5f44b02d3513a0068f2fa3c916aa05b2b7cb368b
[mesa.git] / src / gallium / winsys / amdgpu / drm / amdgpu_bo.c
1 /*
2 * Copyright © 2011 Marek Olšák <maraeo@gmail.com>
3 * Copyright © 2015 Advanced Micro Devices, Inc.
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining
7 * a copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
16 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17 * NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS, AUTHORS
18 * AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
21 * USE OR OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * The above copyright notice and this permission notice (including the
24 * next paragraph) shall be included in all copies or substantial portions
25 * of the Software.
26 */
27
28 #include "amdgpu_cs.h"
29
30 #include "util/hash_table.h"
31 #include "util/os_time.h"
32 #include "util/u_hash_table.h"
33 #include "state_tracker/drm_driver.h"
34 #include <amdgpu_drm.h>
35 #include <xf86drm.h>
36 #include <stdio.h>
37 #include <inttypes.h>
38
39 #ifndef AMDGPU_GEM_CREATE_VM_ALWAYS_VALID
40 #define AMDGPU_GEM_CREATE_VM_ALWAYS_VALID (1 << 6)
41 #endif
42
43 #ifndef AMDGPU_VA_RANGE_HIGH
44 #define AMDGPU_VA_RANGE_HIGH 0x2
45 #endif
46
47 /* Set to 1 for verbose output showing committed sparse buffer ranges. */
48 #define DEBUG_SPARSE_COMMITS 0
49
50 struct amdgpu_sparse_backing_chunk {
51 uint32_t begin, end;
52 };
53
54 static void amdgpu_bo_unmap(struct pb_buffer *buf);
55
56 static bool amdgpu_bo_wait(struct pb_buffer *_buf, uint64_t timeout,
57 enum radeon_bo_usage usage)
58 {
59 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
60 struct amdgpu_winsys *ws = bo->ws;
61 int64_t abs_timeout;
62
63 if (timeout == 0) {
64 if (p_atomic_read(&bo->num_active_ioctls))
65 return false;
66
67 } else {
68 abs_timeout = os_time_get_absolute_timeout(timeout);
69
70 /* Wait if any ioctl is being submitted with this buffer. */
71 if (!os_wait_until_zero_abs_timeout(&bo->num_active_ioctls, abs_timeout))
72 return false;
73 }
74
75 if (bo->is_shared) {
76 /* We can't use user fences for shared buffers, because user fences
77 * are local to this process only. If we want to wait for all buffer
78 * uses in all processes, we have to use amdgpu_bo_wait_for_idle.
79 */
80 bool buffer_busy = true;
81 int r;
82
83 r = amdgpu_bo_wait_for_idle(bo->bo, timeout, &buffer_busy);
84 if (r)
85 fprintf(stderr, "%s: amdgpu_bo_wait_for_idle failed %i\n", __func__,
86 r);
87 return !buffer_busy;
88 }
89
90 if (timeout == 0) {
91 unsigned idle_fences;
92 bool buffer_idle;
93
94 simple_mtx_lock(&ws->bo_fence_lock);
95
96 for (idle_fences = 0; idle_fences < bo->num_fences; ++idle_fences) {
97 if (!amdgpu_fence_wait(bo->fences[idle_fences], 0, false))
98 break;
99 }
100
101 /* Release the idle fences to avoid checking them again later. */
102 for (unsigned i = 0; i < idle_fences; ++i)
103 amdgpu_fence_reference(&bo->fences[i], NULL);
104
105 memmove(&bo->fences[0], &bo->fences[idle_fences],
106 (bo->num_fences - idle_fences) * sizeof(*bo->fences));
107 bo->num_fences -= idle_fences;
108
109 buffer_idle = !bo->num_fences;
110 simple_mtx_unlock(&ws->bo_fence_lock);
111
112 return buffer_idle;
113 } else {
114 bool buffer_idle = true;
115
116 simple_mtx_lock(&ws->bo_fence_lock);
117 while (bo->num_fences && buffer_idle) {
118 struct pipe_fence_handle *fence = NULL;
119 bool fence_idle = false;
120
121 amdgpu_fence_reference(&fence, bo->fences[0]);
122
123 /* Wait for the fence. */
124 simple_mtx_unlock(&ws->bo_fence_lock);
125 if (amdgpu_fence_wait(fence, abs_timeout, true))
126 fence_idle = true;
127 else
128 buffer_idle = false;
129 simple_mtx_lock(&ws->bo_fence_lock);
130
131 /* Release an idle fence to avoid checking it again later, keeping in
132 * mind that the fence array may have been modified by other threads.
133 */
134 if (fence_idle && bo->num_fences && bo->fences[0] == fence) {
135 amdgpu_fence_reference(&bo->fences[0], NULL);
136 memmove(&bo->fences[0], &bo->fences[1],
137 (bo->num_fences - 1) * sizeof(*bo->fences));
138 bo->num_fences--;
139 }
140
141 amdgpu_fence_reference(&fence, NULL);
142 }
143 simple_mtx_unlock(&ws->bo_fence_lock);
144
145 return buffer_idle;
146 }
147 }
148
149 static enum radeon_bo_domain amdgpu_bo_get_initial_domain(
150 struct pb_buffer *buf)
151 {
152 return ((struct amdgpu_winsys_bo*)buf)->initial_domain;
153 }
154
155 static void amdgpu_bo_remove_fences(struct amdgpu_winsys_bo *bo)
156 {
157 for (unsigned i = 0; i < bo->num_fences; ++i)
158 amdgpu_fence_reference(&bo->fences[i], NULL);
159
160 FREE(bo->fences);
161 bo->num_fences = 0;
162 bo->max_fences = 0;
163 }
164
165 void amdgpu_bo_destroy(struct pb_buffer *_buf)
166 {
167 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
168 struct amdgpu_screen_winsys *sws_iter;
169 struct amdgpu_winsys *ws = bo->ws;
170
171 assert(bo->bo && "must not be called for slab entries");
172
173 if (!bo->is_user_ptr && bo->cpu_ptr) {
174 bo->cpu_ptr = NULL;
175 amdgpu_bo_unmap(&bo->base);
176 }
177 assert(bo->is_user_ptr || bo->u.real.map_count == 0);
178
179 if (ws->debug_all_bos) {
180 simple_mtx_lock(&ws->global_bo_list_lock);
181 list_del(&bo->u.real.global_list_item);
182 ws->num_buffers--;
183 simple_mtx_unlock(&ws->global_bo_list_lock);
184 }
185
186 simple_mtx_lock(&ws->sws_list_lock);
187 for (sws_iter = ws->sws_list; sws_iter; sws_iter = sws_iter->next)
188 _mesa_hash_table_remove_key(sws_iter->kms_handles, bo);
189 simple_mtx_unlock(&ws->sws_list_lock);
190
191 simple_mtx_lock(&ws->bo_export_table_lock);
192 util_hash_table_remove(ws->bo_export_table, bo->bo);
193 simple_mtx_unlock(&ws->bo_export_table_lock);
194
195 if (bo->initial_domain & RADEON_DOMAIN_VRAM_GTT) {
196 amdgpu_bo_va_op(bo->bo, 0, bo->base.size, bo->va, 0, AMDGPU_VA_OP_UNMAP);
197 amdgpu_va_range_free(bo->u.real.va_handle);
198 }
199 amdgpu_bo_free(bo->bo);
200
201 amdgpu_bo_remove_fences(bo);
202
203 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
204 ws->allocated_vram -= align64(bo->base.size, ws->info.gart_page_size);
205 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
206 ws->allocated_gtt -= align64(bo->base.size, ws->info.gart_page_size);
207
208 simple_mtx_destroy(&bo->lock);
209 FREE(bo);
210 }
211
212 static void amdgpu_bo_destroy_or_cache(struct pb_buffer *_buf)
213 {
214 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
215
216 assert(bo->bo); /* slab buffers have a separate vtbl */
217
218 if (bo->u.real.use_reusable_pool)
219 pb_cache_add_buffer(&bo->u.real.cache_entry);
220 else
221 amdgpu_bo_destroy(_buf);
222 }
223
224 static void amdgpu_clean_up_buffer_managers(struct amdgpu_winsys *ws)
225 {
226 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++)
227 pb_slabs_reclaim(&ws->bo_slabs[i]);
228
229 pb_cache_release_all_buffers(&ws->bo_cache);
230 }
231
232 static bool amdgpu_bo_do_map(struct amdgpu_winsys_bo *bo, void **cpu)
233 {
234 assert(!bo->sparse && bo->bo && !bo->is_user_ptr);
235 int r = amdgpu_bo_cpu_map(bo->bo, cpu);
236 if (r) {
237 /* Clean up buffer managers and try again. */
238 amdgpu_clean_up_buffer_managers(bo->ws);
239 r = amdgpu_bo_cpu_map(bo->bo, cpu);
240 if (r)
241 return false;
242 }
243
244 if (p_atomic_inc_return(&bo->u.real.map_count) == 1) {
245 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
246 bo->ws->mapped_vram += bo->base.size;
247 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
248 bo->ws->mapped_gtt += bo->base.size;
249 bo->ws->num_mapped_buffers++;
250 }
251
252 return true;
253 }
254
255 void *amdgpu_bo_map(struct pb_buffer *buf,
256 struct radeon_cmdbuf *rcs,
257 enum pipe_transfer_usage usage)
258 {
259 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
260 struct amdgpu_winsys_bo *real;
261 struct amdgpu_cs *cs = (struct amdgpu_cs*)rcs;
262
263 assert(!bo->sparse);
264
265 /* If it's not unsynchronized bo_map, flush CS if needed and then wait. */
266 if (!(usage & PIPE_TRANSFER_UNSYNCHRONIZED)) {
267 /* DONTBLOCK doesn't make sense with UNSYNCHRONIZED. */
268 if (usage & PIPE_TRANSFER_DONTBLOCK) {
269 if (!(usage & PIPE_TRANSFER_WRITE)) {
270 /* Mapping for read.
