c49a33d048639d2e35812ae175d3d1bde8743b98
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96
97 static ir_rvalue *
98 match_function_by_name(exec_list *instructions, const char *name,
99 YYLTYPE *loc, exec_list *actual_parameters,
100 struct _mesa_glsl_parse_state *state)
101 {
102 void *ctx = state;
103 ir_function *f = state->symbols->get_function(name);
104 ir_function_signature *sig;
105
106 sig = f ? f->matching_signature(actual_parameters) : NULL;
107
108 /* FINISHME: This doesn't handle the case where shader X contains a
109 * FINISHME: matching signature but shader X + N contains an _exact_
110 * FINISHME: matching signature.
111 */
112 if (sig == NULL
113 && (f == NULL || state->es_shader || !f->has_user_signature())
114 && state->symbols->get_type(name) == NULL
115 && (state->language_version == 110
116 || state->symbols->get_variable(name) == NULL)) {
117 /* The current shader doesn't contain a matching function or signature.
118 * Before giving up, look for the prototype in the built-in functions.
119 */
120 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
121 ir_function *builtin;
122 builtin = state->builtins_to_link[i]->symbols->get_function(name);
123 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
124 if (sig != NULL) {
125 if (f == NULL) {
126 f = new(ctx) ir_function(name);
127 state->symbols->add_global_function(f);
128 emit_function(state, f);
129 }
130
131 f->add_signature(sig->clone_prototype(f, NULL));
132 break;
133 }
134 }
135 }
136
137 exec_list post_call_conversions;
138
139 if (sig != NULL) {
140 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
141 * isn't done in ir_function::matching_signature because that function
142 * cannot generate the necessary diagnostics.
143 *
144 * Also, validate that 'const_in' formal parameters (an extension of our
145 * IR) correspond to ir_constant actual parameters.
146 *
147 * Also, perform implicit conversion of arguments. Note: to implicitly
148 * convert out parameters, we need to place them in a temporary
149 * variable, and do the conversion after the call takes place. Since we
150 * haven't emitted the call yet, we'll place the post-call conversions
151 * in a temporary exec_list, and emit them later.
152 */
153 exec_list_iterator actual_iter = actual_parameters->iterator();
154 exec_list_iterator formal_iter = sig->parameters.iterator();
155
156 while (actual_iter.has_next()) {
157 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
158 ir_variable *formal = (ir_variable *) formal_iter.get();
159
160 assert(actual != NULL);
161 assert(formal != NULL);
162
163 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
164 _mesa_glsl_error(loc, state,
165 "parameter `%s' must be a constant expression",
166 formal->name);
167 }
168
169 if ((formal->mode == ir_var_out)
170 || (formal->mode == ir_var_inout)) {
171 const char *mode = NULL;
172 switch (formal->mode) {
173 case ir_var_out: mode = "out"; break;
174 case ir_var_inout: mode = "inout"; break;
175 default: assert(false); break;
176 }
177 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
178 * FIXME: 0:0(0).
179 */
180 if (actual->variable_referenced()
181 && actual->variable_referenced()->read_only) {
182 _mesa_glsl_error(loc, state,
183 "function parameter '%s %s' references the "
184 "read-only variable '%s'",
185 mode, formal->name,
186 actual->variable_referenced()->name);
187
188 } else if (!actual->is_lvalue()) {
189 _mesa_glsl_error(loc, state,
190 "function parameter '%s %s' is not an lvalue",
191 mode, formal->name);
192 }
193 }
194
195 if (formal->type->is_numeric() || formal->type->is_boolean()) {
196 switch (formal->mode) {
197 case ir_var_in: {
198 ir_rvalue *converted
199 = convert_component(actual, formal->type);
200 actual->replace_with(converted);
201 break;
202 }
203 case ir_var_out:
204 if (actual->type != formal->type) {
205 /* To convert an out parameter, we need to create a
206 * temporary variable to hold the value before conversion,
207 * and then perform the conversion after the function call
208 * returns.
209 *
210 * This has the effect of transforming code like this:
211 *
212 * void f(out int x);
213 * float value;
214 * f(value);
215 *
216 * Into IR that's equivalent to this:
217 *
218 * void f(out int x);
219 * float value;
220 * int out_parameter_conversion;
221 * f(out_parameter_conversion);
222 * value = float(out_parameter_conversion);
223 */
224 ir_variable *tmp =
225 new(ctx) ir_variable(formal->type,
226 "out_parameter_conversion",
227 ir_var_temporary);
228 instructions->push_tail(tmp);
229 ir_dereference_variable *deref_tmp_1
230 = new(ctx) ir_dereference_variable(tmp);
231 ir_dereference_variable *deref_tmp_2
232 = new(ctx) ir_dereference_variable(tmp);
233 ir_rvalue *converted_tmp
234 = convert_component(deref_tmp_1, actual->type);
235 ir_assignment *assignment
236 = new(ctx) ir_assignment(actual, converted_tmp);
237 post_call_conversions.push_tail(assignment);
238 actual->replace_with(deref_tmp_2);
239 }
240 break;
241 case ir_var_inout:
242 /* Inout parameters should never require conversion, since that
243 * would require an implicit conversion to exist both to and
244 * from the formal parameter type, and there are no
245 * bidirectional implicit conversions.
