++) {
610 ubyte semantic_name = info->input_semantic_name[slot];
611 ubyte semantic_idx = info->input_semantic_index[slot];
612
613 unsigned vs_slot = locate_linkage(semantic_name, semantic_idx, &ctx->vs->info.base);
614
615 vs_slot += VERTEX_ATTRIB_START_SLOT;
616
617 if (ctx->vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
618 vs_slot--;
619
620 if (semantic_name == TGSI_SEMANTIC_POSITION)
621 vs_slot = VERTEX_POSITION_SLOT;
622
623 STORE(C(vs_slot), vtxAttribMap, {0, slot});
624 mapConstants.push_back(C(vs_slot));
625 }
626
627 struct lp_build_mask_context mask;
628 Value *mask_val = LOAD(pGsCtx, {0, SWR_GS_CONTEXT_mask}, "gsMask");
629 lp_build_mask_begin(&mask, gallivm,
630 lp_type_float_vec(32, 32 * 8), wrap(mask_val));
631
632 // zero out cut buffer so we can load/modify/store bits
633 MEMSET(LOAD(pGsCtx, {0, SWR_GS_CONTEXT_pCutOrStreamIdBuffer}),
634 C((char)0),
635 pGS->instanceCount * ((pGS->maxNumVerts + 7) / 8) * JM()->mVWidth,
636 sizeof(float) * KNOB_SIMD_WIDTH);
637
638 struct swr_gs_llvm_iface gs_iface;
639 gs_iface.base.fetch_input = ::swr_gs_llvm_fetch_input;
640 gs_iface.base.emit_vertex = ::swr_gs_llvm_emit_vertex;
641 gs_iface.base.end_primitive = ::swr_gs_llvm_end_primitive;
642 gs_iface.base.gs_epilogue = ::swr_gs_llvm_epilogue;
643 gs_iface.pBuilder = this;
644 gs_iface.pGsCtx = pGsCtx;
645 gs_iface.pGsState = pGS;
646 gs_iface.num_outputs = gs->info.base.num_outputs;
647 gs_iface.num_verts_per_prim =
648 u_vertices_per_prim((pipe_prim_type)info->properties[TGSI_PROPERTY_GS_OUTPUT_PRIM]);
649 gs_iface.info = info;
650 gs_iface.pVtxAttribMap = vtxAttribMap;
651
652 lp_build_tgsi_soa(gallivm,
653 gs->pipe.tokens,
654 lp_type_float_vec(32, 32 * 8),
655 &mask,
656 wrap(consts_ptr),
657 wrap(const_sizes_ptr),
658 &system_values,
659 inputs,
660 outputs,
661 wrap(hPrivateData), // (sampler context)
662 NULL, // thread data
663 sampler,
664 &gs->info.base,
665 &gs_iface.base);
666
667 lp_build_mask_end(&mask);
668
669 sampler->destroy(sampler);
670
671 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
672
673 RET_VOID();
674
675 gallivm_verify_function(gallivm, wrap(pFunction));
676 gallivm_compile_module(gallivm);
677
678 PFN_GS_FUNC pFunc =
679 (PFN_GS_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
680
681 debug_printf("geom shader %p\n", pFunc);
682 assert(pFunc && "Error: GeomShader = NULL");
683
684 JM()->mIsModuleFinalized = true;
685
686 return pFunc;
687 }
688
689 PFN_GS_FUNC
690 swr_compile_gs(struct swr_context *ctx, swr_jit_gs_key &key)
691 {
692 BuilderSWR builder(
693 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
694 "GS");
695 PFN_GS_FUNC func = builder.CompileGS(ctx, key);
696
697 ctx->gs->map.insert(std::make_pair(key, make_unique<VariantGS>(builder.gallivm, func)));
698 return func;
699 }
700
701 void
702 BuilderSWR::WriteVS(Value *pVal, Value *pVsContext, Value *pVtxOutput, unsigned slot, unsigned channel)
703 {
704 #if USE_SIMD16_FRONTEND
705 // interleave the simdvertex components into the dest simd16vertex
706 // slot16offset = slot8offset * 2
707 // comp16offset = comp8offset * 2 + alternateOffset
708
