vc4: Emit resets of the uniform stream at the starts of blocks.
[mesa.git] / src / gallium / drivers / vc4 / vc4_qpu_schedule.c
1 /*
2 * Copyright © 2010 Intel Corporation
3 * Copyright © 2014 Broadcom
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 */
24
25 /**
26 * @file vc4_qpu_schedule.c
27 *
28 * The basic model of the list scheduler is to take a basic block, compute a
29 * DAG of the dependencies, and make a list of the DAG heads. Heuristically
30 * pick a DAG head, then put all the children that are now DAG heads into the
31 * list of things to schedule.
32 *
33 * The goal of scheduling here is to pack pairs of operations together in a
34 * single QPU instruction.
35 */
36
37 #include "vc4_qir.h"
38 #include "vc4_qpu.h"
39 #include "util/ralloc.h"
40
41 static bool debug;
42
43 struct schedule_node_child;
44
45 struct schedule_node {
46 struct list_head link;
47 struct queued_qpu_inst *inst;
48 struct schedule_node_child *children;
49 uint32_t child_count;
50 uint32_t child_array_size;
51 uint32_t parent_count;
52
53 /* Longest cycles + instruction_latency() of any parent of this node. */
54 uint32_t unblocked_time;
55
56 /**
57 * Minimum number of cycles from scheduling this instruction until the
58 * end of the program, based on the slowest dependency chain through
59 * the children.
60 */
61 uint32_t delay;
62
63 /**
64 * cycles between this instruction being scheduled and when its result
65 * can be consumed.
66 */
67 uint32_t latency;
68
69 /**
70 * Which uniform from uniform_data[] this instruction read, or -1 if
71 * not reading a uniform.
72 */
73 int uniform;
74 };
75
76 struct schedule_node_child {
77 struct schedule_node *node;
78 bool write_after_read;
79 };
80
81 /* When walking the instructions in reverse, we need to swap before/after in
82 * add_dep().
83 */
84 enum direction { F, R };
85
86 struct schedule_state {
87 struct schedule_node *last_r[6];
88 struct schedule_node *last_ra[32];
89 struct schedule_node *last_rb[32];
90 struct schedule_node *last_sf;
91 struct schedule_node *last_vpm_read;
92 struct schedule_node *last_tmu_write;
93 struct schedule_node *last_tlb;
94 struct schedule_node *last_vpm;
95 struct schedule_node *last_uniforms_reset;
96 enum direction dir;
97 /* Estimated cycle when the current instruction would start. */
98 uint32_t time;
99 };
100
101 static void
102 add_dep(struct schedule_state *state,
103 struct schedule_node *before,
104 struct schedule_node *after,
105 bool write)
106 {
107 bool write_after_read = !write && state->dir == R;
108
109 if (!before || !after)
110 return;
111
112 assert(before != after);
113
114 if (state->dir == R) {
115 struct schedule_node *t = before;
116 before = after;
117 after = t;
118 }
119
120 for (int i = 0; i < before->child_count; i++) {
121 if (before->children[i].node == after &&
122 (before->children[i].write_after_read == write_after_read)) {
123 return;
124 }
125 }
126
127 if (before->child_array_size <= before->child_count) {
128 before->child_array_size = MAX2(before->child_array_size * 2, 16);
129 before->children = reralloc(before, before->children,
130 struct schedule_node_child,
131 before->child_array_size);
132 }
133
134 before->children[before->child_count].node = after;
135 before->children[before->child_count].write_after_read =
136 write_after_read;
137 before->child_count++;
138 after->parent_count++;
139 }
140
141 static void
142 add_read_dep(struct schedule_state *state,
143 struct schedule_node *before,
144 struct schedule_node *after)
145 {
146 add_dep(state, before, after, false);
147 }
148
149 static void
150 add_write_dep(struct schedule_state *state,
151 struct schedule_node **before,
152 struct schedule_node *after)
153 {
154 add_dep(state, *before, after, true);
