glsl: Remove extra newline from error message
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
67 *
68 * \return
69 * A ralloced string representing the prototype of the function.
70 */
71 char *
72 prototype_string(const glsl_type *return_type, const char *name,
73 exec_list *parameters)
74 {
75 char *str = NULL;
76
77 if (return_type != NULL)
78 str = ralloc_asprintf(NULL, "%s ", return_type->name);
79
80 ralloc_asprintf_append(&str, "%s(", name);
81
82 const char *comma = "";
83 foreach_list(node, parameters) {
84 const ir_instruction *const param = (ir_instruction *) node;
85
86 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 ralloc_strcat(&str, ")");
91 return str;
92 }
93
94
95 static ir_rvalue *
96 match_function_by_name(exec_list *instructions, const char *name,
97 YYLTYPE *loc, exec_list *actual_parameters,
98 struct _mesa_glsl_parse_state *state)
99 {
100 void *ctx = state;
101 ir_function *f = state->symbols->get_function(name);
102 ir_function_signature *sig;
103
104 sig = f ? f->matching_signature(actual_parameters) : NULL;
105
106 /* FINISHME: This doesn't handle the case where shader X contains a
107 * FINISHME: matching signature but shader X + N contains an _exact_
108 * FINISHME: matching signature.
109 */
110 if (sig == NULL
111 && (f == NULL || state->es_shader || !f->has_user_signature())
112 && state->symbols->get_type(name) == NULL
113 && (state->language_version == 110
114 || state->symbols->get_variable(name) == NULL)) {
115 /* The current shader doesn't contain a matching function or signature.
116 * Before giving up, look for the prototype in the built-in functions.
117 */
118 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
119 ir_function *builtin;
120 builtin = state->builtins_to_link[i]->symbols->get_function(name);
121 sig = builtin ? builtin->matching_signature(actual_parameters) : NULL;
122 if (sig != NULL) {
123 if (f == NULL) {
124 f = new(ctx) ir_function(name);
125 state->symbols->add_global_function(f);
126 emit_function(state, instructions, f);
127 }
128
129 f->add_signature(sig->clone_prototype(f, NULL));
130 break;
131 }
132 }
133 }
134
135 if (sig != NULL) {
136 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
137 * isn't done in ir_function::matching_signature because that function
138 * cannot generate the necessary diagnostics.
139 *
140 * Also, validate that 'const_in' formal parameters (an extension of our
141 * IR) correspond to ir_constant actual parameters.
142 */
143 exec_list_iterator actual_iter = actual_parameters->iterator();
144 exec_list_iterator formal_iter = sig->parameters.iterator();
145
146 while (actual_iter.has_next()) {
147 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
148 ir_variable *formal = (ir_variable *) formal_iter.get();
149
150 assert(actual != NULL);
151 assert(formal != NULL);
152
153 if (formal->mode == ir_var_const_in && !actual->as_constant()) {
154 _mesa_glsl_error(loc, state,
155 "parameter `%s' must be a constant expression",
156 formal->name);
157 }
158
159 if ((formal->mode == ir_var_out)
160 || (formal->mode == ir_var_inout)) {
161 const char *mode = NULL;
162 switch (formal->mode) {
163 case ir_var_out: mode = "out"; break;
164 case ir_var_inout: mode = "inout"; break;
165 default: assert(false); break;
166 }
167 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
168 * FIXME: 0:0(0).
169 */
170 if (actual->variable_referenced()
171 && actual->variable_referenced()->read_only) {
172 _mesa_glsl_error(loc, state,
173 "function parameter '%s %s' references the "
174 "read-only variable '%s'",
175 mode, formal->name,
176 actual->variable_referenced()->name);
177
178 } else if (!actual->is_lvalue()) {
179 _mesa_glsl_error(loc, state,
180 "function parameter '%s %s' is not an lvalue",
181 mode, formal->name);
182 }
183 }
184
185 if (formal->type->is_numeric() || formal->type->is_boolean()) {
186 ir_rvalue *converted = convert_component(actual, formal->type);
187 actual->replace_with(converted);
188 }
189
190 actual_iter.next();
191 formal_iter.next();
192 }
193
194 /* Always insert the call in the instruction stream, and return a deref
195 * of its return val if it returns a value, since we don't know if
196 * the rvalue is going to be assigned to anything or not.