709 Value *offset = LOAD(pVsContext, { 0, SWR_VS_CONTEXT_AlternateOffset });
710 Value *pOut = GEP(pVtxOutput, { C(0), C(0), C(slot * 2), offset } );
711 STORE(pVal, pOut, {channel * 2});
712 #else
713 Value *pOut = GEP(pVtxOutput, {0, 0, slot});
714 STORE(pVal, pOut, {0, channel});
715 #endif
716 }
717
718 PFN_VERTEX_FUNC
719 BuilderSWR::CompileVS(struct swr_context *ctx, swr_jit_vs_key &key)
720 {
721 struct swr_vertex_shader *swr_vs = ctx->vs;
722
723 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
724 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
725
726 memset(outputs, 0, sizeof(outputs));
727
728 AttrBuilder attrBuilder;
729 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
730
731 std::vector<Type *> vsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
732 PointerType::get(Gen_SWR_VS_CONTEXT(JM()), 0)};
733 FunctionType *vsFuncType =
734 FunctionType::get(Type::getVoidTy(JM()->mContext), vsArgs, false);
735
736 // create new vertex shader function
737 auto pFunction = Function::Create(vsFuncType,
738 GlobalValue::ExternalLinkage,
739 "VS",
740 JM()->mpCurrentModule);
741 #if HAVE_LLVM < 0x0500
742 AttributeSet attrSet = AttributeSet::get(
743 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
744 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
745 #else
746 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
747 #endif
748
749 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
750 IRB()->SetInsertPoint(block);
751 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
752
753 auto argitr = pFunction->arg_begin();
754 Value *hPrivateData = &*argitr++;
755 hPrivateData->setName("hPrivateData");
756 Value *pVsCtx = &*argitr++;
757 pVsCtx->setName("vsCtx");
758
759 Value *consts_ptr = GEP(hPrivateData, {C(0), C(swr_draw_context_constantVS)});
760
761 consts_ptr->setName("vs_constants");
762 Value *const_sizes_ptr =
763 GEP(hPrivateData, {0, swr_draw_context_num_constantsVS});
764 const_sizes_ptr->setName("num_vs_constants");
765
766 Value *vtxInput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVin});
767
768 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
769 const unsigned mask = swr_vs->info.base.input_usage_mask[attrib];
770 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
771 if (mask & (1 << channel)) {
772 inputs[attrib][channel] =
773 wrap(LOAD(vtxInput, {0, 0, attrib, channel}));
774 }
775 }
776 }
777
778 struct lp_build_sampler_soa *sampler =
779 swr_sampler_soa_create(key.sampler, PIPE_SHADER_VERTEX);
780
781 struct lp_bld_tgsi_system_values system_values;
782 memset(&system_values, 0, sizeof(system_values));
783 system_values.instance_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_InstanceID}));
784 system_values.vertex_id = wrap(LOAD(pVsCtx, {0, SWR_VS_CONTEXT_VertexID}));
785
786 lp_build_tgsi_soa(gallivm,
787 swr_vs->pipe.tokens,
788 lp_type_float_vec(32, 32 * 8),
789 NULL, // mask
790 wrap(consts_ptr),
791 wrap(const_sizes_ptr),
792 &system_values,
793 inputs,
794 outputs,
795 wrap(hPrivateData), // (sampler context)
796 NULL, // thread data
797 sampler, // sampler
798 &swr_vs->info.base,
