glsl: Convert ir_call to be a statement rather than a value.
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_instruction *const param = (ir_instruction *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_out || formal->mode == ir_var_inout) {
136 const char *mode = NULL;
137 switch (formal->mode) {
138 case ir_var_out: mode = "out"; break;
139 case ir_var_inout: mode = "inout"; break;
140 default: assert(false); break;
141 }
142
143 /* This AST-based check catches errors like f(i++). The IR-based
144 * is_lvalue() is insufficient because the actual parameter at the
145 * IR-level is just a temporary value, which is an l-value.
146 */
147 if (actual_ast->non_lvalue_description != NULL) {
148 _mesa_glsl_error(&loc, state,
149 "function parameter '%s %s' references a %s",
150 mode, formal->name,
151 actual_ast->non_lvalue_description);
152 return false;
153 }
154
155 if (actual->variable_referenced()
156 && actual->variable_referenced()->read_only) {
157 _mesa_glsl_error(&loc, state,
158 "function parameter '%s %s' references the "
159 "read-only variable '%s'",
160 mode, formal->name,
161 actual->variable_referenced()->name);
162 return false;
163 } else if (!actual->is_lvalue()) {
164 _mesa_glsl_error(&loc, state,
165 "function parameter '%s %s' is not an lvalue",
166 mode, formal->name);
167 return false;
168 }
169 }
170
171 actual_ir_node = actual_ir_node->next;
172 actual_ast_node = actual_ast_node->next;
173 }
174 return true;
175 }
176
177 /**
178 * If a function call is generated, \c call_ir will point to it on exit.
179 * Otherwise \c call_ir will be set to \c NULL.
180 */
181 static ir_rvalue *
182 generate_call(exec_list *instructions, ir_function_signature *sig,
183 YYLTYPE *loc, exec_list *actual_parameters,
184 ir_call **call_ir,
185 struct _mesa_glsl_parse_state *state)
186 {
187 void *ctx = state;
188 exec_list post_call_conversions;
189
190 *call_ir = NULL;
191
192 /* Perform implicit conversion of arguments. For out parameters, we need
193 * to place them in a temporary variable and do the conversion after the
194 * call takes place. Since we haven't emitted the call yet, we'll place
195 * the post-call conversions in a temporary exec_list, and emit them later.
196 */
197 exec_list_iterator actual_iter = actual_parameters->iterator();
198 exec_list_iterator formal_iter = sig->parameters.iterator();
199
200 while (actual_iter.has_next()) {
201 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
202 ir_variable *formal = (ir_variable *) formal_iter.get();
203
204 assert(actual != NULL);
205 assert(formal != NULL);
206
207 if (formal->type->is_numeric() || formal->type->is_boolean()) {
208 switch (formal->mode) {
209 case ir_var_const_in:
210 case ir_var_in: {
211 ir_rvalue *converted
212 = convert_component(actual, formal->type);
213 actual->replace_with(converted);
214 break;
215 }
216 case ir_var_out:
217 if (actual->type != formal->type) {
218 /* To convert an out parameter, we need to create a
219 * temporary variable to hold the value before conversion,
220 * and then perform the conversion after the function call
221 * returns.
222 *
223 * This has the effect of transforming code like this:
224 *
225 * void f(out int x);
226 * float value;
227 * f(value);
228 *
229 * Into IR that's equivalent to this:
230 *
231 * void f(out int x);
232 * float value;
233 * int out_parameter_conversion;
234 * f(out_parameter_conversion);
235 * value = float(out_parameter_conversion);
236 */
237 ir_variable *tmp =
238 new(ctx) ir_variable(formal->type,
239 "out_parameter_conversion",
240 ir_var_temporary);
241 instructions->push_tail(tmp);
242 ir_dereference_variable *deref_tmp_1
243 = new(ctx) ir_dereference_variable(tmp);
244 ir_dereference_variable *deref_tmp_2
245 = new(ctx) ir_dereference_variable(tmp);
246 ir_rvalue *converted_tmp
247 = convert_component(deref_tmp_1, actual->type);
248 ir_assignment *assignment
249 = new(ctx) ir_assignment(actual, converted_tmp);
250 post_call_conversions.push_tail(assignment);
251 actual->replace_with(deref_tmp_2);
252 }
253 break;
254 case ir_var_inout:
255 /* Inout parameters should never require conversion, since that
256 * would require an implicit conversion to exist both to and
257 * from the formal parameter type, and there are no
258 * bidirectional implicit conversions.
259 */
260 assert (actual->type == formal->type);
261 break;
262 default:
263 assert (!"Illegal formal parameter mode");
264 break;
265 }
266 }
267
268 actual_iter.next();
269 formal_iter.next();
270 }
271
272 /* If the function call is a constant expression, don't generate any
273 * instructions; just generate an ir_constant.
274 *
275 * Function calls were first allowed to be constant expressions in GLSL 1.20.
