glsl2: Use _mesa_glsl_parse_state as the talloc parent, not glsl_shader.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28
29 inline unsigned min(unsigned a, unsigned b)
30 {
31 return (a < b) ? a : b;
32 }
33
34 static unsigned
35 process_parameters(exec_list *instructions, exec_list *actual_parameters,
36 exec_list *parameters,
37 struct _mesa_glsl_parse_state *state)
38 {
39 unsigned count = 0;
40
41 foreach_list (n, parameters) {
42 ast_node *const ast = exec_node_data(ast_node, n, link);
43 ir_rvalue *result = ast->hir(instructions, state);
44
45 ir_constant *const constant = result->constant_expression_value();
46 if (constant != NULL)
47 result = constant;
48
49 actual_parameters->push_tail(result);
50 count++;
51 }
52
53 return count;
54 }
55
56
57 static ir_rvalue *
58 process_call(exec_list *instructions, ir_function *f,
59 YYLTYPE *loc, exec_list *actual_parameters,
60 struct _mesa_glsl_parse_state *state)
61 {
62 void *ctx = state;
63
64 const ir_function_signature *sig =
65 f->matching_signature(actual_parameters);
66
67 /* The instructions param will be used when the FINISHMEs below are done */
68 (void) instructions;
69
70 if (sig != NULL) {
71 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
72 * isn't done in ir_function::matching_signature because that function
73 * cannot generate the necessary diagnostics.
74 */
75 exec_list_iterator actual_iter = actual_parameters->iterator();
76 exec_list_iterator formal_iter = sig->parameters.iterator();
77
78 while (actual_iter.has_next()) {
79 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
80 ir_variable *formal = (ir_variable *) formal_iter.get();
81
82 assert(actual != NULL);
83 assert(formal != NULL);
84
85 if ((formal->mode == ir_var_out)
86 || (formal->mode == ir_var_inout)) {
87 if (! actual->is_lvalue()) {
88 /* FINISHME: Log a better diagnostic here. There is no way
89 * FINISHME: to tell the user which parameter is invalid.
90 */
91 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
92 (formal->mode == ir_var_out) ? "out" : "inout");
93 }
94 }
95
96 actual_iter.next();
97 formal_iter.next();
98 }
99
100 /* FINISHME: The list of actual parameters needs to be modified to
101 * FINISHME: include any necessary conversions.
102 */
103 return new(ctx) ir_call(sig, actual_parameters);
104 } else {
105 /* FINISHME: Log a better error message here. G++ will show the types
106 * FINISHME: of the actual parameters and the set of candidate
107 * FINISHME: functions. A different error should also be logged when
108 * FINISHME: multiple functions match.
109 */
110 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
111 f->name);
112 return ir_call::get_error_instruction(ctx);
113 }
114 }
115
116
117 static ir_rvalue *
118 match_function_by_name(exec_list *instructions, const char *name,
119 YYLTYPE *loc, exec_list *actual_parameters,
120 struct _mesa_glsl_parse_state *state)
121 {
122 void *ctx = state;
123 ir_function *f = state->symbols->get_function(name);
124
125 if (f == NULL) {
126 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
127 return ir_call::get_error_instruction(ctx);
128 }
129
130 /* Once we've determined that the function being called might exist, try
131 * to find an overload of the function that matches the parameters.