197 */
198 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
199 if (!sig->return_type->is_void()) {
200 ir_variable *var;
201 ir_dereference_variable *deref;
202
203 var = new(ctx) ir_variable(sig->return_type,
204 ralloc_asprintf(ctx, "%s_retval",
205 sig->function_name()),
206 ir_var_temporary);
207 instructions->push_tail(var);
208
209 deref = new(ctx) ir_dereference_variable(var);
210 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
211 instructions->push_tail(assign);
212 if (state->language_version >= 120)
213 var->constant_value = call->constant_expression_value();
214
215 deref = new(ctx) ir_dereference_variable(var);
216 return deref;
217 } else {
218 instructions->push_tail(call);
219 return NULL;
220 }
221 } else {
222 char *str = prototype_string(NULL, name, actual_parameters);
223
224 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
225 str);
226 ralloc_free(str);
227
228 const char *prefix = "candidates are: ";
229
230 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
231 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
232 : state->symbols;
233 f = syms->get_function(name);
234 if (f == NULL)
235 continue;
236
237 foreach_list (node, &f->signatures) {
238 ir_function_signature *sig = (ir_function_signature *) node;
239
240 str = prototype_string(sig->return_type, f->name, &sig->parameters);
241 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
242 ralloc_free(str);
243
244 prefix = " ";
245 }
246
247 }
248
249 return ir_call::get_error_instruction(ctx);
250 }
251 }
252
253
254 /**
255 * Perform automatic type conversion of constructor parameters
256 *
257 * This implements the rules in the "Conversion and Scalar Constructors"
258 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
259 */
260 static ir_rvalue *
261 convert_component(ir_rvalue *src, const glsl_type *desired_type)
262 {
263 void *ctx = ralloc_parent(src);
264 const unsigned a = desired_type->base_type;
265 const unsigned b = src->type->base_type;
266 ir_expression *result = NULL;
267
268 if (src->type->is_error())
269 return src;
270
271 assert(a <= GLSL_TYPE_BOOL);
272 assert(b <= GLSL_TYPE_BOOL);
273
274 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
275 return src;
276
277 switch (a) {
278 case GLSL_TYPE_UINT:
279 case GLSL_TYPE_INT:
280 if (b == GLSL_TYPE_FLOAT)
281 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
282 else {
283 assert(b == GLSL_TYPE_BOOL);
284 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
285 }
286 break;
287 case GLSL_TYPE_FLOAT:
288 switch (b) {
289 case GLSL_TYPE_UINT:
290 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
291 break;
292 case GLSL_TYPE_INT:
293 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
294 break;
295 case GLSL_TYPE_BOOL:
296 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
297 break;
298 }
299 break;
300 case GLSL_TYPE_BOOL:
301 switch (b) {
302 case GLSL_TYPE_UINT:
303 case GLSL_TYPE_INT:
304 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
305 break;
306 case GLSL_TYPE_FLOAT:
307 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
308 break;
309 }
310 break;
311 }
312
313 assert(result != NULL);
314
315 /* Try constant folding; it may fold in the conversion we just added. */
316 ir_constant *const constant = result->constant_expression_value();
317 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
318 }
319
320 /**
321 * Dereference a specific component from a scalar, vector, or matrix
322 */
323 static ir_rvalue *
324 dereference_component(ir_rvalue *src, unsigned component)
325 {
326 void *ctx = ralloc_parent(src);
327 assert(component < src->type->components());
328
329 /* If the source is a constant, just create a new constant instead of a
330 * dereference of the existing constant.
331 */
332 ir_constant *constant = src->as_constant();
333 if (constant)
334 return new(ctx) ir_constant(constant, component);
335
336 if (src->type->is_scalar()) {
337 return src;
338 } else if (src->type->is_vector()) {
339 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
340 } else {
341 assert(src->type->is_matrix());
342
343 /* Dereference a row of the matrix, then call this function again to get
344 * a specific element from that row.
345 */
346 const int c = component / src->type->column_type()->vector_elements;
347 const int r = component % src->type->column_type()->vector_elements;
348 ir_constant *const col_index = new(ctx) ir_constant(c);
349 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
350
351 col->type = src->type->column_type();
352
353 return dereference_component(col, r);
354 }
355
356 assert(!"Should not get here.");
357 return NULL;
358 }
359
360
361 static ir_rvalue *
362 process_array_constructor(exec_list *instructions,
363 const glsl_type *constructor_type,
364 YYLTYPE *loc, exec_list *parameters,
365 struct _mesa_glsl_parse_state *state)
366 {
367 void *ctx = state;
368 /* Array constructors come in two forms: sized and unsized. Sized array
369 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
370 * variables. In this case the number of parameters must exactly match the
371 * specified size of the array.
372 *
373 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
374 * are vec4 variables. In this case the size of the array being constructed
375 * is determined by the number of parameters.
