glsl: Simplify the built-in function linking code.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * Generate a function call.
278 *
279 * For non-void functions, this returns a dereference of the temporary variable
280 * which stores the return value for the call. For void functions, this returns
281 * NULL.
282 */
283 static ir_rvalue *
284 generate_call(exec_list *instructions, ir_function_signature *sig,
285 exec_list *actual_parameters,
286 struct _mesa_glsl_parse_state *state)
287 {
288 void *ctx = state;
289 exec_list post_call_conversions;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(state, actual_parameters,
392 &is_exact);
393 if (is_exact)
394 goto done;
395
396 if (!state->es_shader && f->has_user_signature()) {
397 /* In desktop GL, the presence of a user-defined signature hides any
398 * built-in signatures, so we must ignore them. In contrast, in ES2
399 * user-defined signatures add new overloads, so we must proceed.
400 */
401 goto done;
402 }
403 }
404
405 /* Local shader has no exact candidates; check the built-ins. */
406 _mesa_glsl_initialize_builtin_functions();
407 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
408
409 done:
410 if (sig != NULL) {
411 /* If the match is from a linked built-in shader, import the prototype. */
412 if (sig != local_sig) {
413 if (f == NULL) {
414 f = new(ctx) ir_function(name);
415 state->symbols->add_global_function(f);
416 emit_function(state, f);
417 }
418 f->add_signature(sig->clone_prototype(f, NULL));
419 }
420 }
421 return sig;
422 }
423
424 static void
425 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
426 ir_function *f)
427 {
428 if (f == NULL)
429 return;
430
431 foreach_list (node, &f->signatures) {
432 ir_function_signature *sig = (ir_function_signature *) node;
433
434 if (sig->is_builtin() && !sig->is_builtin_available(state))
435 continue;
436
437 char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
438 _mesa_glsl_error(loc, state, " %s", str);
439 ralloc_free(str);
440 }
441 }
442
443 /**
444 * Raise a "no matching function" error, listing all possible overloads the
445 * compiler considered so developers can figure out what went wrong.
446 */
447 static void
448 no_matching_function_error(const char *name,
449 YYLTYPE *loc,
450 exec_list *actual_parameters,
451 _mesa_glsl_parse_state *state)
452 {
453 char *str = prototype_string(NULL, name, actual_parameters);
454 _mesa_glsl_error(loc, state,
455 "no matching function for call to `%s'; candidates are:",
456 str);
457 ralloc_free(str);
458
459 print_function_prototypes(state, loc, state->symbols->get_function(name));
460
461 if (state->uses_builtin_functions) {
462 gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
463 print_function_prototypes(state, loc, sh->symbols->get_function(name));
464 }
465 }
466
467 /**
468 * Perform automatic type conversion of constructor parameters
469 *
470 * This implements the rules in the "Conversion and Scalar Constructors"
471 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
472 */
473 static ir_rvalue *
474 convert_component(ir_rvalue *src, const glsl_type *desired_type)
475 {
476 void *ctx = ralloc_parent(src);
477 const unsigned a = desired_type->base_type;
478 const unsigned b = src->type->base_type;
479 ir_expression *result = NULL;
480
481 if (src->type->is_error())
482 return src;
483
484 assert(a <= GLSL_TYPE_BOOL);
485 assert(b <= GLSL_TYPE_BOOL);
486
487 if (a == b)
488 return src;
489
490 switch (a) {
491 case GLSL_TYPE_UINT:
492 switch (b) {
493 case GLSL_TYPE_INT:
494 result = new(ctx) ir_expression(ir_unop_i2u, src);
495 break;
496 case GLSL_TYPE_FLOAT:
497 result = new(ctx) ir_expression(ir_unop_f2u, src);
498 break;
499 case GLSL_TYPE_BOOL:
500 result = new(ctx) ir_expression(ir_unop_i2u,
501 new(ctx) ir_expression(ir_unop_b2i, src));
502 break;
503 }
504 break;
505 case GLSL_TYPE_INT:
506 switch (b) {
507 case GLSL_TYPE_UINT:
508 result = new(ctx) ir_expression(ir_unop_u2i, src);
509 break;
510 case GLSL_TYPE_FLOAT:
511 result = new(ctx) ir_expression(ir_unop_f2i, src);
512 break;
513 case GLSL_TYPE_BOOL:
514 result = new(ctx) ir_expression(ir_unop_b2i, src);
515 break;
516 }
517 break;
518 case GLSL_TYPE_FLOAT:
519 switch (b) {
520 case GLSL_TYPE_UINT:
521 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
522 break;
523 case GLSL_TYPE_INT:
524 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
525 break;
526 case GLSL_TYPE_BOOL:
527 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
528 break;
529 }
530 break;
531 case GLSL_TYPE_BOOL:
532 switch (b) {
533 case GLSL_TYPE_UINT:
534 result = new(ctx) ir_expression(ir_unop_i2b,
535 new(ctx) ir_expression(ir_unop_u2i, src));
536 break;
537 case GLSL_TYPE_INT:
538 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
539 break;
540 case GLSL_TYPE_FLOAT:
541 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
542 break;
543 }
544 break;
545 }
546
547 assert(result != NULL);
548 assert(result->type == desired_type);
549
550 /* Try constant folding; it may fold in the conversion we just added. */
551 ir_constant *const constant = result->constant_expression_value();
552 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
553 }
554
555 /**
556 * Dereference a specific component from a scalar, vector, or matrix
557 */
558 static ir_rvalue *
559 dereference_component(ir_rvalue *src, unsigned component)
560 {
561 void *ctx = ralloc_parent(src);
562 assert(component < src->type->components());
563
564 /* If the source is a constant, just create a new constant instead of a
565 * dereference of the existing constant.