132 */
133 return process_call(instructions, f, loc, actual_parameters, state);
134 }
135
136
137 /**
138 * Perform automatic type conversion of constructor parameters
139 */
140 static ir_rvalue *
141 convert_component(ir_rvalue *src, const glsl_type *desired_type)
142 {
143 void *ctx = talloc_parent(src);
144 const unsigned a = desired_type->base_type;
145 const unsigned b = src->type->base_type;
146 ir_expression *result = NULL;
147
148 if (src->type->is_error())
149 return src;
150
151 assert(a <= GLSL_TYPE_BOOL);
152 assert(b <= GLSL_TYPE_BOOL);
153
154 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
155 return src;
156
157 switch (a) {
158 case GLSL_TYPE_UINT:
159 case GLSL_TYPE_INT:
160 if (b == GLSL_TYPE_FLOAT)
161 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
162 else {
163 assert(b == GLSL_TYPE_BOOL);
164 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
165 }
166 break;
167 case GLSL_TYPE_FLOAT:
168 switch (b) {
169 case GLSL_TYPE_UINT:
170 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
171 break;
172 case GLSL_TYPE_INT:
173 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
174 break;
175 case GLSL_TYPE_BOOL:
176 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
177 break;
178 }
179 break;
180 case GLSL_TYPE_BOOL:
181 switch (b) {
182 case GLSL_TYPE_UINT:
183 case GLSL_TYPE_INT:
184 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
185 break;
186 case GLSL_TYPE_FLOAT:
187 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
188 break;
189 }
190 break;
191 }
192
193 assert(result != NULL);
194
195 ir_constant *const constant = result->constant_expression_value();
196 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
197 }
198
199
200 /**
201 * Dereference a specific component from a scalar, vector, or matrix
202 */
203 static ir_rvalue *
204 dereference_component(ir_rvalue *src, unsigned component)
205 {
206 void *ctx = talloc_parent(src);
207 assert(component < src->type->components());
208
209 /* If the source is a constant, just create a new constant instead of a
210 * dereference of the existing constant.
211 */
212 ir_constant *constant = src->as_constant();
213 if (constant)
214 return new(ctx) ir_constant(constant, component);
215
216 if (src->type->is_scalar()) {
217 return src;
218 } else if (src->type->is_vector()) {
219 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
220 } else {
221 assert(src->type->is_matrix());
222
223 /* Dereference a row of the matrix, then call this function again to get
224 * a specific element from that row.
225 */
226 const int c = component / src->type->column_type()->vector_elements;
227 const int r = component % src->type->column_type()->vector_elements;
228 ir_constant *const col_index = new(ctx) ir_constant(c);
229 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
230
231 col->type = src->type->column_type();
232
233 return dereference_component(col, r);
234 }
235
236 assert(!"Should not get here.");
237 return NULL;
238 }
239
240
241 static ir_rvalue *
242 process_array_constructor(exec_list *instructions,
243 const glsl_type *constructor_type,
244 YYLTYPE *loc, exec_list *parameters,
245 struct _mesa_glsl_parse_state *state)
246 {
247 void *ctx = state;
248 /* Array constructors come in two forms: sized and unsized. Sized array
249 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
250 * variables. In this case the number of parameters must exactly match the
251 * specified size of the array.
252 *
253 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
254 * are vec4 variables. In this case the size of the array being constructed
255 * is determined by the number of parameters.
256 *
257 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
258 *
259 * "There must be exactly the same number of arguments as the size of
260 * the array being constructed. If no size is present in the
261 * constructor, then the array is explicitly sized to the number of
262 * arguments provided. The arguments are assigned in order, starting at
263 * element 0, to the elements of the constructed array. Each argument
264 * must be the same type as the element type of the array, or be a type
265 * that can be converted to the element type of the array according to
266 * Section 4.1.10 "Implicit Conversions.""
267 */
268 exec_list actual_parameters;
269 const unsigned parameter_count =
270 process_parameters(instructions, &actual_parameters, parameters, state);
271
272 if ((parameter_count == 0)
273 || ((constructor_type->length != 0)
274 && (constructor_type->length != parameter_count))) {
275 const unsigned min_param = (constructor_type->length == 0)
276 ? 1 : constructor_type->length;
277
278 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
279 "parameter%s",
280 (constructor_type->length != 0) ? "at least" : "exactly",
281 min_param, (min_param <= 1) ? "" : "s");
282 return ir_call::get_error_instruction(ctx);
283 }
284
285 if (constructor_type->length == 0) {
286 constructor_type =
287 glsl_type::get_array_instance(state,
288 constructor_type->element_type(),
289 parameter_count);
290 assert(constructor_type != NULL);
291 assert(constructor_type->length == parameter_count);
292 }
293
294 ir_function *f = state->symbols->get_function(constructor_type->name);
295
296 /* If the constructor for this type of array does not exist, generate the
297 * prototype and add it to the symbol table.
