glsl2: Log a better error message when a matching function cannot be found
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28
29 inline unsigned min(unsigned a, unsigned b)
30 {
31 return (a < b) ? a : b;
32 }
33
34 static ir_rvalue *
35 convert_component(ir_rvalue *src, const glsl_type *desired_type);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
67 *
68 * \return
69 * A talloced string representing the prototype of the function.
70 */
71 char *
72 prototype_string(const glsl_type *return_type, const char *name,
73 exec_list *parameters)
74 {
75 char *str = NULL;
76
77 if (return_type != NULL)
78 str = talloc_asprintf(str, "%s ", return_type->name);
79
80 str = talloc_asprintf_append(str, "%s(", name);
81
82 const char *comma = "";
83 foreach_list(node, parameters) {
84 const ir_instruction *const param = (ir_instruction *) node;
85
86 str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 str = talloc_strdup_append(str, ")");
91 return str;
92 }
93
94
95 static ir_rvalue *
96 process_call(exec_list *instructions, ir_function *f,
97 YYLTYPE *loc, exec_list *actual_parameters,
98 struct _mesa_glsl_parse_state *state)
99 {
100 void *ctx = state;
101
102 ir_function_signature *sig = f->matching_signature(actual_parameters);
103
104 /* The instructions param will be used when the FINISHMEs below are done */
105 (void) instructions;
106
107 if (sig != NULL) {
108 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
109 * isn't done in ir_function::matching_signature because that function
110 * cannot generate the necessary diagnostics.
111 */
112 exec_list_iterator actual_iter = actual_parameters->iterator();
113 exec_list_iterator formal_iter = sig->parameters.iterator();
114
115 while (actual_iter.has_next()) {
116 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
117 ir_variable *formal = (ir_variable *) formal_iter.get();
118
119 assert(actual != NULL);
120 assert(formal != NULL);
121
122 if ((formal->mode == ir_var_out)
123 || (formal->mode == ir_var_inout)) {
124 if (! actual->is_lvalue()) {
125 /* FINISHME: Log a better diagnostic here. There is no way
126 * FINISHME: to tell the user which parameter is invalid.
127 */
128 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
129 (formal->mode == ir_var_out) ? "out" : "inout");
130 }
131 }
132
133 if (formal->type->is_numeric() || formal->type->is_boolean()) {
134 ir_rvalue *converted = convert_component(actual, formal->type);
135 actual->replace_with(converted);
136 }
137
138 actual_iter.next();
139 formal_iter.next();
140 }
141
142 /* Always insert the call in the instruction stream, and return a deref
143 * of its return val if it returns a value, since we don't know if
144 * the rvalue is going to be assigned to anything or not.
145 */
146 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
147 if (!sig->return_type->is_void()) {
148 ir_variable *var;
149 ir_dereference_variable *deref;
150
151 var = new(ctx) ir_variable(sig->return_type,
152 talloc_asprintf(ctx, "%s_retval",
153 sig->function_name()),
154 ir_var_temporary);
155 instructions->push_tail(var);
156
157 deref = new(ctx) ir_dereference_variable(var);
158 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
159 instructions->push_tail(assign);
160 if (state->language_version >= 120)
161 var->constant_value = call->constant_expression_value();
162
163 deref = new(ctx) ir_dereference_variable(var);
164 return deref;
165 } else {
166 instructions->push_tail(call);
167 return NULL;
168 }
169 } else {
170 char *str = prototype_string(NULL, f->name, actual_parameters);
171
172 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
173 str);
174 talloc_free(str);
175
176 const char *prefix = "candidates are: ";
177 foreach_list (node, &f->signatures) {
178 ir_function_signature *sig = (ir_function_signature *) node;
179
180 str = prototype_string(sig->return_type, f->name, &sig->parameters);
181 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
182 talloc_free(str);
183
184 prefix = " ";
185 }
186
187 return ir_call::get_error_instruction(ctx);
188 }
189 }
190
191
192 static ir_rvalue *
193 match_function_by_name(exec_list *instructions, const char *name,
194 YYLTYPE *loc, exec_list *actual_parameters,
195 struct _mesa_glsl_parse_state *state)
196 {
197 void *ctx = state;
198 ir_function *f = state->symbols->get_function(name);
199
200 if (f == NULL) {
201 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
202 return ir_call::get_error_instruction(ctx);
203 }
204
205 /* Once we've determined that the function being called might exist, try
206 * to find an overload of the function that matches the parameters.