276 */
277 if (state->language_version >= 120) {
278 ir_constant *value = sig->constant_expression_value(actual_parameters);
279 if (value != NULL) {
280 return value;
281 }
282 }
283
284 ir_dereference_variable *deref = NULL;
285 if (!sig->return_type->is_void()) {
286 /* Create a new temporary to hold the return value. */
287 ir_variable *var;
288
289 var = new(ctx) ir_variable(sig->return_type,
290 ralloc_asprintf(ctx, "%s_retval",
291 sig->function_name()),
292 ir_var_temporary);
293 instructions->push_tail(var);
294
295 deref = new(ctx) ir_dereference_variable(var);
296 }
297 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
298 instructions->push_tail(call);
299
300 /* Also emit any necessary out-parameter conversions. */
301 instructions->append_list(&post_call_conversions);
302
303 return deref ? deref->clone(ctx, NULL) : NULL;
304 }
305
306 /**
307 * Given a function name and parameter list, find the matching signature.
308 */
309 static ir_function_signature *
310 match_function_by_name(const char *name,
311 exec_list *actual_parameters,
312 struct _mesa_glsl_parse_state *state)
313 {
314 void *ctx = state;
315 ir_function *f = state->symbols->get_function(name);
316 ir_function_signature *local_sig = NULL;
317 ir_function_signature *sig = NULL;
318
319 /* Is the function hidden by a record type constructor? */
320 if (state->symbols->get_type(name))
321 goto done; /* no match */
322
323 /* Is the function hidden by a variable (impossible in 1.10)? */
324 if (state->language_version != 110 && state->symbols->get_variable(name))
325 goto done; /* no match */
326
327 if (f != NULL) {
328 /* Look for a match in the local shader. If exact, we're done. */
329 bool is_exact = false;
330 sig = local_sig = f->matching_signature(actual_parameters, &is_exact);
331 if (is_exact)
332 goto done;
333
334 if (!state->es_shader && f->has_user_signature()) {
335 /* In desktop GL, the presence of a user-defined signature hides any
336 * built-in signatures, so we must ignore them. In contrast, in ES2
337 * user-defined signatures add new overloads, so we must proceed.
338 */
339 goto done;
340 }
341 }
342
343 /* Local shader has no exact candidates; check the built-ins. */
344 _mesa_glsl_initialize_functions(state);
345 for (unsigned i = 0; i < state->num_builtins_to_link; i++) {
346 ir_function *builtin =
347 state->builtins_to_link[i]->symbols->get_function(name);
348 if (builtin == NULL)
349 continue;
350
351 bool is_exact = false;
352 ir_function_signature *builtin_sig =
353 builtin->matching_signature(actual_parameters, &is_exact);
354
355 if (builtin_sig == NULL)
356 continue;
357
358 /* If the built-in signature is exact, we can stop. */
359 if (is_exact) {
360 sig = builtin_sig;
361 goto done;
362 }
363
364 if (sig == NULL) {
365 /* We found an inexact match, which is better than nothing. However,
366 * we should keep searching for an exact match.
367 */
368 sig = builtin_sig;
369 }
370 }
371
372 done:
373 if (sig != NULL) {
374 /* If the match is from a linked built-in shader, import the prototype. */
375 if (sig != local_sig) {
376 if (f == NULL) {
377 f = new(ctx) ir_function(name);
378 state->symbols->add_global_function(f);
379 emit_function(state, f);
380 }
381 f->add_signature(sig->clone_prototype(f, NULL));
382 }
383 }
384 return sig;
385 }
386
387 /**
388 * Raise a "no matching function" error, listing all possible overloads the
389 * compiler considered so developers can figure out what went wrong.
390 */
391 static void
392 no_matching_function_error(const char *name,
393 YYLTYPE *loc,
394 exec_list *actual_parameters,
395 _mesa_glsl_parse_state *state)
396 {
397 char *str = prototype_string(NULL, name, actual_parameters);
398 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
399 ralloc_free(str);
400
401 const char *prefix = "candidates are: ";
402
403 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
404 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
405 : state->symbols;
406 ir_function *f = syms->get_function(name);
407 if (f == NULL)
408 continue;
409
410 foreach_list (node, &f->signatures) {
411 ir_function_signature *sig = (ir_function_signature *) node;
412
413 str = prototype_string(sig->return_type, f->name, &sig->parameters);
414 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
415 ralloc_free(str);
416
417 prefix = " ";
418 }
419 }
420 }
421
422 /**
423 * Perform automatic type conversion of constructor parameters
424 *
425 * This implements the rules in the "Conversion and Scalar Constructors"
426 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
427 */
428 static ir_rvalue *
429 convert_component(ir_rvalue *src, const glsl_type *desired_type)
430 {
431 void *ctx = ralloc_parent(src);
432 const unsigned a = desired_type->base_type;
433 const unsigned b = src->type->base_type;
434 ir_expression *result = NULL;
435
436 if (src->type->is_error())
437 return src;
438
439 assert(a <= GLSL_TYPE_BOOL);
440 assert(b <= GLSL_TYPE_BOOL);
441
442 if (a == b)
443 return src;
444
445 switch (a) {
446 case GLSL_TYPE_UINT:
447 switch (b) {
448 case GLSL_TYPE_INT:
449 result = new(ctx) ir_expression(ir_unop_i2u, src);
450 break;
451 case GLSL_TYPE_FLOAT:
452 result = new(ctx) ir_expression(ir_unop_i2u,
453 new(ctx) ir_expression(ir_unop_f2i, src));
454 break;
455 case GLSL_TYPE_BOOL:
456 result = new(ctx) ir_expression(ir_unop_i2u,
457 new(ctx) ir_expression(ir_unop_b2i, src));
458 break;
459 }
460 break;
461 case GLSL_TYPE_INT:
462 switch (b) {
463 case GLSL_TYPE_UINT:
464 result = new(ctx) ir_expression(ir_unop_u2i, src);