298 */
299 if (f == NULL) {
300 f = constructor_type->generate_constructor(state->symbols);
301 }
302
303 ir_rvalue *const r =
304 process_call(instructions, f, loc, &actual_parameters, state);
305
306 assert(r != NULL);
307 assert(r->type->is_error() || (r->type == constructor_type));
308
309 return r;
310 }
311
312
313 /**
314 * Try to convert a record constructor to a constant expression
315 */
316 static ir_constant *
317 constant_record_constructor(const glsl_type *constructor_type,
318 YYLTYPE *loc, exec_list *parameters,
319 struct _mesa_glsl_parse_state *state)
320 {
321 void *ctx = state;
322 bool all_parameters_are_constant = true;
323
324 exec_node *node = parameters->head;
325 for (unsigned i = 0; i < constructor_type->length; i++) {
326 ir_instruction *ir = (ir_instruction *) node;
327
328 if (node->is_tail_sentinal()) {
329 _mesa_glsl_error(loc, state,
330 "insufficient parameters to constructor for `%s'",
331 constructor_type->name);
332 return NULL;
333 }
334
335 if (ir->type != constructor_type->fields.structure[i].type) {
336 _mesa_glsl_error(loc, state,
337 "parameter type mismatch in constructor for `%s' "
338 " (%s vs %s)",
339 constructor_type->name,
340 ir->type->name,
341 constructor_type->fields.structure[i].type->name);
342 return NULL;
343 }
344
345 if (ir->as_constant() == NULL)
346 all_parameters_are_constant = false;
347
348 node = node->next;
349 }
350
351 if (!all_parameters_are_constant)
352 return NULL;
353
354 return new(ctx) ir_constant(constructor_type, parameters);
355 }
356
357
358 /**
359 * Generate data for a constant matrix constructor w/a single scalar parameter
360 *
361 * Matrix constructors in GLSL can be passed a single scalar of the
362 * approriate type. In these cases, the resulting matrix is the identity
363 * matrix multipled by the specified scalar. This function generates data for
364 * that matrix.
365 *
366 * \param type Type of the desired matrix.
367 * \param initializer Scalar value used to initialize the matrix diagonal.
368 * \param data Location to store the resulting matrix.
369 */
370 void
371 generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
372 ir_constant_data *data)
373 {
374 switch (type->base_type) {
375 case GLSL_TYPE_UINT:
376 case GLSL_TYPE_INT:
377 for (unsigned i = 0; i < type->components(); i++)
378 data->u[i] = 0;
379
380 for (unsigned i = 0; i < type->matrix_columns; i++) {
381 /* The array offset of the ith row and column of the matrix.
382 */
383 const unsigned idx = (i * type->vector_elements) + i;
384
385 data->u[idx] = initializer->value.u[0];
386 }
387 break;
388
389 case GLSL_TYPE_FLOAT:
390 for (unsigned i = 0; i < type->components(); i++)
391 data->f[i] = 0;
392
393 for (unsigned i = 0; i < type->matrix_columns; i++) {
394 /* The array offset of the ith row and column of the matrix.
395 */
396 const unsigned idx = (i * type->vector_elements) + i;
397
398 data->f[idx] = initializer->value.f[0];
399 }
400
401 break;
402
403 default:
404 assert(!"Should not get here.");
405 break;
406 }
407 }
408
409
410 /**
411 * Generate data for a constant vector constructor w/a single scalar parameter
412 *
413 * Vector constructors in GLSL can be passed a single scalar of the
414 * approriate type. In these cases, the resulting vector contains the specified
415 * value in all components. This function generates data for that vector.
416 *
417 * \param type Type of the desired vector.
418 * \param initializer Scalar value used to initialize the vector.
419 * \param data Location to store the resulting vector data.
420 */
421 void
422 generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
423 ir_constant_data *data)
424 {
425 switch (type->base_type) {
426 case GLSL_TYPE_UINT:
427 case GLSL_TYPE_INT:
428 for (unsigned i = 0; i < type->components(); i++)
429 data->u[i] = initializer->value.u[0];
430
431 break;
432
433 case GLSL_TYPE_FLOAT:
434 for (unsigned i = 0; i < type->components(); i++)
435 data->f[i] = initializer->value.f[0];
436
437 break;
438
439 case GLSL_TYPE_BOOL:
440 for (unsigned i = 0; i < type->components(); i++)
441 data->b[i] = initializer->value.b[0];
442
443 break;
444
445 default:
446 assert(!"Should not get here.");
447 break;
448 }
449 }
450
451
452 /**
453 * Determine if a list consists of a single scalar r-value
454 */
455 bool
456 single_scalar_parameter(exec_list *parameters)
457 {
458 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
459 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
460
461 return (p->type->is_scalar() && p->next->is_tail_sentinal());
462 }
463
464
465 /**
466 * Generate inline code for a vector constructor
467 *
468 * The generated constructor code will consist of a temporary variable
469 * declaration of the same type as the constructor. A sequence of assignments
470 * from constructor parameters to the temporary will follow.