799 NULL); // geometry shader face
800
801 sampler->destroy(sampler);
802
803 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
804
805 Value *vtxOutput = LOAD(pVsCtx, {0, SWR_VS_CONTEXT_pVout});
806
807 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
808 for (uint32_t attrib = 0; attrib < PIPE_MAX_SHADER_OUTPUTS; attrib++) {
809 if (!outputs[attrib][channel])
810 continue;
811
812 Value *val;
813 uint32_t outSlot;
814
815 if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_PSIZE) {
816 if (channel != VERTEX_SGV_POINT_SIZE_COMP)
817 continue;
818 val = LOAD(unwrap(outputs[attrib][0]));
819 outSlot = VERTEX_SGV_SLOT;
820 } else if (swr_vs->info.base.output_semantic_name[attrib] == TGSI_SEMANTIC_POSITION) {
821 val = LOAD(unwrap(outputs[attrib][channel]));
822 outSlot = VERTEX_POSITION_SLOT;
823 } else {
824 val = LOAD(unwrap(outputs[attrib][channel]));
825 outSlot = VERTEX_ATTRIB_START_SLOT + attrib;
826 if (swr_vs->info.base.output_semantic_name[0] == TGSI_SEMANTIC_POSITION)
827 outSlot--;
828 }
829
830 WriteVS(val, pVsCtx, vtxOutput, outSlot, channel);
831 }
832 }
833
834 if (ctx->rasterizer->clip_plane_enable ||
835 swr_vs->info.base.culldist_writemask) {
836 unsigned clip_mask = ctx->rasterizer->clip_plane_enable;
837
838 unsigned cv = 0;
839 if (swr_vs->info.base.writes_clipvertex) {
840 cv = locate_linkage(TGSI_SEMANTIC_CLIPVERTEX, 0,
841 &swr_vs->info.base);
842 } else {
843 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
844 if (swr_vs->info.base.output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
845 swr_vs->info.base.output_semantic_index[i] == 0) {
846 cv = i;
847 break;
848 }
849 }
850 }
851 LLVMValueRef cx = LLVMBuildLoad(gallivm->builder, outputs[cv][0], "");
852 LLVMValueRef cy = LLVMBuildLoad(gallivm->builder, outputs[cv][1], "");
853 LLVMValueRef cz = LLVMBuildLoad(gallivm->builder, outputs[cv][2], "");
854 LLVMValueRef cw = LLVMBuildLoad(gallivm->builder, outputs[cv][3], "");
855
856 for (unsigned val = 0; val < PIPE_MAX_CLIP_PLANES; val++) {
857 // clip distance overrides user clip planes
858 if ((swr_vs->info.base.clipdist_writemask & clip_mask & (1 << val)) ||
859 ((swr_vs->info.base.culldist_writemask << swr_vs->info.base.num_written_clipdistance) & (1 << val))) {
860 unsigned cv = locate_linkage(TGSI_SEMANTIC_CLIPDIST, val < 4 ? 0 : 1,
861 &swr_vs->info.base);
862 if (val < 4) {
863 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val], "");
864 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
865 } else {
866 LLVMValueRef dist = LLVMBuildLoad(gallivm->builder, outputs[cv][val - 4], "");
867 WriteVS(unwrap(dist), pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
868 }
869 continue;
870 }
871
872 if (!(clip_mask & (1 << val)))
873 continue;
874
875 Value *px = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 0}));
876 Value *py = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 1}));
877 Value *pz = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 2}));
878 Value *pw = LOAD(GEP(hPrivateData, {0, swr_draw_context_userClipPlanes, val, 3}));
879 Value *dist = FADD(FMUL(unwrap(cx), VBROADCAST(px)),