376 *
377 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
378 *
379 * "There must be exactly the same number of arguments as the size of
380 * the array being constructed. If no size is present in the
381 * constructor, then the array is explicitly sized to the number of
382 * arguments provided. The arguments are assigned in order, starting at
383 * element 0, to the elements of the constructed array. Each argument
384 * must be the same type as the element type of the array, or be a type
385 * that can be converted to the element type of the array according to
386 * Section 4.1.10 "Implicit Conversions.""
387 */
388 exec_list actual_parameters;
389 const unsigned parameter_count =
390 process_parameters(instructions, &actual_parameters, parameters, state);
391
392 if ((parameter_count == 0)
393 || ((constructor_type->length != 0)
394 && (constructor_type->length != parameter_count))) {
395 const unsigned min_param = (constructor_type->length == 0)
396 ? 1 : constructor_type->length;
397
398 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
399 "parameter%s",
400 (constructor_type->length != 0) ? "at least" : "exactly",
401 min_param, (min_param <= 1) ? "" : "s");
402 return ir_call::get_error_instruction(ctx);
403 }
404
405 if (constructor_type->length == 0) {
406 constructor_type =
407 glsl_type::get_array_instance(constructor_type->element_type(),
408 parameter_count);
409 assert(constructor_type != NULL);
410 assert(constructor_type->length == parameter_count);
411 }
412
413 bool all_parameters_are_constant = true;
414
415 /* Type cast each parameter and, if possible, fold constants. */
416 foreach_list_safe(n, &actual_parameters) {
417 ir_rvalue *ir = (ir_rvalue *) n;
418 ir_rvalue *result = ir;
419
420 /* Apply implicit conversions (not the scalar constructor rules!) */
421 if (constructor_type->element_type()->is_float()) {
422 const glsl_type *desired_type =
423 glsl_type::get_instance(GLSL_TYPE_FLOAT,
424 ir->type->vector_elements,
425 ir->type->matrix_columns);
426 result = convert_component(ir, desired_type);
427 }
428
429 if (result->type != constructor_type->element_type()) {
430 _mesa_glsl_error(loc, state, "type error in array constructor: "
431 "expected: %s, found %s",
432 constructor_type->element_type()->name,
433 result->type->name);
434 }
435
436 /* Attempt to convert the parameter to a constant valued expression.
437 * After doing so, track whether or not all the parameters to the
438 * constructor are trivially constant valued expressions.
439 */
440 ir_rvalue *const constant = result->constant_expression_value();
441
442 if (constant != NULL)
443 result = constant;
444 else
445 all_parameters_are_constant = false;
446
447 ir->replace_with(result);
448 }
449
450 if (all_parameters_are_constant)
451 return new(ctx) ir_constant(constructor_type, &actual_parameters);
452
453 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
454 ir_var_temporary);
455 instructions->push_tail(var);
456
457 int i = 0;
458 foreach_list(node, &actual_parameters) {
459 ir_rvalue *rhs = (ir_rvalue *) node;
460 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
461 new(ctx) ir_constant(i));
462
463 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
464 instructions->push_tail(assignment);
465
466 i++;
467 }
468
469 return new(ctx) ir_dereference_variable(var);
470 }
471
472
473 /**
474 * Try to convert a record constructor to a constant expression
475 */
476 static ir_constant *
477 constant_record_constructor(const glsl_type *constructor_type,
478 exec_list *parameters, void *mem_ctx)
479 {
480 foreach_list(node, parameters) {
481 ir_constant *constant = ((ir_instruction *) node)->as_constant();
482 if (constant == NULL)
483 return NULL;
484 node->replace_with(constant);
485 }
486
487 return new(mem_ctx) ir_constant(constructor_type, parameters);
488 }
489
490
491 /**
492 * Determine if a list consists of a single scalar r-value
493 */
494 bool
495 single_scalar_parameter(exec_list *parameters)
496 {
497 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
498 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
499
500 return (p->type->is_scalar() && p->next->is_tail_sentinel());
501 }
502
503
504 /**
505 * Generate inline code for a vector constructor
506 *
507 * The generated constructor code will consist of a temporary variable
508 * declaration of the same type as the constructor. A sequence of assignments
509 * from constructor parameters to the temporary will follow.
510 *
511 * \return
512 * An \c ir_dereference_variable of the temprorary generated in the constructor
513 * body.
514 */
515 ir_rvalue *
516 emit_inline_vector_constructor(const glsl_type *type,
517 exec_list *instructions,
518 exec_list *parameters,
519 void *ctx)
520 {
521 assert(!parameters->is_empty());
522
523 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
524 instructions->push_tail(var);
525
526 /* There are two kinds of vector constructors.
527 *
528 * - Construct a vector from a single scalar by replicating that scalar to
529 * all components of the vector.
