glsl: Add a variable context to constant_expression_value().
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136 const char *mode = NULL;
137 switch (formal->mode) {
138 case ir_var_out: mode = "out"; break;
139 case ir_var_inout: mode = "inout"; break;
140 default: assert(false); break;
141 }
142
143 /* This AST-based check catches errors like f(i++). The IR-based
144 * is_lvalue() is insufficient because the actual parameter at the
145 * IR-level is just a temporary value, which is an l-value.
146 */
147 if (actual_ast->non_lvalue_description != NULL) {
148 _mesa_glsl_error(&loc, state,
149 "function parameter '%s %s' references a %s",
150 mode, formal->name,
151 actual_ast->non_lvalue_description);
152 return false;
153 }
154
155 ir_variable *var = actual->variable_referenced();
156 if (var)
157 var->assigned = true;
158
159 if (var && var->read_only) {
160 _mesa_glsl_error(&loc, state,
161 "function parameter '%s %s' references the "
162 "read-only variable '%s'",
163 mode, formal->name,
164 actual->variable_referenced()->name);
165 return false;
166 } else if (!actual->is_lvalue()) {
167 _mesa_glsl_error(&loc, state,
168 "function parameter '%s %s' is not an lvalue",
169 mode, formal->name);
170 return false;
171 }
172 }
173
174 actual_ir_node = actual_ir_node->next;
175 actual_ast_node = actual_ast_node->next;
176 }
177 return true;
178 }
179
180 /**
181 * If a function call is generated, \c call_ir will point to it on exit.
182 * Otherwise \c call_ir will be set to \c NULL.
183 */
184 static ir_rvalue *
185 generate_call(exec_list *instructions, ir_function_signature *sig,
186 YYLTYPE *loc, exec_list *actual_parameters,
187 ir_call **call_ir,
188 struct _mesa_glsl_parse_state *state)
189 {
190 void *ctx = state;
191 exec_list post_call_conversions;
192
193 *call_ir = NULL;
194
195 /* Perform implicit conversion of arguments. For out parameters, we need
196 * to place them in a temporary variable and do the conversion after the
197 * call takes place. Since we haven't emitted the call yet, we'll place
198 * the post-call conversions in a temporary exec_list, and emit them later.
199 */
200 exec_list_iterator actual_iter = actual_parameters->iterator();
201 exec_list_iterator formal_iter = sig->parameters.iterator();
202
203 while (actual_iter.has_next()) {
204 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
205 ir_variable *formal = (ir_variable *) formal_iter.get();
206
207 assert(actual != NULL);
208 assert(formal != NULL);
209
210 if (formal->type->is_numeric() || formal->type->is_boolean()) {
211 switch (formal->mode) {
212 case ir_var_const_in:
213 case ir_var_in: {
214 ir_rvalue *converted
215 = convert_component(actual, formal->type);
216 actual->replace_with(converted);
217 break;
218 }
219 case ir_var_out:
220 if (actual->type != formal->type) {
221 /* To convert an out parameter, we need to create a
222 * temporary variable to hold the value before conversion,
223 * and then perform the conversion after the function call
224 * returns.
225 *
226 * This has the effect of transforming code like this:
227 *
228 * void f(out int x);
229 * float value;
230 * f(value);
231 *
232 * Into IR that's equivalent to this:
233 *
234 * void f(out int x);
235 * float value;
236 * int out_parameter_conversion;
237 * f(out_parameter_conversion);
238 * value = float(out_parameter_conversion);
239 */
240 ir_variable *tmp =
241 new(ctx) ir_variable(formal->type,
242 "out_parameter_conversion",
243 ir_var_temporary);
244 instructions->push_tail(tmp);
245 ir_dereference_variable *deref_tmp_1
246 = new(ctx) ir_dereference_variable(tmp);
247 ir_dereference_variable *deref_tmp_2
248 = new(ctx) ir_dereference_variable(tmp);
249 ir_rvalue *converted_tmp
250 = convert_component(deref_tmp_1, actual->type);
251 ir_assignment *assignment
252 = new(ctx) ir_assignment(actual, converted_tmp);
253 post_call_conversions.push_tail(assignment);
254 actual->replace_with(deref_tmp_2);
255 }
256 break;
257 case ir_var_inout:
258 /* Inout parameters should never require conversion, since that
259 * would require an implicit conversion to exist both to and
260 * from the formal parameter type, and there are no
261 * bidirectional implicit conversions.
262 */
263 assert (actual->type == formal->type);
264 break;
265 default:
266 assert (!"Illegal formal parameter mode");
267 break;
268 }
269 }
270
271 actual_iter.next();
272 formal_iter.next();
273 }
274
275 /* If the function call is a constant expression, don't generate any
276 * instructions; just generate an ir_constant.
277 *
278 * Function calls were first allowed to be constant expressions in GLSL 1.20.
279 */
280 if (state->language_version >= 120) {
281 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
282 if (value != NULL) {
283 return value;
284 }
285 }
286
287 ir_dereference_variable *deref = NULL;
288 if (!sig->return_type->is_void()) {
289 /* Create a new temporary to hold the return value. */
290 ir_variable *var;
291
292 var = new(ctx) ir_variable(sig->return_type,
293 ralloc_asprintf(ctx, "%s_retval",
294 sig->function_name()),
295 ir_var_temporary);
296 instructions->push_tail(var);
297
298 deref = new(ctx) ir_dereference_variable(var);
299 }
300 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
301 instructions->push_tail(call);
302
303 /* Also emit any necessary out-parameter conversions. */
304 instructions->append_list(&post_call_conversions);
305
306 return deref ? deref->clone(ctx, NULL) : NULL;
307 }
308
309 /**
310 * Given a function name and parameter list, find the matching signature.