155 *before = after;
156 }
157
158 static bool
159 qpu_writes_r4(uint64_t inst)
160 {
161 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
162
163 switch(sig) {
164 case QPU_SIG_COLOR_LOAD:
165 case QPU_SIG_LOAD_TMU0:
166 case QPU_SIG_LOAD_TMU1:
167 case QPU_SIG_ALPHA_MASK_LOAD:
168 return true;
169 default:
170 return false;
171 }
172 }
173
174 static void
175 process_raddr_deps(struct schedule_state *state, struct schedule_node *n,
176 uint32_t raddr, bool is_a)
177 {
178 switch (raddr) {
179 case QPU_R_VARY:
180 add_write_dep(state, &state->last_r[5], n);
181 break;
182
183 case QPU_R_VPM:
184 add_write_dep(state, &state->last_vpm_read, n);
185 break;
186
187 case QPU_R_UNIF:
188 add_read_dep(state, state->last_uniforms_reset, n);
189 break;
190
191 case QPU_R_NOP:
192 case QPU_R_ELEM_QPU:
193 case QPU_R_XY_PIXEL_COORD:
194 case QPU_R_MS_REV_FLAGS:
195 break;
196
197 default:
198 if (raddr < 32) {
199 if (is_a)
200 add_read_dep(state, state->last_ra[raddr], n);
201 else
202 add_read_dep(state, state->last_rb[raddr], n);
203 } else {
204 fprintf(stderr, "unknown raddr %d\n", raddr);
205 abort();
206 }
207 break;
208 }
209 }
210
211 static bool
212 is_tmu_write(uint32_t waddr)
213 {
214 switch (waddr) {
215 case QPU_W_TMU0_S:
216 case QPU_W_TMU0_T:
217 case QPU_W_TMU0_R:
218 case QPU_W_TMU0_B:
219 case QPU_W_TMU1_S:
220 case QPU_W_TMU1_T:
221 case QPU_W_TMU1_R:
222 case QPU_W_TMU1_B:
223 return true;
224 default:
225 return false;
226 }
227 }
228
229 static bool
230 reads_uniform(uint64_t inst)
231 {
232 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_LOAD_IMM)
233 return false;
234
235 return (QPU_GET_FIELD(inst, QPU_RADDR_A) == QPU_R_UNIF ||
236 (QPU_GET_FIELD(inst, QPU_RADDR_B) == QPU_R_UNIF &&
237 QPU_GET_FIELD(inst, QPU_SIG) != QPU_SIG_SMALL_IMM) ||
238 is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_ADD)) ||
239 is_tmu_write(QPU_GET_FIELD(inst, QPU_WADDR_MUL)));
240 }
241
242 static void
243 process_mux_deps(struct schedule_state *state, struct schedule_node *n,
244 uint32_t mux)
245 {
246 if (mux != QPU_MUX_A && mux != QPU_MUX_B)
247 add_read_dep(state, state->last_r[mux], n);
248 }
249
250
251 static void
252 process_waddr_deps(struct schedule_state *state, struct schedule_node *n,
253 uint32_t waddr, bool is_add)
254 {
255 uint64_t inst = n->inst->inst;
256 bool is_a = is_add ^ ((inst & QPU_WS) != 0);
257
258 if (waddr < 32) {
259 if (is_a) {
260 add_write_dep(state, &state->last_ra[waddr], n);
261 } else {
262 add_write_dep(state, &state->last_rb[waddr], n);
263 }
264 } else if (is_tmu_write(waddr)) {
265 add_write_dep(state, &state->last_tmu_write, n);
266 add_read_dep(state, state->last_uniforms_reset, n);
267 } else if (qpu_waddr_is_tlb(waddr) ||
268 waddr == QPU_W_MS_FLAGS) {
269 add_write_dep(state, &state->last_tlb, n);
270 } else {
271 switch (waddr) {
272 case QPU_W_ACC0:
273 case QPU_W_ACC1:
274 case QPU_W_ACC2:
275 case QPU_W_ACC3:
276 case QPU_W_ACC5:
277 add_write_dep(state, &state->last_r[waddr - QPU_W_ACC0],
278 n);
279 break;
280
281 case QPU_W_VPM:
282 add_write_dep(state, &state->last_vpm, n);
283 break;
284
285 case QPU_W_VPMVCD_SETUP:
286 if (is_a)
287 add_write_dep(state, &state->last_vpm_read, n);
288 else
289 add_write_dep(state, &state->last_vpm, n);
290 break;
291
292 case QPU_W_SFU_RECIP:
293 case QPU_W_SFU_RECIPSQRT:
294 case QPU_W_SFU_EXP:
295 case QPU_W_SFU_LOG:
296 add_write_dep(state, &state->last_r[4], n);
297 break;
298
299 case QPU_W_TLB_STENCIL_SETUP:
300 /* This isn't a TLB operation that does things like
301 * implicitly lock the scoreboard, but it does have to
302 * appear before TLB_Z, and each of the TLB_STENCILs
303 * have to schedule in the same order relative to each
304 * other.