246 */
247 assert (actual->type == formal->type);
248 break;
249 default:
250 assert (!"Illegal formal parameter mode");
251 break;
252 }
253 }
254
255 actual_iter.next();
256 formal_iter.next();
257 }
258
259 /* Always insert the call in the instruction stream, and return a deref
260 * of its return val if it returns a value, since we don't know if
261 * the rvalue is going to be assigned to anything or not.
262 *
263 * Also insert any out parameter conversions after the call.
264 */
265 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
266 ir_dereference_variable *deref;
267 if (!sig->return_type->is_void()) {
268 /* If the function call is a constant expression, don't
269 * generate the instructions to call it; just generate an
270 * ir_constant representing the constant value.
271 *
272 * Function calls can only be constant expressions starting
273 * in GLSL 1.20.
274 */
275 if (state->language_version >= 120) {
276 ir_constant *const_val = call->constant_expression_value();
277 if (const_val) {
278 return const_val;
279 }
280 }
281
282 ir_variable *var;
283
284 var = new(ctx) ir_variable(sig->return_type,
285 ralloc_asprintf(ctx, "%s_retval",
286 sig->function_name()),
287 ir_var_temporary);
288 instructions->push_tail(var);
289
290 deref = new(ctx) ir_dereference_variable(var);
291 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
292 instructions->push_tail(assign);
293
294 deref = new(ctx) ir_dereference_variable(var);
295 } else {
296 instructions->push_tail(call);
297 deref = NULL;
298 }
299 instructions->append_list(&post_call_conversions);
300 return deref;
301 } else {
302 char *str = prototype_string(NULL, name, actual_parameters);
303
304 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
305 str);
306 ralloc_free(str);
307
308 const char *prefix = "candidates are: ";
309
310 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
311 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
312 : state->symbols;
313 f = syms->get_function(name);
314 if (f == NULL)
315 continue;
316
317 foreach_list (node, &f->signatures) {
318 ir_function_signature *sig = (ir_function_signature *) node;
319
320 str = prototype_string(sig->return_type, f->name, &sig->parameters);
321 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
322 ralloc_free(str);
323
324 prefix = " ";
325 }
326
327 }
328
329 return ir_call::get_error_instruction(ctx);
330 }
331 }
332
333
334 /**
335 * Perform automatic type conversion of constructor parameters
336 *
337 * This implements the rules in the "Conversion and Scalar Constructors"
338 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
339 */
340 static ir_rvalue *
341 convert_component(ir_rvalue *src, const glsl_type *desired_type)
342 {
343 void *ctx = ralloc_parent(src);
344 const unsigned a = desired_type->base_type;
345 const unsigned b = src->type->base_type;
346 ir_expression *result = NULL;
347
348 if (src->type->is_error())
349 return src;
350
351 assert(a <= GLSL_TYPE_BOOL);
352 assert(b <= GLSL_TYPE_BOOL);
353
354 if (a == b)
355 return src;
356
357 switch (a) {
358 case GLSL_TYPE_UINT:
359 switch (b) {
360 case GLSL_TYPE_INT:
361 result = new(ctx) ir_expression(ir_unop_i2u, src);
362 break;
363 case GLSL_TYPE_FLOAT:
364 result = new(ctx) ir_expression(ir_unop_i2u,
365 new(ctx) ir_expression(ir_unop_f2i, src));
366 break;
367 case GLSL_TYPE_BOOL:
368 result = new(ctx) ir_expression(ir_unop_i2u,
369 new(ctx) ir_expression(ir_unop_b2i, src));
370 break;
371 }
372 break;
373 case GLSL_TYPE_INT:
374 switch (b) {
375 case GLSL_TYPE_UINT:
376 result = new(ctx) ir_expression(ir_unop_u2i, src);
377 break;
378 case GLSL_TYPE_FLOAT:
379 result = new(ctx) ir_expression(ir_unop_f2i, src);
380 break;
381 case GLSL_TYPE_BOOL:
382 result = new(ctx) ir_expression(ir_unop_b2i, src);
383 break;
384 }
385 break;
386 case GLSL_TYPE_FLOAT:
387 switch (b) {
388 case GLSL_TYPE_UINT:
389 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
390 break;
391 case GLSL_TYPE_INT:
392 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
393 break;
394 case GLSL_TYPE_BOOL:
395 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
396 break;
397 }
398 break;
399 case GLSL_TYPE_BOOL:
400 switch (b) {
401 case GLSL_TYPE_UINT:
402 result = new(ctx) ir_expression(ir_unop_i2b,
403 new(ctx) ir_expression(ir_unop_u2i, src));
404 break;
405 case GLSL_TYPE_INT:
406 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
407 break;
408 case GLSL_TYPE_FLOAT:
409 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
410 break;
411 }
412 break;
413 }
414
415 assert(result != NULL);
416 assert(result->type == desired_type);
417
418 /* Try constant folding; it may fold in the conversion we just added. */
419 ir_constant *const constant = result->constant_expression_value();
420 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
421 }
422
423 /**
424 * Dereference a specific component from a scalar, vector, or matrix
425 */
426 static ir_rvalue *
427 dereference_component(ir_rvalue *src, unsigned component)
428 {
429 void *ctx = ralloc_parent(src);
430 assert(component < src->type->components());
431
432 /* If the source is a constant, just create a new constant instead of a
433 * dereference of the existing constant.