530 *
531 * - Construct a vector from an arbirary combination of vectors and
532 * scalars. The components of the constructor parameters are assigned
533 * to the vector in order until the vector is full.
534 */
535 const unsigned lhs_components = type->components();
536 if (single_scalar_parameter(parameters)) {
537 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
538 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
539 lhs_components);
540 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
541 const unsigned mask = (1U << lhs_components) - 1;
542
543 assert(rhs->type == lhs->type);
544
545 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
546 instructions->push_tail(inst);
547 } else {
548 unsigned base_component = 0;
549 unsigned base_lhs_component = 0;
550 ir_constant_data data;
551 unsigned constant_mask = 0, constant_components = 0;
552
553 memset(&data, 0, sizeof(data));
554
555 foreach_list(node, parameters) {
556 ir_rvalue *param = (ir_rvalue *) node;
557 unsigned rhs_components = param->type->components();
558
559 /* Do not try to assign more components to the vector than it has!
560 */
561 if ((rhs_components + base_lhs_component) > lhs_components) {
562 rhs_components = lhs_components - base_lhs_component;
563 }
564
565 const ir_constant *const c = param->as_constant();
566 if (c != NULL) {
567 for (unsigned i = 0; i < rhs_components; i++) {
568 switch (c->type->base_type) {
569 case GLSL_TYPE_UINT:
570 data.u[i + base_component] = c->get_uint_component(i);
571 break;
572 case GLSL_TYPE_INT:
573 data.i[i + base_component] = c->get_int_component(i);
574 break;
575 case GLSL_TYPE_FLOAT:
576 data.f[i + base_component] = c->get_float_component(i);
577 break;
578 case GLSL_TYPE_BOOL:
579 data.b[i + base_component] = c->get_bool_component(i);
580 break;
581 default:
582 assert(!"Should not get here.");
583 break;
584 }
585 }
586
587 /* Mask of fields to be written in the assignment.
588 */
589 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
590 constant_components += rhs_components;
591
592 base_component += rhs_components;
593 }
594 /* Advance the component index by the number of components
595 * that were just assigned.
596 */
597 base_lhs_component += rhs_components;
598 }
599
600 if (constant_mask != 0) {
601 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
602 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
603 constant_components,
604 1);
605 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
606
607 ir_instruction *inst =
608 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
609 instructions->push_tail(inst);
610 }
611
612 base_component = 0;
613 foreach_list(node, parameters) {
614 ir_rvalue *param = (ir_rvalue *) node;
615 unsigned rhs_components = param->type->components();
616
617 /* Do not try to assign more components to the vector than it has!
618 */
619 if ((rhs_components + base_component) > lhs_components) {
620 rhs_components = lhs_components - base_component;
621 }
622
623 const ir_constant *const c = param->as_constant();
624 if (c == NULL) {
625 /* Mask of fields to be written in the assignment.
626 */
627 const unsigned write_mask = ((1U << rhs_components) - 1)
628 << base_component;
629
630 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
631
632 /* Generate a swizzle so that LHS and RHS sizes match.
633 */
634 ir_rvalue *rhs =
635 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
636
637 ir_instruction *inst =
638 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
639 instructions->push_tail(inst);
640 }
641
642 /* Advance the component index by the number of components that were
643 * just assigned.
644 */
645 base_component += rhs_components;
646 }
647 }
648 return new(ctx) ir_dereference_variable(var);
649 }
650
651
652 /**
653 * Generate assignment of a portion of a vector to a portion of a matrix column
654 *
655 * \param src_base First component of the source to be used in assignment
656 * \param column Column of destination to be assiged
657 * \param row_base First component of the destination column to be assigned
658 * \param count Number of components to be assigned
659 *
660 * \note
661 * \c src_base + \c count must be less than or equal to the number of components
662 * in the source vector.
663 */
664 ir_instruction *
665 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
666 ir_rvalue *src, unsigned src_base, unsigned count,
667 void *mem_ctx)
668 {
669 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
670 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
671
672 assert(column_ref->type->components() >= (row_base + count));
673 assert(src->type->components() >= (src_base + count));
674
675 /* Generate a swizzle that extracts the number of components from the source
676 * that are to be assigned to the column of the matrix.
677 */
678 if (count < src->type->vector_elements) {
679 src = new(mem_ctx) ir_swizzle(src,
680 src_base + 0, src_base + 1,
681 src_base + 2, src_base + 3,
682 count);
683 }
684
685 /* Mask of fields to be written in the assignment.
686 */
687 const unsigned write_mask = ((1U << count) - 1) << row_base;
688
689 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
690 }
691
692
693 /**
694 * Generate inline code for a matrix constructor
695 *
696 * The generated constructor code will consist of a temporary variable
697 * declaration of the same type as the constructor. A sequence of assignments
698 * from constructor parameters to the temporary will follow.