465 break;
466 case GLSL_TYPE_FLOAT:
467 result = new(ctx) ir_expression(ir_unop_f2i, src);
468 break;
469 case GLSL_TYPE_BOOL:
470 result = new(ctx) ir_expression(ir_unop_b2i, src);
471 break;
472 }
473 break;
474 case GLSL_TYPE_FLOAT:
475 switch (b) {
476 case GLSL_TYPE_UINT:
477 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
478 break;
479 case GLSL_TYPE_INT:
480 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
481 break;
482 case GLSL_TYPE_BOOL:
483 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
484 break;
485 }
486 break;
487 case GLSL_TYPE_BOOL:
488 switch (b) {
489 case GLSL_TYPE_UINT:
490 result = new(ctx) ir_expression(ir_unop_i2b,
491 new(ctx) ir_expression(ir_unop_u2i, src));
492 break;
493 case GLSL_TYPE_INT:
494 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
495 break;
496 case GLSL_TYPE_FLOAT:
497 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
498 break;
499 }
500 break;
501 }
502
503 assert(result != NULL);
504 assert(result->type == desired_type);
505
506 /* Try constant folding; it may fold in the conversion we just added. */
507 ir_constant *const constant = result->constant_expression_value();
508 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
509 }
510
511 /**
512 * Dereference a specific component from a scalar, vector, or matrix
513 */
514 static ir_rvalue *
515 dereference_component(ir_rvalue *src, unsigned component)
516 {
517 void *ctx = ralloc_parent(src);
518 assert(component < src->type->components());
519
520 /* If the source is a constant, just create a new constant instead of a
521 * dereference of the existing constant.
522 */
523 ir_constant *constant = src->as_constant();
524 if (constant)
525 return new(ctx) ir_constant(constant, component);
526
527 if (src->type->is_scalar()) {
528 return src;
529 } else if (src->type->is_vector()) {
530 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
531 } else {
532 assert(src->type->is_matrix());
533
534 /* Dereference a row of the matrix, then call this function again to get
535 * a specific element from that row.
536 */
537 const int c = component / src->type->column_type()->vector_elements;
538 const int r = component % src->type->column_type()->vector_elements;
539 ir_constant *const col_index = new(ctx) ir_constant(c);
540 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
541
542 col->type = src->type->column_type();
543
544 return dereference_component(col, r);
545 }
546
547 assert(!"Should not get here.");
548 return NULL;
549 }
550
551
552 static ir_rvalue *
553 process_array_constructor(exec_list *instructions,
554 const glsl_type *constructor_type,
555 YYLTYPE *loc, exec_list *parameters,
556 struct _mesa_glsl_parse_state *state)
557 {
558 void *ctx = state;
559 /* Array constructors come in two forms: sized and unsized. Sized array
560 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
561 * variables. In this case the number of parameters must exactly match the
562 * specified size of the array.
563 *
564 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
565 * are vec4 variables. In this case the size of the array being constructed
566 * is determined by the number of parameters.
567 *
568 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
569 *
570 * "There must be exactly the same number of arguments as the size of
571 * the array being constructed. If no size is present in the
572 * constructor, then the array is explicitly sized to the number of
573 * arguments provided. The arguments are assigned in order, starting at
574 * element 0, to the elements of the constructed array. Each argument
575 * must be the same type as the element type of the array, or be a type
576 * that can be converted to the element type of the array according to
577 * Section 4.1.10 "Implicit Conversions.""
578 */
579 exec_list actual_parameters;
580 const unsigned parameter_count =
581 process_parameters(instructions, &actual_parameters, parameters, state);
582
583 if ((parameter_count == 0)
584 || ((constructor_type->length != 0)
585 && (constructor_type->length != parameter_count))) {
586 const unsigned min_param = (constructor_type->length == 0)
587 ? 1 : constructor_type->length;
588
589 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
590 "parameter%s",
591 (constructor_type->length != 0) ? "at least" : "exactly",
592 min_param, (min_param <= 1) ? "" : "s");
593 return ir_rvalue::error_value(ctx);
594 }
595
596 if (constructor_type->length == 0) {
597 constructor_type =
598 glsl_type::get_array_instance(constructor_type->element_type(),
599 parameter_count);
600 assert(constructor_type != NULL);
601 assert(constructor_type->length == parameter_count);
602 }
603
604 bool all_parameters_are_constant = true;
605
606 /* Type cast each parameter and, if possible, fold constants. */
607 foreach_list_safe(n, &actual_parameters) {
608 ir_rvalue *ir = (ir_rvalue *) n;
609 ir_rvalue *result = ir;
610
611 /* Apply implicit conversions (not the scalar constructor rules!). See
612 * the spec quote above. */
613 if (constructor_type->element_type()->is_float()) {
614 const glsl_type *desired_type =
615 glsl_type::get_instance(GLSL_TYPE_FLOAT,
616 ir->type->vector_elements,
617 ir->type->matrix_columns);
618 if (result->type->can_implicitly_convert_to(desired_type)) {
619 /* Even though convert_component() implements the constructor
620 * conversion rules (not the implicit conversion rules), its safe
621 * to use it here because we already checked that the implicit
622 * conversion is legal.