271 *
272 * Since we are mapping for read, we don't need to wait
273 * if the GPU is using the buffer for read too
274 * (neither one is changing it).
275 *
276 * Only check whether the buffer is being used for write. */
277 if (cs && amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
278 RADEON_USAGE_WRITE)) {
279 cs->flush_cs(cs->flush_data,
280 RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
281 return NULL;
282 }
283
284 if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
285 RADEON_USAGE_WRITE)) {
286 return NULL;
287 }
288 } else {
289 if (cs && amdgpu_bo_is_referenced_by_cs(cs, bo)) {
290 cs->flush_cs(cs->flush_data,
291 RADEON_FLUSH_ASYNC_START_NEXT_GFX_IB_NOW, NULL);
292 return NULL;
293 }
294
295 if (!amdgpu_bo_wait((struct pb_buffer*)bo, 0,
296 RADEON_USAGE_READWRITE)) {
297 return NULL;
298 }
299 }
300 } else {
301 uint64_t time = os_time_get_nano();
302
303 if (!(usage & PIPE_TRANSFER_WRITE)) {
304 /* Mapping for read.
305 *
306 * Since we are mapping for read, we don't need to wait
307 * if the GPU is using the buffer for read too
308 * (neither one is changing it).
309 *
310 * Only check whether the buffer is being used for write. */
311 if (cs) {
312 if (amdgpu_bo_is_referenced_by_cs_with_usage(cs, bo,
313 RADEON_USAGE_WRITE)) {
314 cs->flush_cs(cs->flush_data,
315 RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
316 } else {
317 /* Try to avoid busy-waiting in amdgpu_bo_wait. */
318 if (p_atomic_read(&bo->num_active_ioctls))
319 amdgpu_cs_sync_flush(rcs);
320 }
321 }
322
323 amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
324 RADEON_USAGE_WRITE);
325 } else {
326 /* Mapping for write. */
327 if (cs) {
328 if (amdgpu_bo_is_referenced_by_cs(cs, bo)) {
329 cs->flush_cs(cs->flush_data,
330 RADEON_FLUSH_START_NEXT_GFX_IB_NOW, NULL);
331 } else {
332 /* Try to avoid busy-waiting in amdgpu_bo_wait. */
333 if (p_atomic_read(&bo->num_active_ioctls))
334 amdgpu_cs_sync_flush(rcs);
335 }
336 }
337
338 amdgpu_bo_wait((struct pb_buffer*)bo, PIPE_TIMEOUT_INFINITE,
339 RADEON_USAGE_READWRITE);
340 }
341
342 bo->ws->buffer_wait_time += os_time_get_nano() - time;
343 }
344 }
345
346 /* Buffer synchronization has been checked, now actually map the buffer. */
347 void *cpu = NULL;
348 uint64_t offset = 0;
349
350 if (bo->bo) {
351 real = bo;
352 } else {
353 real = bo->u.slab.real;
354 offset = bo->va - real->va;
355 }
356
357 if (usage & RADEON_TRANSFER_TEMPORARY) {
358 if (real->is_user_ptr) {
359 cpu = real->cpu_ptr;
360 } else {
361 if (!amdgpu_bo_do_map(real, &cpu))
362 return NULL;
363 }
364 } else {
365 cpu = p_atomic_read(&real->cpu_ptr);
366 if (!cpu) {
367 simple_mtx_lock(&real->lock);
368 /* Must re-check due to the possibility of a race. Re-check need not
369 * be atomic thanks to the lock. */
370 cpu = real->cpu_ptr;
371 if (!cpu) {
372 if (!amdgpu_bo_do_map(real, &cpu)) {
373 simple_mtx_unlock(&real->lock);
374 return NULL;
375 }
376 p_atomic_set(&real->cpu_ptr, cpu);
377 }
378 simple_mtx_unlock(&real->lock);
379 }
380 }
381
382 return (uint8_t*)cpu + offset;
383 }
384
385 static void amdgpu_bo_unmap(struct pb_buffer *buf)
386 {
387 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
388 struct amdgpu_winsys_bo *real;
389
390 assert(!bo->sparse);
391
392 if (bo->is_user_ptr)
393 return;
394
395 real = bo->bo ? bo : bo->u.slab.real;
396 assert(real->u.real.map_count != 0 && "too many unmaps");
397 if (p_atomic_dec_zero(&real->u.real.map_count)) {
398 assert(!real->cpu_ptr &&
399 "too many unmaps or forgot RADEON_TRANSFER_TEMPORARY flag");
400
401 if (real->initial_domain & RADEON_DOMAIN_VRAM)
402 real->ws->mapped_vram -= real->base.size;
403 else if (real->initial_domain & RADEON_DOMAIN_GTT)
404 real->ws->mapped_gtt -= real->base.size;
405 real->ws->num_mapped_buffers--;
406 }
407
408 amdgpu_bo_cpu_unmap(real->bo);
409 }
410
411 static const struct pb_vtbl amdgpu_winsys_bo_vtbl = {
412 amdgpu_bo_destroy_or_cache
413 /* other functions are never called */
414 };
415
416 static void amdgpu_add_buffer_to_global_list(struct amdgpu_winsys_bo *bo)
417 {
418 struct amdgpu_winsys *ws = bo->ws;
419
420 assert(bo->bo);
421
422 if (ws->debug_all_bos) {
423 simple_mtx_lock(&ws->global_bo_list_lock);
424 list_addtail(&bo->u.real.global_list_item, &ws->global_bo_list);
425 ws->num_buffers++;
426 simple_mtx_unlock(&ws->global_bo_list_lock);
427 }
428 }
429
430 static uint64_t amdgpu_get_optimal_vm_alignment(struct amdgpu_winsys *ws,
431 uint64_t size, unsigned alignment)
432 {
433 uint64_t vm_alignment = alignment;
434
435 /* Increase the VM alignment for faster address translation. */
436 if (size >= ws->info.pte_fragment_size)
437 vm_alignment = MAX2(vm_alignment, ws->info.pte_fragment_size);
438
439 /* Gfx9: Increase the VM alignment to the most significant bit set
440 * in the size for faster address translation.
441 */
442 if (ws->info.chip_class >= GFX9) {
443 unsigned msb = util_last_bit64(size); /* 0 = no bit is set */
444 uint64_t msb_alignment = msb ? 1ull << (msb - 1) : 0;
445
446 vm_alignment = MAX2(vm_alignment, msb_alignment);
447 }
448 return vm_alignment;
449 }
450
451 static struct amdgpu_winsys_bo *amdgpu_create_bo(struct amdgpu_winsys *ws,
452 uint64_t size,
453 unsigned alignment,
454 enum radeon_bo_domain initial_domain,
455 unsigned flags,
456 int heap)
457 {
458 struct amdgpu_bo_alloc_request request = {0};
459 amdgpu_bo_handle buf_handle;
460 uint64_t va = 0;
461 struct amdgpu_winsys_bo *bo;
462 amdgpu_va_handle va_handle;
463 int r;
464
465 /* VRAM or GTT must be specified, but not both at the same time. */
466 assert(util_bitcount(initial_domain & (RADEON_DOMAIN_VRAM_GTT |
467 RADEON_DOMAIN_GDS |
468 RADEON_DOMAIN_OA)) == 1);
469
470 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
471 if (!bo) {
472 return NULL;
473 }
474
475 if (heap >= 0) {
476 pb_cache_init_entry(&ws->bo_cache, &bo->u.real.cache_entry, &bo->base,
477 heap);
478 }
479 request.alloc_size = size;
480 request.phys_alignment = alignment;
481
482 if (initial_domain & RADEON_DOMAIN_VRAM) {
483 request.preferred_heap |= AMDGPU_GEM_DOMAIN_VRAM;
484
485 /* Since VRAM and GTT have almost the same performance on APUs, we could
486 * just set GTT. However, in order to decrease GTT(RAM) usage, which is
487 * shared with the OS, allow VRAM placements too. The idea is not to use
488 * VRAM usefully, but to use it so that it's not unused and wasted.