207 */
208 return process_call(instructions, f, loc, actual_parameters, state);
209 }
210
211
212 /**
213 * Perform automatic type conversion of constructor parameters
214 *
215 * This implements the rules in the "Conversion and Scalar Constructors"
216 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
217 */
218 static ir_rvalue *
219 convert_component(ir_rvalue *src, const glsl_type *desired_type)
220 {
221 void *ctx = talloc_parent(src);
222 const unsigned a = desired_type->base_type;
223 const unsigned b = src->type->base_type;
224 ir_expression *result = NULL;
225
226 if (src->type->is_error())
227 return src;
228
229 assert(a <= GLSL_TYPE_BOOL);
230 assert(b <= GLSL_TYPE_BOOL);
231
232 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
233 return src;
234
235 switch (a) {
236 case GLSL_TYPE_UINT:
237 case GLSL_TYPE_INT:
238 if (b == GLSL_TYPE_FLOAT)
239 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
240 else {
241 assert(b == GLSL_TYPE_BOOL);
242 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
243 }
244 break;
245 case GLSL_TYPE_FLOAT:
246 switch (b) {
247 case GLSL_TYPE_UINT:
248 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
249 break;
250 case GLSL_TYPE_INT:
251 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
252 break;
253 case GLSL_TYPE_BOOL:
254 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
255 break;
256 }
257 break;
258 case GLSL_TYPE_BOOL:
259 switch (b) {
260 case GLSL_TYPE_UINT:
261 case GLSL_TYPE_INT:
262 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
263 break;
264 case GLSL_TYPE_FLOAT:
265 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
266 break;
267 }
268 break;
269 }
270
271 assert(result != NULL);
272
273 /* Try constant folding; it may fold in the conversion we just added. */
274 ir_constant *const constant = result->constant_expression_value();
275 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
276 }
277
278 /**
279 * Dereference a specific component from a scalar, vector, or matrix
280 */
281 static ir_rvalue *
282 dereference_component(ir_rvalue *src, unsigned component)
283 {
284 void *ctx = talloc_parent(src);
285 assert(component < src->type->components());
286
287 /* If the source is a constant, just create a new constant instead of a
288 * dereference of the existing constant.
289 */
290 ir_constant *constant = src->as_constant();
291 if (constant)
292 return new(ctx) ir_constant(constant, component);
293
294 if (src->type->is_scalar()) {
295 return src;
296 } else if (src->type->is_vector()) {
297 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
298 } else {
299 assert(src->type->is_matrix());
300
301 /* Dereference a row of the matrix, then call this function again to get
302 * a specific element from that row.
303 */
304 const int c = component / src->type->column_type()->vector_elements;
305 const int r = component % src->type->column_type()->vector_elements;
306 ir_constant *const col_index = new(ctx) ir_constant(c);
307 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
308
309 col->type = src->type->column_type();
310
311 return dereference_component(col, r);
312 }
313
314 assert(!"Should not get here.");
315 return NULL;
316 }
317
318
319 static ir_rvalue *
320 process_array_constructor(exec_list *instructions,
321 const glsl_type *constructor_type,
322 YYLTYPE *loc, exec_list *parameters,
323 struct _mesa_glsl_parse_state *state)
324 {
325 void *ctx = state;
326 /* Array constructors come in two forms: sized and unsized. Sized array
327 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
328 * variables. In this case the number of parameters must exactly match the
329 * specified size of the array.
330 *
331 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
332 * are vec4 variables. In this case the size of the array being constructed
333 * is determined by the number of parameters.
334 *
335 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
336 *
337 * "There must be exactly the same number of arguments as the size of
338 * the array being constructed. If no size is present in the
339 * constructor, then the array is explicitly sized to the number of
340 * arguments provided. The arguments are assigned in order, starting at
341 * element 0, to the elements of the constructed array. Each argument
342 * must be the same type as the element type of the array, or be a type
343 * that can be converted to the element type of the array according to
344 * Section 4.1.10 "Implicit Conversions.""