471 *
472 * \return
473 * An \c ir_dereference_variable of the temprorary generated in the constructor
474 * body.
475 */
476 ir_rvalue *
477 emit_inline_vector_constructor(const glsl_type *type,
478 exec_list *instructions,
479 exec_list *parameters,
480 void *ctx)
481 {
482 assert(!parameters->is_empty());
483
484 ir_variable *var = new(ctx) ir_variable(type,
485 talloc_strdup(ctx, "vec_ctor"));
486 instructions->push_tail(var);
487
488 /* There are two kinds of vector constructors.
489 *
490 * - Construct a vector from a single scalar by replicating that scalar to
491 * all components of the vector.
492 *
493 * - Construct a vector from an arbirary combination of vectors and
494 * scalars. The components of the constructor parameters are assigned
495 * to the vector in order until the vector is full.
496 */
497 const unsigned lhs_components = type->components();
498 if (single_scalar_parameter(parameters)) {
499 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
500 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
501 lhs_components);
502 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
503
504 assert(rhs->type == lhs->type);
505
506 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
507 instructions->push_tail(inst);
508 } else {
509 unsigned base_component = 0;
510 foreach_list(node, parameters) {
511 ir_rvalue *rhs = (ir_rvalue *) node;
512 unsigned rhs_components = rhs->type->components();
513
514 /* Do not try to assign more components to the vector than it has!
515 */
516 if ((rhs_components + base_component) > lhs_components) {
517 rhs_components = lhs_components - base_component;
518 }
519
520 /* Emit an assignment of the constructor parameter to the next set of
521 * components in the temporary variable.
522 */
523 unsigned mask[4] = { 0, 0, 0, 0 };
524 for (unsigned i = 0; i < rhs_components; i++) {
525 mask[i] = i + base_component;
526 }
527
528
529 ir_rvalue *lhs_ref = new(ctx) ir_dereference_variable(var);
530 ir_swizzle *lhs = new(ctx) ir_swizzle(lhs_ref, mask, rhs_components);
531
532 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
533 instructions->push_tail(inst);
534
535 /* Advance the component index by the number of components that were
536 * just assigned.
537 */
538 base_component += rhs_components;
539 }
540 }
541 return new(ctx) ir_dereference_variable(var);
542 }
543
544
545 /**
546 * Generate assignment of a portion of a vector to a portion of a matrix column
547 *
548 * \param src_base First component of the source to be used in assignment
549 * \param column Column of destination to be assiged
550 * \param row_base First component of the destination column to be assigned
551 * \param count Number of components to be assigned
552 *
553 * \note
554 * \c src_base + \c count must be less than or equal to the number of components
555 * in the source vector.
556 */
557 ir_instruction *
558 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
559 ir_rvalue *src, unsigned src_base, unsigned count,
560 TALLOC_CTX *ctx)
561 {
562 const unsigned mask[8] = { 0, 1, 2, 3, 0, 0, 0, 0 };
563
564 ir_constant *col_idx = new(ctx) ir_constant(column);
565 ir_rvalue *column_ref = new(ctx) ir_dereference_array(var, col_idx);
566
567 assert(column_ref->type->components() >= (row_base + count));
568 ir_rvalue *lhs = new(ctx) ir_swizzle(column_ref, &mask[row_base], count);
569
570 assert(src->type->components() >= (src_base + count));
571 ir_rvalue *rhs = new(ctx) ir_swizzle(src, &mask[src_base], count);
572
573 return new(ctx) ir_assignment(lhs, rhs, NULL);
574 }
575
576
577 /**
578 * Generate inline code for a matrix constructor
579 *
580 * The generated constructor code will consist of a temporary variable
581 * declaration of the same type as the constructor. A sequence of assignments
582 * from constructor parameters to the temporary will follow.
583 *
584 * \return
585 * An \c ir_dereference_variable of the temprorary generated in the constructor
586 * body.
