glsl: Separate code into process_record_constructor().
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * If a function call is generated, \c call_ir will point to it on exit.
278 * Otherwise \c call_ir will be set to \c NULL.
279 */
280 static ir_rvalue *
281 generate_call(exec_list *instructions, ir_function_signature *sig,
282 exec_list *actual_parameters,
283 ir_call **call_ir,
284 struct _mesa_glsl_parse_state *state)
285 {
286 void *ctx = state;
287 exec_list post_call_conversions;
288
289 *call_ir = NULL;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
392 if (is_exact)
393 goto done;
394
395 if (!state->es_shader && f->has_user_signature()) {
396 /* In desktop GL, the presence of a user-defined signature hides any
397 * built-in signatures, so we must ignore them. In contrast, in ES2
398 * user-defined signatures add new overloads, so we must proceed.
399 */
400 goto done;
401 }
402 }
403
404 /* Local shader has no exact candidates; check the built-ins. */
405 _mesa_glsl_initialize_functions(state);
406 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
407 ir_function *builtin =
408 state->builtins_to_link[i]->symbols->get_function(name);
409 if (builtin == NULL)
410 continue;
411
412 bool is_exact = false;
413 ir_function_signature *builtin_sig =
414 builtin->matching_signature(actual_parameters, &is_exact);
415
416 if (builtin_sig == NULL)
417 continue;
418
419 /* If the built-in signature is exact, we can stop. */
420 if (is_exact) {
421 sig = builtin_sig;
422 goto done;
423 }
424
425 if (sig == NULL) {
426 /* We found an inexact match, which is better than nothing. However,
427 * we should keep searching for an exact match.
428 */
429 sig = builtin_sig;
430 }
431 }
432
433 done:
434 if (sig != NULL) {
435 /* If the match is from a linked built-in shader, import the prototype. */
436 if (sig != local_sig) {
437 if (f == NULL) {
438 f = new(ctx) ir_function(name);
439 state->symbols->add_global_function(f);
440 emit_function(state, f);
441 }
442 f->add_signature(sig->clone_prototype(f, NULL));
443 }
444 }
445 return sig;
446 }
447
448 /**
449 * Raise a "no matching function" error, listing all possible overloads the
450 * compiler considered so developers can figure out what went wrong.
451 */
452 static void
453 no_matching_function_error(const char *name,
454 YYLTYPE *loc,
455 exec_list *actual_parameters,
456 _mesa_glsl_parse_state *state)
457 {
458 char *str = prototype_string(NULL, name, actual_parameters);
459 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
460 ralloc_free(str);
461
462 const char *prefix = "candidates are: ";
463
464 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
465 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
466 : state->symbols;
467 ir_function *f = syms->get_function(name);
468 if (f == NULL)
469 continue;
470
471 foreach_list (node, &f->signatures) {
472 ir_function_signature *sig = (ir_function_signature *) node;
473
474 str = prototype_string(sig->return_type, f->name, &sig->parameters);
475 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
476 ralloc_free(str);
477
478 prefix = " ";
479 }
480 }
481 }
482
483 /**
484 * Perform automatic type conversion of constructor parameters
485 *
486 * This implements the rules in the "Conversion and Scalar Constructors"
487 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
488 */
489 static ir_rvalue *
490 convert_component(ir_rvalue *src, const glsl_type *desired_type)
491 {
492 void *ctx = ralloc_parent(src);
493 const unsigned a = desired_type->base_type;
494 const unsigned b = src->type->base_type;
495 ir_expression *result = NULL;
496
497 if (src->type->is_error())
498 return src;
499
500 assert(a <= GLSL_TYPE_BOOL);
501 assert(b <= GLSL_TYPE_BOOL);
502
503 if (a == b)
504 return src;
505
506 switch (a) {
507 case GLSL_TYPE_UINT:
508 switch (b) {
509 case GLSL_TYPE_INT:
510 result = new(ctx) ir_expression(ir_unop_i2u, src);
511 break;
512 case GLSL_TYPE_FLOAT:
513 result = new(ctx) ir_expression(ir_unop_f2u, src);
514 break;
515 case GLSL_TYPE_BOOL:
516 result = new(ctx) ir_expression(ir_unop_i2u,
517 new(ctx) ir_expression(ir_unop_b2i, src));
518 break;
519 }
520 break;
521 case GLSL_TYPE_INT:
522 switch (b) {
523 case GLSL_TYPE_UINT:
524 result = new(ctx) ir_expression(ir_unop_u2i, src);
525 break;
526 case GLSL_TYPE_FLOAT:
527 result = new(ctx) ir_expression(ir_unop_f2i, src);
528 break;
529 case GLSL_TYPE_BOOL:
530 result = new(ctx) ir_expression(ir_unop_b2i, src);
531 break;
532 }
533 break;
534 case GLSL_TYPE_FLOAT:
535 switch (b) {
536 case GLSL_TYPE_UINT:
537 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
538 break;
539 case GLSL_TYPE_INT:
540 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
541 break;
542 case GLSL_TYPE_BOOL:
543 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
544 break;
545 }
546 break;
547 case GLSL_TYPE_BOOL:
548 switch (b) {
549 case GLSL_TYPE_UINT:
550 result = new(ctx) ir_expression(ir_unop_i2b,
551 new(ctx) ir_expression(ir_unop_u2i, src));
552 break;
553 case GLSL_TYPE_INT:
554 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
555 break;
556 case GLSL_TYPE_FLOAT:
557 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
558 break;
559 }
560 break;
561 }
562
563 assert(result != NULL);
564 assert(result->type == desired_type);
565
566 /* Try constant folding; it may fold in the conversion we just added. */
567 ir_constant *const constant = result->constant_expression_value();
568 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
569 }
570
571 /**
572 * Dereference a specific component from a scalar, vector, or matrix
573 */
574 static ir_rvalue *
575 dereference_component(ir_rvalue *src, unsigned component)
576 {
577 void *ctx = ralloc_parent(src);
578 assert(component < src->type->components());
579
580 /* If the source is a constant, just create a new constant instead of a
581 * dereference of the existing constant.
582 */
583 ir_constant *constant = src->as_constant();
584 if (constant)
585 return new(ctx) ir_constant(constant, component);
586
587 if (src->type->is_scalar()) {
588 return src;
589 } else if (src->type->is_vector()) {
590 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
591 } else {
592 assert(src->type->is_matrix());
593
594 /* Dereference a row of the matrix, then call this function again to get
595 * a specific element from that row.
596 */
597 const int c = component / src->type->column_type()->vector_elements;
598 const int r = component % src->type->column_type()->vector_elements;
599 ir_constant *const col_index = new(ctx) ir_constant(c);
600 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
601
602 col->type = src->type->column_type();
603
604 return dereference_component(col, r);
605 }
606
607 assert(!"Should not get here.");
608 return NULL;
609 }
610
611
612 static ir_rvalue *
613 process_array_constructor(exec_list *instructions,
614 const glsl_type *constructor_type,
615 YYLTYPE *loc, exec_list *parameters,
616 struct _mesa_glsl_parse_state *state)
617 {
618 void *ctx = state;
619 /* Array constructors come in two forms: sized and unsized. Sized array
620 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
621 * variables. In this case the number of parameters must exactly match the
622 * specified size of the array.
623 *
624 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
625 * are vec4 variables. In this case the size of the array being constructed
626 * is determined by the number of parameters.
627 *
628 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
629 *
630 * "There must be exactly the same number of arguments as the size of
631 * the array being constructed. If no size is present in the
632 * constructor, then the array is explicitly sized to the number of
633 * arguments provided. The arguments are assigned in order, starting at
634 * element 0, to the elements of the constructed array. Each argument
635 * must be the same type as the element type of the array, or be a type
636 * that can be converted to the element type of the array according to
637 * Section 4.1.10 "Implicit Conversions.""
638 */
639 exec_list actual_parameters;
640 const unsigned parameter_count =
641 process_parameters(instructions, &actual_parameters, parameters, state);
642
643 if ((parameter_count == 0)
644 || ((constructor_type->length != 0)
645 && (constructor_type->length != parameter_count))) {
646 const unsigned min_param = (constructor_type->length == 0)
647 ? 1 : constructor_type->length;
648
649 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
650 "parameter%s",
651 (constructor_type->length == 0) ? "at least" : "exactly",
652 min_param, (min_param <= 1) ? "" : "s");
653 return ir_rvalue::error_value(ctx);
654 }
655
656 if (constructor_type->length == 0) {
657 constructor_type =
658 glsl_type::get_array_instance(constructor_type->element_type(),
659 parameter_count);
660 assert(constructor_type != NULL);
661 assert(constructor_type->length == parameter_count);
662 }
663
664 bool all_parameters_are_constant = true;
665
666 /* Type cast each parameter and, if possible, fold constants. */
667 foreach_list_safe(n, &actual_parameters) {
668 ir_rvalue *ir = (ir_rvalue *) n;
669 ir_rvalue *result = ir;
670
671 /* Apply implicit conversions (not the scalar constructor rules!). See
672 * the spec quote above. */
673 if (constructor_type->element_type()->is_float()) {
674 const glsl_type *desired_type =
675 glsl_type::get_instance(GLSL_TYPE_FLOAT,
676 ir->type->vector_elements,
677 ir->type->matrix_columns);
678 if (result->type->can_implicitly_convert_to(desired_type)) {
679 /* Even though convert_component() implements the constructor
680 * conversion rules (not the implicit conversion rules), its safe
681 * to use it here because we already checked that the implicit
682 * conversion is legal.