311 */
312 static ir_function_signature *
313 match_function_by_name(const char *name,
314 exec_list *actual_parameters,
315 struct _mesa_glsl_parse_state *state)
316 {
317 void *ctx = state;
318 ir_function *f = state->symbols->get_function(name);
319 ir_function_signature *local_sig = NULL;
320 ir_function_signature *sig = NULL;
321
322 /* Is the function hidden by a record type constructor? */
323 if (state->symbols->get_type(name))
324 goto done; /* no match */
325
326 /* Is the function hidden by a variable (impossible in 1.10)? */
327 if (state->language_version != 110 && state->symbols->get_variable(name))
328 goto done; /* no match */
329
330 if (f != NULL) {
331 /* Look for a match in the local shader. If exact, we're done. */
332 bool is_exact = false;
333 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
334 if (is_exact)
335 goto done;
336
337 if (!state->es_shader && f->has_user_signature()) {
338 /* In desktop GL, the presence of a user-defined signature hides any
339 * built-in signatures, so we must ignore them. In contrast, in ES2
340 * user-defined signatures add new overloads, so we must proceed.
341 */
342 goto done;
343 }
344 }
345
346 /* Local shader has no exact candidates; check the built-ins. */
347 _mesa_glsl_initialize_functions(state);
348 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
349 ir_function *builtin =
350 state->builtins_to_link[i]->symbols->get_function(name);
351 if (builtin == NULL)
352 continue;
353
354 bool is_exact = false;
355 ir_function_signature *builtin_sig =
356 builtin->matching_signature(actual_parameters, &is_exact);
357
358 if (builtin_sig == NULL)
359 continue;
360
361 /* If the built-in signature is exact, we can stop. */
362 if (is_exact) {
363 sig = builtin_sig;
364 goto done;
365 }
366
367 if (sig == NULL) {
368 /* We found an inexact match, which is better than nothing. However,
369 * we should keep searching for an exact match.
370 */
371 sig = builtin_sig;
372 }
373 }
374
375 done:
376 if (sig != NULL) {
377 /* If the match is from a linked built-in shader, import the prototype. */
378 if (sig != local_sig) {
379 if (f == NULL) {
380 f = new(ctx) ir_function(name);
381 state->symbols->add_global_function(f);
382 emit_function(state, f);
383 }
384 f->add_signature(sig->clone_prototype(f, NULL));
385 }
386 }
387 return sig;
388 }
389
390 /**
391 * Raise a "no matching function" error, listing all possible overloads the
392 * compiler considered so developers can figure out what went wrong.
393 */
394 static void
395 no_matching_function_error(const char *name,
396 YYLTYPE *loc,
397 exec_list *actual_parameters,
398 _mesa_glsl_parse_state *state)
399 {
400 char *str = prototype_string(NULL, name, actual_parameters);
401 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
402 ralloc_free(str);
403
404 const char *prefix = "candidates are: ";
405
406 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
407 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
408 : state->symbols;
409 ir_function *f = syms->get_function(name);
410 if (f == NULL)
411 continue;
412
413 foreach_list (node, &f->signatures) {
414 ir_function_signature *sig = (ir_function_signature *) node;
415
416 str = prototype_string(sig->return_type, f->name, &sig->parameters);
417 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
418 ralloc_free(str);
419
420 prefix = " ";
421 }
422 }
423 }
424
425 /**
426 * Perform automatic type conversion of constructor parameters
427 *
428 * This implements the rules in the "Conversion and Scalar Constructors"
429 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
430 */
431 static ir_rvalue *
432 convert_component(ir_rvalue *src, const glsl_type *desired_type)
433 {
434 void *ctx = ralloc_parent(src);
435 const unsigned a = desired_type->base_type;
436 const unsigned b = src->type->base_type;
437 ir_expression *result = NULL;
438
439 if (src->type->is_error())
440 return src;
441
442 assert(a <= GLSL_TYPE_BOOL);
443 assert(b <= GLSL_TYPE_BOOL);
444
445 if (a == b)
446 return src;
447
448 switch (a) {
449 case GLSL_TYPE_UINT:
450 switch (b) {
451 case GLSL_TYPE_INT:
452 result = new(ctx) ir_expression(ir_unop_i2u, src);
453 break;
454 case GLSL_TYPE_FLOAT:
455 result = new(ctx) ir_expression(ir_unop_i2u,
456 new(ctx) ir_expression(ir_unop_f2i, src));
457 break;
458 case GLSL_TYPE_BOOL:
459 result = new(ctx) ir_expression(ir_unop_i2u,
460 new(ctx) ir_expression(ir_unop_b2i, src));
461 break;
462 }
463 break;
464 case GLSL_TYPE_INT:
465 switch (b) {
466 case GLSL_TYPE_UINT:
467 result = new(ctx) ir_expression(ir_unop_u2i, src);
468 break;
469 case GLSL_TYPE_FLOAT:
470 result = new(ctx) ir_expression(ir_unop_f2i, src);
471 break;
472 case GLSL_TYPE_BOOL:
473 result = new(ctx) ir_expression(ir_unop_b2i, src);
474 break;
475 }
476 break;
477 case GLSL_TYPE_FLOAT:
478 switch (b) {
479 case GLSL_TYPE_UINT:
480 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
481 break;
482 case GLSL_TYPE_INT:
483 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
484 break;
485 case GLSL_TYPE_BOOL:
486 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
487 break;
488 }
489 break;
490 case GLSL_TYPE_BOOL:
491 switch (b) {
492 case GLSL_TYPE_UINT:
493 result = new(ctx) ir_expression(ir_unop_i2b,
494 new(ctx) ir_expression(ir_unop_u2i, src));
495 break;
496 case GLSL_TYPE_INT:
497 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
498 break;
499 case GLSL_TYPE_FLOAT:
500 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
501 break;
502 }
503 break;
504 }
505
506 assert(result != NULL);
507 assert(result->type == desired_type);
508
509 /* Try constant folding; it may fold in the conversion we just added. */
510 ir_constant *const constant = result->constant_expression_value();
511 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
512 }
513
514 /**
515 * Dereference a specific component from a scalar, vector, or matrix
516 */
517 static ir_rvalue *
518 dereference_component(ir_rvalue *src, unsigned component)
519 {
520 void *ctx = ralloc_parent(src);
521 assert(component < src->type->components());
522
523 /* If the source is a constant, just create a new constant instead of a
524 * dereference of the existing constant.