345 */
346 exec_list actual_parameters;
347 const unsigned parameter_count =
348 process_parameters(instructions, &actual_parameters, parameters, state);
349
350 if ((parameter_count == 0)
351 || ((constructor_type->length != 0)
352 && (constructor_type->length != parameter_count))) {
353 const unsigned min_param = (constructor_type->length == 0)
354 ? 1 : constructor_type->length;
355
356 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
357 "parameter%s",
358 (constructor_type->length != 0) ? "at least" : "exactly",
359 min_param, (min_param <= 1) ? "" : "s");
360 return ir_call::get_error_instruction(ctx);
361 }
362
363 if (constructor_type->length == 0) {
364 constructor_type =
365 glsl_type::get_array_instance(constructor_type->element_type(),
366 parameter_count);
367 assert(constructor_type != NULL);
368 assert(constructor_type->length == parameter_count);
369 }
370
371 bool all_parameters_are_constant = true;
372
373 /* Type cast each parameter and, if possible, fold constants. */
374 foreach_list_safe(n, &actual_parameters) {
375 ir_rvalue *ir = (ir_rvalue *) n;
376 ir_rvalue *result = ir;
377
378 /* Apply implicit conversions (not the scalar constructor rules!) */
379 if (constructor_type->element_type()->is_float()) {
380 const glsl_type *desired_type =
381 glsl_type::get_instance(GLSL_TYPE_FLOAT,
382 ir->type->vector_elements,
383 ir->type->matrix_columns);
384 result = convert_component(ir, desired_type);
385 }
386
387 if (result->type != constructor_type->element_type()) {
388 _mesa_glsl_error(loc, state, "type error in array constructor: "
389 "expected: %s, found %s",
390 constructor_type->element_type()->name,
391 result->type->name);
392 }
393
394 /* Attempt to convert the parameter to a constant valued expression.
395 * After doing so, track whether or not all the parameters to the
396 * constructor are trivially constant valued expressions.
397 */
398 ir_rvalue *const constant = result->constant_expression_value();
399
400 if (constant != NULL)
401 result = constant;
402 else
403 all_parameters_are_constant = false;
404
405 ir->replace_with(result);
406 }
407
408 if (all_parameters_are_constant)
409 return new(ctx) ir_constant(constructor_type, &actual_parameters);
410
411 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
412 ir_var_temporary);
413 instructions->push_tail(var);
414
415 int i = 0;
416 foreach_list(node, &actual_parameters) {
417 ir_rvalue *rhs = (ir_rvalue *) node;
418 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
419 new(ctx) ir_constant(i));
420
421 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
422 instructions->push_tail(assignment);
423
424 i++;
425 }
426
427 return new(ctx) ir_dereference_variable(var);
428 }
429
430
431 /**
432 * Try to convert a record constructor to a constant expression
433 */
434 static ir_constant *
435 constant_record_constructor(const glsl_type *constructor_type,
436 YYLTYPE *loc, exec_list *parameters,
437 struct _mesa_glsl_parse_state *state)
438 {
439 void *ctx = state;
440 bool all_parameters_are_constant = true;
441
442 exec_node *node = parameters->head;
443 for (unsigned i = 0; i < constructor_type->length; i++) {
444 ir_instruction *ir = (ir_instruction *) node;
445
446 if (node->is_tail_sentinel()) {
447 _mesa_glsl_error(loc, state,
448 "insufficient parameters to constructor for `%s'",
449 constructor_type->name);
450 return NULL;
451 }
452
453 if (ir->type != constructor_type->fields.structure[i].type) {
454 _mesa_glsl_error(loc, state,
455 "parameter type mismatch in constructor for `%s' "
456 " (%s vs %s)",
457 constructor_type->name,
458 ir->type->name,
459 constructor_type->fields.structure[i].type->name);
460 return NULL;
461 }
462
463 if (ir->as_constant() == NULL)
464 all_parameters_are_constant = false;
465
466 node = node->next;
467 }
468
469 if (!all_parameters_are_constant)
470 return NULL;
471
472 return new(ctx) ir_constant(constructor_type, parameters);
473 }
474
475
476 /**
477 * Generate data for a constant matrix constructor w/a single scalar parameter
478 *
479 * Matrix constructors in GLSL can be passed a single scalar of the
480 * approriate type. In these cases, the resulting matrix is the identity
481 * matrix multipled by the specified scalar. This function generates data for
482 * that matrix.
483 *
484 * \param type Type of the desired matrix.
485 * \param initializer Scalar value used to initialize the matrix diagonal.
486 * \param data Location to store the resulting matrix.
487 */
488 void
489 generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
490 ir_constant_data *data)
491 {
492 switch (type->base_type) {
493 case GLSL_TYPE_UINT:
494 case GLSL_TYPE_INT:
495 for (unsigned i = 0; i < type->components(); i++)
496 data->u[i] = 0;
497
498 for (unsigned i = 0; i < type->matrix_columns; i++) {
499 /* The array offset of the ith row and column of the matrix.
500 */
501 const unsigned idx = (i * type->vector_elements) + i;
502
503 data->u[idx] = initializer->value.u[0];
504 }
505 break;
506
507 case GLSL_TYPE_FLOAT:
508 for (unsigned i = 0; i < type->components(); i++)
509 data->f[i] = 0;
510
511 for (unsigned i = 0; i < type->matrix_columns; i++) {
512 /* The array offset of the ith row and column of the matrix.