434 */
435 ir_constant *constant = src->as_constant();
436 if (constant)
437 return new(ctx) ir_constant(constant, component);
438
439 if (src->type->is_scalar()) {
440 return src;
441 } else if (src->type->is_vector()) {
442 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
443 } else {
444 assert(src->type->is_matrix());
445
446 /* Dereference a row of the matrix, then call this function again to get
447 * a specific element from that row.
448 */
449 const int c = component / src->type->column_type()->vector_elements;
450 const int r = component % src->type->column_type()->vector_elements;
451 ir_constant *const col_index = new(ctx) ir_constant(c);
452 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
453
454 col->type = src->type->column_type();
455
456 return dereference_component(col, r);
457 }
458
459 assert(!"Should not get here.");
460 return NULL;
461 }
462
463
464 static ir_rvalue *
465 process_array_constructor(exec_list *instructions,
466 const glsl_type *constructor_type,
467 YYLTYPE *loc, exec_list *parameters,
468 struct _mesa_glsl_parse_state *state)
469 {
470 void *ctx = state;
471 /* Array constructors come in two forms: sized and unsized. Sized array
472 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
473 * variables. In this case the number of parameters must exactly match the
474 * specified size of the array.
475 *
476 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
477 * are vec4 variables. In this case the size of the array being constructed
478 * is determined by the number of parameters.
479 *
480 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
481 *
482 * "There must be exactly the same number of arguments as the size of
483 * the array being constructed. If no size is present in the
484 * constructor, then the array is explicitly sized to the number of
485 * arguments provided. The arguments are assigned in order, starting at
486 * element 0, to the elements of the constructed array. Each argument
487 * must be the same type as the element type of the array, or be a type
488 * that can be converted to the element type of the array according to
489 * Section 4.1.10 "Implicit Conversions.""
490 */
491 exec_list actual_parameters;
492 const unsigned parameter_count =
493 process_parameters(instructions, &actual_parameters, parameters, state);
494
495 if ((parameter_count == 0)
496 || ((constructor_type->length != 0)
497 && (constructor_type->length != parameter_count))) {
498 const unsigned min_param = (constructor_type->length == 0)
499 ? 1 : constructor_type->length;
500
501 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
502 "parameter%s",
503 (constructor_type->length != 0) ? "at least" : "exactly",
504 min_param, (min_param <= 1) ? "" : "s");
505 return ir_call::get_error_instruction(ctx);
506 }
507
508 if (constructor_type->length == 0) {
509 constructor_type =
510 glsl_type::get_array_instance(constructor_type->element_type(),
511 parameter_count);
512 assert(constructor_type != NULL);
513 assert(constructor_type->length == parameter_count);
514 }
515
516 bool all_parameters_are_constant = true;
517
518 /* Type cast each parameter and, if possible, fold constants. */
519 foreach_list_safe(n, &actual_parameters) {
520 ir_rvalue *ir = (ir_rvalue *) n;
521 ir_rvalue *result = ir;
522
523 /* Apply implicit conversions (not the scalar constructor rules!). See
524 * the spec quote above. */
525 if (constructor_type->element_type()->is_float()) {
526 const glsl_type *desired_type =
527 glsl_type::get_instance(GLSL_TYPE_FLOAT,
528 ir->type->vector_elements,
529 ir->type->matrix_columns);
530 if (result->type->can_implicitly_convert_to(desired_type)) {
531 /* Even though convert_component() implements the constructor
532 * conversion rules (not the implicit conversion rules), its safe
533 * to use it here because we already checked that the implicit
534 * conversion is legal.
535 */
536 result = convert_component(ir, desired_type);
537 }
538 }
539
540 if (result->type != constructor_type->element_type()) {
541 _mesa_glsl_error(loc, state, "type error in array constructor: "
542 "expected: %s, found %s",
543 constructor_type->element_type()->name,
544 result->type->name);
545 }
546
547 /* Attempt to convert the parameter to a constant valued expression.
548 * After doing so, track whether or not all the parameters to the
549 * constructor are trivially constant valued expressions.
