glsl: Fix matrix constructors with vector parameters
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters Parameter list for the function. This may be either a
66 * formal or actual parameter list. Only the type is used.
67 *
68 * \return
69 * A talloced string representing the prototype of the function.
70 */
71 char *
72 prototype_string(const glsl_type *return_type, const char *name,
73 exec_list *parameters)
74 {
75 char *str = NULL;
76
77 if (return_type != NULL)
78 str = talloc_asprintf(str, "%s ", return_type->name);
79
80 str = talloc_asprintf_append(str, "%s(", name);
81
82 const char *comma = "";
83 foreach_list(node, parameters) {
84 const ir_instruction *const param = (ir_instruction *) node;
85
86 str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
87 comma = ", ";
88 }
89
90 str = talloc_strdup_append(str, ")");
91 return str;
92 }
93
94
95 static ir_rvalue *
96 process_call(exec_list *instructions, ir_function *f,
97 YYLTYPE *loc, exec_list *actual_parameters,
98 struct _mesa_glsl_parse_state *state)
99 {
100 void *ctx = state;
101
102 ir_function_signature *sig = f->matching_signature(actual_parameters);
103
104 if (sig != NULL) {
105 /* Verify that 'out' and 'inout' actual parameters are lvalues. This
106 * isn't done in ir_function::matching_signature because that function
107 * cannot generate the necessary diagnostics.
108 */
109 exec_list_iterator actual_iter = actual_parameters->iterator();
110 exec_list_iterator formal_iter = sig->parameters.iterator();
111
112 while (actual_iter.has_next()) {
113 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
114 ir_variable *formal = (ir_variable *) formal_iter.get();
115
116 assert(actual != NULL);
117 assert(formal != NULL);
118
119 if ((formal->mode == ir_var_out)
120 || (formal->mode == ir_var_inout)) {
121 if (! actual->is_lvalue()) {
122 /* FINISHME: Log a better diagnostic here. There is no way
123 * FINISHME: to tell the user which parameter is invalid.
124 */
125 _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
126 (formal->mode == ir_var_out) ? "out" : "inout");
127 }
128 }
129
130 if (formal->type->is_numeric() || formal->type->is_boolean()) {
131 ir_rvalue *converted = convert_component(actual, formal->type);
132 actual->replace_with(converted);
133 }
134
135 actual_iter.next();
136 formal_iter.next();
137 }
138
139 /* Always insert the call in the instruction stream, and return a deref
140 * of its return val if it returns a value, since we don't know if
141 * the rvalue is going to be assigned to anything or not.
142 */
143 ir_call *call = new(ctx) ir_call(sig, actual_parameters);
144 if (!sig->return_type->is_void()) {
145 ir_variable *var;
146 ir_dereference_variable *deref;
147
148 var = new(ctx) ir_variable(sig->return_type,
149 talloc_asprintf(ctx, "%s_retval",
150 sig->function_name()),
151 ir_var_temporary);
152 instructions->push_tail(var);
153
154 deref = new(ctx) ir_dereference_variable(var);
155 ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
156 instructions->push_tail(assign);
157 if (state->language_version >= 120)
158 var->constant_value = call->constant_expression_value();
159
160 deref = new(ctx) ir_dereference_variable(var);
161 return deref;
162 } else {
163 instructions->push_tail(call);
164 return NULL;
165 }
166 } else {
167 char *str = prototype_string(NULL, f->name, actual_parameters);
168
169 _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
170 str);
171 talloc_free(str);
172
173 const char *prefix = "candidates are: ";
174 foreach_list (node, &f->signatures) {
175 ir_function_signature *sig = (ir_function_signature *) node;
176
177 str = prototype_string(sig->return_type, f->name, &sig->parameters);
178 _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
179 talloc_free(str);
180
181 prefix = " ";
182 }
183
184 return ir_call::get_error_instruction(ctx);
185 }
186 }
187
188
189 static ir_rvalue *
190 match_function_by_name(exec_list *instructions, const char *name,
191 YYLTYPE *loc, exec_list *actual_parameters,
192 struct _mesa_glsl_parse_state *state)
193 {
194 void *ctx = state;
195 ir_function *f = state->symbols->get_function(name);
196
197 if (f == NULL) {
198 _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
199 return ir_call::get_error_instruction(ctx);
200 }
201
202 /* Once we've determined that the function being called might exist, try
203 * to find an overload of the function that matches the parameters.