513 */
514 const unsigned idx = (i * type->vector_elements) + i;
515
516 data->f[idx] = initializer->value.f[0];
517 }
518
519 break;
520
521 default:
522 assert(!"Should not get here.");
523 break;
524 }
525 }
526
527
528 /**
529 * Generate data for a constant vector constructor w/a single scalar parameter
530 *
531 * Vector constructors in GLSL can be passed a single scalar of the
532 * approriate type. In these cases, the resulting vector contains the specified
533 * value in all components. This function generates data for that vector.
534 *
535 * \param type Type of the desired vector.
536 * \param initializer Scalar value used to initialize the vector.
537 * \param data Location to store the resulting vector data.
538 */
539 void
540 generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
541 ir_constant_data *data)
542 {
543 switch (type->base_type) {
544 case GLSL_TYPE_UINT:
545 case GLSL_TYPE_INT:
546 for (unsigned i = 0; i < type->components(); i++)
547 data->u[i] = initializer->value.u[0];
548
549 break;
550
551 case GLSL_TYPE_FLOAT:
552 for (unsigned i = 0; i < type->components(); i++)
553 data->f[i] = initializer->value.f[0];
554
555 break;
556
557 case GLSL_TYPE_BOOL:
558 for (unsigned i = 0; i < type->components(); i++)
559 data->b[i] = initializer->value.b[0];
560
561 break;
562
563 default:
564 assert(!"Should not get here.");
565 break;
566 }
567 }
568
569
570 /**
571 * Determine if a list consists of a single scalar r-value
572 */
573 bool
574 single_scalar_parameter(exec_list *parameters)
575 {
576 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
577 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
578
579 return (p->type->is_scalar() && p->next->is_tail_sentinel());
580 }
581
582
583 /**
584 * Generate inline code for a vector constructor
585 *
586 * The generated constructor code will consist of a temporary variable
587 * declaration of the same type as the constructor. A sequence of assignments
588 * from constructor parameters to the temporary will follow.
589 *
590 * \return
591 * An \c ir_dereference_variable of the temprorary generated in the constructor
592 * body.
593 */
594 ir_rvalue *
595 emit_inline_vector_constructor(const glsl_type *type,
596 exec_list *instructions,
597 exec_list *parameters,
598 void *ctx)
599 {
600 assert(!parameters->is_empty());
601
602 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
603 instructions->push_tail(var);
604
605 /* There are two kinds of vector constructors.
606 *
607 * - Construct a vector from a single scalar by replicating that scalar to
608 * all components of the vector.
609 *
610 * - Construct a vector from an arbirary combination of vectors and
611 * scalars. The components of the constructor parameters are assigned
612 * to the vector in order until the vector is full.
613 */
614 const unsigned lhs_components = type->components();
615 if (single_scalar_parameter(parameters)) {
616 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
617 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
618 lhs_components);
619 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
620 const unsigned mask = (1U << lhs_components) - 1;
621
622 assert(rhs->type == lhs->type);
623
624 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
625 instructions->push_tail(inst);
626 } else {
627 unsigned base_component = 0;
628 foreach_list(node, parameters) {
629 ir_rvalue *param = (ir_rvalue *) node;
630 unsigned rhs_components = param->type->components();
631
632 /* Do not try to assign more components to the vector than it has!
633 */
634 if ((rhs_components + base_component) > lhs_components) {
635 rhs_components = lhs_components - base_component;
636 }
637
638 /* Generate a swizzle that puts the first element of the source at
639 * the location of the first element of the destination.
640 */
641 unsigned swiz[4] = { 0, 0, 0, 0 };
642 for (unsigned i = 0; i < rhs_components; i++)
643 swiz[i + base_component] = i;
644
645 /* Mask of fields to be written in the assignment.
646 */
647 const unsigned write_mask = ((1U << rhs_components) - 1)
648 << base_component;
649
650 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
651 ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, lhs_components);
652
653 ir_instruction *inst =
654 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
655 instructions->push_tail(inst);
656
657 /* Advance the component index by the number of components that were
658 * just assigned.
659 */
660 base_component += rhs_components;
661 }
662 }
663 return new(ctx) ir_dereference_variable(var);
664 }
665
666
667 /**
668 * Generate assignment of a portion of a vector to a portion of a matrix column
669 *
670 * \param src_base First component of the source to be used in assignment
671 * \param column Column of destination to be assiged
672 * \param row_base First component of the destination column to be assigned
673 * \param count Number of components to be assigned
674 *
675 * \note
676 * \c src_base + \c count must be less than or equal to the number of components
677 * in the source vector.