305 */
306 add_write_dep(state, &state->last_tlb, n);
307 break;
308
309 case QPU_W_MS_FLAGS:
310 add_write_dep(state, &state->last_tlb, n);
311 break;
312
313 case QPU_W_UNIFORMS_ADDRESS:
314 add_write_dep(state, &state->last_uniforms_reset, n);
315 break;
316
317 case QPU_W_NOP:
318 break;
319
320 default:
321 fprintf(stderr, "Unknown waddr %d\n", waddr);
322 abort();
323 }
324 }
325 }
326
327 static void
328 process_cond_deps(struct schedule_state *state, struct schedule_node *n,
329 uint32_t cond)
330 {
331 switch (cond) {
332 case QPU_COND_NEVER:
333 case QPU_COND_ALWAYS:
334 break;
335 default:
336 add_read_dep(state, state->last_sf, n);
337 break;
338 }
339 }
340
341 /**
342 * Common code for dependencies that need to be tracked both forward and
343 * backward.
344 *
345 * This is for things like "all reads of r4 have to happen between the r4
346 * writes that surround them".
347 */
348 static void
349 calculate_deps(struct schedule_state *state, struct schedule_node *n)
350 {
351 uint64_t inst = n->inst->inst;
352 uint32_t add_op = QPU_GET_FIELD(inst, QPU_OP_ADD);
353 uint32_t mul_op = QPU_GET_FIELD(inst, QPU_OP_MUL);
354 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
355 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
356 uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
357 uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
358 uint32_t add_a = QPU_GET_FIELD(inst, QPU_ADD_A);
359 uint32_t add_b = QPU_GET_FIELD(inst, QPU_ADD_B);
360 uint32_t mul_a = QPU_GET_FIELD(inst, QPU_MUL_A);
361 uint32_t mul_b = QPU_GET_FIELD(inst, QPU_MUL_B);
362 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
363
364 if (sig != QPU_SIG_LOAD_IMM) {
365 process_raddr_deps(state, n, raddr_a, true);
366 if (sig != QPU_SIG_SMALL_IMM &&
367 sig != QPU_SIG_BRANCH)
368 process_raddr_deps(state, n, raddr_b, false);
369 }
370
371 if (add_op != QPU_A_NOP) {
372 process_mux_deps(state, n, add_a);
373 process_mux_deps(state, n, add_b);
374 }
375 if (mul_op != QPU_M_NOP) {
376 process_mux_deps(state, n, mul_a);
377 process_mux_deps(state, n, mul_b);
378 }
379
380 process_waddr_deps(state, n, waddr_add, true);
381 process_waddr_deps(state, n, waddr_mul, false);
382 if (qpu_writes_r4(inst))
383 add_write_dep(state, &state->last_r[4], n);
384
385 switch (sig) {
386 case QPU_SIG_SW_BREAKPOINT:
387 case QPU_SIG_NONE:
388 case QPU_SIG_THREAD_SWITCH:
389 case QPU_SIG_LAST_THREAD_SWITCH:
390 case QPU_SIG_SMALL_IMM:
391 case QPU_SIG_LOAD_IMM:
392 break;
393
394 case QPU_SIG_LOAD_TMU0:
395 case QPU_SIG_LOAD_TMU1:
396 /* TMU loads are coming from a FIFO, so ordering is important.