204 */
205 return process_call(instructions, f, loc, actual_parameters, state);
206 }
207
208
209 /**
210 * Perform automatic type conversion of constructor parameters
211 *
212 * This implements the rules in the "Conversion and Scalar Constructors"
213 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
214 */
215 static ir_rvalue *
216 convert_component(ir_rvalue *src, const glsl_type *desired_type)
217 {
218 void *ctx = talloc_parent(src);
219 const unsigned a = desired_type->base_type;
220 const unsigned b = src->type->base_type;
221 ir_expression *result = NULL;
222
223 if (src->type->is_error())
224 return src;
225
226 assert(a <= GLSL_TYPE_BOOL);
227 assert(b <= GLSL_TYPE_BOOL);
228
229 if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
230 return src;
231
232 switch (a) {
233 case GLSL_TYPE_UINT:
234 case GLSL_TYPE_INT:
235 if (b == GLSL_TYPE_FLOAT)
236 result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
237 else {
238 assert(b == GLSL_TYPE_BOOL);
239 result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
240 }
241 break;
242 case GLSL_TYPE_FLOAT:
243 switch (b) {
244 case GLSL_TYPE_UINT:
245 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
246 break;
247 case GLSL_TYPE_INT:
248 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
249 break;
250 case GLSL_TYPE_BOOL:
251 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
252 break;
253 }
254 break;
255 case GLSL_TYPE_BOOL:
256 switch (b) {
257 case GLSL_TYPE_UINT:
258 case GLSL_TYPE_INT:
259 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
260 break;
261 case GLSL_TYPE_FLOAT:
262 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
263 break;
264 }
265 break;
266 }
267
268 assert(result != NULL);
269
270 /* Try constant folding; it may fold in the conversion we just added. */
271 ir_constant *const constant = result->constant_expression_value();
272 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
273 }
274
275 /**
276 * Dereference a specific component from a scalar, vector, or matrix
277 */
278 static ir_rvalue *
279 dereference_component(ir_rvalue *src, unsigned component)
280 {
281 void *ctx = talloc_parent(src);
282 assert(component < src->type->components());
283
284 /* If the source is a constant, just create a new constant instead of a
285 * dereference of the existing constant.
286 */
287 ir_constant *constant = src->as_constant();
288 if (constant)
289 return new(ctx) ir_constant(constant, component);
290
291 if (src->type->is_scalar()) {
292 return src;
293 } else if (src->type->is_vector()) {
294 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
295 } else {
296 assert(src->type->is_matrix());
297
298 /* Dereference a row of the matrix, then call this function again to get
299 * a specific element from that row.
300 */
301 const int c = component / src->type->column_type()->vector_elements;
302 const int r = component % src->type->column_type()->vector_elements;
303 ir_constant *const col_index = new(ctx) ir_constant(c);
304 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
305
306 col->type = src->type->column_type();
307
308 return dereference_component(col, r);
309 }
310
311 assert(!"Should not get here.");
312 return NULL;
313 }
314
315
316 static ir_rvalue *
317 process_array_constructor(exec_list *instructions,
318 const glsl_type *constructor_type,
319 YYLTYPE *loc, exec_list *parameters,
320 struct _mesa_glsl_parse_state *state)
321 {
322 void *ctx = state;
323 /* Array constructors come in two forms: sized and unsized. Sized array
324 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
325 * variables. In this case the number of parameters must exactly match the
326 * specified size of the array.
327 *
328 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
329 * are vec4 variables. In this case the size of the array being constructed
330 * is determined by the number of parameters.
331 *
332 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
333 *
334 * "There must be exactly the same number of arguments as the size of
335 * the array being constructed. If no size is present in the
336 * constructor, then the array is explicitly sized to the number of
337 * arguments provided. The arguments are assigned in order, starting at
338 * element 0, to the elements of the constructed array. Each argument
339 * must be the same type as the element type of the array, or be a type
340 * that can be converted to the element type of the array according to
341 * Section 4.1.10 "Implicit Conversions.""