623 */
624 result = convert_component(ir, desired_type);
625 }
626 }
627
628 if (result->type != constructor_type->element_type()) {
629 _mesa_glsl_error(loc, state, "type error in array constructor: "
630 "expected: %s, found %s",
631 constructor_type->element_type()->name,
632 result->type->name);
633 }
634
635 /* Attempt to convert the parameter to a constant valued expression.
636 * After doing so, track whether or not all the parameters to the
637 * constructor are trivially constant valued expressions.
638 */
639 ir_rvalue *const constant = result->constant_expression_value();
640
641 if (constant != NULL)
642 result = constant;
643 else
644 all_parameters_are_constant = false;
645
646 ir->replace_with(result);
647 }
648
649 if (all_parameters_are_constant)
650 return new(ctx) ir_constant(constructor_type, &actual_parameters);
651
652 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
653 ir_var_temporary);
654 instructions->push_tail(var);
655
656 int i = 0;
657 foreach_list(node, &actual_parameters) {
658 ir_rvalue *rhs = (ir_rvalue *) node;
659 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
660 new(ctx) ir_constant(i));
661
662 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
663 instructions->push_tail(assignment);
664
665 i++;
666 }
667
668 return new(ctx) ir_dereference_variable(var);
669 }
670
671
672 /**
673 * Try to convert a record constructor to a constant expression
674 */
675 static ir_constant *
676 constant_record_constructor(const glsl_type *constructor_type,
677 exec_list *parameters, void *mem_ctx)
678 {
679 foreach_list(node, parameters) {
680 ir_constant *constant = ((ir_instruction *) node)->as_constant();
681 if (constant == NULL)
682 return NULL;
683 node->replace_with(constant);
684 }
685
686 return new(mem_ctx) ir_constant(constructor_type, parameters);
687 }
688
689
690 /**
691 * Determine if a list consists of a single scalar r-value
692 */
693 bool
694 single_scalar_parameter(exec_list *parameters)
695 {
696 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
697 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
698
699 return (p->type->is_scalar() && p->next->is_tail_sentinel());
700 }
701
702
703 /**
704 * Generate inline code for a vector constructor
705 *
706 * The generated constructor code will consist of a temporary variable
707 * declaration of the same type as the constructor. A sequence of assignments
708 * from constructor parameters to the temporary will follow.
709 *
710 * \return
711 * An \c ir_dereference_variable of the temprorary generated in the constructor
712 * body.
713 */
714 ir_rvalue *
715 emit_inline_vector_constructor(const glsl_type *type,
716 exec_list *instructions,
717 exec_list *parameters,
718 void *ctx)
719 {
720 assert(!parameters->is_empty());
721
722 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
723 instructions->push_tail(var);
724
725 /* There are two kinds of vector constructors.
726 *
727 * - Construct a vector from a single scalar by replicating that scalar to
728 * all components of the vector.
729 *
730 * - Construct a vector from an arbirary combination of vectors and
731 * scalars. The components of the constructor parameters are assigned
732 * to the vector in order until the vector is full.
733 */
734 const unsigned lhs_components = type->components();
735 if (single_scalar_parameter(parameters)) {
736 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
737 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
738 lhs_components);
739 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
740 const unsigned mask = (1U << lhs_components) - 1;
741
742 assert(rhs->type == lhs->type);
743
744 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
745 instructions->push_tail(inst);
746 } else {
747 unsigned base_component = 0;
748 unsigned base_lhs_component = 0;
749 ir_constant_data data;
750 unsigned constant_mask = 0, constant_components = 0;
751
752 memset(&data, 0, sizeof(data));
753
754 foreach_list(node, parameters) {
755 ir_rvalue *param = (ir_rvalue *) node;
756 unsigned rhs_components = param->type->components();
757
758 /* Do not try to assign more components to the vector than it has!
759 */
760 if ((rhs_components + base_lhs_component) > lhs_components) {
761 rhs_components = lhs_components - base_lhs_component;
762 }
763
764 const ir_constant *const c = param->as_constant();
765 if (c != NULL) {
766 for (unsigned i = 0; i < rhs_components; i++) {
767 switch (c->type->base_type) {
768 case GLSL_TYPE_UINT:
769 data.u[i + base_component] = c->get_uint_component(i);
770 break;
771 case GLSL_TYPE_INT:
772 data.i[i + base_component] = c->get_int_component(i);
773 break;
774 case GLSL_TYPE_FLOAT:
775 data.f[i + base_component] = c->get_float_component(i);
776 break;
777 case GLSL_TYPE_BOOL:
778 data.b[i + base_component] = c->get_bool_component(i);
779 break;
780 default:
781 assert(!"Should not get here.");
782 break;
783 }
784 }
785
786 /* Mask of fields to be written in the assignment.
787 */
788 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
789 constant_components += rhs_components;
790
791 base_component += rhs_components;
792 }
793 /* Advance the component index by the number of components
794 * that were just assigned.