566 */
567 ir_constant *constant = src->as_constant();
568 if (constant)
569 return new(ctx) ir_constant(constant, component);
570
571 if (src->type->is_scalar()) {
572 return src;
573 } else if (src->type->is_vector()) {
574 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
575 } else {
576 assert(src->type->is_matrix());
577
578 /* Dereference a row of the matrix, then call this function again to get
579 * a specific element from that row.
580 */
581 const int c = component / src->type->column_type()->vector_elements;
582 const int r = component % src->type->column_type()->vector_elements;
583 ir_constant *const col_index = new(ctx) ir_constant(c);
584 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
585
586 col->type = src->type->column_type();
587
588 return dereference_component(col, r);
589 }
590
591 assert(!"Should not get here.");
592 return NULL;
593 }
594
595
596 static ir_rvalue *
597 process_vec_mat_constructor(exec_list *instructions,
598 const glsl_type *constructor_type,
599 YYLTYPE *loc, exec_list *parameters,
600 struct _mesa_glsl_parse_state *state)
601 {
602 void *ctx = state;
603
604 /* The ARB_shading_language_420pack spec says:
605 *
606 * "If an initializer is a list of initializers enclosed in curly braces,
607 * the variable being declared must be a vector, a matrix, an array, or a
608 * structure.
609 *
610 * int i = { 1 }; // illegal, i is not an aggregate"
611 */
612 if (constructor_type->vector_elements <= 1) {
613 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
614 "matrices, arrays, and structs");
615 return ir_rvalue::error_value(ctx);
616 }
617
618 exec_list actual_parameters;
619 const unsigned parameter_count =
620 process_parameters(instructions, &actual_parameters, parameters, state);
621
622 if (parameter_count == 0
623 || (constructor_type->is_vector() &&
624 constructor_type->vector_elements != parameter_count)
625 || (constructor_type->is_matrix() &&
626 constructor_type->matrix_columns != parameter_count)) {
627 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
628 constructor_type->is_vector() ? "vector" : "matrix",
629 constructor_type->vector_elements);
630 return ir_rvalue::error_value(ctx);
631 }
632
633 bool all_parameters_are_constant = true;
634
635 /* Type cast each parameter and, if possible, fold constants. */
636 foreach_list_safe(n, &actual_parameters) {
637 ir_rvalue *ir = (ir_rvalue *) n;
638 ir_rvalue *result = ir;
639
640 /* Apply implicit conversions (not the scalar constructor rules!). See
641 * the spec quote above. */
642 if (constructor_type->is_float()) {
643 const glsl_type *desired_type =
644 glsl_type::get_instance(GLSL_TYPE_FLOAT,
645 ir->type->vector_elements,
646 ir->type->matrix_columns);
647 if (result->type->can_implicitly_convert_to(desired_type)) {
648 /* Even though convert_component() implements the constructor
649 * conversion rules (not the implicit conversion rules), its safe
650 * to use it here because we already checked that the implicit
651 * conversion is legal.
652 */
653 result = convert_component(ir, desired_type);
654 }
655 }
656
657 if (constructor_type->is_matrix()) {
658 if (result->type != constructor_type->column_type()) {
659 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
660 "expected: %s, found %s",
661 constructor_type->column_type()->name,
662 result->type->name);
663 return ir_rvalue::error_value(ctx);
664 }
665 } else if (result->type != constructor_type->get_scalar_type()) {
666 _mesa_glsl_error(loc, state, "type error in vector constructor: "
667 "expected: %s, found %s",
668 constructor_type->get_scalar_type()->name,
669 result->type->name);
670 return ir_rvalue::error_value(ctx);
671 }
672
673 /* Attempt to convert the parameter to a constant valued expression.
674 * After doing so, track whether or not all the parameters to the
675 * constructor are trivially constant valued expressions.
676 */
677 ir_rvalue *const constant = result->constant_expression_value();
678
679 if (constant != NULL)
680 result = constant;
681 else
682 all_parameters_are_constant = false;
683
684 ir->replace_with(result);
685 }
686
687 if (all_parameters_are_constant)
688 return new(ctx) ir_constant(constructor_type, &actual_parameters);
689
690 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
691 ir_var_temporary);
692 instructions->push_tail(var);
693
694 int i = 0;
695 foreach_list(node, &actual_parameters) {
696 ir_rvalue *rhs = (ir_rvalue *) node;
697 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
698 new(ctx) ir_constant(i));
699
700 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
701 instructions->push_tail(assignment);
702
703 i++;
704 }
705
706 return new(ctx) ir_dereference_variable(var);
707 }
708
709
710 static ir_rvalue *
711 process_array_constructor(exec_list *instructions,
712 const glsl_type *constructor_type,
713 YYLTYPE *loc, exec_list *parameters,
714 struct _mesa_glsl_parse_state *state)
715 {
716 void *ctx = state;
717 /* Array constructors come in two forms: sized and unsized. Sized array
718 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
719 * variables. In this case the number of parameters must exactly match the
720 * specified size of the array.