489 */
490 if (!ws->info.has_dedicated_vram)
491 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
492 }
493
494 if (initial_domain & RADEON_DOMAIN_GTT)
495 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GTT;
496 if (initial_domain & RADEON_DOMAIN_GDS)
497 request.preferred_heap |= AMDGPU_GEM_DOMAIN_GDS;
498 if (initial_domain & RADEON_DOMAIN_OA)
499 request.preferred_heap |= AMDGPU_GEM_DOMAIN_OA;
500
501 if (flags & RADEON_FLAG_NO_CPU_ACCESS)
502 request.flags |= AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
503 if (flags & RADEON_FLAG_GTT_WC)
504 request.flags |= AMDGPU_GEM_CREATE_CPU_GTT_USWC;
505 if (flags & RADEON_FLAG_NO_INTERPROCESS_SHARING &&
506 ws->info.has_local_buffers)
507 request.flags |= AMDGPU_GEM_CREATE_VM_ALWAYS_VALID;
508 if (ws->zero_all_vram_allocs &&
509 (request.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM))
510 request.flags |= AMDGPU_GEM_CREATE_VRAM_CLEARED;
511
512 r = amdgpu_bo_alloc(ws->dev, &request, &buf_handle);
513 if (r) {
514 fprintf(stderr, "amdgpu: Failed to allocate a buffer:\n");
515 fprintf(stderr, "amdgpu: size : %"PRIu64" bytes\n", size);
516 fprintf(stderr, "amdgpu: alignment : %u bytes\n", alignment);
517 fprintf(stderr, "amdgpu: domains : %u\n", initial_domain);
518 goto error_bo_alloc;
519 }
520
521 if (initial_domain & RADEON_DOMAIN_VRAM_GTT) {
522 unsigned va_gap_size = ws->check_vm ? MAX2(4 * alignment, 64 * 1024) : 0;
523
524 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
525 size + va_gap_size,
526 amdgpu_get_optimal_vm_alignment(ws, size, alignment),
527 0, &va, &va_handle,
528 (flags & RADEON_FLAG_32BIT ? AMDGPU_VA_RANGE_32_BIT : 0) |
529 AMDGPU_VA_RANGE_HIGH);
530 if (r)
531 goto error_va_alloc;
532
533 unsigned vm_flags = AMDGPU_VM_PAGE_READABLE |
534 AMDGPU_VM_PAGE_EXECUTABLE;
535
536 if (!(flags & RADEON_FLAG_READ_ONLY))
537 vm_flags |= AMDGPU_VM_PAGE_WRITEABLE;
538
539 r = amdgpu_bo_va_op_raw(ws->dev, buf_handle, 0, size, va, vm_flags,
540 AMDGPU_VA_OP_MAP);
541 if (r)
542 goto error_va_map;
543 }
544
545 simple_mtx_init(&bo->lock, mtx_plain);
546 pipe_reference_init(&bo->base.reference, 1);
547 bo->base.alignment = alignment;
548 bo->base.usage = 0;
549 bo->base.size = size;
550 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
551 bo->ws = ws;
552 bo->bo = buf_handle;
553 bo->va = va;
554 bo->u.real.va_handle = va_handle;
555 bo->initial_domain = initial_domain;
556 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
557 bo->is_local = !!(request.flags & AMDGPU_GEM_CREATE_VM_ALWAYS_VALID);
558
559 if (initial_domain & RADEON_DOMAIN_VRAM)
560 ws->allocated_vram += align64(size, ws->info.gart_page_size);
561 else if (initial_domain & RADEON_DOMAIN_GTT)
562 ws->allocated_gtt += align64(size, ws->info.gart_page_size);
563
564 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
565
566 amdgpu_add_buffer_to_global_list(bo);
567
568 return bo;
569
570 error_va_map:
571 amdgpu_va_range_free(va_handle);
572
573 error_va_alloc:
574 amdgpu_bo_free(buf_handle);
575
576 error_bo_alloc:
577 FREE(bo);
578 return NULL;
579 }
580
581 bool amdgpu_bo_can_reclaim(struct pb_buffer *_buf)
582 {
583 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
584
585 if (amdgpu_bo_is_referenced_by_any_cs(bo)) {
586 return false;
587 }
588
589 return amdgpu_bo_wait(_buf, 0, RADEON_USAGE_READWRITE);
590 }
591
592 bool amdgpu_bo_can_reclaim_slab(void *priv, struct pb_slab_entry *entry)
593 {
594 struct amdgpu_winsys_bo *bo = NULL; /* fix container_of */
595 bo = container_of(entry, bo, u.slab.entry);
596
597 return amdgpu_bo_can_reclaim(&bo->base);
598 }
599
600 static struct pb_slabs *get_slabs(struct amdgpu_winsys *ws, uint64_t size)
601 {
602 /* Find the correct slab allocator for the given size. */
603 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
604 struct pb_slabs *slabs = &ws->bo_slabs[i];
605
606 if (size <= 1 << (slabs->min_order + slabs->num_orders - 1))
607 return slabs;
608 }
609
610 assert(0);
611 return NULL;
612 }
613
614 static void amdgpu_bo_slab_destroy(struct pb_buffer *_buf)
615 {
616 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
617
618 assert(!bo->bo);
619
620 pb_slab_free(get_slabs(bo->ws, bo->base.size), &bo->u.slab.entry);
621 }
622
623 static const struct pb_vtbl amdgpu_winsys_bo_slab_vtbl = {
624 amdgpu_bo_slab_destroy
625 /* other functions are never called */
626 };
627
628 struct pb_slab *amdgpu_bo_slab_alloc(void *priv, unsigned heap,
629 unsigned entry_size,
630 unsigned group_index)
631 {
632 struct amdgpu_winsys *ws = priv;
633 struct amdgpu_slab *slab = CALLOC_STRUCT(amdgpu_slab);
634 enum radeon_bo_domain domains = radeon_domain_from_heap(heap);
635 enum radeon_bo_flag flags = radeon_flags_from_heap(heap);
636 uint32_t base_id;
637 unsigned slab_size = 0;
638
639 if (!slab)
640 return NULL;
641
642 /* Determine the slab buffer size. */
643 for (unsigned i = 0; i < NUM_SLAB_ALLOCATORS; i++) {
644 struct pb_slabs *slabs = &ws->bo_slabs[i];
645 unsigned max_entry_size = 1 << (slabs->min_order + slabs->num_orders - 1);
646
647 if (entry_size <= max_entry_size) {
648 /* The slab size is twice the size of the largest possible entry. */
649 slab_size = max_entry_size * 2;
650
651 /* The largest slab should have the same size as the PTE fragment
652 * size to get faster address translation.