525 */
526 ir_constant *constant = src->as_constant();
527 if (constant)
528 return new(ctx) ir_constant(constant, component);
529
530 if (src->type->is_scalar()) {
531 return src;
532 } else if (src->type->is_vector()) {
533 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
534 } else {
535 assert(src->type->is_matrix());
536
537 /* Dereference a row of the matrix, then call this function again to get
538 * a specific element from that row.
539 */
540 const int c = component / src->type->column_type()->vector_elements;
541 const int r = component % src->type->column_type()->vector_elements;
542 ir_constant *const col_index = new(ctx) ir_constant(c);
543 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
544
545 col->type = src->type->column_type();
546
547 return dereference_component(col, r);
548 }
549
550 assert(!"Should not get here.");
551 return NULL;
552 }
553
554
555 static ir_rvalue *
556 process_array_constructor(exec_list *instructions,
557 const glsl_type *constructor_type,
558 YYLTYPE *loc, exec_list *parameters,
559 struct _mesa_glsl_parse_state *state)
560 {
561 void *ctx = state;
562 /* Array constructors come in two forms: sized and unsized. Sized array
563 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
564 * variables. In this case the number of parameters must exactly match the
565 * specified size of the array.
566 *
567 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
568 * are vec4 variables. In this case the size of the array being constructed
569 * is determined by the number of parameters.
570 *
571 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
572 *
573 * "There must be exactly the same number of arguments as the size of
574 * the array being constructed. If no size is present in the
575 * constructor, then the array is explicitly sized to the number of
576 * arguments provided. The arguments are assigned in order, starting at
577 * element 0, to the elements of the constructed array. Each argument
578 * must be the same type as the element type of the array, or be a type
579 * that can be converted to the element type of the array according to
580 * Section 4.1.10 "Implicit Conversions.""
581 */
582 exec_list actual_parameters;
583 const unsigned parameter_count =
584 process_parameters(instructions, &actual_parameters, parameters, state);
585
586 if ((parameter_count == 0)
587 || ((constructor_type->length != 0)
588 && (constructor_type->length != parameter_count))) {
589 const unsigned min_param = (constructor_type->length == 0)
590 ? 1 : constructor_type->length;
591
592 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
593 "parameter%s",
594 (constructor_type->length != 0) ? "at least" : "exactly",
595 min_param, (min_param <= 1) ? "" : "s");
596 return ir_rvalue::error_value(ctx);
597 }
598
599 if (constructor_type->length == 0) {
600 constructor_type =
601 glsl_type::get_array_instance(constructor_type->element_type(),
602 parameter_count);
603 assert(constructor_type != NULL);
604 assert(constructor_type->length == parameter_count);
605 }
606
607 bool all_parameters_are_constant = true;
608
609 /* Type cast each parameter and, if possible, fold constants. */
610 foreach_list_safe(n, &actual_parameters) {
611 ir_rvalue *ir = (ir_rvalue *) n;
612 ir_rvalue *result = ir;
613
614 /* Apply implicit conversions (not the scalar constructor rules!). See
615 * the spec quote above. */
616 if (constructor_type->element_type()->is_float()) {
617 const glsl_type *desired_type =
618 glsl_type::get_instance(GLSL_TYPE_FLOAT,
619 ir->type->vector_elements,
620 ir->type->matrix_columns);
621 if (result->type->can_implicitly_convert_to(desired_type)) {
622 /* Even though convert_component() implements the constructor
623 * conversion rules (not the implicit conversion rules), its safe
624 * to use it here because we already checked that the implicit
625 * conversion is legal.
626 */
627 result = convert_component(ir, desired_type);
628 }
629 }
630
631 if (result->type != constructor_type->element_type()) {
632 _mesa_glsl_error(loc, state, "type error in array constructor: "
633 "expected: %s, found %s",
634 constructor_type->element_type()->name,
635 result->type->name);
636 }
637
638 /* Attempt to convert the parameter to a constant valued expression.