721 *
722 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
723 * are vec4 variables. In this case the size of the array being constructed
724 * is determined by the number of parameters.
725 *
726 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
727 *
728 * "There must be exactly the same number of arguments as the size of
729 * the array being constructed. If no size is present in the
730 * constructor, then the array is explicitly sized to the number of
731 * arguments provided. The arguments are assigned in order, starting at
732 * element 0, to the elements of the constructed array. Each argument
733 * must be the same type as the element type of the array, or be a type
734 * that can be converted to the element type of the array according to
735 * Section 4.1.10 "Implicit Conversions.""
736 */
737 exec_list actual_parameters;
738 const unsigned parameter_count =
739 process_parameters(instructions, &actual_parameters, parameters, state);
740 bool is_unsized_array = constructor_type->is_unsized_array();
741
742 if ((parameter_count == 0) ||
743 (!is_unsized_array && (constructor_type->length != parameter_count))) {
744 const unsigned min_param = is_unsized_array
745 ? 1 : constructor_type->length;
746
747 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
748 "parameter%s",
749 is_unsized_array ? "at least" : "exactly",
750 min_param, (min_param <= 1) ? "" : "s");
751 return ir_rvalue::error_value(ctx);
752 }
753
754 if (is_unsized_array) {
755 constructor_type =
756 glsl_type::get_array_instance(constructor_type->element_type(),
757 parameter_count);
758 assert(constructor_type != NULL);
759 assert(constructor_type->length == parameter_count);
760 }
761
762 bool all_parameters_are_constant = true;
763
764 /* Type cast each parameter and, if possible, fold constants. */
765 foreach_list_safe(n, &actual_parameters) {
766 ir_rvalue *ir = (ir_rvalue *) n;
767 ir_rvalue *result = ir;
768
769 /* Apply implicit conversions (not the scalar constructor rules!). See
770 * the spec quote above. */
771 if (constructor_type->element_type()->is_float()) {
772 const glsl_type *desired_type =
773 glsl_type::get_instance(GLSL_TYPE_FLOAT,
774 ir->type->vector_elements,
775 ir->type->matrix_columns);
776 if (result->type->can_implicitly_convert_to(desired_type)) {
777 /* Even though convert_component() implements the constructor
778 * conversion rules (not the implicit conversion rules), its safe
779 * to use it here because we already checked that the implicit
780 * conversion is legal.
781 */
782 result = convert_component(ir, desired_type);
783 }
784 }
785
786 if (result->type != constructor_type->element_type()) {
787 _mesa_glsl_error(loc, state, "type error in array constructor: "
788 "expected: %s, found %s",
789 constructor_type->element_type()->name,
790 result->type->name);
791 return ir_rvalue::error_value(ctx);
792 }
793
794 /* Attempt to convert the parameter to a constant valued expression.
795 * After doing so, track whether or not all the parameters to the
796 * constructor are trivially constant valued expressions.
797 */
798 ir_rvalue *const constant = result->constant_expression_value();
799
800 if (constant != NULL)
801 result = constant;
802 else
803 all_parameters_are_constant = false;
804
805 ir->replace_with(result);
806 }
807
808 if (all_parameters_are_constant)
809 return new(ctx) ir_constant(constructor_type, &actual_parameters);
810
811 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
812 ir_var_temporary);
813 instructions->push_tail(var);
814
815 int i = 0;
816 foreach_list(node, &actual_parameters) {
817 ir_rvalue *rhs = (ir_rvalue *) node;
818 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
819 new(ctx) ir_constant(i));
820
821 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
822 instructions->push_tail(assignment);
823
824 i++;
825 }
826
827 return new(ctx) ir_dereference_variable(var);
828 }
829
830
831 /**
832 * Try to convert a record constructor to a constant expression
833 */
834 static ir_constant *
835 constant_record_constructor(const glsl_type *constructor_type,
836 exec_list *parameters, void *mem_ctx)
837 {
838 foreach_list(node, parameters) {
839 ir_constant *constant = ((ir_instruction *) node)->as_constant();
840 if (constant == NULL)
841 return NULL;
842 node->replace_with(constant);
843 }
844
845 return new(mem_ctx) ir_constant(constructor_type, parameters);
846 }
847
848
849 /**
850 * Determine if a list consists of a single scalar r-value
851 */
852 bool
853 single_scalar_parameter(exec_list *parameters)
854 {
855 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
856 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
857
858 return (p->type->is_scalar() && p->next->is_tail_sentinel());
859 }
860
861
862 /**
863 * Generate inline code for a vector constructor
864 *
865 * The generated constructor code will consist of a temporary variable
866 * declaration of the same type as the constructor. A sequence of assignments
867 * from constructor parameters to the temporary will follow.
868 *
869 * \return
870 * An \c ir_dereference_variable of the temprorary generated in the constructor
871 * body.
872 */
873 ir_rvalue *
874 emit_inline_vector_constructor(const glsl_type *type,
875 exec_list *instructions,
876 exec_list *parameters,
877 void *ctx)
878 {
879 assert(!parameters->is_empty());
880
881 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
882 instructions->push_tail(var);
883
884 /* There are two kinds of vector constructors.