653 */
654 if (i == NUM_SLAB_ALLOCATORS - 1 &&
655 slab_size < ws->info.pte_fragment_size)
656 slab_size = ws->info.pte_fragment_size;
657 break;
658 }
659 }
660 assert(slab_size != 0);
661
662 slab->buffer = amdgpu_winsys_bo(amdgpu_bo_create(ws,
663 slab_size, slab_size,
664 domains, flags));
665 if (!slab->buffer)
666 goto fail;
667
668 slab->base.num_entries = slab->buffer->base.size / entry_size;
669 slab->base.num_free = slab->base.num_entries;
670 slab->entries = CALLOC(slab->base.num_entries, sizeof(*slab->entries));
671 if (!slab->entries)
672 goto fail_buffer;
673
674 list_inithead(&slab->base.free);
675
676 base_id = __sync_fetch_and_add(&ws->next_bo_unique_id, slab->base.num_entries);
677
678 for (unsigned i = 0; i < slab->base.num_entries; ++i) {
679 struct amdgpu_winsys_bo *bo = &slab->entries[i];
680
681 simple_mtx_init(&bo->lock, mtx_plain);
682 bo->base.alignment = entry_size;
683 bo->base.usage = slab->buffer->base.usage;
684 bo->base.size = entry_size;
685 bo->base.vtbl = &amdgpu_winsys_bo_slab_vtbl;
686 bo->ws = ws;
687 bo->va = slab->buffer->va + i * entry_size;
688 bo->initial_domain = domains;
689 bo->unique_id = base_id + i;
690 bo->u.slab.entry.slab = &slab->base;
691 bo->u.slab.entry.group_index = group_index;
692
693 if (slab->buffer->bo) {
694 /* The slab is not suballocated. */
695 bo->u.slab.real = slab->buffer;
696 } else {
697 /* The slab is allocated out of a bigger slab. */
698 bo->u.slab.real = slab->buffer->u.slab.real;
699 assert(bo->u.slab.real->bo);
700 }
701
702 list_addtail(&bo->u.slab.entry.head, &slab->base.free);
703 }
704
705 return &slab->base;
706
707 fail_buffer:
708 amdgpu_winsys_bo_reference(&slab->buffer, NULL);
709 fail:
710 FREE(slab);
711 return NULL;
712 }
713
714 void amdgpu_bo_slab_free(void *priv, struct pb_slab *pslab)
715 {
716 struct amdgpu_slab *slab = amdgpu_slab(pslab);
717
718 for (unsigned i = 0; i < slab->base.num_entries; ++i) {
719 amdgpu_bo_remove_fences(&slab->entries[i]);
720 simple_mtx_destroy(&slab->entries[i].lock);
721 }
722
723 FREE(slab->entries);
724 amdgpu_winsys_bo_reference(&slab->buffer, NULL);
725 FREE(slab);
726 }
727
728 #if DEBUG_SPARSE_COMMITS
729 static void
730 sparse_dump(struct amdgpu_winsys_bo *bo, const char *func)
731 {
732 fprintf(stderr, "%s: %p (size=%"PRIu64", num_va_pages=%u) @ %s\n"
733 "Commitments:\n",
734 __func__, bo, bo->base.size, bo->u.sparse.num_va_pages, func);
735
736 struct amdgpu_sparse_backing *span_backing = NULL;
737 uint32_t span_first_backing_page = 0;
738 uint32_t span_first_va_page = 0;
739 uint32_t va_page = 0;
740
741 for (;;) {
742 struct amdgpu_sparse_backing *backing = 0;
743 uint32_t backing_page = 0;
744
745 if (va_page < bo->u.sparse.num_va_pages) {
746 backing = bo->u.sparse.commitments[va_page].backing;
747 backing_page = bo->u.sparse.commitments[va_page].page;
748 }
749
750 if (span_backing &&
751 (backing != span_backing ||
752 backing_page != span_first_backing_page + (va_page - span_first_va_page))) {
753 fprintf(stderr, " %u..%u: backing=%p:%u..%u\n",
754 span_first_va_page, va_page - 1, span_backing,
755 span_first_backing_page,
756 span_first_backing_page + (va_page - span_first_va_page) - 1);
757
758 span_backing = NULL;
759 }
760
761 if (va_page >= bo->u.sparse.num_va_pages)
762 break;
763
764 if (backing && !span_backing) {
765 span_backing = backing;
766 span_first_backing_page = backing_page;
767 span_first_va_page = va_page;
768 }
769
770 va_page++;
771 }
772
773 fprintf(stderr, "Backing:\n");
774
775 list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
776 fprintf(stderr, " %p (size=%"PRIu64")\n", backing, backing->bo->base.size);
777 for (unsigned i = 0; i < backing->num_chunks; ++i)
778 fprintf(stderr, " %u..%u\n", backing->chunks[i].begin, backing->chunks[i].end);
779 }
780 }
781 #endif
782
783 /*
784 * Attempt to allocate the given number of backing pages. Fewer pages may be
785 * allocated (depending on the fragmentation of existing backing buffers),
786 * which will be reflected by a change to *pnum_pages.
787 */
788 static struct amdgpu_sparse_backing *
789 sparse_backing_alloc(struct amdgpu_winsys_bo *bo, uint32_t *pstart_page, uint32_t *pnum_pages)
790 {
791 struct amdgpu_sparse_backing *best_backing;
792 unsigned best_idx;
793 uint32_t best_num_pages;
794
795 best_backing = NULL;
796 best_idx = 0;
797 best_num_pages = 0;
798
799 /* This is a very simple and inefficient best-fit algorithm. */
800 list_for_each_entry(struct amdgpu_sparse_backing, backing, &bo->u.sparse.backing, list) {
801 for (unsigned idx = 0; idx < backing->num_chunks; ++idx) {
802 uint32_t cur_num_pages = backing->chunks[idx].end - backing->chunks[idx].begin;
803 if ((best_num_pages < *pnum_pages && cur_num_pages > best_num_pages) ||
804 (best_num_pages > *pnum_pages && cur_num_pages < best_num_pages)) {
805 best_backing = backing;
806 best_idx = idx;
807 best_num_pages = cur_num_pages;
808 }
809 }
810 }
811
812 /* Allocate a new backing buffer if necessary. */
813 if (!best_backing) {
814 struct pb_buffer *buf;
815 uint64_t size;
816 uint32_t pages;
817
818 best_backing = CALLOC_STRUCT(amdgpu_sparse_backing);
819 if (!best_backing)
820 return NULL;
821
822 best_backing->max_chunks = 4;
823 best_backing->chunks = CALLOC(best_backing->max_chunks,
824 sizeof(*best_backing->chunks));
825 if (!best_backing->chunks) {
826 FREE(best_backing);
827 return NULL;
828 }
829
830 assert(bo->u.sparse.num_backing_pages < DIV_ROUND_UP(bo->base.size, RADEON_SPARSE_PAGE_SIZE));
831
832 size = MIN3(bo->base.size / 16,
833 8 * 1024 * 1024,
834 bo->base.size - (uint64_t)bo->u.sparse.num_backing_pages * RADEON_SPARSE_PAGE_SIZE);
835 size = MAX2(size, RADEON_SPARSE_PAGE_SIZE);
836
837 buf = amdgpu_bo_create(bo->ws, size, RADEON_SPARSE_PAGE_SIZE,
838 bo->initial_domain,
839 bo->u.sparse.flags | RADEON_FLAG_NO_SUBALLOC);
840 if (!buf) {
841 FREE(best_backing->chunks);
842 FREE(best_backing);
843 return NULL;
844 }
845
846 /* We might have gotten a bigger buffer than requested via caching. */
847 pages = buf->size / RADEON_SPARSE_PAGE_SIZE;
848
849 best_backing->bo = amdgpu_winsys_bo(buf);
850 best_backing->num_chunks = 1;
851 best_backing->chunks[0].begin = 0;
852 best_backing->chunks[0].end = pages;
853
854 list_add(&best_backing->list, &bo->u.sparse.backing);
855 bo->u.sparse.num_backing_pages += pages;
856
857 best_idx = 0;
858 best_num_pages = pages;
859 }
860
861 *pnum_pages = MIN2(*pnum_pages, best_num_pages);
862 *pstart_page = best_backing->chunks[best_idx].begin;
863 best_backing->chunks[best_idx].begin += *pnum_pages;
864
865 if (best_backing->chunks[best_idx].begin >= best_backing->chunks[best_idx].end) {
866 memmove(&best_backing->chunks[best_idx], &best_backing->chunks[best_idx + 1],
867 sizeof(*best_backing->chunks) * (best_backing->num_chunks - best_idx - 1));
868 best_backing->num_chunks--;
869 }
870
871 return best_backing;
872 }
873
874 static void
875 sparse_free_backing_buffer(struct amdgpu_winsys_bo *bo,
876 struct amdgpu_sparse_backing *backing)
877 {
878 struct amdgpu_winsys *ws = backing->bo->ws;
879
880 bo->u.sparse.num_backing_pages -= backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE;
881
882 simple_mtx_lock(&ws->bo_fence_lock);
883 amdgpu_add_fences(backing->bo, bo->num_fences, bo->fences);
884 simple_mtx_unlock(&ws->bo_fence_lock);
885
886 list_del(&backing->list);
887 amdgpu_winsys_bo_reference(&backing->bo, NULL);
888 FREE(backing->chunks);
889 FREE(backing);
890 }
891
892 /*
893 * Return a range of pages from the given backing buffer back into the
894 * free structure.