587 */
588 ir_rvalue *
589 emit_inline_matrix_constructor(const glsl_type *type,
590 exec_list *instructions,
591 exec_list *parameters,
592 void *ctx)
593 {
594 assert(!parameters->is_empty());
595
596 ir_variable *var = new(ctx) ir_variable(type,
597 talloc_strdup(ctx, "mat_ctor"));
598 instructions->push_tail(var);
599
600 /* There are three kinds of matrix constructors.
601 *
602 * - Construct a matrix from a single scalar by replicating that scalar to
603 * along the diagonal of the matrix and setting all other components to
604 * zero.
605 *
606 * - Construct a matrix from an arbirary combination of vectors and
607 * scalars. The components of the constructor parameters are assigned
608 * to the matrix in colum-major order until the matrix is full.
609 *
610 * - Construct a matrix from a single matrix. The source matrix is copied
611 * to the upper left portion of the constructed matrix, and the remaining
612 * elements take values from the identity matrix.
613 */
614 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
615 if (single_scalar_parameter(parameters)) {
616 /* Assign the scalar to the X component of a vec4, and fill the remaining
617 * components with zero.
618 */
619 ir_variable *rhs_var =
620 new(ctx) ir_variable(glsl_type::vec4_type,
621 talloc_strdup(ctx, "mat_ctor_vec"));
622 instructions->push_tail(rhs_var);
623
624 ir_constant_data zero;
625 zero.f[0] = 0.0;
626 zero.f[1] = 0.0;
627 zero.f[2] = 0.0;
628 zero.f[3] = 0.0;
629
630 ir_instruction *inst =
631 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
632 new(ctx) ir_constant(rhs_var->type, &zero),
633 NULL);
634 instructions->push_tail(inst);
635
636 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
637 ir_rvalue *const x_of_rhs = new(ctx) ir_swizzle(rhs_ref, 0, 0, 0, 0, 1);
638
639 inst = new(ctx) ir_assignment(x_of_rhs, first_param, NULL);
640 instructions->push_tail(inst);
641
642 /* Assign the temporary vector to each column of the destination matrix
643 * with a swizzle that puts the X component on the diagonal of the
644 * matrix. In some cases this may mean that the X component does not
645 * get assigned into the column at all (i.e., when the matrix has more
646 * columns than rows).
647 */
648 static const unsigned rhs_swiz[4][4] = {
649 { 0, 1, 1, 1 },
650 { 1, 0, 1, 1 },
651 { 1, 1, 0, 1 },
652 { 1, 1, 1, 0 }
653 };
654
655 const unsigned cols_to_init = min(type->matrix_columns,
656 type->vector_elements);
657 for (unsigned i = 0; i < cols_to_init; i++) {
658 ir_constant *const col_idx = new(ctx) ir_constant(i);
659 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
660
661 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
662 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
663 type->vector_elements);
664
665 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
666 instructions->push_tail(inst);
667 }
668
669 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
670 ir_constant *const col_idx = new(ctx) ir_constant(i);
671 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
672
673 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
674 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
675 type->vector_elements);
676
677 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
678 instructions->push_tail(inst);
679 }
680 } else if (first_param->type->is_matrix()) {
681 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
682 *
683 * "If a matrix is constructed from a matrix, then each component
684 * (column i, row j) in the result that has a corresponding
685 * component (column i, row j) in the argument will be initialized
686 * from there. All other components will be initialized to the
687 * identity matrix. If a matrix argument is given to a matrix
688 * constructor, it is an error to have any other arguments."
689 */
690 assert(first_param->next->is_tail_sentinal());
691 ir_rvalue *const src_matrix = first_param;
692
693 /* If the source matrix is smaller, pre-initialize the relavent parts of
694 * the destination matrix to the identity matrix.
695 */
696 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
697 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
698
699 /* If the source matrix has fewer rows, every column of the destination
700 * must be initialized. Otherwise only the columns in the destination
701 * that do not exist in the source must be initialized.