885 *
886 * - Construct a vector from a single scalar by replicating that scalar to
887 * all components of the vector.
888 *
889 * - Construct a vector from an arbirary combination of vectors and
890 * scalars. The components of the constructor parameters are assigned
891 * to the vector in order until the vector is full.
892 */
893 const unsigned lhs_components = type->components();
894 if (single_scalar_parameter(parameters)) {
895 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
896 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
897 lhs_components);
898 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
899 const unsigned mask = (1U << lhs_components) - 1;
900
901 assert(rhs->type == lhs->type);
902
903 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
904 instructions->push_tail(inst);
905 } else {
906 unsigned base_component = 0;
907 unsigned base_lhs_component = 0;
908 ir_constant_data data;
909 unsigned constant_mask = 0, constant_components = 0;
910
911 memset(&data, 0, sizeof(data));
912
913 foreach_list(node, parameters) {
914 ir_rvalue *param = (ir_rvalue *) node;
915 unsigned rhs_components = param->type->components();
916
917 /* Do not try to assign more components to the vector than it has!
918 */
919 if ((rhs_components + base_lhs_component) > lhs_components) {
920 rhs_components = lhs_components - base_lhs_component;
921 }
922
923 const ir_constant *const c = param->as_constant();
924 if (c != NULL) {
925 for (unsigned i = 0; i < rhs_components; i++) {
926 switch (c->type->base_type) {
927 case GLSL_TYPE_UINT:
928 data.u[i + base_component] = c->get_uint_component(i);
929 break;
930 case GLSL_TYPE_INT:
931 data.i[i + base_component] = c->get_int_component(i);
932 break;
933 case GLSL_TYPE_FLOAT:
934 data.f[i + base_component] = c->get_float_component(i);
935 break;
936 case GLSL_TYPE_BOOL:
937 data.b[i + base_component] = c->get_bool_component(i);
938 break;
939 default:
940 assert(!"Should not get here.");
941 break;
942 }
943 }
944
945 /* Mask of fields to be written in the assignment.
946 */
947 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
948 constant_components += rhs_components;
949
950 base_component += rhs_components;
951 }
952 /* Advance the component index by the number of components
953 * that were just assigned.
954 */
955 base_lhs_component += rhs_components;
956 }
957
958 if (constant_mask != 0) {
959 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
960 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
961 constant_components,
962 1);
963 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
964
965 ir_instruction *inst =
966 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
967 instructions->push_tail(inst);
968 }
969
970 base_component = 0;
971 foreach_list(node, parameters) {
972 ir_rvalue *param = (ir_rvalue *) node;
973 unsigned rhs_components = param->type->components();
974
975 /* Do not try to assign more components to the vector than it has!
976 */
977 if ((rhs_components + base_component) > lhs_components) {
978 rhs_components = lhs_components - base_component;
979 }
980
981 const ir_constant *const c = param->as_constant();
982 if (c == NULL) {
983 /* Mask of fields to be written in the assignment.
984 */
985 const unsigned write_mask = ((1U << rhs_components) - 1)
986 << base_component;
987
988 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
989
990 /* Generate a swizzle so that LHS and RHS sizes match.
991 */
992 ir_rvalue *rhs =
993 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
994
995 ir_instruction *inst =
996 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
997 instructions->push_tail(inst);
998 }
999
1000 /* Advance the component index by the number of components that were
1001 * just assigned.
1002 */
1003 base_component += rhs_components;
1004 }
1005 }
1006 return new(ctx) ir_dereference_variable(var);
1007 }
1008
1009
1010 /**
1011 * Generate assignment of a portion of a vector to a portion of a matrix column
1012 *
1013 * \param src_base First component of the source to be used in assignment
1014 * \param column Column of destination to be assiged
1015 * \param row_base First component of the destination column to be assigned
1016 * \param count Number of components to be assigned
1017 *
1018 * \note
1019 * \c src_base + \c count must be less than or equal to the number of components
1020 * in the source vector.
1021 */
1022 ir_instruction *
1023 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1024 ir_rvalue *src, unsigned src_base, unsigned count,
1025 void *mem_ctx)
1026 {
1027 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1028 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1029
1030 assert(column_ref->type->components() >= (row_base + count));
1031 assert(src->type->components() >= (src_base + count));
1032
1033 /* Generate a swizzle that extracts the number of components from the source
1034 * that are to be assigned to the column of the matrix.
1035 */
1036 if (count < src->type->vector_elements) {
1037 src = new(mem_ctx) ir_swizzle(src,
1038 src_base + 0, src_base + 1,
1039 src_base + 2, src_base + 3,
1040 count);
1041 }
1042
1043 /* Mask of fields to be written in the assignment.
1044 */
1045 const unsigned write_mask = ((1U << count) - 1) << row_base;
1046
1047 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1048 }
1049
1050
1051 /**
1052 * Generate inline code for a matrix constructor
1053 *
1054 * The generated constructor code will consist of a temporary variable
1055 * declaration of the same type as the constructor. A sequence of assignments
1056 * from constructor parameters to the temporary will follow.