342 */
343 exec_list actual_parameters;
344 const unsigned parameter_count =
345 process_parameters(instructions, &actual_parameters, parameters, state);
346
347 if ((parameter_count == 0)
348 || ((constructor_type->length != 0)
349 && (constructor_type->length != parameter_count))) {
350 const unsigned min_param = (constructor_type->length == 0)
351 ? 1 : constructor_type->length;
352
353 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
354 "parameter%s",
355 (constructor_type->length != 0) ? "at least" : "exactly",
356 min_param, (min_param <= 1) ? "" : "s");
357 return ir_call::get_error_instruction(ctx);
358 }
359
360 if (constructor_type->length == 0) {
361 constructor_type =
362 glsl_type::get_array_instance(constructor_type->element_type(),
363 parameter_count);
364 assert(constructor_type != NULL);
365 assert(constructor_type->length == parameter_count);
366 }
367
368 bool all_parameters_are_constant = true;
369
370 /* Type cast each parameter and, if possible, fold constants. */
371 foreach_list_safe(n, &actual_parameters) {
372 ir_rvalue *ir = (ir_rvalue *) n;
373 ir_rvalue *result = ir;
374
375 /* Apply implicit conversions (not the scalar constructor rules!) */
376 if (constructor_type->element_type()->is_float()) {
377 const glsl_type *desired_type =
378 glsl_type::get_instance(GLSL_TYPE_FLOAT,
379 ir->type->vector_elements,
380 ir->type->matrix_columns);
381 result = convert_component(ir, desired_type);
382 }
383
384 if (result->type != constructor_type->element_type()) {
385 _mesa_glsl_error(loc, state, "type error in array constructor: "
386 "expected: %s, found %s",
387 constructor_type->element_type()->name,
388 result->type->name);
389 }
390
391 /* Attempt to convert the parameter to a constant valued expression.
392 * After doing so, track whether or not all the parameters to the
393 * constructor are trivially constant valued expressions.
394 */
395 ir_rvalue *const constant = result->constant_expression_value();
396
397 if (constant != NULL)
398 result = constant;
399 else
400 all_parameters_are_constant = false;
401
402 ir->replace_with(result);
403 }
404
405 if (all_parameters_are_constant)
406 return new(ctx) ir_constant(constructor_type, &actual_parameters);
407
408 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
409 ir_var_temporary);
410 instructions->push_tail(var);
411
412 int i = 0;
413 foreach_list(node, &actual_parameters) {
414 ir_rvalue *rhs = (ir_rvalue *) node;
415 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
416 new(ctx) ir_constant(i));
417
418 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
419 instructions->push_tail(assignment);
420
421 i++;
422 }
423
424 return new(ctx) ir_dereference_variable(var);
425 }
426
427
428 /**
429 * Try to convert a record constructor to a constant expression
430 */
431 static ir_constant *
432 constant_record_constructor(const glsl_type *constructor_type,
433 exec_list *parameters, void *mem_ctx)
434 {
435 foreach_list(node, parameters) {
436 ir_constant *constant = ((ir_instruction *) node)->as_constant();
437 if (constant == NULL)
438 return NULL;
439 node->replace_with(constant);
440 }
441
442 return new(mem_ctx) ir_constant(constructor_type, parameters);
443 }
444
445
446 /**
447 * Determine if a list consists of a single scalar r-value
448 */
449 bool
450 single_scalar_parameter(exec_list *parameters)
451 {
452 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
453 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
454
455 return (p->type->is_scalar() && p->next->is_tail_sentinel());
456 }
457
458
459 /**
460 * Generate inline code for a vector constructor
461 *
462 * The generated constructor code will consist of a temporary variable
463 * declaration of the same type as the constructor. A sequence of assignments
464 * from constructor parameters to the temporary will follow.
465 *
466 * \return
467 * An \c ir_dereference_variable of the temprorary generated in the constructor
468 * body.
469 */
470 ir_rvalue *
471 emit_inline_vector_constructor(const glsl_type *type,
472 exec_list *instructions,
473 exec_list *parameters,
474 void *ctx)
475 {
476 assert(!parameters->is_empty());
477
478 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
479 instructions->push_tail(var);
480
481 /* There are two kinds of vector constructors.
482 *
483 * - Construct a vector from a single scalar by replicating that scalar to
484 * all components of the vector.
485 *
486 * - Construct a vector from an arbirary combination of vectors and
487 * scalars. The components of the constructor parameters are assigned
488 * to the vector in order until the vector is full.
489 */
490 const unsigned lhs_components = type->components();
491 if (single_scalar_parameter(parameters)) {
492 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
493 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
494 lhs_components);
495 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
496 const unsigned mask = (1U << lhs_components) - 1;
497
498 assert(rhs->type == lhs->type);
499
500 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
501 instructions->push_tail(inst);
502 } else {
503 unsigned base_component = 0;
504 unsigned base_lhs_component = 0;
505 ir_constant_data data;
506 unsigned constant_mask = 0, constant_components = 0;
507
508 memset(&data, 0, sizeof(data));
509
510 foreach_list(node, parameters) {
511 ir_rvalue *param = (ir_rvalue *) node;
512 unsigned rhs_components = param->type->components();
513
514 /* Do not try to assign more components to the vector than it has!