699 *
700 * \return
701 * An \c ir_dereference_variable of the temprorary generated in the constructor
702 * body.
703 */
704 ir_rvalue *
705 emit_inline_matrix_constructor(const glsl_type *type,
706 exec_list *instructions,
707 exec_list *parameters,
708 void *ctx)
709 {
710 assert(!parameters->is_empty());
711
712 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
713 instructions->push_tail(var);
714
715 /* There are three kinds of matrix constructors.
716 *
717 * - Construct a matrix from a single scalar by replicating that scalar to
718 * along the diagonal of the matrix and setting all other components to
719 * zero.
720 *
721 * - Construct a matrix from an arbirary combination of vectors and
722 * scalars. The components of the constructor parameters are assigned
723 * to the matrix in colum-major order until the matrix is full.
724 *
725 * - Construct a matrix from a single matrix. The source matrix is copied
726 * to the upper left portion of the constructed matrix, and the remaining
727 * elements take values from the identity matrix.
728 */
729 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
730 if (single_scalar_parameter(parameters)) {
731 /* Assign the scalar to the X component of a vec4, and fill the remaining
732 * components with zero.
733 */
734 ir_variable *rhs_var =
735 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
736 ir_var_temporary);
737 instructions->push_tail(rhs_var);
738
739 ir_constant_data zero;
740 zero.f[0] = 0.0;
741 zero.f[1] = 0.0;
742 zero.f[2] = 0.0;
743 zero.f[3] = 0.0;
744
745 ir_instruction *inst =
746 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
747 new(ctx) ir_constant(rhs_var->type, &zero),
748 NULL);
749 instructions->push_tail(inst);
750
751 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
752
753 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
754 instructions->push_tail(inst);
755
756 /* Assign the temporary vector to each column of the destination matrix
757 * with a swizzle that puts the X component on the diagonal of the
758 * matrix. In some cases this may mean that the X component does not
759 * get assigned into the column at all (i.e., when the matrix has more
760 * columns than rows).
761 */
762 static const unsigned rhs_swiz[4][4] = {
763 { 0, 1, 1, 1 },
764 { 1, 0, 1, 1 },
765 { 1, 1, 0, 1 },
766 { 1, 1, 1, 0 }
767 };
768
769 const unsigned cols_to_init = MIN2(type->matrix_columns,
770 type->vector_elements);
771 for (unsigned i = 0; i < cols_to_init; i++) {
772 ir_constant *const col_idx = new(ctx) ir_constant(i);
773 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
774
775 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
776 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
777 type->vector_elements);
778
779 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
780 instructions->push_tail(inst);
781 }
782
783 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
784 ir_constant *const col_idx = new(ctx) ir_constant(i);
785 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
786
787 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
788 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
789 type->vector_elements);
790
791 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
792 instructions->push_tail(inst);
793 }
794 } else if (first_param->type->is_matrix()) {
795 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
796 *
797 * "If a matrix is constructed from a matrix, then each component
798 * (column i, row j) in the result that has a corresponding
799 * component (column i, row j) in the argument will be initialized
800 * from there. All other components will be initialized to the
801 * identity matrix. If a matrix argument is given to a matrix
802 * constructor, it is an error to have any other arguments."
803 */
804 assert(first_param->next->is_tail_sentinel());
805 ir_rvalue *const src_matrix = first_param;
806
807 /* If the source matrix is smaller, pre-initialize the relavent parts of
808 * the destination matrix to the identity matrix.
809 */
810 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
811 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
812
813 /* If the source matrix has fewer rows, every column of the destination
814 * must be initialized. Otherwise only the columns in the destination
815 * that do not exist in the source must be initialized.
816 */
817 unsigned col =
818 (src_matrix->type->vector_elements < var->type->vector_elements)
819 ? 0 : src_matrix->type->matrix_columns;
820
821 const glsl_type *const col_type = var->type->column_type();
822 for (/* empty */; col < var->type->matrix_columns; col++) {
823 ir_constant_data ident;
824
825 ident.f[0] = 0.0;
826 ident.f[1] = 0.0;
827 ident.f[2] = 0.0;
828 ident.f[3] = 0.0;
829
830 ident.f[col] = 1.0;
831
832 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
833
834 ir_rvalue *const lhs =
835 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
836
837 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
838 instructions->push_tail(inst);
839 }
840 }
841
842 /* Assign columns from the source matrix to the destination matrix.
843 *
844 * Since the parameter will be used in the RHS of multiple assignments,
845 * generate a temporary and copy the paramter there.