683 */
684 result = convert_component(ir, desired_type);
685 }
686 }
687
688 if (result->type != constructor_type->element_type()) {
689 _mesa_glsl_error(loc, state, "type error in array constructor: "
690 "expected: %s, found %s",
691 constructor_type->element_type()->name,
692 result->type->name);
693 return ir_rvalue::error_value(ctx);
694 }
695
696 /* Attempt to convert the parameter to a constant valued expression.
697 * After doing so, track whether or not all the parameters to the
698 * constructor are trivially constant valued expressions.
699 */
700 ir_rvalue *const constant = result->constant_expression_value();
701
702 if (constant != NULL)
703 result = constant;
704 else
705 all_parameters_are_constant = false;
706
707 ir->replace_with(result);
708 }
709
710 if (all_parameters_are_constant)
711 return new(ctx) ir_constant(constructor_type, &actual_parameters);
712
713 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
714 ir_var_temporary);
715 instructions->push_tail(var);
716
717 int i = 0;
718 foreach_list(node, &actual_parameters) {
719 ir_rvalue *rhs = (ir_rvalue *) node;
720 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
721 new(ctx) ir_constant(i));
722
723 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
724 instructions->push_tail(assignment);
725
726 i++;
727 }
728
729 return new(ctx) ir_dereference_variable(var);
730 }
731
732
733 /**
734 * Try to convert a record constructor to a constant expression
735 */
736 static ir_constant *
737 constant_record_constructor(const glsl_type *constructor_type,
738 exec_list *parameters, void *mem_ctx)
739 {
740 foreach_list(node, parameters) {
741 ir_constant *constant = ((ir_instruction *) node)->as_constant();
742 if (constant == NULL)
743 return NULL;
744 node->replace_with(constant);
745 }
746
747 return new(mem_ctx) ir_constant(constructor_type, parameters);
748 }
749
750
751 /**
752 * Determine if a list consists of a single scalar r-value
753 */
754 bool
755 single_scalar_parameter(exec_list *parameters)
756 {
757 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
758 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
759
760 return (p->type->is_scalar() && p->next->is_tail_sentinel());
761 }
762
763
764 /**
765 * Generate inline code for a vector constructor
766 *
767 * The generated constructor code will consist of a temporary variable
768 * declaration of the same type as the constructor. A sequence of assignments
769 * from constructor parameters to the temporary will follow.
770 *
771 * \return
772 * An \c ir_dereference_variable of the temprorary generated in the constructor
773 * body.
774 */
775 ir_rvalue *
776 emit_inline_vector_constructor(const glsl_type *type,
777 exec_list *instructions,
778 exec_list *parameters,
779 void *ctx)
780 {
781 assert(!parameters->is_empty());
782
783 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
784 instructions->push_tail(var);
785
786 /* There are two kinds of vector constructors.
787 *
788 * - Construct a vector from a single scalar by replicating that scalar to
789 * all components of the vector.
790 *
791 * - Construct a vector from an arbirary combination of vectors and
792 * scalars. The components of the constructor parameters are assigned
793 * to the vector in order until the vector is full.
794 */
795 const unsigned lhs_components = type->components();
796 if (single_scalar_parameter(parameters)) {
797 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
798 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
799 lhs_components);
800 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
801 const unsigned mask = (1U << lhs_components) - 1;
802
803 assert(rhs->type == lhs->type);
804
805 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
806 instructions->push_tail(inst);
807 } else {
808 unsigned base_component = 0;
809 unsigned base_lhs_component = 0;
810 ir_constant_data data;
811 unsigned constant_mask = 0, constant_components = 0;
812
813 memset(&data, 0, sizeof(data));
814
815 foreach_list(node, parameters) {
816 ir_rvalue *param = (ir_rvalue *) node;
817 unsigned rhs_components = param->type->components();
818
819 /* Do not try to assign more components to the vector than it has!