515 */
516 if ((rhs_components + base_lhs_component) > lhs_components) {
517 rhs_components = lhs_components - base_lhs_component;
518 }
519
520 const ir_constant *const c = param->as_constant();
521 if (c != NULL) {
522 for (unsigned i = 0; i < rhs_components; i++) {
523 switch (c->type->base_type) {
524 case GLSL_TYPE_UINT:
525 data.u[i + base_component] = c->get_uint_component(i);
526 break;
527 case GLSL_TYPE_INT:
528 data.i[i + base_component] = c->get_int_component(i);
529 break;
530 case GLSL_TYPE_FLOAT:
531 data.f[i + base_component] = c->get_float_component(i);
532 break;
533 case GLSL_TYPE_BOOL:
534 data.b[i + base_component] = c->get_bool_component(i);
535 break;
536 default:
537 assert(!"Should not get here.");
538 break;
539 }
540 }
541
542 /* Mask of fields to be written in the assignment.
543 */
544 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
545 constant_components += rhs_components;
546
547 base_component += rhs_components;
548 }
549 /* Advance the component index by the number of components
550 * that were just assigned.
551 */
552 base_lhs_component += rhs_components;
553 }
554
555 if (constant_mask != 0) {
556 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
557 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
558 constant_components,
559 1);
560 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
561
562 ir_instruction *inst =
563 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
564 instructions->push_tail(inst);
565 }
566
567 base_component = 0;
568 foreach_list(node, parameters) {
569 ir_rvalue *param = (ir_rvalue *) node;
570 unsigned rhs_components = param->type->components();
571
572 /* Do not try to assign more components to the vector than it has!
573 */
574 if ((rhs_components + base_component) > lhs_components) {
575 rhs_components = lhs_components - base_component;
576 }
577
578 const ir_constant *const c = param->as_constant();
579 if (c == NULL) {
580 /* Mask of fields to be written in the assignment.
581 */
582 const unsigned write_mask = ((1U << rhs_components) - 1)
583 << base_component;
584
585 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
586
587 /* Generate a swizzle so that LHS and RHS sizes match.
588 */
589 ir_rvalue *rhs =
590 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
591
592 ir_instruction *inst =
593 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
594 instructions->push_tail(inst);
595 }
596
597 /* Advance the component index by the number of components that were
598 * just assigned.
599 */
600 base_component += rhs_components;
601 }
602 }
603 return new(ctx) ir_dereference_variable(var);
604 }
605
606
607 /**
608 * Generate assignment of a portion of a vector to a portion of a matrix column
609 *
610 * \param src_base First component of the source to be used in assignment
611 * \param column Column of destination to be assiged
612 * \param row_base First component of the destination column to be assigned
613 * \param count Number of components to be assigned
614 *
615 * \note
616 * \c src_base + \c count must be less than or equal to the number of components
617 * in the source vector.
618 */
619 ir_instruction *
620 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
621 ir_rvalue *src, unsigned src_base, unsigned count,
622 void *mem_ctx)
623 {
624 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
625 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
626
627 assert(column_ref->type->components() >= (row_base + count));
628 assert(src->type->components() >= (src_base + count));
629
630 /* Generate a swizzle that extracts the number of components from the source
631 * that are to be assigned to the column of the matrix.
632 */
633 if (count < src->type->vector_elements) {
634 src = new(mem_ctx) ir_swizzle(src,
635 src_base + 0, src_base + 1,
636 src_base + 2, src_base + 3,
637 count);
638 }
639
640 /* Mask of fields to be written in the assignment.
641 */
642 const unsigned write_mask = ((1U << count) - 1) << row_base;
643
644 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
645 }
646
647
648 /**
649 * Generate inline code for a matrix constructor
650 *
651 * The generated constructor code will consist of a temporary variable
652 * declaration of the same type as the constructor. A sequence of assignments
653 * from constructor parameters to the temporary will follow.
654 *
655 * \return
656 * An \c ir_dereference_variable of the temprorary generated in the constructor
657 * body.