678 */
679 ir_instruction *
680 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
681 ir_rvalue *src, unsigned src_base, unsigned count,
682 void *mem_ctx)
683 {
684 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
685 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
686
687 assert(column_ref->type->components() >= (row_base + count));
688 assert(src->type->components() >= (src_base + count));
689
690 /* Generate a swizzle that puts the first element of the source at the
691 * location of the first element of the destination.
692 */
693 unsigned swiz[4] = { src_base, src_base, src_base, src_base };
694 for (unsigned i = 0; i < count; i++)
695 swiz[i + row_base] = src_base + i;
696
697 ir_rvalue *const rhs =
698 new(mem_ctx) ir_swizzle(src, swiz, column_ref->type->components());
699
700 /* Mask of fields to be written in the assignment.
701 */
702 const unsigned write_mask = ((1U << count) - 1) << row_base;
703
704 return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
705 }
706
707
708 /**
709 * Generate inline code for a matrix constructor
710 *
711 * The generated constructor code will consist of a temporary variable
712 * declaration of the same type as the constructor. A sequence of assignments
713 * from constructor parameters to the temporary will follow.
714 *
715 * \return
716 * An \c ir_dereference_variable of the temprorary generated in the constructor
717 * body.
718 */
719 ir_rvalue *
720 emit_inline_matrix_constructor(const glsl_type *type,
721 exec_list *instructions,
722 exec_list *parameters,
723 void *ctx)
724 {
725 assert(!parameters->is_empty());
726
727 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
728 instructions->push_tail(var);
729
730 /* There are three kinds of matrix constructors.
731 *
732 * - Construct a matrix from a single scalar by replicating that scalar to
733 * along the diagonal of the matrix and setting all other components to
734 * zero.
735 *
736 * - Construct a matrix from an arbirary combination of vectors and
737 * scalars. The components of the constructor parameters are assigned
738 * to the matrix in colum-major order until the matrix is full.
739 *
740 * - Construct a matrix from a single matrix. The source matrix is copied
741 * to the upper left portion of the constructed matrix, and the remaining
742 * elements take values from the identity matrix.
743 */
744 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
745 if (single_scalar_parameter(parameters)) {
746 /* Assign the scalar to the X component of a vec4, and fill the remaining
747 * components with zero.
748 */
749 ir_variable *rhs_var =
750 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
751 ir_var_temporary);
752 instructions->push_tail(rhs_var);
753
754 ir_constant_data zero;
755 zero.f[0] = 0.0;
756 zero.f[1] = 0.0;
757 zero.f[2] = 0.0;
758 zero.f[3] = 0.0;
759
760 ir_instruction *inst =
761 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
762 new(ctx) ir_constant(rhs_var->type, &zero),
763 NULL);
764 instructions->push_tail(inst);
765
766 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
767
768 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
769 instructions->push_tail(inst);
770
771 /* Assign the temporary vector to each column of the destination matrix
772 * with a swizzle that puts the X component on the diagonal of the
773 * matrix. In some cases this may mean that the X component does not
774 * get assigned into the column at all (i.e., when the matrix has more
775 * columns than rows).
776 */
777 static const unsigned rhs_swiz[4][4] = {
778 { 0, 1, 1, 1 },
779 { 1, 0, 1, 1 },
780 { 1, 1, 0, 1 },
781 { 1, 1, 1, 0 }
782 };
783
784 const unsigned cols_to_init = min(type->matrix_columns,
785 type->vector_elements);
786 for (unsigned i = 0; i < cols_to_init; i++) {
787 ir_constant *const col_idx = new(ctx) ir_constant(i);
788 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
789
790 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
791 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
792 type->vector_elements);
793
794 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
795 instructions->push_tail(inst);
796 }
797
798 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
799 ir_constant *const col_idx = new(ctx) ir_constant(i);
800 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
801
802 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
803 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
804 type->vector_elements);
805
806 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
807 instructions->push_tail(inst);
808 }
809 } else if (first_param->type->is_matrix()) {
810 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
811 *
812 * "If a matrix is constructed from a matrix, then each component
813 * (column i, row j) in the result that has a corresponding
814 * component (column i, row j) in the argument will be initialized
815 * from there. All other components will be initialized to the
816 * identity matrix. If a matrix argument is given to a matrix
817 * constructor, it is an error to have any other arguments."
818 */
819 assert(first_param->next->is_tail_sentinel());
820 ir_rvalue *const src_matrix = first_param;
821
822 /* If the source matrix is smaller, pre-initialize the relavent parts of
823 * the destination matrix to the identity matrix.