895 */
896 static bool
897 sparse_backing_free(struct amdgpu_winsys_bo *bo,
898 struct amdgpu_sparse_backing *backing,
899 uint32_t start_page, uint32_t num_pages)
900 {
901 uint32_t end_page = start_page + num_pages;
902 unsigned low = 0;
903 unsigned high = backing->num_chunks;
904
905 /* Find the first chunk with begin >= start_page. */
906 while (low < high) {
907 unsigned mid = low + (high - low) / 2;
908
909 if (backing->chunks[mid].begin >= start_page)
910 high = mid;
911 else
912 low = mid + 1;
913 }
914
915 assert(low >= backing->num_chunks || end_page <= backing->chunks[low].begin);
916 assert(low == 0 || backing->chunks[low - 1].end <= start_page);
917
918 if (low > 0 && backing->chunks[low - 1].end == start_page) {
919 backing->chunks[low - 1].end = end_page;
920
921 if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
922 backing->chunks[low - 1].end = backing->chunks[low].end;
923 memmove(&backing->chunks[low], &backing->chunks[low + 1],
924 sizeof(*backing->chunks) * (backing->num_chunks - low - 1));
925 backing->num_chunks--;
926 }
927 } else if (low < backing->num_chunks && end_page == backing->chunks[low].begin) {
928 backing->chunks[low].begin = start_page;
929 } else {
930 if (backing->num_chunks >= backing->max_chunks) {
931 unsigned new_max_chunks = 2 * backing->max_chunks;
932 struct amdgpu_sparse_backing_chunk *new_chunks =
933 REALLOC(backing->chunks,
934 sizeof(*backing->chunks) * backing->max_chunks,
935 sizeof(*backing->chunks) * new_max_chunks);
936 if (!new_chunks)
937 return false;
938
939 backing->max_chunks = new_max_chunks;
940 backing->chunks = new_chunks;
941 }
942
943 memmove(&backing->chunks[low + 1], &backing->chunks[low],
944 sizeof(*backing->chunks) * (backing->num_chunks - low));
945 backing->chunks[low].begin = start_page;
946 backing->chunks[low].end = end_page;
947 backing->num_chunks++;
948 }
949
950 if (backing->num_chunks == 1 && backing->chunks[0].begin == 0 &&
951 backing->chunks[0].end == backing->bo->base.size / RADEON_SPARSE_PAGE_SIZE)
952 sparse_free_backing_buffer(bo, backing);
953
954 return true;
955 }
956
957 static void amdgpu_bo_sparse_destroy(struct pb_buffer *_buf)
958 {
959 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
960 int r;
961
962 assert(!bo->bo && bo->sparse);
963
964 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
965 (uint64_t)bo->u.sparse.num_va_pages * RADEON_SPARSE_PAGE_SIZE,
966 bo->va, 0, AMDGPU_VA_OP_CLEAR);
967 if (r) {
968 fprintf(stderr, "amdgpu: clearing PRT VA region on destroy failed (%d)\n", r);
969 }
970
971 while (!list_is_empty(&bo->u.sparse.backing)) {
972 struct amdgpu_sparse_backing *dummy = NULL;
973 sparse_free_backing_buffer(bo,
974 container_of(bo->u.sparse.backing.next,
975 dummy, list));
976 }
977
978 amdgpu_va_range_free(bo->u.sparse.va_handle);
979 FREE(bo->u.sparse.commitments);
980 simple_mtx_destroy(&bo->lock);
981 FREE(bo);
982 }
983
984 static const struct pb_vtbl amdgpu_winsys_bo_sparse_vtbl = {
985 amdgpu_bo_sparse_destroy
986 /* other functions are never called */
987 };
988
989 static struct pb_buffer *
990 amdgpu_bo_sparse_create(struct amdgpu_winsys *ws, uint64_t size,
991 enum radeon_bo_domain domain,
992 enum radeon_bo_flag flags)
993 {
994 struct amdgpu_winsys_bo *bo;
995 uint64_t map_size;
996 uint64_t va_gap_size;
997 int r;
998
999 /* We use 32-bit page numbers; refuse to attempt allocating sparse buffers
1000 * that exceed this limit. This is not really a restriction: we don't have
1001 * that much virtual address space anyway.
1002 */
1003 if (size > (uint64_t)INT32_MAX * RADEON_SPARSE_PAGE_SIZE)
1004 return NULL;
1005
1006 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1007 if (!bo)
1008 return NULL;
1009
1010 simple_mtx_init(&bo->lock, mtx_plain);
1011 pipe_reference_init(&bo->base.reference, 1);
1012 bo->base.alignment = RADEON_SPARSE_PAGE_SIZE;
1013 bo->base.size = size;
1014 bo->base.vtbl = &amdgpu_winsys_bo_sparse_vtbl;
1015 bo->ws = ws;
1016 bo->initial_domain = domain;
1017 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1018 bo->sparse = true;
1019 bo->u.sparse.flags = flags & ~RADEON_FLAG_SPARSE;
1020
1021 bo->u.sparse.num_va_pages = DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
1022 bo->u.sparse.commitments = CALLOC(bo->u.sparse.num_va_pages,
1023 sizeof(*bo->u.sparse.commitments));
1024 if (!bo->u.sparse.commitments)
1025 goto error_alloc_commitments;
1026
1027 list_inithead(&bo->u.sparse.backing);
1028
1029 /* For simplicity, we always map a multiple of the page size. */
1030 map_size = align64(size, RADEON_SPARSE_PAGE_SIZE);
1031 va_gap_size = ws->check_vm ? 4 * RADEON_SPARSE_PAGE_SIZE : 0;
1032 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1033 map_size + va_gap_size, RADEON_SPARSE_PAGE_SIZE,
1034 0, &bo->va, &bo->u.sparse.va_handle,
1035 AMDGPU_VA_RANGE_HIGH);
1036 if (r)
1037 goto error_va_alloc;
1038
1039 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0, size, bo->va,
1040 AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_MAP);
1041 if (r)
1042 goto error_va_map;
1043
1044 return &bo->base;
1045
1046 error_va_map:
1047 amdgpu_va_range_free(bo->u.sparse.va_handle);
1048 error_va_alloc:
1049 FREE(bo->u.sparse.commitments);
1050 error_alloc_commitments:
1051 simple_mtx_destroy(&bo->lock);
1052 FREE(bo);
1053 return NULL;
1054 }
1055
1056 static bool
1057 amdgpu_bo_sparse_commit(struct pb_buffer *buf, uint64_t offset, uint64_t size,
1058 bool commit)
1059 {
1060 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buf);
1061 struct amdgpu_sparse_commitment *comm;
1062 uint32_t va_page, end_va_page;
1063 bool ok = true;
1064 int r;
1065
1066 assert(bo->sparse);
1067 assert(offset % RADEON_SPARSE_PAGE_SIZE == 0);
1068 assert(offset <= bo->base.size);
1069 assert(size <= bo->base.size - offset);
1070 assert(size % RADEON_SPARSE_PAGE_SIZE == 0 || offset + size == bo->base.size);
1071
1072 comm = bo->u.sparse.commitments;
1073 va_page = offset / RADEON_SPARSE_PAGE_SIZE;
1074 end_va_page = va_page + DIV_ROUND_UP(size, RADEON_SPARSE_PAGE_SIZE);
1075
1076 simple_mtx_lock(&bo->lock);
1077
1078 #if DEBUG_SPARSE_COMMITS
1079 sparse_dump(bo, __func__);
1080 #endif
1081
1082 if (commit) {
1083 while (va_page < end_va_page) {
1084 uint32_t span_va_page;
1085
1086 /* Skip pages that are already committed. */
1087 if (comm[va_page].backing) {
1088 va_page++;
1089 continue;
1090 }
1091
1092 /* Determine length of uncommitted span. */