658 */
659 ir_rvalue *
660 emit_inline_matrix_constructor(const glsl_type *type,
661 exec_list *instructions,
662 exec_list *parameters,
663 void *ctx)
664 {
665 assert(!parameters->is_empty());
666
667 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
668 instructions->push_tail(var);
669
670 /* There are three kinds of matrix constructors.
671 *
672 * - Construct a matrix from a single scalar by replicating that scalar to
673 * along the diagonal of the matrix and setting all other components to
674 * zero.
675 *
676 * - Construct a matrix from an arbirary combination of vectors and
677 * scalars. The components of the constructor parameters are assigned
678 * to the matrix in colum-major order until the matrix is full.
679 *
680 * - Construct a matrix from a single matrix. The source matrix is copied
681 * to the upper left portion of the constructed matrix, and the remaining
682 * elements take values from the identity matrix.
683 */
684 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
685 if (single_scalar_parameter(parameters)) {
686 /* Assign the scalar to the X component of a vec4, and fill the remaining
687 * components with zero.
688 */
689 ir_variable *rhs_var =
690 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
691 ir_var_temporary);
692 instructions->push_tail(rhs_var);
693
694 ir_constant_data zero;
695 zero.f[0] = 0.0;
696 zero.f[1] = 0.0;
697 zero.f[2] = 0.0;
698 zero.f[3] = 0.0;
699
700 ir_instruction *inst =
701 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
702 new(ctx) ir_constant(rhs_var->type, &zero),
703 NULL);
704 instructions->push_tail(inst);
705
706 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
707
708 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
709 instructions->push_tail(inst);
710
711 /* Assign the temporary vector to each column of the destination matrix
712 * with a swizzle that puts the X component on the diagonal of the
713 * matrix. In some cases this may mean that the X component does not
714 * get assigned into the column at all (i.e., when the matrix has more
715 * columns than rows).
716 */
717 static const unsigned rhs_swiz[4][4] = {
718 { 0, 1, 1, 1 },
719 { 1, 0, 1, 1 },
720 { 1, 1, 0, 1 },
721 { 1, 1, 1, 0 }
722 };
723
724 const unsigned cols_to_init = MIN2(type->matrix_columns,
725 type->vector_elements);
726 for (unsigned i = 0; i < cols_to_init; i++) {
727 ir_constant *const col_idx = new(ctx) ir_constant(i);
728 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
729
730 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
731 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
732 type->vector_elements);
733
734 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
735 instructions->push_tail(inst);
736 }
737
738 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
739 ir_constant *const col_idx = new(ctx) ir_constant(i);
740 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
741
742 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
743 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
744 type->vector_elements);
745
746 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
747 instructions->push_tail(inst);
748 }
749 } else if (first_param->type->is_matrix()) {
750 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
751 *
752 * "If a matrix is constructed from a matrix, then each component
753 * (column i, row j) in the result that has a corresponding
754 * component (column i, row j) in the argument will be initialized
755 * from there. All other components will be initialized to the
756 * identity matrix. If a matrix argument is given to a matrix
757 * constructor, it is an error to have any other arguments."
758 */
759 assert(first_param->next->is_tail_sentinel());
760 ir_rvalue *const src_matrix = first_param;
761
762 /* If the source matrix is smaller, pre-initialize the relavent parts of
763 * the destination matrix to the identity matrix.
764 */
765 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
766 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
767
768 /* If the source matrix has fewer rows, every column of the destination
769 * must be initialized. Otherwise only the columns in the destination
770 * that do not exist in the source must be initialized.
771 */
772 unsigned col =
773 (src_matrix->type->vector_elements < var->type->vector_elements)
774 ? 0 : src_matrix->type->matrix_columns;
775
776 const glsl_type *const col_type = var->type->column_type();
777 for (/* empty */; col < var->type->matrix_columns; col++) {
778 ir_constant_data ident;
779
780 ident.f[0] = 0.0;
781 ident.f[1] = 0.0;
782 ident.f[2] = 0.0;
783 ident.f[3] = 0.0;
784
785 ident.f[col] = 1.0;
786
787 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
788
789 ir_rvalue *const lhs =
790 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
791
792 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
793 instructions->push_tail(inst);
794 }
795 }
796
797 /* Assign columns from the source matrix to the destination matrix.
798 *
799 * Since the parameter will be used in the RHS of multiple assignments,
800 * generate a temporary and copy the paramter there.