820 */
821 if ((rhs_components + base_lhs_component) > lhs_components) {
822 rhs_components = lhs_components - base_lhs_component;
823 }
824
825 const ir_constant *const c = param->as_constant();
826 if (c != NULL) {
827 for (unsigned i = 0; i < rhs_components; i++) {
828 switch (c->type->base_type) {
829 case GLSL_TYPE_UINT:
830 data.u[i + base_component] = c->get_uint_component(i);
831 break;
832 case GLSL_TYPE_INT:
833 data.i[i + base_component] = c->get_int_component(i);
834 break;
835 case GLSL_TYPE_FLOAT:
836 data.f[i + base_component] = c->get_float_component(i);
837 break;
838 case GLSL_TYPE_BOOL:
839 data.b[i + base_component] = c->get_bool_component(i);
840 break;
841 default:
842 assert(!"Should not get here.");
843 break;
844 }
845 }
846
847 /* Mask of fields to be written in the assignment.
848 */
849 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
850 constant_components += rhs_components;
851
852 base_component += rhs_components;
853 }
854 /* Advance the component index by the number of components
855 * that were just assigned.
856 */
857 base_lhs_component += rhs_components;
858 }
859
860 if (constant_mask != 0) {
861 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
862 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
863 constant_components,
864 1);
865 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
866
867 ir_instruction *inst =
868 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
869 instructions->push_tail(inst);
870 }
871
872 base_component = 0;
873 foreach_list(node, parameters) {
874 ir_rvalue *param = (ir_rvalue *) node;
875 unsigned rhs_components = param->type->components();
876
877 /* Do not try to assign more components to the vector than it has!
878 */
879 if ((rhs_components + base_component) > lhs_components) {
880 rhs_components = lhs_components - base_component;
881 }
882
883 const ir_constant *const c = param->as_constant();
884 if (c == NULL) {
885 /* Mask of fields to be written in the assignment.
886 */
887 const unsigned write_mask = ((1U << rhs_components) - 1)
888 << base_component;
889
890 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
891
892 /* Generate a swizzle so that LHS and RHS sizes match.
893 */
894 ir_rvalue *rhs =
895 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
896
897 ir_instruction *inst =
898 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
899 instructions->push_tail(inst);
900 }
901
902 /* Advance the component index by the number of components that were
903 * just assigned.
904 */
905 base_component += rhs_components;
906 }
907 }
908 return new(ctx) ir_dereference_variable(var);
909 }
910
911
912 /**
913 * Generate assignment of a portion of a vector to a portion of a matrix column
914 *
915 * \param src_base First component of the source to be used in assignment
916 * \param column Column of destination to be assiged
917 * \param row_base First component of the destination column to be assigned
918 * \param count Number of components to be assigned
919 *
920 * \note
921 * \c src_base + \c count must be less than or equal to the number of components
922 * in the source vector.
923 */
924 ir_instruction *
925 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
926 ir_rvalue *src, unsigned src_base, unsigned count,
927 void *mem_ctx)
928 {
929 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
930 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
931
932 assert(column_ref->type->components() >= (row_base + count));
933 assert(src->type->components() >= (src_base + count));
934
935 /* Generate a swizzle that extracts the number of components from the source
936 * that are to be assigned to the column of the matrix.
937 */
938 if (count < src->type->vector_elements) {
939 src = new(mem_ctx) ir_swizzle(src,
940 src_base + 0, src_base + 1,
941 src_base + 2, src_base + 3,
942 count);
943 }
944
945 /* Mask of fields to be written in the assignment.
946 */
947 const unsigned write_mask = ((1U << count) - 1) << row_base;
948
949 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
950 }
951
952
953 /**
954 * Generate inline code for a matrix constructor
955 *
956 * The generated constructor code will consist of a temporary variable
957 * declaration of the same type as the constructor. A sequence of assignments
958 * from constructor parameters to the temporary will follow.
959 *
960 * \return
961 * An \c ir_dereference_variable of the temprorary generated in the constructor
962 * body.
963 */
964 ir_rvalue *
965 emit_inline_matrix_constructor(const glsl_type *type,
966 exec_list *instructions,
967 exec_list *parameters,
968 void *ctx)
969 {
970 assert(!parameters->is_empty());
971
972 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
973 instructions->push_tail(var);
974
975 /* There are three kinds of matrix constructors.
976 *
977 * - Construct a matrix from a single scalar by replicating that scalar to
978 * along the diagonal of the matrix and setting all other components to
979 * zero.
980 *
981 * - Construct a matrix from an arbirary combination of vectors and
982 * scalars. The components of the constructor parameters are assigned
983 * to the matrix in colum-major order until the matrix is full.
984 *
985 * - Construct a matrix from a single matrix. The source matrix is copied
986 * to the upper left portion of the constructed matrix, and the remaining
987 * elements take values from the identity matrix.
988 */
989 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
990 if (single_scalar_parameter(parameters)) {
991 /* Assign the scalar to the X component of a vec4, and fill the remaining
992 * components with zero.