397 */
398 add_write_dep(state, &state->last_tmu_write, n);
399 break;
400
401 case QPU_SIG_COLOR_LOAD:
402 add_read_dep(state, state->last_tlb, n);
403 break;
404
405 case QPU_SIG_BRANCH:
406 add_read_dep(state, state->last_sf, n);
407 break;
408
409 case QPU_SIG_PROG_END:
410 case QPU_SIG_WAIT_FOR_SCOREBOARD:
411 case QPU_SIG_SCOREBOARD_UNLOCK:
412 case QPU_SIG_COVERAGE_LOAD:
413 case QPU_SIG_COLOR_LOAD_END:
414 case QPU_SIG_ALPHA_MASK_LOAD:
415 fprintf(stderr, "Unhandled signal bits %d\n", sig);
416 abort();
417 }
418
419 process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_ADD));
420 process_cond_deps(state, n, QPU_GET_FIELD(inst, QPU_COND_MUL));
421 if ((inst & QPU_SF) && sig != QPU_SIG_BRANCH)
422 add_write_dep(state, &state->last_sf, n);
423 }
424
425 static void
426 calculate_forward_deps(struct vc4_compile *c, struct list_head *schedule_list)
427 {
428 struct schedule_state state;
429
430 memset(&state, 0, sizeof(state));
431 state.dir = F;
432
433 list_for_each_entry(struct schedule_node, node, schedule_list, link)
434 calculate_deps(&state, node);
435 }
436
437 static void
438 calculate_reverse_deps(struct vc4_compile *c, struct list_head *schedule_list)
439 {
440 struct list_head *node;
441 struct schedule_state state;
442
443 memset(&state, 0, sizeof(state));
444 state.dir = R;
445
446 for (node = schedule_list->prev; schedule_list != node; node = node->prev) {
447 calculate_deps(&state, (struct schedule_node *)node);
448 }
449 }
450
451 struct choose_scoreboard {
452 int tick;
453 int last_sfu_write_tick;
454 int last_uniforms_reset_tick;
455 uint32_t last_waddr_a, last_waddr_b;
456 };
457
458 static bool
459 reads_too_soon_after_write(struct choose_scoreboard *scoreboard, uint64_t inst)
460 {
461 uint32_t raddr_a = QPU_GET_FIELD(inst, QPU_RADDR_A);
462 uint32_t raddr_b = QPU_GET_FIELD(inst, QPU_RADDR_B);
463 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
464 uint32_t src_muxes[] = {
465 QPU_GET_FIELD(inst, QPU_ADD_A),
466 QPU_GET_FIELD(inst, QPU_ADD_B),
467 QPU_GET_FIELD(inst, QPU_MUL_A),
468 QPU_GET_FIELD(inst, QPU_MUL_B),
469 };
470 for (int i = 0; i < ARRAY_SIZE(src_muxes); i++) {
471 if ((src_muxes[i] == QPU_MUX_A &&
472 raddr_a < 32 &&
473 scoreboard->last_waddr_a == raddr_a) ||
474 (src_muxes[i] == QPU_MUX_B &&
475 sig != QPU_SIG_SMALL_IMM &&
476 raddr_b < 32 &&
477 scoreboard->last_waddr_b == raddr_b)) {
478 return true;
479 }
480
481 if (src_muxes[i] == QPU_MUX_R4) {
482 if (scoreboard->tick -
483 scoreboard->last_sfu_write_tick <= 2) {
484 return true;
485 }
486 }
487 }
488
489 if (reads_uniform(inst) &&
490 scoreboard->tick - scoreboard->last_uniforms_reset_tick <= 2) {
491 return true;
492 }
493
494 return false;
495 }
496
497 static bool
498 pixel_scoreboard_too_soon(struct choose_scoreboard *scoreboard, uint64_t inst)
499 {
500 return (scoreboard->tick < 2 && qpu_inst_is_tlb(inst));
501 }
502
503 static int
504 get_instruction_priority(uint64_t inst)
505 {
506 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
507 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
508 uint32_t sig = QPU_GET_FIELD(inst, QPU_SIG);
509 uint32_t baseline_score;
510 uint32_t next_score = 0;
511
512 /* Schedule TLB operations as late as possible, to get more
513 * parallelism between shaders.