1057 *
1058 * \return
1059 * An \c ir_dereference_variable of the temprorary generated in the constructor
1060 * body.
1061 */
1062 ir_rvalue *
1063 emit_inline_matrix_constructor(const glsl_type *type,
1064 exec_list *instructions,
1065 exec_list *parameters,
1066 void *ctx)
1067 {
1068 assert(!parameters->is_empty());
1069
1070 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1071 instructions->push_tail(var);
1072
1073 /* There are three kinds of matrix constructors.
1074 *
1075 * - Construct a matrix from a single scalar by replicating that scalar to
1076 * along the diagonal of the matrix and setting all other components to
1077 * zero.
1078 *
1079 * - Construct a matrix from an arbirary combination of vectors and
1080 * scalars. The components of the constructor parameters are assigned
1081 * to the matrix in colum-major order until the matrix is full.
1082 *
1083 * - Construct a matrix from a single matrix. The source matrix is copied
1084 * to the upper left portion of the constructed matrix, and the remaining
1085 * elements take values from the identity matrix.
1086 */
1087 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1088 if (single_scalar_parameter(parameters)) {
1089 /* Assign the scalar to the X component of a vec4, and fill the remaining
1090 * components with zero.
1091 */
1092 ir_variable *rhs_var =
1093 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1094 ir_var_temporary);
1095 instructions->push_tail(rhs_var);
1096
1097 ir_constant_data zero;
1098 zero.f[0] = 0.0;
1099 zero.f[1] = 0.0;
1100 zero.f[2] = 0.0;
1101 zero.f[3] = 0.0;
1102
1103 ir_instruction *inst =
1104 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1105 new(ctx) ir_constant(rhs_var->type, &zero),
1106 NULL);
1107 instructions->push_tail(inst);
1108
1109 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1110
1111 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1112 instructions->push_tail(inst);
1113
1114 /* Assign the temporary vector to each column of the destination matrix
1115 * with a swizzle that puts the X component on the diagonal of the
1116 * matrix. In some cases this may mean that the X component does not
1117 * get assigned into the column at all (i.e., when the matrix has more
1118 * columns than rows).
1119 */
1120 static const unsigned rhs_swiz[4][4] = {
1121 { 0, 1, 1, 1 },
1122 { 1, 0, 1, 1 },
1123 { 1, 1, 0, 1 },
1124 { 1, 1, 1, 0 }
1125 };
1126
1127 const unsigned cols_to_init = MIN2(type->matrix_columns,
1128 type->vector_elements);
1129 for (unsigned i = 0; i < cols_to_init; i++) {
1130 ir_constant *const col_idx = new(ctx) ir_constant(i);
1131 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1132
1133 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1134 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1135 type->vector_elements);
1136
1137 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1138 instructions->push_tail(inst);
1139 }
1140
1141 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1142 ir_constant *const col_idx = new(ctx) ir_constant(i);
1143 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1144
1145 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1146 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1147 type->vector_elements);
1148
1149 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1150 instructions->push_tail(inst);
1151 }
1152 } else if (first_param->type->is_matrix()) {
1153 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1154 *
1155 * "If a matrix is constructed from a matrix, then each component
1156 * (column i, row j) in the result that has a corresponding
1157 * component (column i, row j) in the argument will be initialized
1158 * from there. All other components will be initialized to the
1159 * identity matrix. If a matrix argument is given to a matrix
1160 * constructor, it is an error to have any other arguments."
1161 */
1162 assert(first_param->next->is_tail_sentinel());
1163 ir_rvalue *const src_matrix = first_param;
1164
1165 /* If the source matrix is smaller, pre-initialize the relavent parts of
1166 * the destination matrix to the identity matrix.
1167 */
1168 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1169 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1170
1171 /* If the source matrix has fewer rows, every column of the destination
1172 * must be initialized. Otherwise only the columns in the destination
1173 * that do not exist in the source must be initialized.
1174 */
1175 unsigned col =
1176 (src_matrix->type->vector_elements < var->type->vector_elements)
1177 ? 0 : src_matrix->type->matrix_columns;
1178
1179 const glsl_type *const col_type = var->type->column_type();
1180 for (/* empty */; col < var->type->matrix_columns; col++) {
1181 ir_constant_data ident;
1182
1183 ident.f[0] = 0.0;
1184 ident.f[1] = 0.0;
1185 ident.f[2] = 0.0;
1186 ident.f[3] = 0.0;
1187
1188 ident.f[col] = 1.0;
1189
1190 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1191
1192 ir_rvalue *const lhs =
1193 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1194
1195 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1196 instructions->push_tail(inst);
1197 }
1198 }
1199
1200 /* Assign columns from the source matrix to the destination matrix.
1201 *
1202 * Since the parameter will be used in the RHS of multiple assignments,
1203 * generate a temporary and copy the paramter there.