993 */
994 ir_variable *rhs_var =
995 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
996 ir_var_temporary);
997 instructions->push_tail(rhs_var);
998
999 ir_constant_data zero;
1000 zero.f[0] = 0.0;
1001 zero.f[1] = 0.0;
1002 zero.f[2] = 0.0;
1003 zero.f[3] = 0.0;
1004
1005 ir_instruction *inst =
1006 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1007 new(ctx) ir_constant(rhs_var->type, &zero),
1008 NULL);
1009 instructions->push_tail(inst);
1010
1011 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1012
1013 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1014 instructions->push_tail(inst);
1015
1016 /* Assign the temporary vector to each column of the destination matrix
1017 * with a swizzle that puts the X component on the diagonal of the
1018 * matrix. In some cases this may mean that the X component does not
1019 * get assigned into the column at all (i.e., when the matrix has more
1020 * columns than rows).
1021 */
1022 static const unsigned rhs_swiz[4][4] = {
1023 { 0, 1, 1, 1 },
1024 { 1, 0, 1, 1 },
1025 { 1, 1, 0, 1 },
1026 { 1, 1, 1, 0 }
1027 };
1028
1029 const unsigned cols_to_init = MIN2(type->matrix_columns,
1030 type->vector_elements);
1031 for (unsigned i = 0; i < cols_to_init; i++) {
1032 ir_constant *const col_idx = new(ctx) ir_constant(i);
1033 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1034
1035 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1036 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1037 type->vector_elements);
1038
1039 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1040 instructions->push_tail(inst);
1041 }
1042
1043 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1044 ir_constant *const col_idx = new(ctx) ir_constant(i);
1045 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1046
1047 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1048 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1049 type->vector_elements);
1050
1051 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1052 instructions->push_tail(inst);
1053 }
1054 } else if (first_param->type->is_matrix()) {
1055 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1056 *
1057 * "If a matrix is constructed from a matrix, then each component
1058 * (column i, row j) in the result that has a corresponding
1059 * component (column i, row j) in the argument will be initialized
1060 * from there. All other components will be initialized to the
1061 * identity matrix. If a matrix argument is given to a matrix
1062 * constructor, it is an error to have any other arguments."
1063 */
1064 assert(first_param->next->is_tail_sentinel());
1065 ir_rvalue *const src_matrix = first_param;
1066
1067 /* If the source matrix is smaller, pre-initialize the relavent parts of
1068 * the destination matrix to the identity matrix.
1069 */
1070 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1071 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1072
1073 /* If the source matrix has fewer rows, every column of the destination
1074 * must be initialized. Otherwise only the columns in the destination
1075 * that do not exist in the source must be initialized.
1076 */
1077 unsigned col =
1078 (src_matrix->type->vector_elements < var->type->vector_elements)
1079 ? 0 : src_matrix->type->matrix_columns;
1080
1081 const glsl_type *const col_type = var->type->column_type();
1082 for (/* empty */; col < var->type->matrix_columns; col++) {
1083 ir_constant_data ident;
1084
1085 ident.f[0] = 0.0;
1086 ident.f[1] = 0.0;
1087 ident.f[2] = 0.0;
1088 ident.f[3] = 0.0;
1089
1090 ident.f[col] = 1.0;
1091
1092 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1093
1094 ir_rvalue *const lhs =
1095 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1096
1097 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1098 instructions->push_tail(inst);
1099 }
1100 }
1101
1102 /* Assign columns from the source matrix to the destination matrix.
1103 *
1104 * Since the parameter will be used in the RHS of multiple assignments,
1105 * generate a temporary and copy the paramter there.
1106 */
1107 ir_variable *const rhs_var =
1108 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1109 ir_var_temporary);
1110 instructions->push_tail(rhs_var);
1111
1112 ir_dereference *const rhs_var_ref =
1113 new(ctx) ir_dereference_variable(rhs_var);
1114 ir_instruction *const inst =
1115 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1116 instructions->push_tail(inst);
1117
1118 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1119 var->type->vector_elements);
1120 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1121 var->type->matrix_columns);
1122
1123 unsigned swiz[4] = { 0, 0, 0, 0 };
1124 for (unsigned i = 1; i < last_row; i++)
1125 swiz[i] = i;
1126
1127 const unsigned write_mask = (1U << last_row) - 1;
1128
1129 for (unsigned i = 0; i < last_col; i++) {
1130 ir_dereference *const lhs =
1131 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1132 ir_rvalue *const rhs_col =
1133 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1134
1135 /* If one matrix has columns that are smaller than the columns of the
1136 * other matrix, wrap the column access of the larger with a swizzle
1137 * so that the LHS and RHS of the assignment have the same size (and
1138 * therefore have the same type).
1139 *
1140 * It would be perfectly valid to unconditionally generate the
1141 * swizzles, this this will typically result in a more compact IR tree.