514 */
515 if (qpu_inst_is_tlb(inst))
516 return next_score;
517 next_score++;
518
519 /* Schedule texture read results collection late to hide latency. */
520 if (sig == QPU_SIG_LOAD_TMU0 || sig == QPU_SIG_LOAD_TMU1)
521 return next_score;
522 next_score++;
523
524 /* Default score for things that aren't otherwise special. */
525 baseline_score = next_score;
526 next_score++;
527
528 /* Schedule texture read setup early to hide their latency better. */
529 if (is_tmu_write(waddr_add) || is_tmu_write(waddr_mul))
530 return next_score;
531 next_score++;
532
533 return baseline_score;
534 }
535
536 static struct schedule_node *
537 choose_instruction_to_schedule(struct choose_scoreboard *scoreboard,
538 struct list_head *schedule_list,
539 struct schedule_node *prev_inst)
540 {
541 struct schedule_node *chosen = NULL;
542 int chosen_prio = 0;
543
544 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
545 uint64_t inst = n->inst->inst;
546
547 /* Don't choose the branch instruction until it's the last one
548 * left. XXX: We could potentially choose it before it's the
549 * last one, if the remaining instructions fit in the delay
550 * slots.
551 */
552 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_BRANCH &&
553 !list_is_singular(schedule_list)) {
554 continue;
555 }
556
557 /* "An instruction must not read from a location in physical
558 * regfile A or B that was written to by the previous
559 * instruction."
560 */
561 if (reads_too_soon_after_write(scoreboard, inst))
562 continue;
563
564 /* "A scoreboard wait must not occur in the first two
565 * instructions of a fragment shader. This is either the
566 * explicit Wait for Scoreboard signal or an implicit wait
567 * with the first tile-buffer read or write instruction."
568 */
569 if (pixel_scoreboard_too_soon(scoreboard, inst))
570 continue;
571
572 /* If we're trying to pair with another instruction, check
573 * that they're compatible.
574 */
575 if (prev_inst) {
576 if (prev_inst->uniform != -1 && n->uniform != -1)
577 continue;
578
579 inst = qpu_merge_inst(prev_inst->inst->inst, inst);
580 if (!inst)
581 continue;
582 }
583
584 int prio = get_instruction_priority(inst);
585
586 /* Found a valid instruction. If nothing better comes along,
587 * this one works.
588 */
589 if (!chosen) {
590 chosen = n;
591 chosen_prio = prio;
592 continue;
593 }
594
595 if (prio > chosen_prio) {
596 chosen = n;
597 chosen_prio = prio;
598 } else if (prio < chosen_prio) {
599 continue;
600 }
601
602 if (n->delay > chosen->delay) {
603 chosen = n;
604 chosen_prio = prio;
605 } else if (n->delay < chosen->delay) {
606 continue;
607 }
608 }
609
610 return chosen;
611 }
612
613 static void
614 update_scoreboard_for_chosen(struct choose_scoreboard *scoreboard,
615 uint64_t inst)
616 {
617 uint32_t waddr_add = QPU_GET_FIELD(inst, QPU_WADDR_ADD);
618 uint32_t waddr_mul = QPU_GET_FIELD(inst, QPU_WADDR_MUL);
619
620 if (!(inst & QPU_WS)) {
621 scoreboard->last_waddr_a = waddr_add;
622 scoreboard->last_waddr_b = waddr_mul;
623 } else {
624 scoreboard->last_waddr_b = waddr_add;
625 scoreboard->last_waddr_a = waddr_mul;
626 }
627
628 if ((waddr_add >= QPU_W_SFU_RECIP && waddr_add <= QPU_W_SFU_LOG) ||
629 (waddr_mul >= QPU_W_SFU_RECIP && waddr_mul <= QPU_W_SFU_LOG)) {
630 scoreboard->last_sfu_write_tick = scoreboard->tick;
631 }
632
633 if (waddr_add == QPU_W_UNIFORMS_ADDRESS ||
634 waddr_mul == QPU_W_UNIFORMS_ADDRESS) {
635 scoreboard->last_uniforms_reset_tick = scoreboard->tick;
636 }
637 }
638
639 static void
640 dump_state(struct list_head *schedule_list)
641 {
642 list_for_each_entry(struct schedule_node, n, schedule_list, link) {
643 fprintf(stderr, " t=%4d: ", n->unblocked_time);
644 vc4_qpu_disasm(&n->inst->inst, 1);
645 fprintf(stderr, "\n");
646
647 for (int i = 0; i < n->child_count; i++) {
648 struct schedule_node *child = n->children[i].node;
649 if (!child)
650 continue;
651
652 fprintf(stderr, " - ");
653 vc4_qpu_disasm(&child->inst->inst, 1);
654 fprintf(stderr, " (%d parents, %c)\n",
655 child->parent_count,
656 n->children[i].write_after_read ? 'w' : 'r');
657 }
658 }
659 }
660
661 static uint32_t waddr_latency(uint32_t waddr, uint64_t after)
662 {
663 if (waddr < 32)
664 return 2;
665
666 /* Apply some huge latency between texture fetch requests and getting
667 * their results back.