880 FADD(FMUL(unwrap(cy), VBROADCAST(py)),
881 FADD(FMUL(unwrap(cz), VBROADCAST(pz)),
882 FMUL(unwrap(cw), VBROADCAST(pw)))));
883
884 if (val < 4)
885 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_LO_SLOT, val);
886 else
887 WriteVS(dist, pVsCtx, vtxOutput, VERTEX_CLIPCULL_DIST_HI_SLOT, val - 4);
888 }
889 }
890
891 RET_VOID();
892
893 gallivm_verify_function(gallivm, wrap(pFunction));
894 gallivm_compile_module(gallivm);
895
896 // lp_debug_dump_value(func);
897
898 PFN_VERTEX_FUNC pFunc =
899 (PFN_VERTEX_FUNC)gallivm_jit_function(gallivm, wrap(pFunction));
900
901 debug_printf("vert shader %p\n", pFunc);
902 assert(pFunc && "Error: VertShader = NULL");
903
904 JM()->mIsModuleFinalized = true;
905
906 return pFunc;
907 }
908
909 PFN_VERTEX_FUNC
910 swr_compile_vs(struct swr_context *ctx, swr_jit_vs_key &key)
911 {
912 if (!ctx->vs->pipe.tokens)
913 return NULL;
914
915 BuilderSWR builder(
916 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
917 "VS");
918 PFN_VERTEX_FUNC func = builder.CompileVS(ctx, key);
919
920 ctx->vs->map.insert(std::make_pair(key, make_unique<VariantVS>(builder.gallivm, func)));
921 return func;
922 }
923
924 static unsigned
925 locate_linkage(ubyte name, ubyte index, struct tgsi_shader_info *info)
926 {
927 for (int i = 0; i < PIPE_MAX_SHADER_OUTPUTS; i++) {
928 if ((info->output_semantic_name[i] == name)
929 && (info->output_semantic_index[i] == index)) {
930 return i;
931 }
932 }
933
934 return 0xFFFFFFFF;
935 }
936
937 PFN_PIXEL_KERNEL
938 BuilderSWR::CompileFS(struct swr_context *ctx, swr_jit_fs_key &key)
939 {
940 struct swr_fragment_shader *swr_fs = ctx->fs;
941
942 struct tgsi_shader_info *pPrevShader;
943 if (ctx->gs)
944 pPrevShader = &ctx->gs->info.base;
945 else
946 pPrevShader = &ctx->vs->info.base;
947
948 LLVMValueRef inputs[PIPE_MAX_SHADER_INPUTS][TGSI_NUM_CHANNELS];
949 LLVMValueRef outputs[PIPE_MAX_SHADER_OUTPUTS][TGSI_NUM_CHANNELS];
950
951 memset(inputs, 0, sizeof(inputs));
952 memset(outputs, 0, sizeof(outputs));
953
954 struct lp_build_sampler_soa *sampler = NULL;
955
956 AttrBuilder attrBuilder;
957 attrBuilder.addStackAlignmentAttr(JM()->mVWidth * sizeof(float));
958
959 std::vector<Type *> fsArgs{PointerType::get(Gen_swr_draw_context(JM()), 0),
960 PointerType::get(Gen_SWR_PS_CONTEXT(JM()), 0)};
961 FunctionType *funcType =
962 FunctionType::get(Type::getVoidTy(JM()->mContext), fsArgs, false);
963
964 auto pFunction = Function::Create(funcType,
965 GlobalValue::ExternalLinkage,
966 "FS",
967 JM()->mpCurrentModule);
968 #if HAVE_LLVM < 0x0500
969 AttributeSet attrSet = AttributeSet::get(
970 JM()->mContext, AttributeSet::FunctionIndex, attrBuilder);
971 pFunction->addAttributes(AttributeSet::FunctionIndex, attrSet);
972 #else
973 pFunction->addAttributes(AttributeList::FunctionIndex, attrBuilder);
974 #endif
975
976 BasicBlock *block = BasicBlock::Create(JM()->mContext, "entry", pFunction);
977 IRB()->SetInsertPoint(block);
978 LLVMPositionBuilderAtEnd(gallivm->builder, wrap(block));
979
980 auto args = pFunction->arg_begin();
981 Value *hPrivateData = &*args++;
982 hPrivateData->setName("hPrivateData");