1204 */
1205 ir_variable *const rhs_var =
1206 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1207 ir_var_temporary);
1208 instructions->push_tail(rhs_var);
1209
1210 ir_dereference *const rhs_var_ref =
1211 new(ctx) ir_dereference_variable(rhs_var);
1212 ir_instruction *const inst =
1213 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1214 instructions->push_tail(inst);
1215
1216 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1217 var->type->vector_elements);
1218 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1219 var->type->matrix_columns);
1220
1221 unsigned swiz[4] = { 0, 0, 0, 0 };
1222 for (unsigned i = 1; i < last_row; i++)
1223 swiz[i] = i;
1224
1225 const unsigned write_mask = (1U << last_row) - 1;
1226
1227 for (unsigned i = 0; i < last_col; i++) {
1228 ir_dereference *const lhs =
1229 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1230 ir_rvalue *const rhs_col =
1231 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1232
1233 /* If one matrix has columns that are smaller than the columns of the
1234 * other matrix, wrap the column access of the larger with a swizzle
1235 * so that the LHS and RHS of the assignment have the same size (and
1236 * therefore have the same type).
1237 *
1238 * It would be perfectly valid to unconditionally generate the
1239 * swizzles, this this will typically result in a more compact IR tree.
1240 */
1241 ir_rvalue *rhs;
1242 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1243 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1244 } else {
1245 rhs = rhs_col;
1246 }
1247
1248 ir_instruction *inst =
1249 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1250 instructions->push_tail(inst);
1251 }
1252 } else {
1253 const unsigned cols = type->matrix_columns;
1254 const unsigned rows = type->vector_elements;
1255 unsigned col_idx = 0;
1256 unsigned row_idx = 0;
1257
1258 foreach_list (node, parameters) {
1259 ir_rvalue *const rhs = (ir_rvalue *) node;
1260 const unsigned components_remaining_this_column = rows - row_idx;
1261 unsigned rhs_components = rhs->type->components();
1262 unsigned rhs_base = 0;
1263
1264 /* Since the parameter might be used in the RHS of two assignments,
1265 * generate a temporary and copy the paramter there.
1266 */
1267 ir_variable *rhs_var =
1268 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1269 instructions->push_tail(rhs_var);
1270
1271 ir_dereference *rhs_var_ref =
1272 new(ctx) ir_dereference_variable(rhs_var);
1273 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1274 instructions->push_tail(inst);
1275
1276 /* Assign the current parameter to as many components of the matrix
1277 * as it will fill.
1278 *
1279 * NOTE: A single vector parameter can span two matrix columns. A
1280 * single vec4, for example, can completely fill a mat2.
1281 */
1282 if (rhs_components >= components_remaining_this_column) {
1283 const unsigned count = MIN2(rhs_components,
1284 components_remaining_this_column);
1285
1286 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1287
1288 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1289 row_idx,
1290 rhs_var_ref, 0,
1291 count, ctx);
1292 instructions->push_tail(inst);
1293
1294 rhs_base = count;
1295
1296 col_idx++;
1297 row_idx = 0;
1298 }
1299
1300 /* If there is data left in the parameter and components left to be
1301 * set in the destination, emit another assignment. It is possible
1302 * that the assignment could be of a vec4 to the last element of the
1303 * matrix. In this case col_idx==cols, but there is still data
1304 * left in the source parameter. Obviously, don't emit an assignment
1305 * to data outside the destination matrix.
1306 */
1307 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1308 const unsigned count = rhs_components - rhs_base;
1309
1310 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1311
1312 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1313 row_idx,
1314 rhs_var_ref,
1315 rhs_base,
1316 count, ctx);
1317 instructions->push_tail(inst);
1318
1319 row_idx += count;
1320 }
1321 }
1322 }
1323
1324 return new(ctx) ir_dereference_variable(var);
1325 }
1326
1327
1328 ir_rvalue *
1329 emit_inline_record_constructor(const glsl_type *type,
1330 exec_list *instructions,
1331 exec_list *parameters,
1332 void *mem_ctx)
1333 {
1334 ir_variable *const var =
1335 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1336 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1337
1338 instructions->push_tail(var);
1339
1340 exec_node *node = parameters->head;
1341 for (unsigned i = 0; i < type->length; i++) {
1342 assert(!node->is_tail_sentinel());
1343
1344 ir_dereference *const lhs =
1345 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1346 type->fields.structure[i].name);
1347
1348 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1349 assert(rhs != NULL);
1350
1351 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1352
1353 instructions->push_tail(assign);
1354 node = node->next;
1355 }
1356
1357 return d;
1358 }
1359
1360
1361 static ir_rvalue *
1362 process_record_constructor(exec_list *instructions,
1363 const glsl_type *constructor_type,
1364 YYLTYPE *loc, exec_list *parameters,
1365 struct _mesa_glsl_parse_state *state)
1366 {
1367 void *ctx = state;
1368 exec_list actual_parameters;
1369
1370 process_parameters(instructions, &actual_parameters,
1371 parameters, state);
1372
1373 exec_node *node = actual_parameters.head;
1374 for (unsigned i = 0; i < constructor_type->length; i++) {
1375 ir_rvalue *ir = (ir_rvalue *) node;
1376
1377 if (node->is_tail_sentinel()) {
1378 _mesa_glsl_error(loc, state,
1379 "insufficient parameters to constructor for `%s'",
1380 constructor_type->name);
1381 return ir_rvalue::error_value(ctx);
1382 }
1383
1384 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1385 ir, state)) {
1386 node->replace_with(ir);
1387 } else {
1388 _mesa_glsl_error(loc, state,
1389 "parameter type mismatch in constructor for `%s.%s' "
1390 "(%s vs %s)",
1391 constructor_type->name,
1392 constructor_type->fields.structure[i].name,
1393 ir->type->name,
1394 constructor_type->fields.structure[i].type->name);
1395 return ir_rvalue::error_value(ctx);;
1396 }
1397
1398 node = node->next;
1399 }
1400
1401 if (!node->is_tail_sentinel()) {
1402 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1403 "for `%s'", constructor_type->name);
1404 return ir_rvalue::error_value(ctx);
1405 }
1406
1407 ir_rvalue *const constant =
1408 constant_record_constructor(constructor_type, &actual_parameters,
1409 state);
1410
1411 return (constant != NULL)
1412 ? constant
1413 : emit_inline_record_constructor(constructor_type, instructions,
1414 &actual_parameters, state);
1415 }
1416
1417
1418 ir_rvalue *
1419 ast_function_expression::hir(exec_list *instructions,
1420 struct _mesa_glsl_parse_state *state)
1421 {
1422 void *ctx = state;
1423 /* There are three sorts of function calls.