1093 span_va_page = va_page;
1094 while (va_page < end_va_page && !comm[va_page].backing)
1095 va_page++;
1096
1097 /* Fill the uncommitted span with chunks of backing memory. */
1098 while (span_va_page < va_page) {
1099 struct amdgpu_sparse_backing *backing;
1100 uint32_t backing_start, backing_size;
1101
1102 backing_size = va_page - span_va_page;
1103 backing = sparse_backing_alloc(bo, &backing_start, &backing_size);
1104 if (!backing) {
1105 ok = false;
1106 goto out;
1107 }
1108
1109 r = amdgpu_bo_va_op_raw(bo->ws->dev, backing->bo->bo,
1110 (uint64_t)backing_start * RADEON_SPARSE_PAGE_SIZE,
1111 (uint64_t)backing_size * RADEON_SPARSE_PAGE_SIZE,
1112 bo->va + (uint64_t)span_va_page * RADEON_SPARSE_PAGE_SIZE,
1113 AMDGPU_VM_PAGE_READABLE |
1114 AMDGPU_VM_PAGE_WRITEABLE |
1115 AMDGPU_VM_PAGE_EXECUTABLE,
1116 AMDGPU_VA_OP_REPLACE);
1117 if (r) {
1118 ok = sparse_backing_free(bo, backing, backing_start, backing_size);
1119 assert(ok && "sufficient memory should already be allocated");
1120
1121 ok = false;
1122 goto out;
1123 }
1124
1125 while (backing_size) {
1126 comm[span_va_page].backing = backing;
1127 comm[span_va_page].page = backing_start;
1128 span_va_page++;
1129 backing_start++;
1130 backing_size--;
1131 }
1132 }
1133 }
1134 } else {
1135 r = amdgpu_bo_va_op_raw(bo->ws->dev, NULL, 0,
1136 (uint64_t)(end_va_page - va_page) * RADEON_SPARSE_PAGE_SIZE,
1137 bo->va + (uint64_t)va_page * RADEON_SPARSE_PAGE_SIZE,
1138 AMDGPU_VM_PAGE_PRT, AMDGPU_VA_OP_REPLACE);
1139 if (r) {
1140 ok = false;
1141 goto out;
1142 }
1143
1144 while (va_page < end_va_page) {
1145 struct amdgpu_sparse_backing *backing;
1146 uint32_t backing_start;
1147 uint32_t span_pages;
1148
1149 /* Skip pages that are already uncommitted. */
1150 if (!comm[va_page].backing) {
1151 va_page++;
1152 continue;
1153 }
1154
1155 /* Group contiguous spans of pages. */
1156 backing = comm[va_page].backing;
1157 backing_start = comm[va_page].page;
1158 comm[va_page].backing = NULL;
1159
1160 span_pages = 1;
1161 va_page++;
1162
1163 while (va_page < end_va_page &&
1164 comm[va_page].backing == backing &&
1165 comm[va_page].page == backing_start + span_pages) {
1166 comm[va_page].backing = NULL;
1167 va_page++;
1168 span_pages++;
1169 }
1170
1171 if (!sparse_backing_free(bo, backing, backing_start, span_pages)) {
1172 /* Couldn't allocate tracking data structures, so we have to leak */
1173 fprintf(stderr, "amdgpu: leaking PRT backing memory\n");
1174 ok = false;
1175 }
1176 }
1177 }
1178 out:
1179
1180 simple_mtx_unlock(&bo->lock);
1181
1182 return ok;
1183 }
1184
1185 static unsigned eg_tile_split(unsigned tile_split)
1186 {
1187 switch (tile_split) {
1188 case 0: tile_split = 64; break;
1189 case 1: tile_split = 128; break;
1190 case 2: tile_split = 256; break;
1191 case 3: tile_split = 512; break;
1192 default:
1193 case 4: tile_split = 1024; break;
1194 case 5: tile_split = 2048; break;
1195 case 6: tile_split = 4096; break;
1196 }
1197 return tile_split;
1198 }
1199
1200 static unsigned eg_tile_split_rev(unsigned eg_tile_split)
1201 {
1202 switch (eg_tile_split) {
1203 case 64: return 0;
1204 case 128: return 1;
1205 case 256: return 2;
1206 case 512: return 3;
1207 default:
1208 case 1024: return 4;
1209 case 2048: return 5;
1210 case 4096: return 6;
1211 }
1212 }
1213
1214 #define AMDGPU_TILING_SCANOUT_SHIFT 63
1215 #define AMDGPU_TILING_SCANOUT_MASK 0x1
1216
1217 static void amdgpu_buffer_get_metadata(struct pb_buffer *_buf,
1218 struct radeon_bo_metadata *md)
1219 {
1220 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
1221 struct amdgpu_bo_info info = {0};
1222 uint64_t tiling_flags;
1223 int r;
1224
1225 assert(bo->bo && "must not be called for slab entries");
1226
1227 r = amdgpu_bo_query_info(bo->bo, &info);
1228 if (r)
1229 return;
1230
1231 tiling_flags = info.metadata.tiling_info;
1232
1233 if (bo->ws->info.chip_class >= GFX9) {
1234 md->u.gfx9.swizzle_mode = AMDGPU_TILING_GET(tiling_flags, SWIZZLE_MODE);
1235
1236 md->u.gfx9.dcc_offset_256B = AMDGPU_TILING_GET(tiling_flags, DCC_OFFSET_256B);
1237 md->u.gfx9.dcc_pitch_max = AMDGPU_TILING_GET(tiling_flags, DCC_PITCH_MAX);
1238 md->u.gfx9.dcc_independent_64B = AMDGPU_TILING_GET(tiling_flags, DCC_INDEPENDENT_64B);
1239 md->u.gfx9.scanout = AMDGPU_TILING_GET(tiling_flags, SCANOUT);
1240 } else {
1241 md->u.legacy.microtile = RADEON_LAYOUT_LINEAR;
1242 md->u.legacy.macrotile = RADEON_LAYOUT_LINEAR;
1243
1244 if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 4) /* 2D_TILED_THIN1 */
1245 md->u.legacy.macrotile = RADEON_LAYOUT_TILED;
1246 else if (AMDGPU_TILING_GET(tiling_flags, ARRAY_MODE) == 2) /* 1D_TILED_THIN1 */
1247 md->u.legacy.microtile = RADEON_LAYOUT_TILED;
1248
1249 md->u.legacy.pipe_config = AMDGPU_TILING_GET(tiling_flags, PIPE_CONFIG);
1250 md->u.legacy.bankw = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_WIDTH);
1251 md->u.legacy.bankh = 1 << AMDGPU_TILING_GET(tiling_flags, BANK_HEIGHT);
1252 md->u.legacy.tile_split = eg_tile_split(AMDGPU_TILING_GET(tiling_flags, TILE_SPLIT));
1253 md->u.legacy.mtilea = 1 << AMDGPU_TILING_GET(tiling_flags, MACRO_TILE_ASPECT);
1254 md->u.legacy.num_banks = 2 << AMDGPU_TILING_GET(tiling_flags, NUM_BANKS);
1255 md->u.legacy.scanout = AMDGPU_TILING_GET(tiling_flags, MICRO_TILE_MODE) == 0; /* DISPLAY */
1256 }
1257
1258 md->size_metadata = info.metadata.size_metadata;
1259 memcpy(md->metadata, info.metadata.umd_metadata, sizeof(md->metadata));
1260 }
1261
1262 static void amdgpu_buffer_set_metadata(struct pb_buffer *_buf,
1263 struct radeon_bo_metadata *md)
1264 {
1265 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(_buf);
1266 struct amdgpu_bo_metadata metadata = {0};
1267 uint64_t tiling_flags = 0;
1268
1269 assert(bo->bo && "must not be called for slab entries");
1270
1271 if (bo->ws->info.chip_class >= GFX9) {
1272 tiling_flags |= AMDGPU_TILING_SET(SWIZZLE_MODE, md->u.gfx9.swizzle_mode);
1273
1274 tiling_flags |= AMDGPU_TILING_SET(DCC_OFFSET_256B, md->u.gfx9.dcc_offset_256B);
1275 tiling_flags |= AMDGPU_TILING_SET(DCC_PITCH_MAX, md->u.gfx9.dcc_pitch_max);
1276 tiling_flags |= AMDGPU_TILING_SET(DCC_INDEPENDENT_64B, md->u.gfx9.dcc_independent_64B);
1277 tiling_flags |= AMDGPU_TILING_SET(SCANOUT, md->u.gfx9.scanout);
1278 } else {
1279 if (md->u.legacy.macrotile == RADEON_LAYOUT_TILED)
1280 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 4); /* 2D_TILED_THIN1 */