983 Value *pPS = &*args++;
984 pPS->setName("psCtx");
985
986 Value *consts_ptr = GEP(hPrivateData, {0, swr_draw_context_constantFS});
987 consts_ptr->setName("fs_constants");
988 Value *const_sizes_ptr =
989 GEP(hPrivateData, {0, swr_draw_context_num_constantsFS});
990 const_sizes_ptr->setName("num_fs_constants");
991
992 // load *pAttribs, *pPerspAttribs
993 Value *pRawAttribs = LOAD(pPS, {0, SWR_PS_CONTEXT_pAttribs}, "pRawAttribs");
994 Value *pPerspAttribs =
995 LOAD(pPS, {0, SWR_PS_CONTEXT_pPerspAttribs}, "pPerspAttribs");
996
997 swr_fs->constantMask = 0;
998 swr_fs->flatConstantMask = 0;
999 swr_fs->pointSpriteMask = 0;
1000
1001 for (int attrib = 0; attrib < PIPE_MAX_SHADER_INPUTS; attrib++) {
1002 const unsigned mask = swr_fs->info.base.input_usage_mask[attrib];
1003 const unsigned interpMode = swr_fs->info.base.input_interpolate[attrib];
1004 const unsigned interpLoc = swr_fs->info.base.input_interpolate_loc[attrib];
1005
1006 if (!mask)
1007 continue;
1008
1009 // load i,j
1010 Value *vi = nullptr, *vj = nullptr;
1011 switch (interpLoc) {
1012 case TGSI_INTERPOLATE_LOC_CENTER:
1013 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_center}, "i");
1014 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_center}, "j");
1015 break;
1016 case TGSI_INTERPOLATE_LOC_CENTROID:
1017 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_centroid}, "i");
1018 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_centroid}, "j");
1019 break;
1020 case TGSI_INTERPOLATE_LOC_SAMPLE:
1021 vi = LOAD(pPS, {0, SWR_PS_CONTEXT_vI, PixelPositions_sample}, "i");
1022 vj = LOAD(pPS, {0, SWR_PS_CONTEXT_vJ, PixelPositions_sample}, "j");
1023 break;
1024 }
1025
1026 // load/compute w
1027 Value *vw = nullptr, *pAttribs;
1028 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1029 interpMode == TGSI_INTERPOLATE_COLOR) {
1030 pAttribs = pPerspAttribs;
1031 switch (interpLoc) {
1032 case TGSI_INTERPOLATE_LOC_CENTER:
1033 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}));
1034 break;
1035 case TGSI_INTERPOLATE_LOC_CENTROID:
1036 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_centroid}));
1037 break;
1038 case TGSI_INTERPOLATE_LOC_SAMPLE:
1039 vw = VRCP(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_sample}));
1040 break;
1041 }
1042 } else {
1043 pAttribs = pRawAttribs;
1044 vw = VIMMED1(1.f);
1045 }
1046
1047 vw->setName("w");
1048
1049 ubyte semantic_name = swr_fs->info.base.input_semantic_name[attrib];
1050 ubyte semantic_idx = swr_fs->info.base.input_semantic_index[attrib];
1051
1052 if (semantic_name == TGSI_SEMANTIC_FACE) {
1053 Value *ff =
1054 UI_TO_FP(LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), mFP32Ty);
1055 ff = FSUB(FMUL(ff, C(2.0f)), C(1.0f));
1056 ff = VECTOR_SPLAT(JM()->mVWidth, ff, "vFrontFace");
1057
1058 inputs[attrib][0] = wrap(ff);
1059 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1060 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1061 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1062 continue;
1063 } else if (semantic_name == TGSI_SEMANTIC_POSITION) { // gl_FragCoord