1424 *
1425 * 1. constructors - The first subexpression is an ast_type_specifier.
1426 * 2. methods - Only the .length() method of array types.
1427 * 3. functions - Calls to regular old functions.
1428 *
1429 * Method calls are actually detected when the ast_field_selection
1430 * expression is handled.
1431 */
1432 if (is_constructor()) {
1433 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1434 YYLTYPE loc = type->get_location();
1435 const char *name;
1436
1437 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1438
1439 /* constructor_type can be NULL if a variable with the same name as the
1440 * structure has come into scope.
1441 */
1442 if (constructor_type == NULL) {
1443 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1444 "may be shadowed by a variable with the same name)",
1445 type->type_name);
1446 return ir_rvalue::error_value(ctx);
1447 }
1448
1449
1450 /* Constructors for samplers are illegal.
1451 */
1452 if (constructor_type->is_sampler()) {
1453 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1454 constructor_type->name);
1455 return ir_rvalue::error_value(ctx);
1456 }
1457
1458 if (constructor_type->is_array()) {
1459 if (!state->check_version(120, 300, &loc,
1460 "array constructors forbidden")) {
1461 return ir_rvalue::error_value(ctx);
1462 }
1463
1464 return process_array_constructor(instructions, constructor_type,
1465 & loc, &this->expressions, state);
1466 }
1467
1468
1469 /* There are two kinds of constructor calls. Constructors for arrays and
1470 * structures must have the exact number of arguments with matching types
1471 * in the correct order. These constructors follow essentially the same
1472 * type matching rules as functions.
1473 *
1474 * Constructors for built-in language types, such as mat4 and vec2, are
1475 * free form. The only requirements are that the parameters must provide
1476 * enough values of the correct scalar type and that no arguments are
1477 * given past the last used argument.
1478 *
1479 * When using the C-style initializer syntax from GLSL 4.20, constructors
1480 * must have the exact number of arguments with matching types in the
1481 * correct order.
1482 */
1483 if (constructor_type->is_record()) {
1484 return process_record_constructor(instructions, constructor_type,
1485 &loc, &this->expressions,
1486 state);
1487 }
1488
1489 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1490 return ir_rvalue::error_value(ctx);
1491
1492 /* Total number of components of the type being constructed. */
1493 const unsigned type_components = constructor_type->components();
1494
1495 /* Number of components from parameters that have actually been
1496 * consumed. This is used to perform several kinds of error checking.
1497 */
1498 unsigned components_used = 0;
1499
1500 unsigned matrix_parameters = 0;
1501 unsigned nonmatrix_parameters = 0;
1502 exec_list actual_parameters;
1503
1504 foreach_list (n, &this->expressions) {
1505 ast_node *ast = exec_node_data(ast_node, n, link);
1506 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1507
1508 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1509 *
1510 * "It is an error to provide extra arguments beyond this
1511 * last used argument."
1512 */
1513 if (components_used >= type_components) {
1514 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1515 "constructor",
1516 constructor_type->name);
1517 return ir_rvalue::error_value(ctx);
1518 }
1519
1520 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1521 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1522 "non-numeric data type",
1523 constructor_type->name);
1524 return ir_rvalue::error_value(ctx);
1525 }
1526
1527 /* Count the number of matrix and nonmatrix parameters. This
1528 * is used below to enforce some of the constructor rules.
1529 */
1530 if (result->type->is_matrix())
1531 matrix_parameters++;
1532 else
1533 nonmatrix_parameters++;
1534
1535 actual_parameters.push_tail(result);
1536 components_used += result->type->components();
1537 }
1538
1539 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1540 *
1541 * "It is an error to construct matrices from other matrices. This
1542 * is reserved for future use."
1543 */
1544 if (matrix_parameters > 0
1545 && constructor_type->is_matrix()
1546 && !state->check_version(120, 100, &loc,
1547 "cannot construct `%s' from a matrix",
1548 constructor_type->name)) {
1549 return ir_rvalue::error_value(ctx);
1550 }
1551
1552 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1553 *
1554 * "If a matrix argument is given to a matrix constructor, it is
1555 * an error to have any other arguments."