639 * After doing so, track whether or not all the parameters to the
640 * constructor are trivially constant valued expressions.
641 */
642 ir_rvalue *const constant = result->constant_expression_value();
643
644 if (constant != NULL)
645 result = constant;
646 else
647 all_parameters_are_constant = false;
648
649 ir->replace_with(result);
650 }
651
652 if (all_parameters_are_constant)
653 return new(ctx) ir_constant(constructor_type, &actual_parameters);
654
655 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
656 ir_var_temporary);
657 instructions->push_tail(var);
658
659 int i = 0;
660 foreach_list(node, &actual_parameters) {
661 ir_rvalue *rhs = (ir_rvalue *) node;
662 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
663 new(ctx) ir_constant(i));
664
665 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
666 instructions->push_tail(assignment);
667
668 i++;
669 }
670
671 return new(ctx) ir_dereference_variable(var);
672 }
673
674
675 /**
676 * Try to convert a record constructor to a constant expression
677 */
678 static ir_constant *
679 constant_record_constructor(const glsl_type *constructor_type,
680 exec_list *parameters, void *mem_ctx)
681 {
682 foreach_list(node, parameters) {
683 ir_constant *constant = ((ir_instruction *) node)->as_constant();
684 if (constant == NULL)
685 return NULL;
686 node->replace_with(constant);
687 }
688
689 return new(mem_ctx) ir_constant(constructor_type, parameters);
690 }
691
692
693 /**
694 * Determine if a list consists of a single scalar r-value
695 */
696 bool
697 single_scalar_parameter(exec_list *parameters)
698 {
699 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
700 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
701
702 return (p->type->is_scalar() && p->next->is_tail_sentinel());
703 }
704
705
706 /**
707 * Generate inline code for a vector constructor
708 *
709 * The generated constructor code will consist of a temporary variable
710 * declaration of the same type as the constructor. A sequence of assignments
711 * from constructor parameters to the temporary will follow.
712 *
713 * \return
714 * An \c ir_dereference_variable of the temprorary generated in the constructor
715 * body.
716 */
717 ir_rvalue *
718 emit_inline_vector_constructor(const glsl_type *type,
719 exec_list *instructions,
720 exec_list *parameters,
721 void *ctx)
722 {
723 assert(!parameters->is_empty());
724
725 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
726 instructions->push_tail(var);
727
728 /* There are two kinds of vector constructors.
729 *
730 * - Construct a vector from a single scalar by replicating that scalar to
731 * all components of the vector.
732 *
733 * - Construct a vector from an arbirary combination of vectors and
734 * scalars. The components of the constructor parameters are assigned
735 * to the vector in order until the vector is full.
736 */
737 const unsigned lhs_components = type->components();
738 if (single_scalar_parameter(parameters)) {
739 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
740 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
741 lhs_components);
742 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
743 const unsigned mask = (1U << lhs_components) - 1;
744
745 assert(rhs->type == lhs->type);
746
747 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
748 instructions->push_tail(inst);
749 } else {
750 unsigned base_component = 0;
751 unsigned base_lhs_component = 0;
752 ir_constant_data data;
753 unsigned constant_mask = 0, constant_components = 0;
754
755 memset(&data, 0, sizeof(data));
756
757 foreach_list(node, parameters) {
758 ir_rvalue *param = (ir_rvalue *) node;
759 unsigned rhs_components = param->type->components();
760
761 /* Do not try to assign more components to the vector than it has!
762 */
763 if ((rhs_components + base_lhs_component) > lhs_components) {
764 rhs_components = lhs_components - base_lhs_component;
765 }
766
767 const ir_constant *const c = param->as_constant();
768 if (c != NULL) {
769 for (unsigned i = 0; i < rhs_components; i++) {
770 switch (c->type->base_type) {
771 case GLSL_TYPE_UINT:
772 data.u[i + base_component] = c->get_uint_component(i);
773 break;
774 case GLSL_TYPE_INT:
775 data.i[i + base_component] = c->get_int_component(i);
776 break;
777 case GLSL_TYPE_FLOAT:
778 data.f[i + base_component] = c->get_float_component(i);
779 break;
780 case GLSL_TYPE_BOOL:
781 data.b[i + base_component] = c->get_bool_component(i);
782 break;
783 default:
784 assert(!"Should not get here.");
785 break;
786 }
787 }
788
789 /* Mask of fields to be written in the assignment.
790 */
791 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
792 constant_components += rhs_components;
793
794 base_component += rhs_components;
795 }
796 /* Advance the component index by the number of components
797 * that were just assigned.
798 */
799 base_lhs_component += rhs_components;
800 }
801
802 if (constant_mask != 0) {
803 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
804 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
805 constant_components,
806 1);
807 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
808
809 ir_instruction *inst =
810 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
811 instructions->push_tail(inst);
812 }
813
814 base_component = 0;
815 foreach_list(node, parameters) {
816 ir_rvalue *param = (ir_rvalue *) node;
817 unsigned rhs_components = param->type->components();
818
819 /* Do not try to assign more components to the vector than it has!
820 */
821 if ((rhs_components + base_component) > lhs_components) {
822 rhs_components = lhs_components - base_component;
823 }
824
825 const ir_constant *const c = param->as_constant();
826 if (c == NULL) {
827 /* Mask of fields to be written in the assignment.