1142 */
1143 ir_rvalue *rhs;
1144 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1145 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1146 } else {
1147 rhs = rhs_col;
1148 }
1149
1150 ir_instruction *inst =
1151 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1152 instructions->push_tail(inst);
1153 }
1154 } else {
1155 const unsigned cols = type->matrix_columns;
1156 const unsigned rows = type->vector_elements;
1157 unsigned col_idx = 0;
1158 unsigned row_idx = 0;
1159
1160 foreach_list (node, parameters) {
1161 ir_rvalue *const rhs = (ir_rvalue *) node;
1162 const unsigned components_remaining_this_column = rows - row_idx;
1163 unsigned rhs_components = rhs->type->components();
1164 unsigned rhs_base = 0;
1165
1166 /* Since the parameter might be used in the RHS of two assignments,
1167 * generate a temporary and copy the paramter there.
1168 */
1169 ir_variable *rhs_var =
1170 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1171 instructions->push_tail(rhs_var);
1172
1173 ir_dereference *rhs_var_ref =
1174 new(ctx) ir_dereference_variable(rhs_var);
1175 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1176 instructions->push_tail(inst);
1177
1178 /* Assign the current parameter to as many components of the matrix
1179 * as it will fill.
1180 *
1181 * NOTE: A single vector parameter can span two matrix columns. A
1182 * single vec4, for example, can completely fill a mat2.
1183 */
1184 if (rhs_components >= components_remaining_this_column) {
1185 const unsigned count = MIN2(rhs_components,
1186 components_remaining_this_column);
1187
1188 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1189
1190 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1191 row_idx,
1192 rhs_var_ref, 0,
1193 count, ctx);
1194 instructions->push_tail(inst);
1195
1196 rhs_base = count;
1197
1198 col_idx++;
1199 row_idx = 0;
1200 }
1201
1202 /* If there is data left in the parameter and components left to be
1203 * set in the destination, emit another assignment. It is possible
1204 * that the assignment could be of a vec4 to the last element of the
1205 * matrix. In this case col_idx==cols, but there is still data
1206 * left in the source parameter. Obviously, don't emit an assignment
1207 * to data outside the destination matrix.
1208 */
1209 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1210 const unsigned count = rhs_components - rhs_base;
1211
1212 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1213
1214 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1215 row_idx,
1216 rhs_var_ref,
1217 rhs_base,
1218 count, ctx);
1219 instructions->push_tail(inst);
1220
1221 row_idx += count;
1222 }
1223 }
1224 }
1225
1226 return new(ctx) ir_dereference_variable(var);
1227 }
1228
1229
1230 ir_rvalue *
1231 emit_inline_record_constructor(const glsl_type *type,
1232 exec_list *instructions,
1233 exec_list *parameters,
1234 void *mem_ctx)
1235 {
1236 ir_variable *const var =
1237 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1238 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1239
1240 instructions->push_tail(var);
1241
1242 exec_node *node = parameters->head;
1243 for (unsigned i = 0; i < type->length; i++) {
1244 assert(!node->is_tail_sentinel());
1245
1246 ir_dereference *const lhs =
1247 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1248 type->fields.structure[i].name);
1249
1250 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1251 assert(rhs != NULL);
1252
1253 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1254
1255 instructions->push_tail(assign);
1256 node = node->next;
1257 }
1258
1259 return d;
1260 }
1261
1262
1263 static ir_rvalue *
1264 process_record_constructor(exec_list *instructions,
1265 const glsl_type *constructor_type,
1266 YYLTYPE *loc, exec_list *parameters,
1267 struct _mesa_glsl_parse_state *state)
1268 {
1269 void *ctx = state;
1270 exec_list actual_parameters;
1271
1272 process_parameters(instructions, &actual_parameters,
1273 parameters, state);
1274
1275 exec_node *node = actual_parameters.head;
1276 for (unsigned i = 0; i < constructor_type->length; i++) {
1277 ir_rvalue *ir = (ir_rvalue *) node;
1278
1279 if (node->is_tail_sentinel()) {
1280 _mesa_glsl_error(loc, state,
1281 "insufficient parameters to constructor for `%s'",
1282 constructor_type->name);
1283 return ir_rvalue::error_value(ctx);
1284 }
1285
1286 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1287 ir, state)) {
1288 node->replace_with(ir);
1289 } else {
1290 _mesa_glsl_error(loc, state,
1291 "parameter type mismatch in constructor for `%s.%s' "
1292 "(%s vs %s)",
1293 constructor_type->name,
1294 constructor_type->fields.structure[i].name,
1295 ir->type->name,
1296 constructor_type->fields.structure[i].type->name);
1297 return ir_rvalue::error_value(ctx);;
1298 }
1299
1300 node = node->next;
1301 }
1302
1303 if (!node->is_tail_sentinel()) {
1304 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1305 "for `%s'", constructor_type->name);
1306 return ir_rvalue::error_value(ctx);
1307 }
1308
1309 ir_rvalue *const constant =
1310 constant_record_constructor(constructor_type, &actual_parameters,
1311 state);
1312
1313 return (constant != NULL)
1314 ? constant
1315 : emit_inline_record_constructor(constructor_type, instructions,
1316 &actual_parameters, state);
1317 }
1318
1319
1320 ir_rvalue *
1321 ast_function_expression::hir(exec_list *instructions,
1322 struct _mesa_glsl_parse_state *state)
1323 {
1324 void *ctx = state;
1325 /* There are three sorts of function calls.