702 */
703 unsigned col =
704 (src_matrix->type->vector_elements < var->type->vector_elements)
705 ? 0 : src_matrix->type->matrix_columns;
706
707 const glsl_type *const col_type = var->type->column_type();
708 for (/* empty */; col < var->type->matrix_columns; col++) {
709 ir_constant_data ident;
710
711 ident.f[0] = 0.0;
712 ident.f[1] = 0.0;
713 ident.f[2] = 0.0;
714 ident.f[3] = 0.0;
715
716 ident.f[col] = 1.0;
717
718 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
719
720 ir_rvalue *const lhs =
721 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
722
723 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
724 instructions->push_tail(inst);
725 }
726 }
727
728 /* Assign columns from the source matrix to the destination matrix.
729 *
730 * Since the parameter will be used in the RHS of multiple assignments,
731 * generate a temporary and copy the paramter there.
732 */
733 ir_variable *const rhs_var =
734 new(ctx) ir_variable(first_param->type,
735 talloc_strdup(ctx, "mat_ctor_mat"));
736 instructions->push_tail(rhs_var);
737
738 ir_dereference *const rhs_var_ref =
739 new(ctx) ir_dereference_variable(rhs_var);
740 ir_instruction *const inst =
741 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
742 instructions->push_tail(inst);
743
744
745 const unsigned swiz[4] = { 0, 1, 2, 3 };
746 const unsigned last_col = min(src_matrix->type->matrix_columns,
747 var->type->matrix_columns);
748 for (unsigned i = 0; i < last_col; i++) {
749 ir_rvalue *const lhs_col =
750 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
751 ir_rvalue *const rhs_col =
752 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
753
754 /* If one matrix has columns that are smaller than the columns of the
755 * other matrix, wrap the column access of the larger with a swizzle
756 * so that the LHS and RHS of the assignment have the same size (and
757 * therefore have the same type).
758 *
759 * It would be perfectly valid to unconditionally generate the
760 * swizzles, this this will typically result in a more compact IR tree.
761 */
762 ir_rvalue *lhs;
763 ir_rvalue *rhs;
764 if (lhs_col->type->vector_elements < rhs_col->type->vector_elements) {
765 lhs = lhs_col;
766
767 rhs = new(ctx) ir_swizzle(rhs_col, swiz,
768 lhs_col->type->vector_elements);
769 } else if (lhs_col->type->vector_elements
770 > rhs_col->type->vector_elements) {
771 lhs = new(ctx) ir_swizzle(lhs_col, swiz,
772 rhs_col->type->vector_elements);
773 rhs = rhs_col;
774 } else {
775 lhs = lhs_col;
776 rhs = rhs_col;
777 }
778
779 assert(lhs->type == rhs->type);
780
781 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
782 instructions->push_tail(inst);
783 }
784 } else {
785 const unsigned rows = type->matrix_columns;
786 const unsigned cols = type->vector_elements;
787 unsigned col_idx = 0;
788 unsigned row_idx = 0;
789
790 foreach_list (node, parameters) {
791 ir_rvalue *const rhs = (ir_rvalue *) node;
792 const unsigned components_remaining_this_column = rows - row_idx;
793 unsigned rhs_components = rhs->type->components();
794 unsigned rhs_base = 0;
795
796 /* Since the parameter might be used in the RHS of two assignments,
797 * generate a temporary and copy the paramter there.
798 */
799 ir_variable *rhs_var =
800 new(ctx) ir_variable(rhs->type,
801 talloc_strdup(ctx, "mat_ctor_vec"));
802 instructions->push_tail(rhs_var);
803
804 ir_dereference *rhs_var_ref =
805 new(ctx) ir_dereference_variable(rhs_var);
806 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
807 instructions->push_tail(inst);
808
809 /* Assign the current parameter to as many components of the matrix
810 * as it will fill.
811 *
812 * NOTE: A single vector parameter can span two matrix columns. A
813 * single vec4, for example, can completely fill a mat2.
814 */
815 if (rhs_components >= components_remaining_this_column) {
816 const unsigned count = min(rhs_components,
817 components_remaining_this_column);
818
819 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
820
821 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
822 row_idx,
823 rhs_var_ref, 0,
824 count, ctx);
825 instructions->push_tail(inst);
826
827 rhs_base = count;
828
829 col_idx++;
830 row_idx = 0;
831 }
832
833 /* If there is data left in the parameter and components left to be
834 * set in the destination, emit another assignment. It is possible
835 * that the assignment could be of a vec4 to the last element of the
836 * matrix. In this case col_idx==cols, but there is still data
837 * left in the source parameter. Obviously, don't emit an assignment
838 * to data outside the destination matrix.