828 */
829 const unsigned write_mask = ((1U << rhs_components) - 1)
830 << base_component;
831
832 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
833
834 /* Generate a swizzle so that LHS and RHS sizes match.
835 */
836 ir_rvalue *rhs =
837 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
838
839 ir_instruction *inst =
840 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
841 instructions->push_tail(inst);
842 }
843
844 /* Advance the component index by the number of components that were
845 * just assigned.
846 */
847 base_component += rhs_components;
848 }
849 }
850 return new(ctx) ir_dereference_variable(var);
851 }
852
853
854 /**
855 * Generate assignment of a portion of a vector to a portion of a matrix column
856 *
857 * \param src_base First component of the source to be used in assignment
858 * \param column Column of destination to be assiged
859 * \param row_base First component of the destination column to be assigned
860 * \param count Number of components to be assigned
861 *
862 * \note
863 * \c src_base + \c count must be less than or equal to the number of components
864 * in the source vector.
865 */
866 ir_instruction *
867 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
868 ir_rvalue *src, unsigned src_base, unsigned count,
869 void *mem_ctx)
870 {
871 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
872 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
873
874 assert(column_ref->type->components() >= (row_base + count));
875 assert(src->type->components() >= (src_base + count));
876
877 /* Generate a swizzle that extracts the number of components from the source
878 * that are to be assigned to the column of the matrix.
879 */
880 if (count < src->type->vector_elements) {
881 src = new(mem_ctx) ir_swizzle(src,
882 src_base + 0, src_base + 1,
883 src_base + 2, src_base + 3,
884 count);
885 }
886
887 /* Mask of fields to be written in the assignment.
888 */
889 const unsigned write_mask = ((1U << count) - 1) << row_base;
890
891 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
892 }
893
894
895 /**
896 * Generate inline code for a matrix constructor
897 *
898 * The generated constructor code will consist of a temporary variable
899 * declaration of the same type as the constructor. A sequence of assignments
900 * from constructor parameters to the temporary will follow.
901 *
902 * \return
903 * An \c ir_dereference_variable of the temprorary generated in the constructor
904 * body.
905 */
906 ir_rvalue *
907 emit_inline_matrix_constructor(const glsl_type *type,
908 exec_list *instructions,
909 exec_list *parameters,
910 void *ctx)
911 {
912 assert(!parameters->is_empty());
913
914 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
915 instructions->push_tail(var);
916
917 /* There are three kinds of matrix constructors.
918 *
919 * - Construct a matrix from a single scalar by replicating that scalar to
920 * along the diagonal of the matrix and setting all other components to
921 * zero.
922 *
923 * - Construct a matrix from an arbirary combination of vectors and
924 * scalars. The components of the constructor parameters are assigned
925 * to the matrix in colum-major order until the matrix is full.
926 *
927 * - Construct a matrix from a single matrix. The source matrix is copied
928 * to the upper left portion of the constructed matrix, and the remaining
929 * elements take values from the identity matrix.
930 */
931 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
932 if (single_scalar_parameter(parameters)) {
933 /* Assign the scalar to the X component of a vec4, and fill the remaining
934 * components with zero.
935 */
936 ir_variable *rhs_var =
937 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
938 ir_var_temporary);
939 instructions->push_tail(rhs_var);
940
941 ir_constant_data zero;
942 zero.f[0] = 0.0;
943 zero.f[1] = 0.0;
944 zero.f[2] = 0.0;
945 zero.f[3] = 0.0;
946
947 ir_instruction *inst =
948 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
949 new(ctx) ir_constant(rhs_var->type, &zero),
950 NULL);
951 instructions->push_tail(inst);
952
953 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
954
955 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
956 instructions->push_tail(inst);
957
958 /* Assign the temporary vector to each column of the destination matrix
959 * with a swizzle that puts the X component on the diagonal of the
960 * matrix. In some cases this may mean that the X component does not
961 * get assigned into the column at all (i.e., when the matrix has more
962 * columns than rows).
963 */
964 static const unsigned rhs_swiz[4][4] = {
965 { 0, 1, 1, 1 },
966 { 1, 0, 1, 1 },
967 { 1, 1, 0, 1 },
968 { 1, 1, 1, 0 }
969 };
970
971 const unsigned cols_to_init = MIN2(type->matrix_columns,
972 type->vector_elements);
973 for (unsigned i = 0; i < cols_to_init; i++) {
974 ir_constant *const col_idx = new(ctx) ir_constant(i);
975 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
976
977 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
978 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
979 type->vector_elements);
980
981 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
982 instructions->push_tail(inst);
983 }
984
985 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
986 ir_constant *const col_idx = new(ctx) ir_constant(i);
987 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
988
989 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
990 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
991 type->vector_elements);
992
993 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
994 instructions->push_tail(inst);
995 }
996 } else if (first_param->type->is_matrix()) {
997 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
998 *
999 * "If a matrix is constructed from a matrix, then each component
1000 * (column i, row j) in the result that has a corresponding
1001 * component (column i, row j) in the argument will be initialized
1002 * from there. All other components will be initialized to the
1003 * identity matrix. If a matrix argument is given to a matrix
1004 * constructor, it is an error to have any other arguments."