668 */
669 if (waddr == QPU_W_TMU0_S) {
670 if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU0)
671 return 100;
672 }
673 if (waddr == QPU_W_TMU1_S) {
674 if (QPU_GET_FIELD(after, QPU_SIG) == QPU_SIG_LOAD_TMU1)
675 return 100;
676 }
677
678 switch(waddr) {
679 case QPU_W_SFU_RECIP:
680 case QPU_W_SFU_RECIPSQRT:
681 case QPU_W_SFU_EXP:
682 case QPU_W_SFU_LOG:
683 return 3;
684 default:
685 return 1;
686 }
687 }
688
689 static uint32_t
690 instruction_latency(struct schedule_node *before, struct schedule_node *after)
691 {
692 uint64_t before_inst = before->inst->inst;
693 uint64_t after_inst = after->inst->inst;
694
695 return MAX2(waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_ADD),
696 after_inst),
697 waddr_latency(QPU_GET_FIELD(before_inst, QPU_WADDR_MUL),
698 after_inst));
699 }
700
701 /** Recursive computation of the delay member of a node. */
702 static void
703 compute_delay(struct schedule_node *n)
704 {
705 if (!n->child_count) {
706 n->delay = 1;
707 } else {
708 for (int i = 0; i < n->child_count; i++) {
709 if (!n->children[i].node->delay)
710 compute_delay(n->children[i].node);
711 n->delay = MAX2(n->delay,
712 n->children[i].node->delay +
713 instruction_latency(n, n->children[i].node));
714 }
715 }
716 }
717
718 static void
719 mark_instruction_scheduled(struct list_head *schedule_list,
720 uint32_t time,
721 struct schedule_node *node,
722 bool war_only)
723 {
724 if (!node)
725 return;
726
727 for (int i = node->child_count - 1; i >= 0; i--) {
728 struct schedule_node *child =
729 node->children[i].node;
730
731 if (!child)
732 continue;
733
734 if (war_only && !node->children[i].write_after_read)
735 continue;
736
737 /* If the requirement is only that the node not appear before
738 * the last read of its destination, then it can be scheduled
739 * immediately after (or paired with!) the thing reading the
740 * destination.
741 */
742 uint32_t latency = 0;
743 if (!war_only) {
744 latency = instruction_latency(node,
745 node->children[i].node);
746 }
747
748 child->unblocked_time = MAX2(child->unblocked_time,
749 time + latency);
750 child->parent_count--;
751 if (child->parent_count == 0)
752 list_add(&child->link, schedule_list);
753
754 node->children[i].node = NULL;
755 }
756 }
757
758 static uint32_t
759 schedule_instructions(struct vc4_compile *c,
760 struct choose_scoreboard *scoreboard,
761 struct qblock *block,
762 struct list_head *schedule_list,
763 enum quniform_contents *orig_uniform_contents,
764 uint32_t *orig_uniform_data,
765 uint32_t *next_uniform)
766 {
767 uint32_t time = 0;
768
769 if (debug) {
770 fprintf(stderr, "initial deps:\n");
771 dump_state(schedule_list);
772 fprintf(stderr, "\n");
773 }
774
775 /* Remove non-DAG heads from the list. */
776 list_for_each_entry_safe(struct schedule_node, n, schedule_list, link) {
777 if (n->parent_count != 0)
778 list_del(&n->link);
779 }
780
781 while (!list_empty(schedule_list)) {
782 struct schedule_node *chosen =
783 choose_instruction_to_schedule(scoreboard,
784 schedule_list,
785 NULL);
786 struct schedule_node *merge = NULL;
787
788 /* If there are no valid instructions to schedule, drop a NOP
789 * in.
790 */
791 uint64_t inst = chosen ? chosen->inst->inst : qpu_NOP();
792
793 if (debug) {
794 fprintf(stderr, "t=%4d: current list:\n",
795 time);
796 dump_state(schedule_list);
797 fprintf(stderr, "t=%4d: chose: ", time);
798 vc4_qpu_disasm(&inst, 1);
799 fprintf(stderr, "\n");
800 }
801
802 /* Schedule this instruction onto the QPU list. Also try to
803 * find an instruction to pair with it.