1326 *
1327 * 1. constructors - The first subexpression is an ast_type_specifier.
1328 * 2. methods - Only the .length() method of array types.
1329 * 3. functions - Calls to regular old functions.
1330 *
1331 * Method calls are actually detected when the ast_field_selection
1332 * expression is handled.
1333 */
1334 if (is_constructor()) {
1335 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1336 YYLTYPE loc = type->get_location();
1337 const char *name;
1338
1339 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1340
1341 /* constructor_type can be NULL if a variable with the same name as the
1342 * structure has come into scope.
1343 */
1344 if (constructor_type == NULL) {
1345 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1346 "may be shadowed by a variable with the same name)",
1347 type->type_name);
1348 return ir_rvalue::error_value(ctx);
1349 }
1350
1351
1352 /* Constructors for samplers are illegal.
1353 */
1354 if (constructor_type->is_sampler()) {
1355 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1356 constructor_type->name);
1357 return ir_rvalue::error_value(ctx);
1358 }
1359
1360 if (constructor_type->is_array()) {
1361 if (!state->check_version(120, 300, &loc,
1362 "array constructors forbidden")) {
1363 return ir_rvalue::error_value(ctx);
1364 }
1365
1366 return process_array_constructor(instructions, constructor_type,
1367 & loc, &this->expressions, state);
1368 }
1369
1370
1371 /* There are two kinds of constructor calls. Constructors for arrays and
1372 * structures must have the exact number of arguments with matching types
1373 * in the correct order. These constructors follow essentially the same
1374 * type matching rules as functions.
1375 *
1376 * Constructors for built-in language types, such as mat4 and vec2, are
1377 * free form. The only requirements are that the parameters must provide
1378 * enough values of the correct scalar type and that no arguments are
1379 * given past the last used argument.
1380 *
1381 * When using the C-style initializer syntax from GLSL 4.20, constructors
1382 * must have the exact number of arguments with matching types in the
1383 * correct order.
1384 */
1385 if (constructor_type->is_record()) {
1386 return process_record_constructor(instructions, constructor_type,
1387 &loc, &this->expressions,
1388 state);
1389 }
1390
1391 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1392 return ir_rvalue::error_value(ctx);
1393
1394 /* Total number of components of the type being constructed. */
1395 const unsigned type_components = constructor_type->components();
1396
1397 /* Number of components from parameters that have actually been
1398 * consumed. This is used to perform several kinds of error checking.
1399 */
1400 unsigned components_used = 0;
1401
1402 unsigned matrix_parameters = 0;
1403 unsigned nonmatrix_parameters = 0;
1404 exec_list actual_parameters;
1405
1406 foreach_list (n, &this->expressions) {
1407 ast_node *ast = exec_node_data(ast_node, n, link);
1408 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1409
1410 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1411 *
1412 * "It is an error to provide extra arguments beyond this
1413 * last used argument."
1414 */
1415 if (components_used >= type_components) {
1416 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1417 "constructor",
1418 constructor_type->name);
1419 return ir_rvalue::error_value(ctx);
1420 }
1421
1422 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1423 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1424 "non-numeric data type",
1425 constructor_type->name);
1426 return ir_rvalue::error_value(ctx);
1427 }
1428
1429 /* Count the number of matrix and nonmatrix parameters. This
1430 * is used below to enforce some of the constructor rules.
1431 */
1432 if (result->type->is_matrix())
1433 matrix_parameters++;
1434 else
1435 nonmatrix_parameters++;
1436
1437 actual_parameters.push_tail(result);
1438 components_used += result->type->components();
1439 }
1440
1441 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1442 *
1443 * "It is an error to construct matrices from other matrices. This
1444 * is reserved for future use."