1005 */
1006 assert(first_param->next->is_tail_sentinel());
1007 ir_rvalue *const src_matrix = first_param;
1008
1009 /* If the source matrix is smaller, pre-initialize the relavent parts of
1010 * the destination matrix to the identity matrix.
1011 */
1012 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1013 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1014
1015 /* If the source matrix has fewer rows, every column of the destination
1016 * must be initialized. Otherwise only the columns in the destination
1017 * that do not exist in the source must be initialized.
1018 */
1019 unsigned col =
1020 (src_matrix->type->vector_elements < var->type->vector_elements)
1021 ? 0 : src_matrix->type->matrix_columns;
1022
1023 const glsl_type *const col_type = var->type->column_type();
1024 for (/* empty */; col < var->type->matrix_columns; col++) {
1025 ir_constant_data ident;
1026
1027 ident.f[0] = 0.0;
1028 ident.f[1] = 0.0;
1029 ident.f[2] = 0.0;
1030 ident.f[3] = 0.0;
1031
1032 ident.f[col] = 1.0;
1033
1034 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1035
1036 ir_rvalue *const lhs =
1037 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1038
1039 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1040 instructions->push_tail(inst);
1041 }
1042 }
1043
1044 /* Assign columns from the source matrix to the destination matrix.
1045 *
1046 * Since the parameter will be used in the RHS of multiple assignments,
1047 * generate a temporary and copy the paramter there.
1048 */
1049 ir_variable *const rhs_var =
1050 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1051 ir_var_temporary);
1052 instructions->push_tail(rhs_var);
1053
1054 ir_dereference *const rhs_var_ref =
1055 new(ctx) ir_dereference_variable(rhs_var);
1056 ir_instruction *const inst =
1057 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1058 instructions->push_tail(inst);
1059
1060 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1061 var->type->vector_elements);
1062 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1063 var->type->matrix_columns);
1064
1065 unsigned swiz[4] = { 0, 0, 0, 0 };
1066 for (unsigned i = 1; i < last_row; i++)
1067 swiz[i] = i;
1068
1069 const unsigned write_mask = (1U << last_row) - 1;
1070
1071 for (unsigned i = 0; i < last_col; i++) {
1072 ir_dereference *const lhs =
1073 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1074 ir_rvalue *const rhs_col =
1075 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1076
1077 /* If one matrix has columns that are smaller than the columns of the
1078 * other matrix, wrap the column access of the larger with a swizzle
1079 * so that the LHS and RHS of the assignment have the same size (and
1080 * therefore have the same type).
1081 *
1082 * It would be perfectly valid to unconditionally generate the
1083 * swizzles, this this will typically result in a more compact IR tree.
1084 */
1085 ir_rvalue *rhs;
1086 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1087 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1088 } else {
1089 rhs = rhs_col;
1090 }
1091
1092 ir_instruction *inst =
1093 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1094 instructions->push_tail(inst);
1095 }
1096 } else {
1097 const unsigned cols = type->matrix_columns;
1098 const unsigned rows = type->vector_elements;
1099 unsigned col_idx = 0;
1100 unsigned row_idx = 0;
1101
1102 foreach_list (node, parameters) {
1103 ir_rvalue *const rhs = (ir_rvalue *) node;
1104 const unsigned components_remaining_this_column = rows - row_idx;
1105 unsigned rhs_components = rhs->type->components();
1106 unsigned rhs_base = 0;
1107
1108 /* Since the parameter might be used in the RHS of two assignments,
1109 * generate a temporary and copy the paramter there.
1110 */
1111 ir_variable *rhs_var =
1112 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1113 instructions->push_tail(rhs_var);
1114
1115 ir_dereference *rhs_var_ref =
1116 new(ctx) ir_dereference_variable(rhs_var);
1117 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1118 instructions->push_tail(inst);
1119
1120 /* Assign the current parameter to as many components of the matrix
1121 * as it will fill.
1122 *
1123 * NOTE: A single vector parameter can span two matrix columns. A
1124 * single vec4, for example, can completely fill a mat2.
1125 */
1126 if (rhs_components >= components_remaining_this_column) {
1127 const unsigned count = MIN2(rhs_components,
1128 components_remaining_this_column);
1129
1130 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1131
1132 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1133 row_idx,
1134 rhs_var_ref, 0,
1135 count, ctx);
1136 instructions->push_tail(inst);
1137
1138 rhs_base = count;
1139
1140 col_idx++;
1141 row_idx = 0;
1142 }
1143
1144 /* If there is data left in the parameter and components left to be
1145 * set in the destination, emit another assignment. It is possible
1146 * that the assignment could be of a vec4 to the last element of the
1147 * matrix. In this case col_idx==cols, but there is still data
1148 * left in the source parameter. Obviously, don't emit an assignment
1149 * to data outside the destination matrix.