1064 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COORD_PIXEL_CENTER] ==
1065 TGSI_FS_COORD_PIXEL_CENTER_HALF_INTEGER) {
1066 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_center}, "vX"));
1067 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_center}, "vY"));
1068 } else {
1069 inputs[attrib][0] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL}, "vX"));
1070 inputs[attrib][1] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL}, "vY"));
1071 }
1072 inputs[attrib][2] = wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vZ}, "vZ"));
1073 inputs[attrib][3] =
1074 wrap(LOAD(pPS, {0, SWR_PS_CONTEXT_vOneOverW, PixelPositions_center}, "vOneOverW"));
1075 continue;
1076 }
1077
1078 unsigned linkedAttrib =
1079 locate_linkage(semantic_name, semantic_idx, pPrevShader) - 1;
1080
1081 uint32_t extraAttribs = 0;
1082 if (semantic_name == TGSI_SEMANTIC_PRIMID && !ctx->gs) {
1083 /* non-gs generated primID - need to grab from swizzleMap override */
1084 linkedAttrib = pPrevShader->num_outputs - 1;
1085 swr_fs->constantMask |= 1 << linkedAttrib;
1086 extraAttribs++;
1087 } else if (semantic_name == TGSI_SEMANTIC_GENERIC &&
1088 key.sprite_coord_enable & (1 << semantic_idx)) {
1089 /* we add an extra attrib to the backendState in swr_update_derived. */
1090 linkedAttrib = pPrevShader->num_outputs + extraAttribs - 1;
1091 swr_fs->pointSpriteMask |= (1 << linkedAttrib);
1092 extraAttribs++;
1093 } else if (linkedAttrib == 0xFFFFFFFF) {
1094 inputs[attrib][0] = wrap(VIMMED1(0.0f));
1095 inputs[attrib][1] = wrap(VIMMED1(0.0f));
1096 inputs[attrib][2] = wrap(VIMMED1(0.0f));
1097 inputs[attrib][3] = wrap(VIMMED1(1.0f));
1098 /* If we're reading in color and 2-sided lighting is enabled, we have
1099 * to keep going.
1100 */
1101 if (semantic_name != TGSI_SEMANTIC_COLOR || !key.light_twoside)
1102 continue;
1103 } else {
1104 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1105 swr_fs->constantMask |= 1 << linkedAttrib;
1106 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1107 swr_fs->flatConstantMask |= 1 << linkedAttrib;
1108 }
1109 }
1110
1111 unsigned bcolorAttrib = 0xFFFFFFFF;
1112 Value *offset = NULL;
1113 if (semantic_name == TGSI_SEMANTIC_COLOR && key.light_twoside) {
1114 bcolorAttrib = locate_linkage(
1115 TGSI_SEMANTIC_BCOLOR, semantic_idx, pPrevShader) - 1;
1116 /* Neither front nor back colors were available. Nothing to load. */
1117 if (bcolorAttrib == 0xFFFFFFFF && linkedAttrib == 0xFFFFFFFF)
1118 continue;
1119 /* If there is no front color, just always use the back color. */
1120 if (linkedAttrib == 0xFFFFFFFF)
1121 linkedAttrib = bcolorAttrib;
1122
1123 if (bcolorAttrib != 0xFFFFFFFF) {
1124 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1125 swr_fs->constantMask |= 1 << bcolorAttrib;
1126 } else if (interpMode == TGSI_INTERPOLATE_COLOR) {
1127 swr_fs->flatConstantMask |= 1 << bcolorAttrib;
1128 }
1129
1130 unsigned diff = 12 * (bcolorAttrib - linkedAttrib);
1131
1132 if (diff) {
1133 Value *back =
1134 XOR(C(1), LOAD(pPS, {0, SWR_PS_CONTEXT_frontFace}), "backFace");
1135
1136 offset = MUL(back, C(diff));
1137 offset->setName("offset");
1138 }
1139 }
1140 }
1141