1445 */
1446 if (matrix_parameters > 0
1447 && constructor_type->is_matrix()
1448 && !state->check_version(120, 100, &loc,
1449 "cannot construct `%s' from a matrix",
1450 constructor_type->name)) {
1451 return ir_rvalue::error_value(ctx);
1452 }
1453
1454 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1455 *
1456 * "If a matrix argument is given to a matrix constructor, it is
1457 * an error to have any other arguments."
1458 */
1459 if ((matrix_parameters > 0)
1460 && ((matrix_parameters + nonmatrix_parameters) > 1)
1461 && constructor_type->is_matrix()) {
1462 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1463 "matrix must be only parameter",
1464 constructor_type->name);
1465 return ir_rvalue::error_value(ctx);
1466 }
1467
1468 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1469 *
1470 * "In these cases, there must be enough components provided in the
1471 * arguments to provide an initializer for every component in the
1472 * constructed value."
1473 */
1474 if (components_used < type_components && components_used != 1
1475 && matrix_parameters == 0) {
1476 _mesa_glsl_error(& loc, state, "too few components to construct "
1477 "`%s'",
1478 constructor_type->name);
1479 return ir_rvalue::error_value(ctx);
1480 }
1481
1482 /* Later, we cast each parameter to the same base type as the
1483 * constructor. Since there are no non-floating point matrices, we
1484 * need to break them up into a series of column vectors.
1485 */
1486 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1487 foreach_list_safe(n, &actual_parameters) {
1488 ir_rvalue *matrix = (ir_rvalue *) n;
1489
1490 if (!matrix->type->is_matrix())
1491 continue;
1492
1493 /* Create a temporary containing the matrix. */
1494 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1495 ir_var_temporary);
1496 instructions->push_tail(var);
1497 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1498 ir_dereference_variable(var), matrix, NULL));
1499 var->constant_value = matrix->constant_expression_value();
1500
1501 /* Replace the matrix with dereferences of its columns. */
1502 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1503 matrix->insert_before(new (ctx) ir_dereference_array(var,
1504 new(ctx) ir_constant(i)));
1505 }
1506 matrix->remove();
1507 }
1508 }
1509
1510 bool all_parameters_are_constant = true;
1511
1512 /* Type cast each parameter and, if possible, fold constants.*/
1513 foreach_list_safe(n, &actual_parameters) {
1514 ir_rvalue *ir = (ir_rvalue *) n;
1515
1516 const glsl_type *desired_type =
1517 glsl_type::get_instance(constructor_type->base_type,
1518 ir->type->vector_elements,
1519 ir->type->matrix_columns);
1520 ir_rvalue *result = convert_component(ir, desired_type);
1521
1522 /* Attempt to convert the parameter to a constant valued expression.
1523 * After doing so, track whether or not all the parameters to the
1524 * constructor are trivially constant valued expressions.
1525 */
1526 ir_rvalue *const constant = result->constant_expression_value();
1527
1528 if (constant != NULL)
1529 result = constant;
1530 else
1531 all_parameters_are_constant = false;
1532
1533 if (result != ir) {
1534 ir->replace_with(result);
1535 }
1536 }
1537
1538 /* If all of the parameters are trivially constant, create a
1539 * constant representing the complete collection of parameters.
1540 */
1541 if (all_parameters_are_constant) {
1542 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1543 } else if (constructor_type->is_scalar()) {
1544 return dereference_component((ir_rvalue *) actual_parameters.head,
1545 0);
1546 } else if (constructor_type->is_vector()) {
1547 return emit_inline_vector_constructor(constructor_type,
1548 instructions,
1549 &actual_parameters,
1550 ctx);
1551 } else {
1552 assert(constructor_type->is_matrix());
1553 return emit_inline_matrix_constructor(constructor_type,
1554 instructions,
1555 &actual_parameters,
1556 ctx);
1557 }
1558 } else {
1559 const ast_expression *id = subexpressions[0];
1560 const char *func_name = id->primary_expression.identifier;
1561 YYLTYPE loc = id->get_location();
1562 exec_list actual_parameters;
1563
1564 process_parameters(instructions, &actual_parameters, &this->expressions,
1565 state);
1566
1567 ir_function_signature *sig =
1568 match_function_by_name(func_name, &actual_parameters, state);
1569
1570 ir_call *call = NULL;
1571 ir_rvalue *value = NULL;
1572 if (sig == NULL) {
1573 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1574 value = ir_rvalue::error_value(ctx);
1575 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1576 /* an error has already been emitted */
1577 value = ir_rvalue::error_value(ctx);
1578 } else {
1579 value = generate_call(instructions, sig, &actual_parameters,
1580 &call, state);
1581 }
1582
1583 return value;
1584 }
1585
1586 return ir_rvalue::error_value(ctx);
1587 }