795 */
796 base_lhs_component += rhs_components;
797 }
798
799 if (constant_mask != 0) {
800 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
801 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
802 constant_components,
803 1);
804 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
805
806 ir_instruction *inst =
807 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
808 instructions->push_tail(inst);
809 }
810
811 base_component = 0;
812 foreach_list(node, parameters) {
813 ir_rvalue *param = (ir_rvalue *) node;
814 unsigned rhs_components = param->type->components();
815
816 /* Do not try to assign more components to the vector than it has!
817 */
818 if ((rhs_components + base_component) > lhs_components) {
819 rhs_components = lhs_components - base_component;
820 }
821
822 const ir_constant *const c = param->as_constant();
823 if (c == NULL) {
824 /* Mask of fields to be written in the assignment.
825 */
826 const unsigned write_mask = ((1U << rhs_components) - 1)
827 << base_component;
828
829 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
830
831 /* Generate a swizzle so that LHS and RHS sizes match.
832 */
833 ir_rvalue *rhs =
834 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
835
836 ir_instruction *inst =
837 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
838 instructions->push_tail(inst);
839 }
840
841 /* Advance the component index by the number of components that were
842 * just assigned.
843 */
844 base_component += rhs_components;
845 }
846 }
847 return new(ctx) ir_dereference_variable(var);
848 }
849
850
851 /**
852 * Generate assignment of a portion of a vector to a portion of a matrix column
853 *
854 * \param src_base First component of the source to be used in assignment
855 * \param column Column of destination to be assiged
856 * \param row_base First component of the destination column to be assigned
857 * \param count Number of components to be assigned
858 *
859 * \note
860 * \c src_base + \c count must be less than or equal to the number of components
861 * in the source vector.
862 */
863 ir_instruction *
864 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
865 ir_rvalue *src, unsigned src_base, unsigned count,
866 void *mem_ctx)
867 {
868 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
869 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
870
871 assert(column_ref->type->components() >= (row_base + count));
872 assert(src->type->components() >= (src_base + count));
873
874 /* Generate a swizzle that extracts the number of components from the source
875 * that are to be assigned to the column of the matrix.
876 */
877 if (count < src->type->vector_elements) {
878 src = new(mem_ctx) ir_swizzle(src,
879 src_base + 0, src_base + 1,
880 src_base + 2, src_base + 3,
881 count);
882 }
883
884 /* Mask of fields to be written in the assignment.
885 */
886 const unsigned write_mask = ((1U << count) - 1) << row_base;
887
888 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
889 }
890
891
892 /**
893 * Generate inline code for a matrix constructor
894 *
895 * The generated constructor code will consist of a temporary variable
896 * declaration of the same type as the constructor. A sequence of assignments
897 * from constructor parameters to the temporary will follow.
898 *
899 * \return
900 * An \c ir_dereference_variable of the temprorary generated in the constructor
901 * body.
902 */
903 ir_rvalue *
904 emit_inline_matrix_constructor(const glsl_type *type,
905 exec_list *instructions,
906 exec_list *parameters,
907 void *ctx)
908 {
909 assert(!parameters->is_empty());
910
911 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
912 instructions->push_tail(var);
913
914 /* There are three kinds of matrix constructors.
915 *
916 * - Construct a matrix from a single scalar by replicating that scalar to
917 * along the diagonal of the matrix and setting all other components to
918 * zero.
919 *
920 * - Construct a matrix from an arbirary combination of vectors and
921 * scalars. The components of the constructor parameters are assigned
922 * to the matrix in colum-major order until the matrix is full.
923 *
924 * - Construct a matrix from a single matrix. The source matrix is copied
925 * to the upper left portion of the constructed matrix, and the remaining
926 * elements take values from the identity matrix.
927 */
928 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
929 if (single_scalar_parameter(parameters)) {
930 /* Assign the scalar to the X component of a vec4, and fill the remaining
931 * components with zero.
932 */
933 ir_variable *rhs_var =
934 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
935 ir_var_temporary);
936 instructions->push_tail(rhs_var);
937
938 ir_constant_data zero;
939 zero.f[0] = 0.0;
940 zero.f[1] = 0.0;
941 zero.f[2] = 0.0;
942 zero.f[3] = 0.0;
943
944 ir_instruction *inst =
945 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
946 new(ctx) ir_constant(rhs_var->type, &zero),
947 NULL);
948 instructions->push_tail(inst);
949
950 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
951
952 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
953 instructions->push_tail(inst);
954
955 /* Assign the temporary vector to each column of the destination matrix
956 * with a swizzle that puts the X component on the diagonal of the
957 * matrix. In some cases this may mean that the X component does not
958 * get assigned into the column at all (i.e., when the matrix has more
959 * columns than rows).