1150 */
1151 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1152 const unsigned count = rhs_components - rhs_base;
1153
1154 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1155
1156 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1157 row_idx,
1158 rhs_var_ref,
1159 rhs_base,
1160 count, ctx);
1161 instructions->push_tail(inst);
1162
1163 row_idx += count;
1164 }
1165 }
1166 }
1167
1168 return new(ctx) ir_dereference_variable(var);
1169 }
1170
1171
1172 ir_rvalue *
1173 emit_inline_record_constructor(const glsl_type *type,
1174 exec_list *instructions,
1175 exec_list *parameters,
1176 void *mem_ctx)
1177 {
1178 ir_variable *const var =
1179 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1180 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1181
1182 instructions->push_tail(var);
1183
1184 exec_node *node = parameters->head;
1185 for (unsigned i = 0; i < type->length; i++) {
1186 assert(!node->is_tail_sentinel());
1187
1188 ir_dereference *const lhs =
1189 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1190 type->fields.structure[i].name);
1191
1192 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1193 assert(rhs != NULL);
1194
1195 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1196
1197 instructions->push_tail(assign);
1198 node = node->next;
1199 }
1200
1201 return d;
1202 }
1203
1204
1205 ir_rvalue *
1206 ast_function_expression::hir(exec_list *instructions,
1207 struct _mesa_glsl_parse_state *state)
1208 {
1209 void *ctx = state;
1210 /* There are three sorts of function calls.
1211 *
1212 * 1. constructors - The first subexpression is an ast_type_specifier.
1213 * 2. methods - Only the .length() method of array types.
1214 * 3. functions - Calls to regular old functions.
1215 *
1216 * Method calls are actually detected when the ast_field_selection
1217 * expression is handled.
1218 */
1219 if (is_constructor()) {
1220 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1221 YYLTYPE loc = type->get_location();
1222 const char *name;
1223
1224 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1225
1226 /* constructor_type can be NULL if a variable with the same name as the
1227 * structure has come into scope.
1228 */
1229 if (constructor_type == NULL) {
1230 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1231 "may be shadowed by a variable with the same name)",
1232 type->type_name);
1233 return ir_rvalue::error_value(ctx);
1234 }
1235
1236
1237 /* Constructors for samplers are illegal.
1238 */
1239 if (constructor_type->is_sampler()) {
1240 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1241 constructor_type->name);
1242 return ir_rvalue::error_value(ctx);
1243 }
1244
1245 if (constructor_type->is_array()) {
1246 if (state->language_version <= 110) {
1247 _mesa_glsl_error(& loc, state,
1248 "array constructors forbidden in GLSL 1.10");
1249 return ir_rvalue::error_value(ctx);
1250 }
1251
1252 return process_array_constructor(instructions, constructor_type,
1253 & loc, &this->expressions, state);
1254 }
1255
1256
1257 /* There are two kinds of constructor call. Constructors for built-in
1258 * language types, such as mat4 and vec2, are free form. The only
1259 * requirement is that the parameters must provide enough values of the
1260 * correct scalar type. Constructors for arrays and structures must
1261 * have the exact number of parameters with matching types in the
1262 * correct order. These constructors follow essentially the same type
1263 * matching rules as functions.
1264 */
1265 if (constructor_type->is_record()) {
1266 exec_list actual_parameters;
1267
1268 process_parameters(instructions, &actual_parameters,
1269 &this->expressions, state);
1270
1271 exec_node *node = actual_parameters.head;
1272 for (unsigned i = 0; i < constructor_type->length; i++) {
1273 ir_rvalue *ir = (ir_rvalue *) node;
1274
1275 if (node->is_tail_sentinel()) {
1276 _mesa_glsl_error(&loc, state,
1277 "insufficient parameters to constructor "
1278 "for `%s'",
1279 constructor_type->name);
1280 return ir_rvalue::error_value(ctx);
1281 }
1282
1283 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1284 ir, state)) {
1285 node->replace_with(ir);
1286 } else {
1287 _mesa_glsl_error(&loc, state,
1288 "parameter type mismatch in constructor "
1289 "for `%s.%s' (%s vs %s)",
1290 constructor_type->name,
1291 constructor_type->fields.structure[i].name,
1292 ir->type->name,
1293 constructor_type->fields.structure[i].type->name);
1294 return ir_rvalue::error_value(ctx);;
1295 }
1296
1297 node = node->next;
1298 }
1299
1300 if (!node->is_tail_sentinel()) {
1301 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1302 "for `%s'", constructor_type->name);
1303 return ir_rvalue::error_value(ctx);
1304 }
1305
1306 ir_rvalue *const constant =
1307 constant_record_constructor(constructor_type, &actual_parameters,
1308 state);
1309
1310 return (constant != NULL)
1311 ? constant
1312 : emit_inline_record_constructor(constructor_type, instructions,
1313 &actual_parameters, state);
1314 }
1315
1316 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1317 return ir_rvalue::error_value(ctx);
1318
1319 /* Total number of components of the type being constructed. */
1320 const unsigned type_components = constructor_type->components();
1321
1322 /* Number of components from parameters that have actually been
1323 * consumed. This is used to perform several kinds of error checking.
1324 */
1325 unsigned components_used = 0;
1326
1327 unsigned matrix_parameters = 0;
1328 unsigned nonmatrix_parameters = 0;
1329 exec_list actual_parameters;
1330
1331 foreach_list (n, &this->expressions) {
1332 ast_node *ast = exec_node_data(ast_node, n, link);
1333 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1334
1335 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1336 *
1337 * "It is an error to provide extra arguments beyond this
1338 * last used argument."
1339 */
1340 if (components_used >= type_components) {
1341 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1342 "constructor",
1343 constructor_type->name);
1344 return ir_rvalue::error_value(ctx);
1345 }
1346
1347 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1348 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1349 "non-numeric data type",
1350 constructor_type->name);
1351 return ir_rvalue::error_value(ctx);
1352 }
1353
1354 /* Count the number of matrix and nonmatrix parameters. This
1355 * is used below to enforce some of the constructor rules.