550 */
551 ir_rvalue *const constant = result->constant_expression_value();
552
553 if (constant != NULL)
554 result = constant;
555 else
556 all_parameters_are_constant = false;
557
558 ir->replace_with(result);
559 }
560
561 if (all_parameters_are_constant)
562 return new(ctx) ir_constant(constructor_type, &actual_parameters);
563
564 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
565 ir_var_temporary);
566 instructions->push_tail(var);
567
568 int i = 0;
569 foreach_list(node, &actual_parameters) {
570 ir_rvalue *rhs = (ir_rvalue *) node;
571 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
572 new(ctx) ir_constant(i));
573
574 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
575 instructions->push_tail(assignment);
576
577 i++;
578 }
579
580 return new(ctx) ir_dereference_variable(var);
581 }
582
583
584 /**
585 * Try to convert a record constructor to a constant expression
586 */
587 static ir_constant *
588 constant_record_constructor(const glsl_type *constructor_type,
589 exec_list *parameters, void *mem_ctx)
590 {
591 foreach_list(node, parameters) {
592 ir_constant *constant = ((ir_instruction *) node)->as_constant();
593 if (constant == NULL)
594 return NULL;
595 node->replace_with(constant);
596 }
597
598 return new(mem_ctx) ir_constant(constructor_type, parameters);
599 }
600
601
602 /**
603 * Determine if a list consists of a single scalar r-value
604 */
605 bool
606 single_scalar_parameter(exec_list *parameters)
607 {
608 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
609 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
610
611 return (p->type->is_scalar() && p->next->is_tail_sentinel());
612 }
613
614
615 /**
616 * Generate inline code for a vector constructor
617 *
618 * The generated constructor code will consist of a temporary variable
619 * declaration of the same type as the constructor. A sequence of assignments
620 * from constructor parameters to the temporary will follow.
621 *
622 * \return
623 * An \c ir_dereference_variable of the temprorary generated in the constructor
624 * body.
625 */
626 ir_rvalue *
627 emit_inline_vector_constructor(const glsl_type *type,
628 exec_list *instructions,
629 exec_list *parameters,
630 void *ctx)
631 {
632 assert(!parameters->is_empty());
633
634 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
635 instructions->push_tail(var);
636
637 /* There are two kinds of vector constructors.
638 *
639 * - Construct a vector from a single scalar by replicating that scalar to
640 * all components of the vector.
641 *
642 * - Construct a vector from an arbirary combination of vectors and
643 * scalars. The components of the constructor parameters are assigned
644 * to the vector in order until the vector is full.
645 */
646 const unsigned lhs_components = type->components();
647 if (single_scalar_parameter(parameters)) {
648 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
649 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
650 lhs_components);
651 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
652 const unsigned mask = (1U << lhs_components) - 1;
653
654 assert(rhs->type == lhs->type);
655
656 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
657 instructions->push_tail(inst);
658 } else {
659 unsigned base_component = 0;
660 unsigned base_lhs_component = 0;
661 ir_constant_data data;
662 unsigned constant_mask = 0, constant_components = 0;
663
664 memset(&data, 0, sizeof(data));
665
666 foreach_list(node, parameters) {
667 ir_rvalue *param = (ir_rvalue *) node;
668 unsigned rhs_components = param->type->components();
669
670 /* Do not try to assign more components to the vector than it has!
671 */
672 if ((rhs_components + base_lhs_component) > lhs_components) {
673 rhs_components = lhs_components - base_lhs_component;
674 }
675
676 const ir_constant *const c = param->as_constant();
677 if (c != NULL) {
678 for (unsigned i = 0; i < rhs_components; i++) {
679 switch (c->type->base_type) {
680 case GLSL_TYPE_UINT:
681 data.u[i + base_component] = c->get_uint_component(i);
682 break;
683 case GLSL_TYPE_INT:
684 data.i[i + base_component] = c->get_int_component(i);
685 break;
686 case GLSL_TYPE_FLOAT:
687 data.f[i + base_component] = c->get_float_component(i);
688 break;
689 case GLSL_TYPE_BOOL:
690 data.b[i + base_component] = c->get_bool_component(i);
691 break;
692 default:
693 assert(!"Should not get here.");
694 break;
695 }
696 }
697
698 /* Mask of fields to be written in the assignment.
699 */
700 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
701 constant_components += rhs_components;
702
703 base_component += rhs_components;
704 }
705 /* Advance the component index by the number of components
706 * that were just assigned.
707 */
708 base_lhs_component += rhs_components;
709 }
710
711 if (constant_mask != 0) {
712 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
713 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
714 constant_components,
715 1);
716 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
717
718 ir_instruction *inst =
719 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
720 instructions->push_tail(inst);
721 }
722
723 base_component = 0;
724 foreach_list(node, parameters) {
725 ir_rvalue *param = (ir_rvalue *) node;
726 unsigned rhs_components = param->type->components();
727
728 /* Do not try to assign more components to the vector than it has!
729 */
730 if ((rhs_components + base_component) > lhs_components) {
731 rhs_components = lhs_components - base_component;
732 }
733
734 const ir_constant *const c = param->as_constant();
735 if (c == NULL) {
736 /* Mask of fields to be written in the assignment.
737 */
738 const unsigned write_mask = ((1U << rhs_components) - 1)
739 << base_component;
740
741 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
742
743 /* Generate a swizzle so that LHS and RHS sizes match.
744 */
745 ir_rvalue *rhs =
746 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
747
748 ir_instruction *inst =
749 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
750 instructions->push_tail(inst);
751 }
752
753 /* Advance the component index by the number of components that were
754 * just assigned.