1556 */
1557 if ((matrix_parameters > 0)
1558 && ((matrix_parameters + nonmatrix_parameters) > 1)
1559 && constructor_type->is_matrix()) {
1560 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1561 "matrix must be only parameter",
1562 constructor_type->name);
1563 return ir_rvalue::error_value(ctx);
1564 }
1565
1566 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1567 *
1568 * "In these cases, there must be enough components provided in the
1569 * arguments to provide an initializer for every component in the
1570 * constructed value."
1571 */
1572 if (components_used < type_components && components_used != 1
1573 && matrix_parameters == 0) {
1574 _mesa_glsl_error(& loc, state, "too few components to construct "
1575 "`%s'",
1576 constructor_type->name);
1577 return ir_rvalue::error_value(ctx);
1578 }
1579
1580 /* Later, we cast each parameter to the same base type as the
1581 * constructor. Since there are no non-floating point matrices, we
1582 * need to break them up into a series of column vectors.
1583 */
1584 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1585 foreach_list_safe(n, &actual_parameters) {
1586 ir_rvalue *matrix = (ir_rvalue *) n;
1587
1588 if (!matrix->type->is_matrix())
1589 continue;
1590
1591 /* Create a temporary containing the matrix. */
1592 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1593 ir_var_temporary);
1594 instructions->push_tail(var);
1595 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1596 ir_dereference_variable(var), matrix, NULL));
1597 var->constant_value = matrix->constant_expression_value();
1598
1599 /* Replace the matrix with dereferences of its columns. */
1600 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1601 matrix->insert_before(new (ctx) ir_dereference_array(var,
1602 new(ctx) ir_constant(i)));
1603 }
1604 matrix->remove();
1605 }
1606 }
1607
1608 bool all_parameters_are_constant = true;
1609
1610 /* Type cast each parameter and, if possible, fold constants.*/
1611 foreach_list_safe(n, &actual_parameters) {
1612 ir_rvalue *ir = (ir_rvalue *) n;
1613
1614 const glsl_type *desired_type =
1615 glsl_type::get_instance(constructor_type->base_type,
1616 ir->type->vector_elements,
1617 ir->type->matrix_columns);
1618 ir_rvalue *result = convert_component(ir, desired_type);
1619
1620 /* Attempt to convert the parameter to a constant valued expression.
1621 * After doing so, track whether or not all the parameters to the
1622 * constructor are trivially constant valued expressions.
1623 */
1624 ir_rvalue *const constant = result->constant_expression_value();
1625
1626 if (constant != NULL)
1627 result = constant;
1628 else
1629 all_parameters_are_constant = false;
1630
1631 if (result != ir) {
1632 ir->replace_with(result);
1633 }
1634 }
1635
1636 /* If all of the parameters are trivially constant, create a
1637 * constant representing the complete collection of parameters.
1638 */
1639 if (all_parameters_are_constant) {
1640 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1641 } else if (constructor_type->is_scalar()) {
1642 return dereference_component((ir_rvalue *) actual_parameters.head,
1643 0);
1644 } else if (constructor_type->is_vector()) {
1645 return emit_inline_vector_constructor(constructor_type,
1646 instructions,
1647 &actual_parameters,
1648 ctx);
1649 } else {
1650 assert(constructor_type->is_matrix());
1651 return emit_inline_matrix_constructor(constructor_type,
1652 instructions,
1653 &actual_parameters,
1654 ctx);
1655 }
1656 } else {
1657 const ast_expression *id = subexpressions[0];
1658 const char *func_name = id->primary_expression.identifier;
1659 YYLTYPE loc = id->get_location();
1660 exec_list actual_parameters;
1661
1662 process_parameters(instructions, &actual_parameters, &this->expressions,
1663 state);
1664
1665 ir_function_signature *sig =
1666 match_function_by_name(func_name, &actual_parameters, state);
1667
1668 ir_rvalue *value = NULL;
1669 if (sig == NULL) {
1670 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1671 value = ir_rvalue::error_value(ctx);
1672 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1673 /* an error has already been emitted */
1674 value = ir_rvalue::error_value(ctx);
1675 } else {
1676 value = generate_call(instructions, sig, &actual_parameters, state);
1677 }
1678
1679 return value;
1680 }
1681
1682 return ir_rvalue::error_value(ctx);
1683 }
1684
1685 ir_rvalue *
1686 ast_aggregate_initializer::hir(exec_list *instructions,
1687 struct _mesa_glsl_parse_state *state)
1688 {
1689 void *ctx = state;
1690 YYLTYPE loc = this->get_location();
1691 const char *name;
1692
1693 if (!this->constructor_type) {
1694 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1695 return ir_rvalue::error_value(ctx);
1696 }
1697 const glsl_type *const constructor_type =
1698 this->constructor_type->glsl_type(&name, state);
1699
1700 if (!state->ARB_shading_language_420pack_enable) {
1701 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1702 "GL_ARB_shading_language_420pack extension");
1703 return ir_rvalue::error_value(ctx);
1704 }
1705
1706 if (this->constructor_type->is_array) {
1707 return process_array_constructor(instructions, constructor_type, &loc,
1708 &this->expressions, state);
1709 }
1710
1711 if (this->constructor_type->structure) {
1712 return process_record_constructor(instructions, constructor_type, &loc,
1713 &this->expressions, state);
1714 }
1715
1716 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1717 &this->expressions, state);
1718 }