824 */
825 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
826 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
827
828 /* If the source matrix has fewer rows, every column of the destination
829 * must be initialized. Otherwise only the columns in the destination
830 * that do not exist in the source must be initialized.
831 */
832 unsigned col =
833 (src_matrix->type->vector_elements < var->type->vector_elements)
834 ? 0 : src_matrix->type->matrix_columns;
835
836 const glsl_type *const col_type = var->type->column_type();
837 for (/* empty */; col < var->type->matrix_columns; col++) {
838 ir_constant_data ident;
839
840 ident.f[0] = 0.0;
841 ident.f[1] = 0.0;
842 ident.f[2] = 0.0;
843 ident.f[3] = 0.0;
844
845 ident.f[col] = 1.0;
846
847 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
848
849 ir_rvalue *const lhs =
850 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
851
852 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
853 instructions->push_tail(inst);
854 }
855 }
856
857 /* Assign columns from the source matrix to the destination matrix.
858 *
859 * Since the parameter will be used in the RHS of multiple assignments,
860 * generate a temporary and copy the paramter there.
861 */
862 ir_variable *const rhs_var =
863 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
864 ir_var_temporary);
865 instructions->push_tail(rhs_var);
866
867 ir_dereference *const rhs_var_ref =
868 new(ctx) ir_dereference_variable(rhs_var);
869 ir_instruction *const inst =
870 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
871 instructions->push_tail(inst);
872
873
874 unsigned swiz[4] = { 0, 0, 0, 0 };
875 for (unsigned i = 1; i < src_matrix->type->vector_elements; i++)
876 swiz[i] = i;
877
878 const unsigned last_col = min(src_matrix->type->matrix_columns,
879 var->type->matrix_columns);
880 const unsigned write_mask = (1U << var->type->vector_elements) - 1;
881
882 for (unsigned i = 0; i < last_col; i++) {
883 ir_dereference *const lhs =
884 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
885 ir_rvalue *const rhs_col =
886 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
887
888 /* If one matrix has columns that are smaller than the columns of the
889 * other matrix, wrap the column access of the larger with a swizzle
890 * so that the LHS and RHS of the assignment have the same size (and
891 * therefore have the same type).
892 *
893 * It would be perfectly valid to unconditionally generate the
894 * swizzles, this this will typically result in a more compact IR tree.
895 */
896 ir_rvalue *rhs;
897 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
898 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
899 lhs->type->vector_elements);
900 } else {
901 rhs = rhs_col;
902 }
903
904 assert(lhs->type == rhs->type);
905
906 ir_instruction *inst =
907 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
908 instructions->push_tail(inst);
909 }
910 } else {
911 const unsigned rows = type->matrix_columns;
912 const unsigned cols = type->vector_elements;
913 unsigned col_idx = 0;
914 unsigned row_idx = 0;
915
916 foreach_list (node, parameters) {
917 ir_rvalue *const rhs = (ir_rvalue *) node;
918 const unsigned components_remaining_this_column = rows - row_idx;
919 unsigned rhs_components = rhs->type->components();
920 unsigned rhs_base = 0;
921
922 /* Since the parameter might be used in the RHS of two assignments,
923 * generate a temporary and copy the paramter there.
924 */
925 ir_variable *rhs_var =
926 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
927 instructions->push_tail(rhs_var);
928
929 ir_dereference *rhs_var_ref =
930 new(ctx) ir_dereference_variable(rhs_var);
931 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
932 instructions->push_tail(inst);
933
934 /* Assign the current parameter to as many components of the matrix
935 * as it will fill.
936 *
937 * NOTE: A single vector parameter can span two matrix columns. A
938 * single vec4, for example, can completely fill a mat2.
939 */
940 if (rhs_components >= components_remaining_this_column) {
941 const unsigned count = min(rhs_components,
942 components_remaining_this_column);
943
944 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
945
946 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
947 row_idx,
948 rhs_var_ref, 0,
949 count, ctx);
950 instructions->push_tail(inst);
951
952 rhs_base = count;
953
954 col_idx++;
955 row_idx = 0;
956 }
957
958 /* If there is data left in the parameter and components left to be
959 * set in the destination, emit another assignment. It is possible
960 * that the assignment could be of a vec4 to the last element of the
961 * matrix. In this case col_idx==cols, but there is still data
962 * left in the source parameter. Obviously, don't emit an assignment
963 * to data outside the destination matrix.