1356 */
1357 if (result->type->is_matrix())
1358 matrix_parameters++;
1359 else
1360 nonmatrix_parameters++;
1361
1362 actual_parameters.push_tail(result);
1363 components_used += result->type->components();
1364 }
1365
1366 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1367 *
1368 * "It is an error to construct matrices from other matrices. This
1369 * is reserved for future use."
1370 */
1371 if (state->language_version == 110 && matrix_parameters > 0
1372 && constructor_type->is_matrix()) {
1373 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1374 "matrix in GLSL 1.10",
1375 constructor_type->name);
1376 return ir_rvalue::error_value(ctx);
1377 }
1378
1379 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1380 *
1381 * "If a matrix argument is given to a matrix constructor, it is
1382 * an error to have any other arguments."
1383 */
1384 if ((matrix_parameters > 0)
1385 && ((matrix_parameters + nonmatrix_parameters) > 1)
1386 && constructor_type->is_matrix()) {
1387 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1388 "matrix must be only parameter",
1389 constructor_type->name);
1390 return ir_rvalue::error_value(ctx);
1391 }
1392
1393 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1394 *
1395 * "In these cases, there must be enough components provided in the
1396 * arguments to provide an initializer for every component in the
1397 * constructed value."
1398 */
1399 if (components_used < type_components && components_used != 1
1400 && matrix_parameters == 0) {
1401 _mesa_glsl_error(& loc, state, "too few components to construct "
1402 "`%s'",
1403 constructor_type->name);
1404 return ir_rvalue::error_value(ctx);
1405 }
1406
1407 /* Later, we cast each parameter to the same base type as the
1408 * constructor. Since there are no non-floating point matrices, we
1409 * need to break them up into a series of column vectors.
1410 */
1411 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1412 foreach_list_safe(n, &actual_parameters) {
1413 ir_rvalue *matrix = (ir_rvalue *) n;
1414
1415 if (!matrix->type->is_matrix())
1416 continue;
1417
1418 /* Create a temporary containing the matrix. */
1419 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1420 ir_var_temporary);
1421 instructions->push_tail(var);
1422 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1423 ir_dereference_variable(var), matrix, NULL));
1424 var->constant_value = matrix->constant_expression_value();
1425
1426 /* Replace the matrix with dereferences of its columns. */
1427 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1428 matrix->insert_before(new (ctx) ir_dereference_array(var,
1429 new(ctx) ir_constant(i)));
1430 }
1431 matrix->remove();
1432 }
1433 }
1434
1435 bool all_parameters_are_constant = true;
1436
1437 /* Type cast each parameter and, if possible, fold constants.*/
1438 foreach_list_safe(n, &actual_parameters) {
1439 ir_rvalue *ir = (ir_rvalue *) n;
1440
1441 const glsl_type *desired_type =
1442 glsl_type::get_instance(constructor_type->base_type,
1443 ir->type->vector_elements,
1444 ir->type->matrix_columns);
1445 ir_rvalue *result = convert_component(ir, desired_type);
1446
1447 /* Attempt to convert the parameter to a constant valued expression.
1448 * After doing so, track whether or not all the parameters to the
1449 * constructor are trivially constant valued expressions.
1450 */
1451 ir_rvalue *const constant = result->constant_expression_value();
1452
1453 if (constant != NULL)
1454 result = constant;
1455 else
1456 all_parameters_are_constant = false;
1457
1458 if (result != ir) {
1459 ir->replace_with(result);
1460 }
1461 }
1462
1463 /* If all of the parameters are trivially constant, create a
1464 * constant representing the complete collection of parameters.
1465 */
1466 if (all_parameters_are_constant) {
1467 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1468 } else if (constructor_type->is_scalar()) {
1469 return dereference_component((ir_rvalue *) actual_parameters.head,
1470 0);
1471 } else if (constructor_type->is_vector()) {
1472 return emit_inline_vector_constructor(constructor_type,
1473 instructions,
1474 &actual_parameters,
1475 ctx);
1476 } else {
1477 assert(constructor_type->is_matrix());
1478 return emit_inline_matrix_constructor(constructor_type,
1479 instructions,
1480 &actual_parameters,
1481 ctx);
1482 }
1483 } else {
1484 const ast_expression *id = subexpressions[0];
1485 const char *func_name = id->primary_expression.identifier;
1486 YYLTYPE loc = id->get_location();
1487 exec_list actual_parameters;
1488
1489 process_parameters(instructions, &actual_parameters, &this->expressions,
1490 state);
1491
1492 ir_function_signature *sig =
1493 match_function_by_name(func_name, &actual_parameters, state);
1494
1495 ir_call *call = NULL;
1496 ir_rvalue *value = NULL;
1497 if (sig == NULL) {
1498 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1499 value = ir_rvalue::error_value(ctx);
1500 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1501 /* an error has already been emitted */
1502 value = ir_rvalue::error_value(ctx);
1503 } else {
1504 value = generate_call(instructions, sig, &loc, &actual_parameters,
1505 &call, state);
1506 }
1507
1508 return value;
1509 }
1510
1511 return ir_rvalue::error_value(ctx);
1512 }