1281 else if (md->u.legacy.microtile == RADEON_LAYOUT_TILED)
1282 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 2); /* 1D_TILED_THIN1 */
1283 else
1284 tiling_flags |= AMDGPU_TILING_SET(ARRAY_MODE, 1); /* LINEAR_ALIGNED */
1285
1286 tiling_flags |= AMDGPU_TILING_SET(PIPE_CONFIG, md->u.legacy.pipe_config);
1287 tiling_flags |= AMDGPU_TILING_SET(BANK_WIDTH, util_logbase2(md->u.legacy.bankw));
1288 tiling_flags |= AMDGPU_TILING_SET(BANK_HEIGHT, util_logbase2(md->u.legacy.bankh));
1289 if (md->u.legacy.tile_split)
1290 tiling_flags |= AMDGPU_TILING_SET(TILE_SPLIT, eg_tile_split_rev(md->u.legacy.tile_split));
1291 tiling_flags |= AMDGPU_TILING_SET(MACRO_TILE_ASPECT, util_logbase2(md->u.legacy.mtilea));
1292 tiling_flags |= AMDGPU_TILING_SET(NUM_BANKS, util_logbase2(md->u.legacy.num_banks)-1);
1293
1294 if (md->u.legacy.scanout)
1295 tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 0); /* DISPLAY_MICRO_TILING */
1296 else
1297 tiling_flags |= AMDGPU_TILING_SET(MICRO_TILE_MODE, 1); /* THIN_MICRO_TILING */
1298 }
1299
1300 metadata.tiling_info = tiling_flags;
1301 metadata.size_metadata = md->size_metadata;
1302 memcpy(metadata.umd_metadata, md->metadata, sizeof(md->metadata));
1303
1304 amdgpu_bo_set_metadata(bo->bo, &metadata);
1305 }
1306
1307 struct pb_buffer *
1308 amdgpu_bo_create(struct amdgpu_winsys *ws,
1309 uint64_t size,
1310 unsigned alignment,
1311 enum radeon_bo_domain domain,
1312 enum radeon_bo_flag flags)
1313 {
1314 struct amdgpu_winsys_bo *bo;
1315 int heap = -1;
1316
1317 if (domain & (RADEON_DOMAIN_GDS | RADEON_DOMAIN_OA))
1318 flags |= RADEON_FLAG_NO_CPU_ACCESS | RADEON_FLAG_NO_SUBALLOC;
1319
1320 /* VRAM implies WC. This is not optional. */
1321 assert(!(domain & RADEON_DOMAIN_VRAM) || flags & RADEON_FLAG_GTT_WC);
1322
1323 /* NO_CPU_ACCESS is not valid with GTT. */
1324 assert(!(domain & RADEON_DOMAIN_GTT) || !(flags & RADEON_FLAG_NO_CPU_ACCESS));
1325
1326 /* Sparse buffers must have NO_CPU_ACCESS set. */
1327 assert(!(flags & RADEON_FLAG_SPARSE) || flags & RADEON_FLAG_NO_CPU_ACCESS);
1328
1329 struct pb_slabs *last_slab = &ws->bo_slabs[NUM_SLAB_ALLOCATORS - 1];
1330 unsigned max_slab_entry_size = 1 << (last_slab->min_order + last_slab->num_orders - 1);
1331
1332 /* Sub-allocate small buffers from slabs. */
1333 if (!(flags & (RADEON_FLAG_NO_SUBALLOC | RADEON_FLAG_SPARSE)) &&
1334 size <= max_slab_entry_size &&
1335 /* The alignment must be at most the size of the smallest slab entry or
1336 * the next power of two. */
1337 alignment <= MAX2(1 << ws->bo_slabs[0].min_order, util_next_power_of_two(size))) {
1338 struct pb_slab_entry *entry;
1339 int heap = radeon_get_heap_index(domain, flags);
1340
1341 if (heap < 0 || heap >= RADEON_MAX_SLAB_HEAPS)
1342 goto no_slab;
1343
1344 struct pb_slabs *slabs = get_slabs(ws, size);
1345 entry = pb_slab_alloc(slabs, size, heap);
1346 if (!entry) {
1347 /* Clean up buffer managers and try again. */
1348 amdgpu_clean_up_buffer_managers(ws);
1349
1350 entry = pb_slab_alloc(slabs, size, heap);
1351 }
1352 if (!entry)
1353 return NULL;
1354
1355 bo = NULL;
1356 bo = container_of(entry, bo, u.slab.entry);
1357
1358 pipe_reference_init(&bo->base.reference, 1);
1359
1360 return &bo->base;
1361 }
1362 no_slab:
1363
1364 if (flags & RADEON_FLAG_SPARSE) {
1365 assert(RADEON_SPARSE_PAGE_SIZE % alignment == 0);
1366
1367 return amdgpu_bo_sparse_create(ws, size, domain, flags);
1368 }
1369
1370 /* This flag is irrelevant for the cache. */
1371 flags &= ~RADEON_FLAG_NO_SUBALLOC;
1372
1373 /* Align size to page size. This is the minimum alignment for normal
1374 * BOs. Aligning this here helps the cached bufmgr. Especially small BOs,
1375 * like constant/uniform buffers, can benefit from better and more reuse.
1376 */
1377 if (domain & RADEON_DOMAIN_VRAM_GTT) {
1378 size = align64(size, ws->info.gart_page_size);
1379 alignment = align(alignment, ws->info.gart_page_size);
1380 }
1381
1382 bool use_reusable_pool = flags & RADEON_FLAG_NO_INTERPROCESS_SHARING;
1383
1384 if (use_reusable_pool) {
1385 heap = radeon_get_heap_index(domain, flags);
1386 assert(heap >= 0 && heap < RADEON_MAX_CACHED_HEAPS);
1387
1388 /* Get a buffer from the cache. */
1389 bo = (struct amdgpu_winsys_bo*)
1390 pb_cache_reclaim_buffer(&ws->bo_cache, size, alignment, 0, heap);
1391 if (bo)
1392 return &bo->base;
1393 }
1394
1395 /* Create a new one. */
1396 bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
1397 if (!bo) {
1398 /* Clean up buffer managers and try again. */
1399 amdgpu_clean_up_buffer_managers(ws);
1400
1401 bo = amdgpu_create_bo(ws, size, alignment, domain, flags, heap);
1402 if (!bo)
1403 return NULL;
1404 }
1405
1406 bo->u.real.use_reusable_pool = use_reusable_pool;
1407 return &bo->base;
1408 }
1409
1410 static struct pb_buffer *
1411 amdgpu_buffer_create(struct radeon_winsys *ws,
1412 uint64_t size,
1413 unsigned alignment,
1414 enum radeon_bo_domain domain,
1415 enum radeon_bo_flag flags)
1416 {
1417 return amdgpu_bo_create(amdgpu_winsys(ws), size, alignment, domain,
1418 flags);
1419 }
1420
1421 static struct pb_buffer *amdgpu_bo_from_handle(struct radeon_winsys *rws,
1422 struct winsys_handle *whandle,
1423 unsigned vm_alignment)
1424 {
1425 struct amdgpu_winsys *ws = amdgpu_winsys(rws);
1426 struct amdgpu_winsys_bo *bo = NULL;
1427 enum amdgpu_bo_handle_type type;
1428 struct amdgpu_bo_import_result result = {0};
1429 uint64_t va;
1430 amdgpu_va_handle va_handle = NULL;
1431 struct amdgpu_bo_info info = {0};
1432 enum radeon_bo_domain initial = 0;
1433 int r;
1434
1435 switch (whandle->type) {
1436 case WINSYS_HANDLE_TYPE_SHARED:
1437 type = amdgpu_bo_handle_type_gem_flink_name;
1438 break;
1439 case WINSYS_HANDLE_TYPE_FD:
1440 type = amdgpu_bo_handle_type_dma_buf_fd;
1441 break;
1442 default:
1443 return NULL;
1444 }
1445
1446 r = amdgpu_bo_import(ws->dev, type, whandle->handle, &result);
1447 if (r)
1448 return NULL;
1449
1450 simple_mtx_lock(&ws->bo_export_table_lock);
1451 bo = util_hash_table_get(ws->bo_export_table, result.buf_handle);
1452
1453 /* If the amdgpu_winsys_bo instance already exists, bump the reference
1454 * counter and return it.
1455 */
1456 if (bo) {
1457 p_atomic_inc(&bo->base.reference.count);
1458 simple_mtx_unlock(&ws->bo_export_table_lock);
1459
1460 /* Release the buffer handle, because we don't need it anymore.
1461 * This function is returning an existing buffer, which has its own
1462 * handle.