846 */
847 ir_variable *const rhs_var =
848 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
849 ir_var_temporary);
850 instructions->push_tail(rhs_var);
851
852 ir_dereference *const rhs_var_ref =
853 new(ctx) ir_dereference_variable(rhs_var);
854 ir_instruction *const inst =
855 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
856 instructions->push_tail(inst);
857
858 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
859 var->type->vector_elements);
860 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
861 var->type->matrix_columns);
862
863 unsigned swiz[4] = { 0, 0, 0, 0 };
864 for (unsigned i = 1; i < last_row; i++)
865 swiz[i] = i;
866
867 const unsigned write_mask = (1U << last_row) - 1;
868
869 for (unsigned i = 0; i < last_col; i++) {
870 ir_dereference *const lhs =
871 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
872 ir_rvalue *const rhs_col =
873 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
874
875 /* If one matrix has columns that are smaller than the columns of the
876 * other matrix, wrap the column access of the larger with a swizzle
877 * so that the LHS and RHS of the assignment have the same size (and
878 * therefore have the same type).
879 *
880 * It would be perfectly valid to unconditionally generate the
881 * swizzles, this this will typically result in a more compact IR tree.
882 */
883 ir_rvalue *rhs;
884 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
885 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
886 } else {
887 rhs = rhs_col;
888 }
889
890 ir_instruction *inst =
891 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
892 instructions->push_tail(inst);
893 }
894 } else {
895 const unsigned cols = type->matrix_columns;
896 const unsigned rows = type->vector_elements;
897 unsigned col_idx = 0;
898 unsigned row_idx = 0;
899
900 foreach_list (node, parameters) {
901 ir_rvalue *const rhs = (ir_rvalue *) node;
902 const unsigned components_remaining_this_column = rows - row_idx;
903 unsigned rhs_components = rhs->type->components();
904 unsigned rhs_base = 0;
905
906 /* Since the parameter might be used in the RHS of two assignments,
907 * generate a temporary and copy the paramter there.
908 */
909 ir_variable *rhs_var =
910 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
911 instructions->push_tail(rhs_var);
912
913 ir_dereference *rhs_var_ref =
914 new(ctx) ir_dereference_variable(rhs_var);
915 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
916 instructions->push_tail(inst);
917
918 /* Assign the current parameter to as many components of the matrix
919 * as it will fill.
920 *
921 * NOTE: A single vector parameter can span two matrix columns. A
922 * single vec4, for example, can completely fill a mat2.
923 */
924 if (rhs_components >= components_remaining_this_column) {
925 const unsigned count = MIN2(rhs_components,
926 components_remaining_this_column);
927
928 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
929
930 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
931 row_idx,
932 rhs_var_ref, 0,
933 count, ctx);
934 instructions->push_tail(inst);
935
936 rhs_base = count;
937
938 col_idx++;
939 row_idx = 0;
940 }
941
942 /* If there is data left in the parameter and components left to be
943 * set in the destination, emit another assignment. It is possible
944 * that the assignment could be of a vec4 to the last element of the
945 * matrix. In this case col_idx==cols, but there is still data
946 * left in the source parameter. Obviously, don't emit an assignment
947 * to data outside the destination matrix.
948 */
949 if ((col_idx < cols) && (rhs_base < rhs_components)) {
950 const unsigned count = rhs_components - rhs_base;
951
952 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
953
954 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
955 row_idx,
956 rhs_var_ref,
957 rhs_base,
958 count, ctx);
959 instructions->push_tail(inst);
960
961 row_idx += count;
962 }
963 }
964 }
965
966 return new(ctx) ir_dereference_variable(var);
967 }
968
969
970 ir_rvalue *
971 emit_inline_record_constructor(const glsl_type *type,
972 exec_list *instructions,
973 exec_list *parameters,
974 void *mem_ctx)
975 {
976 ir_variable *const var =
977 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
978 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
979
980 instructions->push_tail(var);
981
982 exec_node *node = parameters->head;
983 for (unsigned i = 0; i < type->length; i++) {
984 assert(!node->is_tail_sentinel());
985
986 ir_dereference *const lhs =
987 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
988 type->fields.structure[i].name);
989
990 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
991 assert(rhs != NULL);
992
993 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
994
995 instructions->push_tail(assign);
996 node = node->next;
997 }
998
999 return d;
1000 }
1001
1002
1003 ir_rvalue *
1004 ast_function_expression::hir(exec_list *instructions,
1005 struct _mesa_glsl_parse_state *state)
1006 {
1007 void *ctx = state;
1008 /* There are three sorts of function calls.
1009 *
1010 * 1. constructors - The first subexpression is an ast_type_specifier.