755 */
756 base_component += rhs_components;
757 }
758 }
759 return new(ctx) ir_dereference_variable(var);
760 }
761
762
763 /**
764 * Generate assignment of a portion of a vector to a portion of a matrix column
765 *
766 * \param src_base First component of the source to be used in assignment
767 * \param column Column of destination to be assiged
768 * \param row_base First component of the destination column to be assigned
769 * \param count Number of components to be assigned
770 *
771 * \note
772 * \c src_base + \c count must be less than or equal to the number of components
773 * in the source vector.
774 */
775 ir_instruction *
776 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
777 ir_rvalue *src, unsigned src_base, unsigned count,
778 void *mem_ctx)
779 {
780 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
781 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
782
783 assert(column_ref->type->components() >= (row_base + count));
784 assert(src->type->components() >= (src_base + count));
785
786 /* Generate a swizzle that extracts the number of components from the source
787 * that are to be assigned to the column of the matrix.
788 */
789 if (count < src->type->vector_elements) {
790 src = new(mem_ctx) ir_swizzle(src,
791 src_base + 0, src_base + 1,
792 src_base + 2, src_base + 3,
793 count);
794 }
795
796 /* Mask of fields to be written in the assignment.
797 */
798 const unsigned write_mask = ((1U << count) - 1) << row_base;
799
800 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
801 }
802
803
804 /**
805 * Generate inline code for a matrix constructor
806 *
807 * The generated constructor code will consist of a temporary variable
808 * declaration of the same type as the constructor. A sequence of assignments
809 * from constructor parameters to the temporary will follow.
810 *
811 * \return
812 * An \c ir_dereference_variable of the temprorary generated in the constructor
813 * body.
814 */
815 ir_rvalue *
816 emit_inline_matrix_constructor(const glsl_type *type,
817 exec_list *instructions,
818 exec_list *parameters,
819 void *ctx)
820 {
821 assert(!parameters->is_empty());
822
823 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
824 instructions->push_tail(var);
825
826 /* There are three kinds of matrix constructors.
827 *
828 * - Construct a matrix from a single scalar by replicating that scalar to
829 * along the diagonal of the matrix and setting all other components to
830 * zero.
831 *
832 * - Construct a matrix from an arbirary combination of vectors and
833 * scalars. The components of the constructor parameters are assigned
834 * to the matrix in colum-major order until the matrix is full.
835 *
836 * - Construct a matrix from a single matrix. The source matrix is copied
837 * to the upper left portion of the constructed matrix, and the remaining
838 * elements take values from the identity matrix.
839 */
840 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
841 if (single_scalar_parameter(parameters)) {
842 /* Assign the scalar to the X component of a vec4, and fill the remaining
843 * components with zero.
844 */
845 ir_variable *rhs_var =
846 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
847 ir_var_temporary);
848 instructions->push_tail(rhs_var);
849
850 ir_constant_data zero;
851 zero.f[0] = 0.0;
852 zero.f[1] = 0.0;
853 zero.f[2] = 0.0;
854 zero.f[3] = 0.0;
855
856 ir_instruction *inst =
857 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
858 new(ctx) ir_constant(rhs_var->type, &zero),
859 NULL);
860 instructions->push_tail(inst);
861
862 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
863
864 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
865 instructions->push_tail(inst);
866
867 /* Assign the temporary vector to each column of the destination matrix
868 * with a swizzle that puts the X component on the diagonal of the
869 * matrix. In some cases this may mean that the X component does not
870 * get assigned into the column at all (i.e., when the matrix has more
871 * columns than rows).
872 */
873 static const unsigned rhs_swiz[4][4] = {
874 { 0, 1, 1, 1 },
875 { 1, 0, 1, 1 },
876 { 1, 1, 0, 1 },
877 { 1, 1, 1, 0 }
878 };
879
880 const unsigned cols_to_init = MIN2(type->matrix_columns,
881 type->vector_elements);
882 for (unsigned i = 0; i < cols_to_init; i++) {
883 ir_constant *const col_idx = new(ctx) ir_constant(i);
884 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
885
886 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
887 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
888 type->vector_elements);
889
890 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
891 instructions->push_tail(inst);
892 }
893
894 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
895 ir_constant *const col_idx = new(ctx) ir_constant(i);
896 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
897
898 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
899 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
900 type->vector_elements);
901
902 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
903 instructions->push_tail(inst);
904 }
905 } else if (first_param->type->is_matrix()) {
906 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
907 *
908 * "If a matrix is constructed from a matrix, then each component
909 * (column i, row j) in the result that has a corresponding
910 * component (column i, row j) in the argument will be initialized
911 * from there. All other components will be initialized to the
912 * identity matrix. If a matrix argument is given to a matrix
913 * constructor, it is an error to have any other arguments."
914 */
915 assert(first_param->next->is_tail_sentinel());
916 ir_rvalue *const src_matrix = first_param;
917
918 /* If the source matrix is smaller, pre-initialize the relavent parts of
919 * the destination matrix to the identity matrix.