960 */
961 static const unsigned rhs_swiz[4][4] = {
962 { 0, 1, 1, 1 },
963 { 1, 0, 1, 1 },
964 { 1, 1, 0, 1 },
965 { 1, 1, 1, 0 }
966 };
967
968 const unsigned cols_to_init = MIN2(type->matrix_columns,
969 type->vector_elements);
970 for (unsigned i = 0; i < cols_to_init; i++) {
971 ir_constant *const col_idx = new(ctx) ir_constant(i);
972 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
973
974 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
975 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
976 type->vector_elements);
977
978 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
979 instructions->push_tail(inst);
980 }
981
982 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
983 ir_constant *const col_idx = new(ctx) ir_constant(i);
984 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
985
986 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
987 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
988 type->vector_elements);
989
990 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
991 instructions->push_tail(inst);
992 }
993 } else if (first_param->type->is_matrix()) {
994 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
995 *
996 * "If a matrix is constructed from a matrix, then each component
997 * (column i, row j) in the result that has a corresponding
998 * component (column i, row j) in the argument will be initialized
999 * from there. All other components will be initialized to the
1000 * identity matrix. If a matrix argument is given to a matrix
1001 * constructor, it is an error to have any other arguments."
1002 */
1003 assert(first_param->next->is_tail_sentinel());
1004 ir_rvalue *const src_matrix = first_param;
1005
1006 /* If the source matrix is smaller, pre-initialize the relavent parts of
1007 * the destination matrix to the identity matrix.
1008 */
1009 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1010 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1011
1012 /* If the source matrix has fewer rows, every column of the destination
1013 * must be initialized. Otherwise only the columns in the destination
1014 * that do not exist in the source must be initialized.
1015 */
1016 unsigned col =
1017 (src_matrix->type->vector_elements < var->type->vector_elements)
1018 ? 0 : src_matrix->type->matrix_columns;
1019
1020 const glsl_type *const col_type = var->type->column_type();
1021 for (/* empty */; col < var->type->matrix_columns; col++) {
1022 ir_constant_data ident;
1023
1024 ident.f[0] = 0.0;
1025 ident.f[1] = 0.0;
1026 ident.f[2] = 0.0;
1027 ident.f[3] = 0.0;
1028
1029 ident.f[col] = 1.0;
1030
1031 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1032
1033 ir_rvalue *const lhs =
1034 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1035
1036 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1037 instructions->push_tail(inst);
1038 }
1039 }
1040
1041 /* Assign columns from the source matrix to the destination matrix.
1042 *
1043 * Since the parameter will be used in the RHS of multiple assignments,
1044 * generate a temporary and copy the paramter there.
1045 */
1046 ir_variable *const rhs_var =
1047 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1048 ir_var_temporary);
1049 instructions->push_tail(rhs_var);
1050
1051 ir_dereference *const rhs_var_ref =
1052 new(ctx) ir_dereference_variable(rhs_var);
1053 ir_instruction *const inst =
1054 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1055 instructions->push_tail(inst);
1056
1057 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1058 var->type->vector_elements);
1059 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1060 var->type->matrix_columns);
1061
1062 unsigned swiz[4] = { 0, 0, 0, 0 };
1063 for (unsigned i = 1; i < last_row; i++)
1064 swiz[i] = i;
1065
1066 const unsigned write_mask = (1U << last_row) - 1;
1067
1068 for (unsigned i = 0; i < last_col; i++) {
1069 ir_dereference *const lhs =
1070 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1071 ir_rvalue *const rhs_col =
1072 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1073
1074 /* If one matrix has columns that are smaller than the columns of the
1075 * other matrix, wrap the column access of the larger with a swizzle
1076 * so that the LHS and RHS of the assignment have the same size (and
1077 * therefore have the same type).
1078 *
1079 * It would be perfectly valid to unconditionally generate the
1080 * swizzles, this this will typically result in a more compact IR tree.
1081 */
1082 ir_rvalue *rhs;
1083 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1084 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1085 } else {
1086 rhs = rhs_col;
1087 }
1088
1089 ir_instruction *inst =
1090 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1091 instructions->push_tail(inst);
1092 }
1093 } else {
1094 const unsigned cols = type->matrix_columns;
1095 const unsigned rows = type->vector_elements;
1096 unsigned col_idx = 0;
1097 unsigned row_idx = 0;
1098
1099 foreach_list (node, parameters) {
1100 ir_rvalue *const rhs = (ir_rvalue *) node;
1101 const unsigned components_remaining_this_column = rows - row_idx;
1102 unsigned rhs_components = rhs->type->components();
1103 unsigned rhs_base = 0;
1104
1105 /* Since the parameter might be used in the RHS of two assignments,
1106 * generate a temporary and copy the paramter there.
1107 */
1108 ir_variable *rhs_var =
1109 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1110 instructions->push_tail(rhs_var);
1111
1112 ir_dereference *rhs_var_ref =
1113 new(ctx) ir_dereference_variable(rhs_var);
1114 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1115 instructions->push_tail(inst);
1116
1117 /* Assign the current parameter to as many components of the matrix
1118 * as it will fill.
1119 *
1120 * NOTE: A single vector parameter can span two matrix columns. A
1121 * single vec4, for example, can completely fill a mat2.