804 */
805 if (chosen) {
806 time = MAX2(chosen->unblocked_time, time);
807 list_del(&chosen->link);
808 mark_instruction_scheduled(schedule_list, time,
809 chosen, true);
810 if (chosen->uniform != -1) {
811 c->uniform_data[*next_uniform] =
812 orig_uniform_data[chosen->uniform];
813 c->uniform_contents[*next_uniform] =
814 orig_uniform_contents[chosen->uniform];
815 (*next_uniform)++;
816 }
817
818 merge = choose_instruction_to_schedule(scoreboard,
819 schedule_list,
820 chosen);
821 if (merge) {
822 time = MAX2(merge->unblocked_time, time);
823 list_del(&merge->link);
824 inst = qpu_merge_inst(inst, merge->inst->inst);
825 assert(inst != 0);
826 if (merge->uniform != -1) {
827 c->uniform_data[*next_uniform] =
828 orig_uniform_data[merge->uniform];
829 c->uniform_contents[*next_uniform] =
830 orig_uniform_contents[merge->uniform];
831 (*next_uniform)++;
832 }
833
834 if (debug) {
835 fprintf(stderr, "t=%4d: merging: ",
836 time);
837 vc4_qpu_disasm(&merge->inst->inst, 1);
838 fprintf(stderr, "\n");
839 fprintf(stderr, " resulting in: ");
840 vc4_qpu_disasm(&inst, 1);
841 fprintf(stderr, "\n");
842 }
843 }
844 }
845
846 if (debug) {
847 fprintf(stderr, "\n");
848 }
849
850 qpu_serialize_one_inst(c, inst);
851
852 update_scoreboard_for_chosen(scoreboard, inst);
853
854 /* Now that we've scheduled a new instruction, some of its
855 * children can be promoted to the list of instructions ready to
856 * be scheduled. Update the children's unblocked time for this
857 * DAG edge as we do so.
858 */
859 mark_instruction_scheduled(schedule_list, time, chosen, false);
860 mark_instruction_scheduled(schedule_list, time, merge, false);
861
862 scoreboard->tick++;
863 time++;
864
865 if (QPU_GET_FIELD(inst, QPU_SIG) == QPU_SIG_BRANCH) {
866 block->branch_qpu_ip = c->qpu_inst_count - 1;
867 /* Fill the delay slots.
868 *
869 * We should fill these with actual instructions,
870 * instead, but that will probably need to be done
871 * after this, once we know what the leading
872 * instructions of the successors are (so we can
873 * handle A/B register file write latency)
874 */
875 inst = qpu_NOP();
876 update_scoreboard_for_chosen(scoreboard, inst);
877 qpu_serialize_one_inst(c, inst);
878 qpu_serialize_one_inst(c, inst);
879 qpu_serialize_one_inst(c, inst);
880 }
881 }
882
883 return time;
884 }
885
886 static uint32_t
887 qpu_schedule_instructions_block(struct vc4_compile *c,
888 struct choose_scoreboard *scoreboard,
889 struct qblock *block,
890 enum quniform_contents *orig_uniform_contents,
891 uint32_t *orig_uniform_data,
892 uint32_t *next_uniform)
893 {
894 void *mem_ctx = ralloc_context(NULL);
895 struct list_head schedule_list;
896
897 list_inithead(&schedule_list);
898
899 /* Wrap each instruction in a scheduler structure. */
900 uint32_t next_sched_uniform = *next_uniform;
901 while (!list_empty(&block->qpu_inst_list)) {
902 struct queued_qpu_inst *inst =
903 (struct queued_qpu_inst *)block->qpu_inst_list.next;
904 struct schedule_node *n = rzalloc(mem_ctx, struct schedule_node);
905
906 n->inst = inst;
907
908 if (reads_uniform(inst->inst)) {
909 n->uniform = next_sched_uniform++;
910 } else {
911 n->uniform = -1;
912 }
913 list_del(&inst->link);
914 list_addtail(&n->link, &schedule_list);
915 }
916
917 calculate_forward_deps(c, &schedule_list);
918 calculate_reverse_deps(c, &schedule_list);
919
920 list_for_each_entry(struct schedule_node, n, &schedule_list, link) {
921 compute_delay(n);
922 }
923
924 uint32_t cycles = schedule_instructions(c, scoreboard, block,
925 &schedule_list,
926 orig_uniform_contents,
927 orig_uniform_data,
928 next_uniform);
929
930 ralloc_free(mem_ctx);
931
932 return cycles;
933 }
934
935 static void
936 qpu_set_branch_targets(struct vc4_compile *c)
937 {
938 qir_for_each_block(block, c) {
939 /* The end block of the program has no branch. */
940 if (!block->successors[0])
941 continue;
942
943 /* If there was no branch instruction, then the successor
944 * block must follow immediately after this one.