920 */
921 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
922 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
923
924 /* If the source matrix has fewer rows, every column of the destination
925 * must be initialized. Otherwise only the columns in the destination
926 * that do not exist in the source must be initialized.
927 */
928 unsigned col =
929 (src_matrix->type->vector_elements < var->type->vector_elements)
930 ? 0 : src_matrix->type->matrix_columns;
931
932 const glsl_type *const col_type = var->type->column_type();
933 for (/* empty */; col < var->type->matrix_columns; col++) {
934 ir_constant_data ident;
935
936 ident.f[0] = 0.0;
937 ident.f[1] = 0.0;
938 ident.f[2] = 0.0;
939 ident.f[3] = 0.0;
940
941 ident.f[col] = 1.0;
942
943 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
944
945 ir_rvalue *const lhs =
946 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
947
948 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
949 instructions->push_tail(inst);
950 }
951 }
952
953 /* Assign columns from the source matrix to the destination matrix.
954 *
955 * Since the parameter will be used in the RHS of multiple assignments,
956 * generate a temporary and copy the paramter there.
957 */
958 ir_variable *const rhs_var =
959 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
960 ir_var_temporary);
961 instructions->push_tail(rhs_var);
962
963 ir_dereference *const rhs_var_ref =
964 new(ctx) ir_dereference_variable(rhs_var);
965 ir_instruction *const inst =
966 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
967 instructions->push_tail(inst);
968
969 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
970 var->type->vector_elements);
971 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
972 var->type->matrix_columns);
973
974 unsigned swiz[4] = { 0, 0, 0, 0 };
975 for (unsigned i = 1; i < last_row; i++)
976 swiz[i] = i;
977
978 const unsigned write_mask = (1U << last_row) - 1;
979
980 for (unsigned i = 0; i < last_col; i++) {
981 ir_dereference *const lhs =
982 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
983 ir_rvalue *const rhs_col =
984 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
985
986 /* If one matrix has columns that are smaller than the columns of the
987 * other matrix, wrap the column access of the larger with a swizzle
988 * so that the LHS and RHS of the assignment have the same size (and
989 * therefore have the same type).
990 *
991 * It would be perfectly valid to unconditionally generate the
992 * swizzles, this this will typically result in a more compact IR tree.
993 */
994 ir_rvalue *rhs;
995 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
996 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
997 } else {
998 rhs = rhs_col;
999 }
1000
1001 ir_instruction *inst =
1002 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1003 instructions->push_tail(inst);
1004 }
1005 } else {
1006 const unsigned cols = type->matrix_columns;
1007 const unsigned rows = type->vector_elements;
1008 unsigned col_idx = 0;
1009 unsigned row_idx = 0;
1010
1011 foreach_list (node, parameters) {
1012 ir_rvalue *const rhs = (ir_rvalue *) node;
1013 const unsigned components_remaining_this_column = rows - row_idx;
1014 unsigned rhs_components = rhs->type->components();
1015 unsigned rhs_base = 0;
1016
1017 /* Since the parameter might be used in the RHS of two assignments,
1018 * generate a temporary and copy the paramter there.
1019 */
1020 ir_variable *rhs_var =
1021 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1022 instructions->push_tail(rhs_var);
1023
1024 ir_dereference *rhs_var_ref =
1025 new(ctx) ir_dereference_variable(rhs_var);
1026 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1027 instructions->push_tail(inst);
1028
1029 /* Assign the current parameter to as many components of the matrix
1030 * as it will fill.
1031 *
1032 * NOTE: A single vector parameter can span two matrix columns. A
1033 * single vec4, for example, can completely fill a mat2.
1034 */
1035 if (rhs_components >= components_remaining_this_column) {
1036 const unsigned count = MIN2(rhs_components,
1037 components_remaining_this_column);
1038
1039 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1040
1041 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1042 row_idx,
1043 rhs_var_ref, 0,
1044 count, ctx);
1045 instructions->push_tail(inst);
1046
1047 rhs_base = count;
1048
1049 col_idx++;
1050 row_idx = 0;
1051 }
1052
1053 /* If there is data left in the parameter and components left to be
1054 * set in the destination, emit another assignment. It is possible
1055 * that the assignment could be of a vec4 to the last element of the
1056 * matrix. In this case col_idx==cols, but there is still data
1057 * left in the source parameter. Obviously, don't emit an assignment
1058 * to data outside the destination matrix.