1122 */
1123 if (rhs_components >= components_remaining_this_column) {
1124 const unsigned count = MIN2(rhs_components,
1125 components_remaining_this_column);
1126
1127 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1128
1129 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1130 row_idx,
1131 rhs_var_ref, 0,
1132 count, ctx);
1133 instructions->push_tail(inst);
1134
1135 rhs_base = count;
1136
1137 col_idx++;
1138 row_idx = 0;
1139 }
1140
1141 /* If there is data left in the parameter and components left to be
1142 * set in the destination, emit another assignment. It is possible
1143 * that the assignment could be of a vec4 to the last element of the
1144 * matrix. In this case col_idx==cols, but there is still data
1145 * left in the source parameter. Obviously, don't emit an assignment
1146 * to data outside the destination matrix.
1147 */
1148 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1149 const unsigned count = rhs_components - rhs_base;
1150
1151 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1152
1153 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1154 row_idx,
1155 rhs_var_ref,
1156 rhs_base,
1157 count, ctx);
1158 instructions->push_tail(inst);
1159
1160 row_idx += count;
1161 }
1162 }
1163 }
1164
1165 return new(ctx) ir_dereference_variable(var);
1166 }
1167
1168
1169 ir_rvalue *
1170 emit_inline_record_constructor(const glsl_type *type,
1171 exec_list *instructions,
1172 exec_list *parameters,
1173 void *mem_ctx)
1174 {
1175 ir_variable *const var =
1176 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1177 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1178
1179 instructions->push_tail(var);
1180
1181 exec_node *node = parameters->head;
1182 for (unsigned i = 0; i < type->length; i++) {
1183 assert(!node->is_tail_sentinel());
1184
1185 ir_dereference *const lhs =
1186 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1187 type->fields.structure[i].name);
1188
1189 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1190 assert(rhs != NULL);
1191
1192 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1193
1194 instructions->push_tail(assign);
1195 node = node->next;
1196 }
1197
1198 return d;
1199 }
1200
1201
1202 ir_rvalue *
1203 ast_function_expression::hir(exec_list *instructions,
1204 struct _mesa_glsl_parse_state *state)
1205 {
1206 void *ctx = state;
1207 /* There are three sorts of function calls.
1208 *
1209 * 1. constructors - The first subexpression is an ast_type_specifier.
1210 * 2. methods - Only the .length() method of array types.
1211 * 3. functions - Calls to regular old functions.
1212 *
1213 * Method calls are actually detected when the ast_field_selection
1214 * expression is handled.
1215 */
1216 if (is_constructor()) {
1217 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1218 YYLTYPE loc = type->get_location();
1219 const char *name;
1220
1221 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1222
1223 /* constructor_type can be NULL if a variable with the same name as the
1224 * structure has come into scope.
1225 */
1226 if (constructor_type == NULL) {
1227 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1228 "may be shadowed by a variable with the same name)",
1229 type->type_name);
1230 return ir_rvalue::error_value(ctx);
1231 }
1232
1233
1234 /* Constructors for samplers are illegal.
1235 */
1236 if (constructor_type->is_sampler()) {
1237 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1238 constructor_type->name);
1239 return ir_rvalue::error_value(ctx);
1240 }
1241
1242 if (constructor_type->is_array()) {
1243 if (state->language_version <= 110) {
1244 _mesa_glsl_error(& loc, state,
1245 "array constructors forbidden in GLSL 1.10");
1246 return ir_rvalue::error_value(ctx);
1247 }
1248
1249 return process_array_constructor(instructions, constructor_type,
1250 & loc, &this->expressions, state);
1251 }
1252
1253
1254 /* There are two kinds of constructor call. Constructors for built-in
1255 * language types, such as mat4 and vec2, are free form. The only
1256 * requirement is that the parameters must provide enough values of the
1257 * correct scalar type. Constructors for arrays and structures must
1258 * have the exact number of parameters with matching types in the
1259 * correct order. These constructors follow essentially the same type
1260 * matching rules as functions.
1261 */
1262 if (constructor_type->is_record()) {
1263 exec_list actual_parameters;
1264
1265 process_parameters(instructions, &actual_parameters,
1266 &this->expressions, state);
1267
1268 exec_node *node = actual_parameters.head;
1269 for (unsigned i = 0; i < constructor_type->length; i++) {
1270 ir_rvalue *ir = (ir_rvalue *) node;
1271
1272 if (node->is_tail_sentinel()) {
1273 _mesa_glsl_error(&loc, state,
1274 "insufficient parameters to constructor "
1275 "for `%s'",
1276 constructor_type->name);
1277 return ir_rvalue::error_value(ctx);
1278 }
1279
1280 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1281 ir, state)) {
1282 node->replace_with(ir);
1283 } else {
1284 _mesa_glsl_error(&loc, state,
1285 "parameter type mismatch in constructor "
1286 "for `%s.%s' (%s vs %s)",
1287 constructor_type->name,
1288 constructor_type->fields.structure[i].name,
1289 ir->type->name,
1290 constructor_type->fields.structure[i].type->name);
1291 return ir_rvalue::error_value(ctx);;
1292 }
1293
1294 node = node->next;
1295 }
1296
1297 if (!node->is_tail_sentinel()) {
1298 _mesa_glsl_error(&loc, state, "too many parameters in constructor "
1299 "for `%s'", constructor_type->name);
1300 return ir_rvalue::error_value(ctx);
1301 }
1302
1303 ir_rvalue *const constant =
1304 constant_record_constructor(constructor_type, &actual_parameters,
1305 state);
1306
1307 return (constant != NULL)
1308 ? constant
1309 : emit_inline_record_constructor(constructor_type, instructions,
1310 &actual_parameters, state);
1311 }
1312
1313 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1314 return ir_rvalue::error_value(ctx);
1315
1316 /* Total number of components of the type being constructed. */
1317 const unsigned type_components = constructor_type->components();
1318
1319 /* Number of components from parameters that have actually been
1320 * consumed. This is used to perform several kinds of error checking.