801 */
802 ir_variable *const rhs_var =
803 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
804 ir_var_temporary);
805 instructions->push_tail(rhs_var);
806
807 ir_dereference *const rhs_var_ref =
808 new(ctx) ir_dereference_variable(rhs_var);
809 ir_instruction *const inst =
810 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
811 instructions->push_tail(inst);
812
813 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
814 var->type->vector_elements);
815 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
816 var->type->matrix_columns);
817
818 unsigned swiz[4] = { 0, 0, 0, 0 };
819 for (unsigned i = 1; i < last_row; i++)
820 swiz[i] = i;
821
822 const unsigned write_mask = (1U << last_row) - 1;
823
824 for (unsigned i = 0; i < last_col; i++) {
825 ir_dereference *const lhs =
826 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
827 ir_rvalue *const rhs_col =
828 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
829
830 /* If one matrix has columns that are smaller than the columns of the
831 * other matrix, wrap the column access of the larger with a swizzle
832 * so that the LHS and RHS of the assignment have the same size (and
833 * therefore have the same type).
834 *
835 * It would be perfectly valid to unconditionally generate the
836 * swizzles, this this will typically result in a more compact IR tree.
837 */
838 ir_rvalue *rhs;
839 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
840 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
841 } else {
842 rhs = rhs_col;
843 }
844
845 ir_instruction *inst =
846 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
847 instructions->push_tail(inst);
848 }
849 } else {
850 const unsigned cols = type->matrix_columns;
851 const unsigned rows = type->vector_elements;
852 unsigned col_idx = 0;
853 unsigned row_idx = 0;
854
855 foreach_list (node, parameters) {
856 ir_rvalue *const rhs = (ir_rvalue *) node;
857 const unsigned components_remaining_this_column = rows - row_idx;
858 unsigned rhs_components = rhs->type->components();
859 unsigned rhs_base = 0;
860
861 /* Since the parameter might be used in the RHS of two assignments,
862 * generate a temporary and copy the paramter there.
863 */
864 ir_variable *rhs_var =
865 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
866 instructions->push_tail(rhs_var);
867
868 ir_dereference *rhs_var_ref =
869 new(ctx) ir_dereference_variable(rhs_var);
870 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
871 instructions->push_tail(inst);
872
873 /* Assign the current parameter to as many components of the matrix
874 * as it will fill.
875 *
876 * NOTE: A single vector parameter can span two matrix columns. A
877 * single vec4, for example, can completely fill a mat2.
878 */
879 if (rhs_components >= components_remaining_this_column) {
880 const unsigned count = MIN2(rhs_components,
881 components_remaining_this_column);
882
883 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
884
885 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
886 row_idx,
887 rhs_var_ref, 0,
888 count, ctx);
889 instructions->push_tail(inst);
890
891 rhs_base = count;
892
893 col_idx++;
894 row_idx = 0;
895 }
896
897 /* If there is data left in the parameter and components left to be
898 * set in the destination, emit another assignment. It is possible
899 * that the assignment could be of a vec4 to the last element of the
900 * matrix. In this case col_idx==cols, but there is still data
901 * left in the source parameter. Obviously, don't emit an assignment
902 * to data outside the destination matrix.
903 */
904 if ((col_idx < cols) && (rhs_base < rhs_components)) {
905 const unsigned count = rhs_components - rhs_base;
906
907 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
908
909 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
910 row_idx,
911 rhs_var_ref,
912 rhs_base,
913 count, ctx);
914 instructions->push_tail(inst);
915
916 row_idx += count;
917 }
918 }
919 }
920
921 return new(ctx) ir_dereference_variable(var);
922 }
923
924
925 ir_rvalue *
926 emit_inline_record_constructor(const glsl_type *type,
927 exec_list *instructions,
928 exec_list *parameters,
929 void *mem_ctx)
930 {
931 ir_variable *const var =
932 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
933 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
934
935 instructions->push_tail(var);
936
937 exec_node *node = parameters->head;
938 for (unsigned i = 0; i < type->length; i++) {
939 assert(!node->is_tail_sentinel());
940
941 ir_dereference *const lhs =
942 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
943 type->fields.structure[i].name);
944
945 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
946 assert(rhs != NULL);
947
948 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
949
950 instructions->push_tail(assign);
951 node = node->next;
952 }
953
954 return d;
955 }
956
957
958 ir_rvalue *
959 ast_function_expression::hir(exec_list *instructions,
960 struct _mesa_glsl_parse_state *state)
961 {
962 void *ctx = state;
963 /* There are three sorts of function calls.
964 *
965 * 1. constructors - The first subexpression is an ast_type_specifier.