1059 */
1060 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1061 const unsigned count = rhs_components - rhs_base;
1062
1063 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1064
1065 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1066 row_idx,
1067 rhs_var_ref,
1068 rhs_base,
1069 count, ctx);
1070 instructions->push_tail(inst);
1071
1072 row_idx += count;
1073 }
1074 }
1075 }
1076
1077 return new(ctx) ir_dereference_variable(var);
1078 }
1079
1080
1081 ir_rvalue *
1082 emit_inline_record_constructor(const glsl_type *type,
1083 exec_list *instructions,
1084 exec_list *parameters,
1085 void *mem_ctx)
1086 {
1087 ir_variable *const var =
1088 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1089 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1090
1091 instructions->push_tail(var);
1092
1093 exec_node *node = parameters->head;
1094 for (unsigned i = 0; i < type->length; i++) {
1095 assert(!node->is_tail_sentinel());
1096
1097 ir_dereference *const lhs =
1098 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1099 type->fields.structure[i].name);
1100
1101 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1102 assert(rhs != NULL);
1103
1104 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1105
1106 instructions->push_tail(assign);
1107 node = node->next;
1108 }
1109
1110 return d;
1111 }
1112
1113
1114 ir_rvalue *
1115 ast_function_expression::hir(exec_list *instructions,
1116 struct _mesa_glsl_parse_state *state)
1117 {
1118 void *ctx = state;
1119 /* There are three sorts of function calls.
1120 *
1121 * 1. constructors - The first subexpression is an ast_type_specifier.
1122 * 2. methods - Only the .length() method of array types.
1123 * 3. functions - Calls to regular old functions.
1124 *
1125 * Method calls are actually detected when the ast_field_selection
1126 * expression is handled.
1127 */
1128 if (is_constructor()) {
1129 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1130 YYLTYPE loc = type->get_location();
1131 const char *name;
1132
1133 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1134
1135 /* constructor_type can be NULL if a variable with the same name as the
1136 * structure has come into scope.
1137 */
1138 if (constructor_type == NULL) {
1139 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1140 "may be shadowed by a variable with the same name)",
1141 type->type_name);
1142 return ir_call::get_error_instruction(ctx);
1143 }
1144
1145
1146 /* Constructors for samplers are illegal.
1147 */
1148 if (constructor_type->is_sampler()) {
1149 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1150 constructor_type->name);
1151 return ir_call::get_error_instruction(ctx);
1152 }
1153
1154 if (constructor_type->is_array()) {
1155 if (state->language_version <= 110) {
1156 _mesa_glsl_error(& loc, state,
1157 "array constructors forbidden in GLSL 1.10");
1158 return ir_call::get_error_instruction(ctx);
1159 }
1160
1161 return process_array_constructor(instructions, constructor_type,
1162 & loc, &this->expressions, state);
1163 }
1164
1165
1166 /* There are two kinds of constructor call. Constructors for built-in
1167 * language types, such as mat4 and vec2, are free form. The only
1168 * requirement is that the parameters must provide enough values of the
1169 * correct scalar type. Constructors for arrays and structures must
1170 * have the exact number of parameters with matching types in the
1171 * correct order. These constructors follow essentially the same type
1172 * matching rules as functions.
1173 */
1174 if (constructor_type->is_record()) {
1175 exec_list actual_parameters;
1176
1177 process_parameters(instructions, &actual_parameters,
1178 &this->expressions, state);
1179
1180 exec_node *node = actual_parameters.head;
1181 for (unsigned i = 0; i < constructor_type->length; i++) {
1182 ir_rvalue *ir = (ir_rvalue *) node;
1183
1184 if (node->is_tail_sentinel()) {
1185 _mesa_glsl_error(&loc, state,
1186 "insufficient parameters to constructor "
1187 "for `%s'",
1188 constructor_type->name);
1189 return ir_call::get_error_instruction(ctx);
1190 }
1191
1192 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1193 ir, state)) {
1194 node->replace_with(ir);
1195 } else {
1196 _mesa_glsl_error(&loc, state,
1197 "parameter type mismatch in constructor "
1198 "for `%s.%s' (%s vs %s)",
1199 constructor_type->name,
1200 constructor_type->fields.structure[i].name,
1201 ir->type->name,
1202 constructor_type->fields.structure[i].type->name);
1203 return ir_call::get_error_instruction(ctx);;
1204 }
1205
1206 node = node->next;
1207 }
1208
1209 if (!node->is_tail_sentinel()) {
1210 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1211 "for `%s'", constructor_type->name);
1212 return ir_call::get_error_instruction(ctx);
1213 }
1214
1215 ir_rvalue *const constant =
1216 constant_record_constructor(constructor_type, &actual_parameters,
1217 state);
1218
1219 return (constant != NULL)
1220 ? constant
1221 : emit_inline_record_constructor(constructor_type, instructions,
1222 &actual_parameters, state);
1223 }
1224
1225 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1226 return ir_call::get_error_instruction(ctx);
1227
1228 /* Total number of components of the type being constructed. */
1229 const unsigned type_components = constructor_type->components();
1230
1231 /* Number of components from parameters that have actually been
1232 * consumed. This is used to perform several kinds of error checking.
1233 */
1234 unsigned components_used = 0;
1235
1236 unsigned matrix_parameters = 0;
1237 unsigned nonmatrix_parameters = 0;
1238 exec_list actual_parameters;
1239
1240 foreach_list (n, &this->expressions) {
1241 ast_node *ast = exec_node_data(ast_node, n, link);
1242 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1243
1244 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1245 *
1246 * "It is an error to provide extra arguments beyond this
1247 * last used argument."