839 */
840 if ((col_idx < cols) && (rhs_base < rhs_components)) {
841 const unsigned count = rhs_components - rhs_base;
842
843 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
844
845 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
846 row_idx,
847 rhs_var_ref,
848 rhs_base,
849 count, ctx);
850 instructions->push_tail(inst);
851
852 row_idx += count;
853 }
854 }
855 }
856
857 return new(ctx) ir_dereference_variable(var);
858 }
859
860
861 ir_rvalue *
862 ast_function_expression::hir(exec_list *instructions,
863 struct _mesa_glsl_parse_state *state)
864 {
865 void *ctx = state;
866 /* There are three sorts of function calls.
867 *
868 * 1. contstructors - The first subexpression is an ast_type_specifier.
869 * 2. methods - Only the .length() method of array types.
870 * 3. functions - Calls to regular old functions.
871 *
872 * Method calls are actually detected when the ast_field_selection
873 * expression is handled.
874 */
875 if (is_constructor()) {
876 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
877 YYLTYPE loc = type->get_location();
878 const char *name;
879
880 const glsl_type *const constructor_type = type->glsl_type(& name, state);
881
882
883 /* Constructors for samplers are illegal.
884 */
885 if (constructor_type->is_sampler()) {
886 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
887 constructor_type->name);
888 return ir_call::get_error_instruction(ctx);
889 }
890
891 if (constructor_type->is_array()) {
892 if (state->language_version <= 110) {
893 _mesa_glsl_error(& loc, state,
894 "array constructors forbidden in GLSL 1.10");
895 return ir_call::get_error_instruction(ctx);
896 }
897
898 return process_array_constructor(instructions, constructor_type,
899 & loc, &this->expressions, state);
900 }
901
902 /* There are two kinds of constructor call. Constructors for built-in
903 * language types, such as mat4 and vec2, are free form. The only
904 * requirement is that the parameters must provide enough values of the
905 * correct scalar type. Constructors for arrays and structures must
906 * have the exact number of parameters with matching types in the
907 * correct order. These constructors follow essentially the same type
908 * matching rules as functions.
909 */
910 if (constructor_type->is_numeric() || constructor_type->is_boolean()) {
911 /* Total number of components of the type being constructed.
912 */
913 const unsigned type_components = constructor_type->components();
914
915 /* Number of components from parameters that have actually been
916 * consumed. This is used to perform several kinds of error checking.
917 */
918 unsigned components_used = 0;
919
920 unsigned matrix_parameters = 0;
921 unsigned nonmatrix_parameters = 0;
922 exec_list actual_parameters;
923
924 bool all_parameters_are_constant = true;
925
926 /* This handles invalid constructor calls such as 'vec4 v = vec4();'
927 */
928 if (this->expressions.is_empty()) {
929 _mesa_glsl_error(& loc, state, "too few components to construct "
930 "`%s'",
931 constructor_type->name);
932 return ir_call::get_error_instruction(ctx);
933 }
934
935 foreach_list (n, &this->expressions) {
936 ast_node *ast = exec_node_data(ast_node, n, link);
937 ir_rvalue *result =
938 ast->hir(instructions, state)->as_rvalue();
939
940 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
941 *
942 * "It is an error to provide extra arguments beyond this
943 * last used argument."
944 */
945 if (components_used >= type_components) {
946 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
947 "constructor",
948 constructor_type->name);
949 return ir_call::get_error_instruction(ctx);
950 }
951
952 if (!result->type->is_numeric() && !result->type->is_boolean()) {
953 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
954 "non-numeric data type",
955 constructor_type->name);
956 return ir_call::get_error_instruction(ctx);
957 }
958
959 /* Count the number of matrix and nonmatrix parameters. This
960 * is used below to enforce some of the constructor rules.
961 */
962 if (result->type->is_matrix())
963 matrix_parameters++;
964 else
965 nonmatrix_parameters++;
966
967 /* Type cast the parameter and add it to the parameter list for
968 * the constructor.
969 */
970 const glsl_type *desired_type =
971 glsl_type::get_instance(constructor_type->base_type,
972 result->type->vector_elements,
973 result->type->matrix_columns);
974 result = convert_component(result, desired_type);
975
976 /* Attempt to convert the parameter to a constant valued expression.