1011 * 2. methods - Only the .length() method of array types.
1012 * 3. functions - Calls to regular old functions.
1013 *
1014 * Method calls are actually detected when the ast_field_selection
1015 * expression is handled.
1016 */
1017 if (is_constructor()) {
1018 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1019 YYLTYPE loc = type->get_location();
1020 const char *name;
1021
1022 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1023
1024 /* constructor_type can be NULL if a variable with the same name as the
1025 * structure has come into scope.
1026 */
1027 if (constructor_type == NULL) {
1028 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1029 "may be shadowed by a variable with the same name)",
1030 type->type_name);
1031 return ir_call::get_error_instruction(ctx);
1032 }
1033
1034
1035 /* Constructors for samplers are illegal.
1036 */
1037 if (constructor_type->is_sampler()) {
1038 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1039 constructor_type->name);
1040 return ir_call::get_error_instruction(ctx);
1041 }
1042
1043 if (constructor_type->is_array()) {
1044 if (state->language_version <= 110) {
1045 _mesa_glsl_error(& loc, state,
1046 "array constructors forbidden in GLSL 1.10");
1047 return ir_call::get_error_instruction(ctx);
1048 }
1049
1050 return process_array_constructor(instructions, constructor_type,
1051 & loc, &this->expressions, state);
1052 }
1053
1054
1055 /* There are two kinds of constructor call. Constructors for built-in
1056 * language types, such as mat4 and vec2, are free form. The only
1057 * requirement is that the parameters must provide enough values of the
1058 * correct scalar type. Constructors for arrays and structures must
1059 * have the exact number of parameters with matching types in the
1060 * correct order. These constructors follow essentially the same type
1061 * matching rules as functions.
1062 */
1063 if (constructor_type->is_record()) {
1064 exec_list actual_parameters;
1065
1066 process_parameters(instructions, &actual_parameters,
1067 &this->expressions, state);
1068
1069 exec_node *node = actual_parameters.head;
1070 for (unsigned i = 0; i < constructor_type->length; i++) {
1071 ir_rvalue *ir = (ir_rvalue *) node;
1072
1073 if (node->is_tail_sentinel()) {
1074 _mesa_glsl_error(&loc, state,
1075 "insufficient parameters to constructor "
1076 "for `%s'",
1077 constructor_type->name);
1078 return ir_call::get_error_instruction(ctx);
1079 }
1080
1081 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1082 ir, state)) {
1083 node->replace_with(ir);
1084 } else {
1085 _mesa_glsl_error(&loc, state,
1086 "parameter type mismatch in constructor "
1087 "for `%s.%s' (%s vs %s)",
1088 constructor_type->name,
1089 constructor_type->fields.structure[i].name,
1090 ir->type->name,
1091 constructor_type->fields.structure[i].type->name);
1092 return ir_call::get_error_instruction(ctx);;
1093 }
1094
1095 node = node->next;
1096 }
1097
1098 if (!node->is_tail_sentinel()) {
1099 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1100 "for `%s'", constructor_type->name);
1101 return ir_call::get_error_instruction(ctx);
1102 }
1103
1104 ir_rvalue *const constant =
1105 constant_record_constructor(constructor_type, &actual_parameters,
1106 state);
1107
1108 return (constant != NULL)
1109 ? constant
1110 : emit_inline_record_constructor(constructor_type, instructions,
1111 &actual_parameters, state);
1112 }
1113
1114 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1115 return ir_call::get_error_instruction(ctx);
1116
1117 /* Total number of components of the type being constructed. */
1118 const unsigned type_components = constructor_type->components();
1119
1120 /* Number of components from parameters that have actually been
1121 * consumed. This is used to perform several kinds of error checking.
1122 */
1123 unsigned components_used = 0;
1124
1125 unsigned matrix_parameters = 0;
1126 unsigned nonmatrix_parameters = 0;
1127 exec_list actual_parameters;
1128
1129 foreach_list (n, &this->expressions) {
1130 ast_node *ast = exec_node_data(ast_node, n, link);
1131 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1132
1133 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1134 *
1135 * "It is an error to provide extra arguments beyond this
1136 * last used argument."
1137 */
1138 if (components_used >= type_components) {
1139 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1140 "constructor",
1141 constructor_type->name);
1142 return ir_call::get_error_instruction(ctx);
1143 }
1144
1145 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1146 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1147 "non-numeric data type",
1148 constructor_type->name);
1149 return ir_call::get_error_instruction(ctx);
1150 }
1151
1152 /* Count the number of matrix and nonmatrix parameters. This
1153 * is used below to enforce some of the constructor rules.