1248 */
1249 if (components_used >= type_components) {
1250 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1251 "constructor",
1252 constructor_type->name);
1253 return ir_call::get_error_instruction(ctx);
1254 }
1255
1256 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1257 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1258 "non-numeric data type",
1259 constructor_type->name);
1260 return ir_call::get_error_instruction(ctx);
1261 }
1262
1263 /* Count the number of matrix and nonmatrix parameters. This
1264 * is used below to enforce some of the constructor rules.
1265 */
1266 if (result->type->is_matrix())
1267 matrix_parameters++;
1268 else
1269 nonmatrix_parameters++;
1270
1271 actual_parameters.push_tail(result);
1272 components_used += result->type->components();
1273 }
1274
1275 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1276 *
1277 * "It is an error to construct matrices from other matrices. This
1278 * is reserved for future use."
1279 */
1280 if (state->language_version == 110 && matrix_parameters > 0
1281 && constructor_type->is_matrix()) {
1282 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1283 "matrix in GLSL 1.10",
1284 constructor_type->name);
1285 return ir_call::get_error_instruction(ctx);
1286 }
1287
1288 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1289 *
1290 * "If a matrix argument is given to a matrix constructor, it is
1291 * an error to have any other arguments."
1292 */
1293 if ((matrix_parameters > 0)
1294 && ((matrix_parameters + nonmatrix_parameters) > 1)
1295 && constructor_type->is_matrix()) {
1296 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1297 "matrix must be only parameter",
1298 constructor_type->name);
1299 return ir_call::get_error_instruction(ctx);
1300 }
1301
1302 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1303 *
1304 * "In these cases, there must be enough components provided in the
1305 * arguments to provide an initializer for every component in the
1306 * constructed value."
1307 */
1308 if (components_used < type_components && components_used != 1
1309 && matrix_parameters == 0) {
1310 _mesa_glsl_error(& loc, state, "too few components to construct "
1311 "`%s'",
1312 constructor_type->name);
1313 return ir_call::get_error_instruction(ctx);
1314 }
1315
1316 /* Later, we cast each parameter to the same base type as the
1317 * constructor. Since there are no non-floating point matrices, we
1318 * need to break them up into a series of column vectors.
1319 */
1320 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1321 foreach_list_safe(n, &actual_parameters) {
1322 ir_rvalue *matrix = (ir_rvalue *) n;
1323
1324 if (!matrix->type->is_matrix())
1325 continue;
1326
1327 /* Create a temporary containing the matrix. */
1328 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1329 ir_var_temporary);
1330 instructions->push_tail(var);
1331 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1332 ir_dereference_variable(var), matrix, NULL));
1333 var->constant_value = matrix->constant_expression_value();
1334
1335 /* Replace the matrix with dereferences of its columns. */
1336 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1337 matrix->insert_before(new (ctx) ir_dereference_array(var,
1338 new(ctx) ir_constant(i)));
1339 }
1340 matrix->remove();
1341 }
1342 }
1343
1344 bool all_parameters_are_constant = true;
1345
1346 /* Type cast each parameter and, if possible, fold constants.*/
1347 foreach_list_safe(n, &actual_parameters) {
1348 ir_rvalue *ir = (ir_rvalue *) n;
1349
1350 const glsl_type *desired_type =
1351 glsl_type::get_instance(constructor_type->base_type,
1352 ir->type->vector_elements,
1353 ir->type->matrix_columns);
1354 ir_rvalue *result = convert_component(ir, desired_type);
1355
1356 /* Attempt to convert the parameter to a constant valued expression.
1357 * After doing so, track whether or not all the parameters to the
1358 * constructor are trivially constant valued expressions.
1359 */
1360 ir_rvalue *const constant = result->constant_expression_value();
1361
1362 if (constant != NULL)
1363 result = constant;
1364 else
1365 all_parameters_are_constant = false;
1366
1367 if (result != ir) {
1368 ir->replace_with(result);
1369 }
1370 }
1371
1372 /* If all of the parameters are trivially constant, create a
1373 * constant representing the complete collection of parameters.
1374 */
1375 if (all_parameters_are_constant) {
1376 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1377 } else if (constructor_type->is_scalar()) {
1378 return dereference_component((ir_rvalue *) actual_parameters.head,
1379 0);
1380 } else if (constructor_type->is_vector()) {
1381 return emit_inline_vector_constructor(constructor_type,
1382 instructions,
1383 &actual_parameters,
1384 ctx);
1385 } else {
1386 assert(constructor_type->is_matrix());
1387 return emit_inline_matrix_constructor(constructor_type,
1388 instructions,
1389 &actual_parameters,
1390 ctx);
1391 }
1392 } else {
1393 const ast_expression *id = subexpressions[0];
1394 YYLTYPE loc = id->get_location();
1395 exec_list actual_parameters;
1396
1397 process_parameters(instructions, &actual_parameters, &this->expressions,
1398 state);
1399
1400 return match_function_by_name(instructions,
1401 id->primary_expression.identifier, & loc,
1402 &actual_parameters, state);
1403 }
1404
1405 return ir_call::get_error_instruction(ctx);
1406 }