945 */
946 if (block->branch_qpu_ip == ~0) {
947 assert(block->end_qpu_ip + 1 ==
948 block->successors[0]->start_qpu_ip);
949 continue;
950 }
951
952 /* Set the branch target for the block that doesn't follow
953 * immediately after ours.
954 */
955 uint64_t *branch_inst = &c->qpu_insts[block->branch_qpu_ip];
956 assert(QPU_GET_FIELD(*branch_inst, QPU_SIG) == QPU_SIG_BRANCH);
957 assert(QPU_GET_FIELD(*branch_inst, QPU_BRANCH_TARGET) == 0);
958
959 uint32_t branch_target =
960 (block->successors[0]->start_qpu_ip -
961 (block->branch_qpu_ip + 4)) * sizeof(uint64_t);
962 *branch_inst = (*branch_inst |
963 QPU_SET_FIELD(branch_target, QPU_BRANCH_TARGET));
964
965 /* Make sure that the if-we-don't-jump successor was scheduled
966 * just after the delay slots.
967 */
968 if (block->successors[1]) {
969 assert(block->successors[1]->start_qpu_ip ==
970 block->branch_qpu_ip + 4);
971 }
972 }
973 }
974
975 uint32_t
976 qpu_schedule_instructions(struct vc4_compile *c)
977 {
978 /* We reorder the uniforms as we schedule instructions, so save the
979 * old data off and replace it.
980 */
981 uint32_t *uniform_data = c->uniform_data;
982 enum quniform_contents *uniform_contents = c->uniform_contents;
983 c->uniform_contents = ralloc_array(c, enum quniform_contents,
984 c->num_uniforms);
985 c->uniform_data = ralloc_array(c, uint32_t, c->num_uniforms);
986 c->uniform_array_size = c->num_uniforms;
987 uint32_t next_uniform = 0;
988
989 struct choose_scoreboard scoreboard;
990 memset(&scoreboard, 0, sizeof(scoreboard));
991 scoreboard.last_waddr_a = ~0;
992 scoreboard.last_waddr_b = ~0;
993 scoreboard.last_sfu_write_tick = -10;
994 scoreboard.last_uniforms_reset_tick = -10;
995
996 if (debug) {
997 fprintf(stderr, "Pre-schedule instructions\n");
998 qir_for_each_block(block, c) {
999 fprintf(stderr, "BLOCK %d\n", block->index);
1000 list_for_each_entry(struct queued_qpu_inst, q,
1001 &block->qpu_inst_list, link) {
1002 vc4_qpu_disasm(&q->inst, 1);
1003 fprintf(stderr, "\n");
1004 }
1005 }
1006 fprintf(stderr, "\n");
1007 }
1008
1009 uint32_t cycles = 0;
1010 qir_for_each_block(block, c) {
1011 block->start_qpu_ip = c->qpu_inst_count;
1012 block->branch_qpu_ip = ~0;
1013
1014 cycles += qpu_schedule_instructions_block(c,
1015 &scoreboard,
1016 block,
1017 uniform_contents,
1018 uniform_data,
1019 &next_uniform);
1020
1021 block->end_qpu_ip = c->qpu_inst_count - 1;
1022 }
1023
1024 qpu_set_branch_targets(c);
1025
1026 assert(next_uniform == c->num_uniforms);
1027
1028 if (debug) {
1029 fprintf(stderr, "Post-schedule instructions\n");
1030 vc4_qpu_disasm(c->qpu_insts, c->qpu_inst_count);
1031 fprintf(stderr, "\n");
1032 }
1033
1034 return cycles;
1035 }