1142 for (int channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1143 if (mask & (1 << channel)) {
1144 Value *indexA = C(linkedAttrib * 12 + channel);
1145 Value *indexB = C(linkedAttrib * 12 + channel + 4);
1146 Value *indexC = C(linkedAttrib * 12 + channel + 8);
1147
1148 if (offset) {
1149 indexA = ADD(indexA, offset);
1150 indexB = ADD(indexB, offset);
1151 indexC = ADD(indexC, offset);
1152 }
1153
1154 Value *va = VBROADCAST(LOAD(GEP(pAttribs, indexA)));
1155 Value *vb = VBROADCAST(LOAD(GEP(pAttribs, indexB)));
1156 Value *vc = VBROADCAST(LOAD(GEP(pAttribs, indexC)));
1157
1158 if (interpMode == TGSI_INTERPOLATE_CONSTANT) {
1159 inputs[attrib][channel] = wrap(va);
1160 } else {
1161 Value *vk = FSUB(FSUB(VIMMED1(1.0f), vi), vj);
1162
1163 vc = FMUL(vk, vc);
1164
1165 Value *interp = FMUL(va, vi);
1166 Value *interp1 = FMUL(vb, vj);
1167 interp = FADD(interp, interp1);
1168 interp = FADD(interp, vc);
1169 if (interpMode == TGSI_INTERPOLATE_PERSPECTIVE ||
1170 interpMode == TGSI_INTERPOLATE_COLOR)
1171 interp = FMUL(interp, vw);
1172 inputs[attrib][channel] = wrap(interp);
1173 }
1174 }
1175 }
1176 }
1177
1178 sampler = swr_sampler_soa_create(key.sampler, PIPE_SHADER_FRAGMENT);
1179
1180 struct lp_bld_tgsi_system_values system_values;
1181 memset(&system_values, 0, sizeof(system_values));
1182
1183 struct lp_build_mask_context mask;
1184 bool uses_mask = false;
1185
1186 if (swr_fs->info.base.uses_kill ||
1187 key.poly_stipple_enable) {
1188 Value *vActiveMask = NULL;
1189 if (swr_fs->info.base.uses_kill) {
1190 vActiveMask = LOAD(pPS, {0, SWR_PS_CONTEXT_activeMask}, "activeMask");
1191 }
1192 if (key.poly_stipple_enable) {
1193 // first get fragment xy coords and clip to stipple bounds
1194 Value *vXf = LOAD(pPS, {0, SWR_PS_CONTEXT_vX, PixelPositions_UL});
1195 Value *vYf = LOAD(pPS, {0, SWR_PS_CONTEXT_vY, PixelPositions_UL});
1196 Value *vXu = FP_TO_UI(vXf, mSimdInt32Ty);
1197 Value *vYu = FP_TO_UI(vYf, mSimdInt32Ty);
1198
1199 // stipple pattern is 32x32, which means that one line of stipple
1200 // is stored in one word:
1201 // vXstipple is bit offset inside 32-bit stipple word
1202 // vYstipple is word index is stipple array
1203 Value *vXstipple = AND(vXu, VIMMED1(0x1f)); // & (32-1)
1204 Value *vYstipple = AND(vYu, VIMMED1(0x1f)); // & (32-1)
1205
1206 // grab stipple pattern base address
1207 Value *stipplePtr = GEP(hPrivateData, {0, swr_draw_context_polyStipple, 0});
1208 stipplePtr = BITCAST(stipplePtr, mInt8PtrTy);
1209
1210 // peform a gather to grab stipple words for each lane
1211 Value *vStipple = GATHERDD(VUNDEF_I(), stipplePtr, vYstipple,
1212 VIMMED1(0xffffffff), C((char)4));
1213
1214 // create a mask with one bit corresponding to the x stipple
1215 // and AND it with the pattern, to see if we have a bit
1216 Value *vBitMask = LSHR(VIMMED1(0x80000000), vXstipple);
1217 Value *vStippleMask = AND(vStipple, vBitMask);
1218 vStippleMask = ICMP_NE(vStippleMask, VIMMED1(0));
1219 vStippleMask = VMASK(vStippleMask);
1220
1221 if (swr_fs->info.base.uses_kill) {
1222 vActiveMask = AND(vActiveMask, vStippleMask);
1223 } else {
1224 vActiveMask = vStippleMask;