1154 */
1155 if (result->type->is_matrix())
1156 matrix_parameters++;
1157 else
1158 nonmatrix_parameters++;
1159
1160 actual_parameters.push_tail(result);
1161 components_used += result->type->components();
1162 }
1163
1164 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1165 *
1166 * "It is an error to construct matrices from other matrices. This
1167 * is reserved for future use."
1168 */
1169 if (state->language_version == 110 && matrix_parameters > 0
1170 && constructor_type->is_matrix()) {
1171 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1172 "matrix in GLSL 1.10",
1173 constructor_type->name);
1174 return ir_call::get_error_instruction(ctx);
1175 }
1176
1177 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1178 *
1179 * "If a matrix argument is given to a matrix constructor, it is
1180 * an error to have any other arguments."
1181 */
1182 if ((matrix_parameters > 0)
1183 && ((matrix_parameters + nonmatrix_parameters) > 1)
1184 && constructor_type->is_matrix()) {
1185 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1186 "matrix must be only parameter",
1187 constructor_type->name);
1188 return ir_call::get_error_instruction(ctx);
1189 }
1190
1191 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1192 *
1193 * "In these cases, there must be enough components provided in the
1194 * arguments to provide an initializer for every component in the
1195 * constructed value."
1196 */
1197 if (components_used < type_components && components_used != 1
1198 && matrix_parameters == 0) {
1199 _mesa_glsl_error(& loc, state, "too few components to construct "
1200 "`%s'",
1201 constructor_type->name);
1202 return ir_call::get_error_instruction(ctx);
1203 }
1204
1205 /* Later, we cast each parameter to the same base type as the
1206 * constructor. Since there are no non-floating point matrices, we
1207 * need to break them up into a series of column vectors.
1208 */
1209 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1210 foreach_list_safe(n, &actual_parameters) {
1211 ir_rvalue *matrix = (ir_rvalue *) n;
1212
1213 if (!matrix->type->is_matrix())
1214 continue;
1215
1216 /* Create a temporary containing the matrix. */
1217 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1218 ir_var_temporary);
1219 instructions->push_tail(var);
1220 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1221 ir_dereference_variable(var), matrix, NULL));
1222 var->constant_value = matrix->constant_expression_value();
1223
1224 /* Replace the matrix with dereferences of its columns. */
1225 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1226 matrix->insert_before(new (ctx) ir_dereference_array(var,
1227 new(ctx) ir_constant(i)));
1228 }
1229 matrix->remove();
1230 }
1231 }
1232
1233 bool all_parameters_are_constant = true;
1234
1235 /* Type cast each parameter and, if possible, fold constants.*/
1236 foreach_list_safe(n, &actual_parameters) {
1237 ir_rvalue *ir = (ir_rvalue *) n;
1238
1239 const glsl_type *desired_type =
1240 glsl_type::get_instance(constructor_type->base_type,
1241 ir->type->vector_elements,
1242 ir->type->matrix_columns);
1243 ir_rvalue *result = convert_component(ir, desired_type);
1244
1245 /* Attempt to convert the parameter to a constant valued expression.
1246 * After doing so, track whether or not all the parameters to the
1247 * constructor are trivially constant valued expressions.
1248 */
1249 ir_rvalue *const constant = result->constant_expression_value();
1250
1251 if (constant != NULL)
1252 result = constant;
1253 else
1254 all_parameters_are_constant = false;
1255
1256 if (result != ir) {
1257 ir->replace_with(result);
1258 }
1259 }
1260
1261 /* If all of the parameters are trivially constant, create a
1262 * constant representing the complete collection of parameters.
1263 */
1264 if (all_parameters_are_constant) {
1265 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1266 } else if (constructor_type->is_scalar()) {
1267 return dereference_component((ir_rvalue *) actual_parameters.head,
1268 0);
1269 } else if (constructor_type->is_vector()) {
1270 return emit_inline_vector_constructor(constructor_type,
1271 instructions,
1272 &actual_parameters,
1273 ctx);
1274 } else {
1275 assert(constructor_type->is_matrix());
1276 return emit_inline_matrix_constructor(constructor_type,
1277 instructions,
1278 &actual_parameters,
1279 ctx);
1280 }
1281 } else {
1282 const ast_expression *id = subexpressions[0];
1283 YYLTYPE loc = id->get_location();
1284 exec_list actual_parameters;
1285
1286 process_parameters(instructions, &actual_parameters, &this->expressions,
1287 state);
1288
1289 return match_function_by_name(instructions,
1290 id->primary_expression.identifier, & loc,
1291 &actual_parameters, state);
1292 }
1293
1294 return ir_call::get_error_instruction(ctx);
1295 }