964 */
965 if ((col_idx < cols) && (rhs_base < rhs_components)) {
966 const unsigned count = rhs_components - rhs_base;
967
968 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
969
970 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
971 row_idx,
972 rhs_var_ref,
973 rhs_base,
974 count, ctx);
975 instructions->push_tail(inst);
976
977 row_idx += count;
978 }
979 }
980 }
981
982 return new(ctx) ir_dereference_variable(var);
983 }
984
985
986 ir_rvalue *
987 ast_function_expression::hir(exec_list *instructions,
988 struct _mesa_glsl_parse_state *state)
989 {
990 void *ctx = state;
991 /* There are three sorts of function calls.
992 *
993 * 1. constructors - The first subexpression is an ast_type_specifier.
994 * 2. methods - Only the .length() method of array types.
995 * 3. functions - Calls to regular old functions.
996 *
997 * Method calls are actually detected when the ast_field_selection
998 * expression is handled.
999 */
1000 if (is_constructor()) {
1001 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1002 YYLTYPE loc = type->get_location();
1003 const char *name;
1004
1005 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1006
1007
1008 /* Constructors for samplers are illegal.
1009 */
1010 if (constructor_type->is_sampler()) {
1011 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1012 constructor_type->name);
1013 return ir_call::get_error_instruction(ctx);
1014 }
1015
1016 if (constructor_type->is_array()) {
1017 if (state->language_version <= 110) {
1018 _mesa_glsl_error(& loc, state,
1019 "array constructors forbidden in GLSL 1.10");
1020 return ir_call::get_error_instruction(ctx);
1021 }
1022
1023 return process_array_constructor(instructions, constructor_type,
1024 & loc, &this->expressions, state);
1025 }
1026
1027 /* There are two kinds of constructor call. Constructors for built-in
1028 * language types, such as mat4 and vec2, are free form. The only
1029 * requirement is that the parameters must provide enough values of the
1030 * correct scalar type. Constructors for arrays and structures must
1031 * have the exact number of parameters with matching types in the
1032 * correct order. These constructors follow essentially the same type
1033 * matching rules as functions.
1034 */
1035 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1036 return ir_call::get_error_instruction(ctx);
1037
1038 /* Total number of components of the type being constructed. */
1039 const unsigned type_components = constructor_type->components();
1040
1041 /* Number of components from parameters that have actually been
1042 * consumed. This is used to perform several kinds of error checking.
1043 */
1044 unsigned components_used = 0;
1045
1046 unsigned matrix_parameters = 0;
1047 unsigned nonmatrix_parameters = 0;
1048 exec_list actual_parameters;
1049
1050 foreach_list (n, &this->expressions) {
1051 ast_node *ast = exec_node_data(ast_node, n, link);
1052 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1053
1054 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1055 *
1056 * "It is an error to provide extra arguments beyond this
1057 * last used argument."
1058 */
1059 if (components_used >= type_components) {
1060 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1061 "constructor",
1062 constructor_type->name);
1063 return ir_call::get_error_instruction(ctx);
1064 }
1065
1066 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1067 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1068 "non-numeric data type",
1069 constructor_type->name);
1070 return ir_call::get_error_instruction(ctx);
1071 }
1072
1073 /* Count the number of matrix and nonmatrix parameters. This
1074 * is used below to enforce some of the constructor rules.
1075 */
1076 if (result->type->is_matrix())
1077 matrix_parameters++;
1078 else
1079 nonmatrix_parameters++;
1080
1081 actual_parameters.push_tail(result);
1082 components_used += result->type->components();
1083 }
1084
1085 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1086 *
1087 * "It is an error to construct matrices from other matrices. This
1088 * is reserved for future use."
1089 */
1090 if ((state->language_version <= 110) && (matrix_parameters > 0)
1091 && constructor_type->is_matrix()) {
1092 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1093 "matrix in GLSL 1.10",
1094 constructor_type->name);
1095 return ir_call::get_error_instruction(ctx);
1096 }
1097
1098 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1099 *
1100 * "If a matrix argument is given to a matrix constructor, it is
1101 * an error to have any other arguments."
1102 */
1103 if ((matrix_parameters > 0)
1104 && ((matrix_parameters + nonmatrix_parameters) > 1)
1105 && constructor_type->is_matrix()) {
1106 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1107 "matrix must be only parameter",
1108 constructor_type->name);
1109 return ir_call::get_error_instruction(ctx);
1110 }
1111
1112 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1113 *
1114 * "In these cases, there must be enough components provided in the
1115 * arguments to provide an initializer for every component in the
1116 * constructed value."