977 * After doing so, track whether or not all the parameters to the
978 * constructor are trivially constant valued expressions.
979 */
980 ir_rvalue *const constant = result->constant_expression_value();
981
982 if (constant != NULL)
983 result = constant;
984 else
985 all_parameters_are_constant = false;
986
987 actual_parameters.push_tail(result);
988 components_used += result->type->components();
989 }
990
991 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
992 *
993 * "It is an error to construct matrices from other matrices. This
994 * is reserved for future use."
995 */
996 if ((state->language_version <= 110) && (matrix_parameters > 0)
997 && constructor_type->is_matrix()) {
998 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
999 "matrix in GLSL 1.10",
1000 constructor_type->name);
1001 return ir_call::get_error_instruction(ctx);
1002 }
1003
1004 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1005 *
1006 * "If a matrix argument is given to a matrix constructor, it is
1007 * an error to have any other arguments."
1008 */
1009 if ((matrix_parameters > 0)
1010 && ((matrix_parameters + nonmatrix_parameters) > 1)
1011 && constructor_type->is_matrix()) {
1012 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1013 "matrix must be only parameter",
1014 constructor_type->name);
1015 return ir_call::get_error_instruction(ctx);
1016 }
1017
1018 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1019 *
1020 * "In these cases, there must be enough components provided in the
1021 * arguments to provide an initializer for every component in the
1022 * constructed value."
1023 */
1024 if ((components_used < type_components) && (components_used != 1)) {
1025 _mesa_glsl_error(& loc, state, "too few components to construct "
1026 "`%s'",
1027 constructor_type->name);
1028 return ir_call::get_error_instruction(ctx);
1029 }
1030
1031
1032 /* If all of the parameters are trivially constant, create a
1033 * constant representing the complete collection of parameters.
1034 */
1035 if (all_parameters_are_constant) {
1036 if (components_used >= type_components)
1037 return new(ctx) ir_constant(constructor_type,
1038 & actual_parameters);
1039
1040 /* The above case must handle all scalar constructors.
1041 */
1042 assert(constructor_type->is_vector()
1043 || constructor_type->is_matrix());
1044
1045 /* Constructors with exactly one component are special for
1046 * vectors and matrices. For vectors it causes all elements of
1047 * the vector to be filled with the value. For matrices it
1048 * causes the matrix to be filled with 0 and the diagonal to be
1049 * filled with the value.
1050 */
1051 ir_constant_data data;
1052 ir_constant *const initializer =
1053 (ir_constant *) actual_parameters.head;
1054 if (constructor_type->is_matrix())
1055 generate_constructor_matrix(constructor_type, initializer,
1056 &data);
1057 else
1058 generate_constructor_vector(constructor_type, initializer,
1059 &data);
1060
1061 return new(ctx) ir_constant(constructor_type, &data);
1062 } else if (constructor_type->is_scalar()) {
1063 return dereference_component((ir_rvalue *) actual_parameters.head,
1064 0);
1065 } else if (constructor_type->is_vector()) {
1066 return emit_inline_vector_constructor(constructor_type,
1067 instructions,
1068 &actual_parameters,
1069 ctx);
1070 } else {
1071 assert(constructor_type->is_matrix());
1072 return emit_inline_matrix_constructor(constructor_type,
1073 instructions,
1074 &actual_parameters,
1075 ctx);
1076 }
1077 }
1078
1079 return ir_call::get_error_instruction(ctx);
1080 } else {
1081 const ast_expression *id = subexpressions[0];
1082 YYLTYPE loc = id->get_location();
1083 exec_list actual_parameters;
1084
1085 process_parameters(instructions, &actual_parameters, &this->expressions,
1086 state);
1087
1088 const glsl_type *const type =
1089 state->symbols->get_type(id->primary_expression.identifier);
1090
1091 if ((type != NULL) && type->is_record()) {
1092 ir_constant *constant =
1093 constant_record_constructor(type, &loc, &actual_parameters, state);
1094
1095 if (constant != NULL)
1096 return constant;
1097 }
1098
1099 return match_function_by_name(instructions,
1100 id->primary_expression.identifier, & loc,
1101 &actual_parameters, state);
1102 }
1103
1104 return ir_call::get_error_instruction(ctx);
1105 }