1225 }
1226 }
1227 lp_build_mask_begin(
1228 &mask, gallivm, lp_type_float_vec(32, 32 * 8), wrap(vActiveMask));
1229 uses_mask = true;
1230 }
1231
1232 lp_build_tgsi_soa(gallivm,
1233 swr_fs->pipe.tokens,
1234 lp_type_float_vec(32, 32 * 8),
1235 uses_mask ? &mask : NULL, // mask
1236 wrap(consts_ptr),
1237 wrap(const_sizes_ptr),
1238 &system_values,
1239 inputs,
1240 outputs,
1241 wrap(hPrivateData),
1242 NULL, // thread data
1243 sampler, // sampler
1244 &swr_fs->info.base,
1245 NULL); // geometry shader face
1246
1247 sampler->destroy(sampler);
1248
1249 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1250
1251 for (uint32_t attrib = 0; attrib < swr_fs->info.base.num_outputs;
1252 attrib++) {
1253 switch (swr_fs->info.base.output_semantic_name[attrib]) {
1254 case TGSI_SEMANTIC_POSITION: {
1255 // write z
1256 LLVMValueRef outZ =
1257 LLVMBuildLoad(gallivm->builder, outputs[attrib][2], "");
1258 STORE(unwrap(outZ), pPS, {0, SWR_PS_CONTEXT_vZ});
1259 break;
1260 }
1261 case TGSI_SEMANTIC_COLOR: {
1262 for (uint32_t channel = 0; channel < TGSI_NUM_CHANNELS; channel++) {
1263 if (!outputs[attrib][channel])
1264 continue;
1265
1266 LLVMValueRef out =
1267 LLVMBuildLoad(gallivm->builder, outputs[attrib][channel], "");
1268 if (swr_fs->info.base.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
1269 swr_fs->info.base.output_semantic_index[attrib] == 0) {
1270 for (uint32_t rt = 0; rt < key.nr_cbufs; rt++) {
1271 STORE(unwrap(out),
1272 pPS,
1273 {0, SWR_PS_CONTEXT_shaded, rt, channel});
1274 }
1275 } else {
1276 STORE(unwrap(out),
1277 pPS,
1278 {0,
1279 SWR_PS_CONTEXT_shaded,
1280 swr_fs->info.base.output_semantic_index[attrib],
1281 channel});
1282 }
1283 }
1284 break;
1285 }
1286 default: {
1287 fprintf(stderr,
1288 "unknown output from FS %s[%d]\n",
1289 tgsi_semantic_names[swr_fs->info.base
1290 .output_semantic_name[attrib]],
1291 swr_fs->info.base.output_semantic_index[attrib]);
1292 break;
1293 }
1294 }
1295 }
1296
1297 LLVMValueRef mask_result = 0;
1298 if (uses_mask) {
1299 mask_result = lp_build_mask_end(&mask);
1300 }
1301
1302 IRB()->SetInsertPoint(unwrap(LLVMGetInsertBlock(gallivm->builder)));
1303
1304 if (uses_mask) {
1305 STORE(unwrap(mask_result), pPS, {0, SWR_PS_CONTEXT_activeMask});
1306 }
1307
1308 RET_VOID();
1309
1310 gallivm_verify_function(gallivm, wrap(pFunction));
1311
1312 gallivm_compile_module(gallivm);
1313
1314 PFN_PIXEL_KERNEL kernel =
1315 (PFN_PIXEL_KERNEL)gallivm_jit_function(gallivm, wrap(pFunction));
1316 debug_printf("frag shader %p\n", kernel);
1317 assert(kernel && "Error: FragShader = NULL");
1318
1319 JM()->mIsModuleFinalized = true;
1320
1321 return kernel;
1322 }
1323
1324 PFN_PIXEL_KERNEL
1325 swr_compile_fs(struct swr_context *ctx, swr_jit_fs_key &key)
1326 {
1327 if (!ctx->fs->pipe.tokens)
1328 return NULL;
1329
1330 BuilderSWR builder(
1331 reinterpret_cast<JitManager *>(swr_screen(ctx->pipe.screen)->hJitMgr),
1332 "FS");
1333 PFN_PIXEL_KERNEL func = builder.CompileFS(ctx, key);
1334
1335 ctx->fs->map.insert(std::make_pair(key, make_unique<VariantFS>(builder.gallivm, func)));
1336 return func;
1337 }