1463 */
1464 amdgpu_bo_free(result.buf_handle);
1465 return &bo->base;
1466 }
1467
1468 /* Get initial domains. */
1469 r = amdgpu_bo_query_info(result.buf_handle, &info);
1470 if (r)
1471 goto error;
1472
1473 r = amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1474 result.alloc_size,
1475 amdgpu_get_optimal_vm_alignment(ws, result.alloc_size,
1476 vm_alignment),
1477 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH);
1478 if (r)
1479 goto error;
1480
1481 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1482 if (!bo)
1483 goto error;
1484
1485 r = amdgpu_bo_va_op(result.buf_handle, 0, result.alloc_size, va, 0, AMDGPU_VA_OP_MAP);
1486 if (r)
1487 goto error;
1488
1489 if (info.preferred_heap & AMDGPU_GEM_DOMAIN_VRAM)
1490 initial |= RADEON_DOMAIN_VRAM;
1491 if (info.preferred_heap & AMDGPU_GEM_DOMAIN_GTT)
1492 initial |= RADEON_DOMAIN_GTT;
1493
1494 /* Initialize the structure. */
1495 simple_mtx_init(&bo->lock, mtx_plain);
1496 pipe_reference_init(&bo->base.reference, 1);
1497 bo->base.alignment = info.phys_alignment;
1498 bo->bo = result.buf_handle;
1499 bo->base.size = result.alloc_size;
1500 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
1501 bo->ws = ws;
1502 bo->va = va;
1503 bo->u.real.va_handle = va_handle;
1504 bo->initial_domain = initial;
1505 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1506 bo->is_shared = true;
1507
1508 if (bo->initial_domain & RADEON_DOMAIN_VRAM)
1509 ws->allocated_vram += align64(bo->base.size, ws->info.gart_page_size);
1510 else if (bo->initial_domain & RADEON_DOMAIN_GTT)
1511 ws->allocated_gtt += align64(bo->base.size, ws->info.gart_page_size);
1512
1513 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
1514
1515 amdgpu_add_buffer_to_global_list(bo);
1516
1517 util_hash_table_set(ws->bo_export_table, bo->bo, bo);
1518 simple_mtx_unlock(&ws->bo_export_table_lock);
1519
1520 return &bo->base;
1521
1522 error:
1523 simple_mtx_unlock(&ws->bo_export_table_lock);
1524 if (bo)
1525 FREE(bo);
1526 if (va_handle)
1527 amdgpu_va_range_free(va_handle);
1528 amdgpu_bo_free(result.buf_handle);
1529 return NULL;
1530 }
1531
1532 static bool amdgpu_bo_get_handle(struct radeon_winsys *rws,
1533 struct pb_buffer *buffer,
1534 struct winsys_handle *whandle)
1535 {
1536 struct amdgpu_screen_winsys *sws = amdgpu_screen_winsys(rws);
1537 struct amdgpu_winsys_bo *bo = amdgpu_winsys_bo(buffer);
1538 struct amdgpu_winsys *ws = bo->ws;
1539 enum amdgpu_bo_handle_type type;
1540 struct hash_entry *entry;
1541 int r;
1542
1543 /* Don't allow exports of slab entries and sparse buffers. */
1544 if (!bo->bo)
1545 return false;
1546
1547 bo->u.real.use_reusable_pool = false;
1548
1549 switch (whandle->type) {
1550 case WINSYS_HANDLE_TYPE_SHARED:
1551 type = amdgpu_bo_handle_type_gem_flink_name;
1552 break;
1553 case WINSYS_HANDLE_TYPE_KMS:
1554 simple_mtx_lock(&ws->sws_list_lock);
1555 entry = _mesa_hash_table_search(sws->kms_handles, bo);
1556 simple_mtx_unlock(&ws->sws_list_lock);
1557 if (entry) {
1558 whandle->handle = (uintptr_t)entry->data;
1559 return true;
1560 }
1561 /* Fall through */
1562 case WINSYS_HANDLE_TYPE_FD:
1563 type = amdgpu_bo_handle_type_dma_buf_fd;
1564 break;
1565 default:
1566 return false;
1567 }
1568
1569 r = amdgpu_bo_export(bo->bo, type, &whandle->handle);
1570 if (r)
1571 return false;
1572
1573 if (whandle->type == WINSYS_HANDLE_TYPE_KMS) {
1574 int dma_fd = whandle->handle;
1575
1576 r = drmPrimeFDToHandle(sws->fd, dma_fd, &whandle->handle);
1577 close(dma_fd);
1578
1579 if (r)
1580 return false;
1581
1582 simple_mtx_lock(&ws->sws_list_lock);
1583 _mesa_hash_table_insert_pre_hashed(sws->kms_handles,
1584 bo->u.real.kms_handle, bo,
1585 (void*)(uintptr_t)whandle->handle);
1586 simple_mtx_unlock(&ws->sws_list_lock);
1587 }
1588
1589 simple_mtx_lock(&ws->bo_export_table_lock);
1590 util_hash_table_set(ws->bo_export_table, bo->bo, bo);
1591 simple_mtx_unlock(&ws->bo_export_table_lock);
1592
1593 bo->is_shared = true;
1594 return true;
1595 }
1596
1597 static struct pb_buffer *amdgpu_bo_from_ptr(struct radeon_winsys *rws,
1598 void *pointer, uint64_t size)
1599 {
1600 struct amdgpu_winsys *ws = amdgpu_winsys(rws);
1601 amdgpu_bo_handle buf_handle;
1602 struct amdgpu_winsys_bo *bo;
1603 uint64_t va;
1604 amdgpu_va_handle va_handle;
1605 /* Avoid failure when the size is not page aligned */
1606 uint64_t aligned_size = align64(size, ws->info.gart_page_size);
1607
1608 bo = CALLOC_STRUCT(amdgpu_winsys_bo);
1609 if (!bo)
1610 return NULL;
1611
1612 if (amdgpu_create_bo_from_user_mem(ws->dev, pointer,
1613 aligned_size, &buf_handle))
1614 goto error;
1615
1616 if (amdgpu_va_range_alloc(ws->dev, amdgpu_gpu_va_range_general,
1617 aligned_size,
1618 amdgpu_get_optimal_vm_alignment(ws, aligned_size,
1619 ws->info.gart_page_size),
1620 0, &va, &va_handle, AMDGPU_VA_RANGE_HIGH))
1621 goto error_va_alloc;
1622
1623 if (amdgpu_bo_va_op(buf_handle, 0, aligned_size, va, 0, AMDGPU_VA_OP_MAP))
1624 goto error_va_map;
1625
1626 /* Initialize it. */
1627 bo->is_user_ptr = true;
1628 pipe_reference_init(&bo->base.reference, 1);
1629 simple_mtx_init(&bo->lock, mtx_plain);
1630 bo->bo = buf_handle;
1631 bo->base.alignment = 0;
1632 bo->base.size = size;
1633 bo->base.vtbl = &amdgpu_winsys_bo_vtbl;
1634 bo->ws = ws;
1635 bo->cpu_ptr = pointer;
1636 bo->va = va;
1637 bo->u.real.va_handle = va_handle;
1638 bo->initial_domain = RADEON_DOMAIN_GTT;
1639 bo->unique_id = __sync_fetch_and_add(&ws->next_bo_unique_id, 1);
1640
1641 ws->allocated_gtt += aligned_size;
1642
1643 amdgpu_add_buffer_to_global_list(bo);
1644
1645 amdgpu_bo_export(bo->bo, amdgpu_bo_handle_type_kms, &bo->u.real.kms_handle);
1646
1647 return (struct pb_buffer*)bo;
1648
1649 error_va_map:
1650 amdgpu_va_range_free(va_handle);
1651
1652 error_va_alloc:
1653 amdgpu_bo_free(buf_handle);
1654
1655 error:
1656 FREE(bo);
1657 return NULL;
1658 }
1659
1660 static bool amdgpu_bo_is_user_ptr(struct pb_buffer *buf)
1661 {
1662 return ((struct amdgpu_winsys_bo*)buf)->is_user_ptr;
1663 }
1664
1665 static bool amdgpu_bo_is_suballocated(struct pb_buffer *buf)
1666 {
1667 struct amdgpu_winsys_bo *bo = (struct amdgpu_winsys_bo*)buf;
1668
1669 return !bo->bo && !bo->sparse;
1670 }
1671
1672 static uint64_t amdgpu_bo_get_va(struct pb_buffer *buf)
1673 {
1674 return ((struct amdgpu_winsys_bo*)buf)->va;
1675 }
1676
1677 void amdgpu_bo_init_functions(struct amdgpu_screen_winsys *ws)
1678 {
1679 ws->base.buffer_set_metadata = amdgpu_buffer_set_metadata;
1680 ws->base.buffer_get_metadata = amdgpu_buffer_get_metadata;
1681 ws->base.buffer_map = amdgpu_bo_map;
1682 ws->base.buffer_unmap = amdgpu_bo_unmap;
1683 ws->base.buffer_wait = amdgpu_bo_wait;
1684 ws->base.buffer_create = amdgpu_buffer_create;
1685 ws->base.buffer_from_handle = amdgpu_bo_from_handle;
1686 ws->base.buffer_from_ptr = amdgpu_bo_from_ptr;
1687 ws->base.buffer_is_user_ptr = amdgpu_bo_is_user_ptr;
1688 ws->base.buffer_is_suballocated = amdgpu_bo_is_suballocated;
1689 ws->base.buffer_get_handle = amdgpu_bo_get_handle;
1690 ws->base.buffer_commit = amdgpu_bo_sparse_commit;
1691 ws->base.buffer_get_virtual_address = amdgpu_bo_get_va;
1692 ws->base.buffer_get_initial_domain = amdgpu_bo_get_initial_domain;
1693 }