966 * 2. methods - Only the .length() method of array types.
967 * 3. functions - Calls to regular old functions.
968 *
969 * Method calls are actually detected when the ast_field_selection
970 * expression is handled.
971 */
972 if (is_constructor()) {
973 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
974 YYLTYPE loc = type->get_location();
975 const char *name;
976
977 const glsl_type *const constructor_type = type->glsl_type(& name, state);
978
979
980 /* Constructors for samplers are illegal.
981 */
982 if (constructor_type->is_sampler()) {
983 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
984 constructor_type->name);
985 return ir_call::get_error_instruction(ctx);
986 }
987
988 if (constructor_type->is_array()) {
989 if (state->language_version <= 110) {
990 _mesa_glsl_error(& loc, state,
991 "array constructors forbidden in GLSL 1.10");
992 return ir_call::get_error_instruction(ctx);
993 }
994
995 return process_array_constructor(instructions, constructor_type,
996 & loc, &this->expressions, state);
997 }
998
999
1000 /* There are two kinds of constructor call. Constructors for built-in
1001 * language types, such as mat4 and vec2, are free form. The only
1002 * requirement is that the parameters must provide enough values of the
1003 * correct scalar type. Constructors for arrays and structures must
1004 * have the exact number of parameters with matching types in the
1005 * correct order. These constructors follow essentially the same type
1006 * matching rules as functions.
1007 */
1008 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1009 return ir_call::get_error_instruction(ctx);
1010
1011 /* Total number of components of the type being constructed. */
1012 const unsigned type_components = constructor_type->components();
1013
1014 /* Number of components from parameters that have actually been
1015 * consumed. This is used to perform several kinds of error checking.
1016 */
1017 unsigned components_used = 0;
1018
1019 unsigned matrix_parameters = 0;
1020 unsigned nonmatrix_parameters = 0;
1021 exec_list actual_parameters;
1022
1023 foreach_list (n, &this->expressions) {
1024 ast_node *ast = exec_node_data(ast_node, n, link);
1025 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1026
1027 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1028 *
1029 * "It is an error to provide extra arguments beyond this
1030 * last used argument."
1031 */
1032 if (components_used >= type_components) {
1033 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1034 "constructor",
1035 constructor_type->name);
1036 return ir_call::get_error_instruction(ctx);
1037 }
1038
1039 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1040 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1041 "non-numeric data type",
1042 constructor_type->name);
1043 return ir_call::get_error_instruction(ctx);
1044 }
1045
1046 /* Count the number of matrix and nonmatrix parameters. This
1047 * is used below to enforce some of the constructor rules.
1048 */
1049 if (result->type->is_matrix())
1050 matrix_parameters++;
1051 else
1052 nonmatrix_parameters++;
1053
1054 actual_parameters.push_tail(result);
1055 components_used += result->type->components();
1056 }
1057
1058 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1059 *
1060 * "It is an error to construct matrices from other matrices. This
1061 * is reserved for future use."
1062 */
1063 if (state->language_version == 110 && matrix_parameters > 0
1064 && constructor_type->is_matrix()) {
1065 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1066 "matrix in GLSL 1.10",
1067 constructor_type->name);
1068 return ir_call::get_error_instruction(ctx);
1069 }
1070
1071 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1072 *
1073 * "If a matrix argument is given to a matrix constructor, it is
1074 * an error to have any other arguments."
1075 */
1076 if ((matrix_parameters > 0)
1077 && ((matrix_parameters + nonmatrix_parameters) > 1)
1078 && constructor_type->is_matrix()) {
1079 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1080 "matrix must be only parameter",
1081 constructor_type->name);
1082 return ir_call::get_error_instruction(ctx);
1083 }
1084
1085 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1086 *
1087 * "In these cases, there must be enough components provided in the
1088 * arguments to provide an initializer for every component in the
1089 * constructed value."
1090 */
1091 if (components_used < type_components && components_used != 1
1092 && matrix_parameters == 0) {
1093 _mesa_glsl_error(& loc, state, "too few components to construct "
1094 "`%s'",
1095 constructor_type->name);
1096 return ir_call::get_error_instruction(ctx);
1097 }
1098
1099 /* Later, we cast each parameter to the same base type as the
1100 * constructor. Since there are no non-floating point matrices, we
1101 * need to break them up into a series of column vectors.