1117 */
1118 if ((components_used < type_components) && (components_used != 1)) {
1119 _mesa_glsl_error(& loc, state, "too few components to construct "
1120 "`%s'",
1121 constructor_type->name);
1122 return ir_call::get_error_instruction(ctx);
1123 }
1124
1125 /* Later, we cast each parameter to the same base type as the
1126 * constructor. Since there are no non-floating point matrices, we
1127 * need to break them up into a series of column vectors.
1128 */
1129 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1130 foreach_list_safe(n, &actual_parameters) {
1131 ir_rvalue *matrix = (ir_rvalue *) n;
1132
1133 if (!matrix->type->is_matrix())
1134 continue;
1135
1136 /* Create a temporary containing the matrix. */
1137 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1138 ir_var_temporary);
1139 instructions->push_tail(var);
1140 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1141 ir_dereference_variable(var), matrix, NULL));
1142 var->constant_value = matrix->constant_expression_value();
1143
1144 /* Replace the matrix with dereferences of its columns. */
1145 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1146 matrix->insert_before(new (ctx) ir_dereference_array(var,
1147 new(ctx) ir_constant(i)));
1148 }
1149 matrix->remove();
1150 }
1151 }
1152
1153 bool all_parameters_are_constant = true;
1154
1155 /* Type cast each parameter and, if possible, fold constants.*/
1156 foreach_list_safe(n, &actual_parameters) {
1157 ir_rvalue *ir = (ir_rvalue *) n;
1158
1159 const glsl_type *desired_type =
1160 glsl_type::get_instance(constructor_type->base_type,
1161 ir->type->vector_elements,
1162 ir->type->matrix_columns);
1163 ir_rvalue *result = convert_component(ir, desired_type);
1164
1165 /* Attempt to convert the parameter to a constant valued expression.
1166 * After doing so, track whether or not all the parameters to the
1167 * constructor are trivially constant valued expressions.
1168 */
1169 ir_rvalue *const constant = result->constant_expression_value();
1170
1171 if (constant != NULL)
1172 result = constant;
1173 else
1174 all_parameters_are_constant = false;
1175
1176 if (result != ir) {
1177 ir->replace_with(result);
1178 }
1179 }
1180
1181 /* If all of the parameters are trivially constant, create a
1182 * constant representing the complete collection of parameters.
1183 */
1184 if (all_parameters_are_constant) {
1185 if (components_used >= type_components)
1186 return new(ctx) ir_constant(constructor_type,
1187 & actual_parameters);
1188
1189 /* The above case must handle all scalar constructors.
1190 */
1191 assert(constructor_type->is_vector()
1192 || constructor_type->is_matrix());
1193
1194 /* Constructors with exactly one component are special for
1195 * vectors and matrices. For vectors it causes all elements of
1196 * the vector to be filled with the value. For matrices it
1197 * causes the matrix to be filled with 0 and the diagonal to be
1198 * filled with the value.
1199 */
1200 ir_constant_data data;
1201 ir_constant *const initializer =
1202 (ir_constant *) actual_parameters.head;
1203 if (constructor_type->is_matrix())
1204 generate_constructor_matrix(constructor_type, initializer,
1205 &data);
1206 else
1207 generate_constructor_vector(constructor_type, initializer,
1208 &data);
1209
1210 return new(ctx) ir_constant(constructor_type, &data);
1211 } else if (constructor_type->is_scalar()) {
1212 return dereference_component((ir_rvalue *) actual_parameters.head,
1213 0);
1214 } else if (constructor_type->is_vector()) {
1215 return emit_inline_vector_constructor(constructor_type,
1216 instructions,
1217 &actual_parameters,
1218 ctx);
1219 } else {
1220 assert(constructor_type->is_matrix());
1221 return emit_inline_matrix_constructor(constructor_type,
1222 instructions,
1223 &actual_parameters,
1224 ctx);
1225 }
1226 } else {
1227 const ast_expression *id = subexpressions[0];
1228 YYLTYPE loc = id->get_location();
1229 exec_list actual_parameters;
1230
1231 process_parameters(instructions, &actual_parameters, &this->expressions,
1232 state);
1233
1234 const glsl_type *const type =
1235 state->symbols->get_type(id->primary_expression.identifier);
1236
1237 if ((type != NULL) && type->is_record()) {
1238 ir_constant *constant =
1239 constant_record_constructor(type, &loc, &actual_parameters, state);
1240
1241 if (constant != NULL)
1242 return constant;
1243 }
1244
1245 return match_function_by_name(instructions,
1246 id->primary_expression.identifier, & loc,
1247 &actual_parameters, state);
1248 }
1249
1250 return ir_call::get_error_instruction(ctx);
1251 }