1102 */
1103 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1104 foreach_list_safe(n, &actual_parameters) {
1105 ir_rvalue *matrix = (ir_rvalue *) n;
1106
1107 if (!matrix->type->is_matrix())
1108 continue;
1109
1110 /* Create a temporary containing the matrix. */
1111 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1112 ir_var_temporary);
1113 instructions->push_tail(var);
1114 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1115 ir_dereference_variable(var), matrix, NULL));
1116 var->constant_value = matrix->constant_expression_value();
1117
1118 /* Replace the matrix with dereferences of its columns. */
1119 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1120 matrix->insert_before(new (ctx) ir_dereference_array(var,
1121 new(ctx) ir_constant(i)));
1122 }
1123 matrix->remove();
1124 }
1125 }
1126
1127 bool all_parameters_are_constant = true;
1128
1129 /* Type cast each parameter and, if possible, fold constants.*/
1130 foreach_list_safe(n, &actual_parameters) {
1131 ir_rvalue *ir = (ir_rvalue *) n;
1132
1133 const glsl_type *desired_type =
1134 glsl_type::get_instance(constructor_type->base_type,
1135 ir->type->vector_elements,
1136 ir->type->matrix_columns);
1137 ir_rvalue *result = convert_component(ir, desired_type);
1138
1139 /* Attempt to convert the parameter to a constant valued expression.
1140 * After doing so, track whether or not all the parameters to the
1141 * constructor are trivially constant valued expressions.
1142 */
1143 ir_rvalue *const constant = result->constant_expression_value();
1144
1145 if (constant != NULL)
1146 result = constant;
1147 else
1148 all_parameters_are_constant = false;
1149
1150 if (result != ir) {
1151 ir->replace_with(result);
1152 }
1153 }
1154
1155 /* If all of the parameters are trivially constant, create a
1156 * constant representing the complete collection of parameters.
1157 */
1158 if (all_parameters_are_constant) {
1159 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1160 } else if (constructor_type->is_scalar()) {
1161 return dereference_component((ir_rvalue *) actual_parameters.head,
1162 0);
1163 } else if (constructor_type->is_vector()) {
1164 return emit_inline_vector_constructor(constructor_type,
1165 instructions,
1166 &actual_parameters,
1167 ctx);
1168 } else {
1169 assert(constructor_type->is_matrix());
1170 return emit_inline_matrix_constructor(constructor_type,
1171 instructions,
1172 &actual_parameters,
1173 ctx);
1174 }
1175 } else {
1176 const ast_expression *id = subexpressions[0];
1177 YYLTYPE loc = id->get_location();
1178 exec_list actual_parameters;
1179
1180 process_parameters(instructions, &actual_parameters, &this->expressions,
1181 state);
1182
1183 const glsl_type *const type =
1184 state->symbols->get_type(id->primary_expression.identifier);
1185
1186 if ((type != NULL) && type->is_record()) {
1187 exec_node *node = actual_parameters.head;
1188 for (unsigned i = 0; i < type->length; i++) {
1189 ir_rvalue *ir = (ir_rvalue *) node;
1190
1191 if (node->is_tail_sentinel()) {
1192 _mesa_glsl_error(&loc, state,
1193 "insufficient parameters to constructor "
1194 "for `%s'",
1195 type->name);
1196 return ir_call::get_error_instruction(ctx);
1197 }
1198
1199 if (apply_implicit_conversion(type->fields.structure[i].type, ir,
1200 state)) {
1201 node->replace_with(ir);
1202 } else {
1203 _mesa_glsl_error(&loc, state,
1204 "parameter type mismatch in constructor "
1205 "for `%s.%s' (%s vs %s)",
1206 type->name,
1207 type->fields.structure[i].name,
1208 ir->type->name,
1209 type->fields.structure[i].type->name);
1210 return ir_call::get_error_instruction(ctx);;
1211 }
1212
1213 node = node->next;
1214 }
1215
1216 if (!node->is_tail_sentinel()) {
1217 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1218 "for `%s'", type->name);
1219 return ir_call::get_error_instruction(ctx);
1220 }
1221
1222 ir_rvalue *const constant =
1223 constant_record_constructor(type, &actual_parameters, state);
1224
1225 return (constant != NULL)
1226 ? constant
1227 : emit_inline_record_constructor(type, instructions,
1228 &actual_parameters, state);
1229 }
1230
1231 return match_function_by_name(instructions,
1232 id->primary_expression.identifier, & loc,
1233 &actual_parameters, state);
1234 }
1235
1236 return ir_call::get_error_instruction(ctx);
1237 }