1321 */
1322 unsigned components_used = 0;
1323
1324 unsigned matrix_parameters = 0;
1325 unsigned nonmatrix_parameters = 0;
1326 exec_list actual_parameters;
1327
1328 foreach_list (n, &this->expressions) {
1329 ast_node *ast = exec_node_data(ast_node, n, link);
1330 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1331
1332 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1333 *
1334 * "It is an error to provide extra arguments beyond this
1335 * last used argument."
1336 */
1337 if (components_used >= type_components) {
1338 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1339 "constructor",
1340 constructor_type->name);
1341 return ir_rvalue::error_value(ctx);
1342 }
1343
1344 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1345 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1346 "non-numeric data type",
1347 constructor_type->name);
1348 return ir_rvalue::error_value(ctx);
1349 }
1350
1351 /* Count the number of matrix and nonmatrix parameters. This
1352 * is used below to enforce some of the constructor rules.
1353 */
1354 if (result->type->is_matrix())
1355 matrix_parameters++;
1356 else
1357 nonmatrix_parameters++;
1358
1359 actual_parameters.push_tail(result);
1360 components_used += result->type->components();
1361 }
1362
1363 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1364 *
1365 * "It is an error to construct matrices from other matrices. This
1366 * is reserved for future use."
1367 */
1368 if (state->language_version == 110 && matrix_parameters > 0
1369 && constructor_type->is_matrix()) {
1370 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1371 "matrix in GLSL 1.10",
1372 constructor_type->name);
1373 return ir_rvalue::error_value(ctx);
1374 }
1375
1376 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1377 *
1378 * "If a matrix argument is given to a matrix constructor, it is
1379 * an error to have any other arguments."
1380 */
1381 if ((matrix_parameters > 0)
1382 && ((matrix_parameters + nonmatrix_parameters) > 1)
1383 && constructor_type->is_matrix()) {
1384 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1385 "matrix must be only parameter",
1386 constructor_type->name);
1387 return ir_rvalue::error_value(ctx);
1388 }
1389
1390 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1391 *
1392 * "In these cases, there must be enough components provided in the
1393 * arguments to provide an initializer for every component in the
1394 * constructed value."
1395 */
1396 if (components_used < type_components && components_used != 1
1397 && matrix_parameters == 0) {
1398 _mesa_glsl_error(& loc, state, "too few components to construct "
1399 "`%s'",
1400 constructor_type->name);
1401 return ir_rvalue::error_value(ctx);
1402 }
1403
1404 /* Later, we cast each parameter to the same base type as the
1405 * constructor. Since there are no non-floating point matrices, we
1406 * need to break them up into a series of column vectors.
1407 */
1408 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1409 foreach_list_safe(n, &actual_parameters) {
1410 ir_rvalue *matrix = (ir_rvalue *) n;
1411
1412 if (!matrix->type->is_matrix())
1413 continue;
1414
1415 /* Create a temporary containing the matrix. */
1416 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1417 ir_var_temporary);
1418 instructions->push_tail(var);
1419 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1420 ir_dereference_variable(var), matrix, NULL));
1421 var->constant_value = matrix->constant_expression_value();
1422
1423 /* Replace the matrix with dereferences of its columns. */
1424 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1425 matrix->insert_before(new (ctx) ir_dereference_array(var,
1426 new(ctx) ir_constant(i)));
1427 }
1428 matrix->remove();
1429 }
1430 }
1431
1432 bool all_parameters_are_constant = true;
1433
1434 /* Type cast each parameter and, if possible, fold constants.*/
1435 foreach_list_safe(n, &actual_parameters) {
1436 ir_rvalue *ir = (ir_rvalue *) n;
1437
1438 const glsl_type *desired_type =
1439 glsl_type::get_instance(constructor_type->base_type,
1440 ir->type->vector_elements,
1441 ir->type->matrix_columns);
1442 ir_rvalue *result = convert_component(ir, desired_type);
1443
1444 /* Attempt to convert the parameter to a constant valued expression.
1445 * After doing so, track whether or not all the parameters to the
1446 * constructor are trivially constant valued expressions.
1447 */
1448 ir_rvalue *const constant = result->constant_expression_value();
1449
1450 if (constant != NULL)
1451 result = constant;
1452 else
1453 all_parameters_are_constant = false;
1454
1455 if (result != ir) {
1456 ir->replace_with(result);
1457 }
1458 }
1459
1460 /* If all of the parameters are trivially constant, create a
1461 * constant representing the complete collection of parameters.
1462 */
1463 if (all_parameters_are_constant) {
1464 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1465 } else if (constructor_type->is_scalar()) {
1466 return dereference_component((ir_rvalue *) actual_parameters.head,
1467 0);
1468 } else if (constructor_type->is_vector()) {
1469 return emit_inline_vector_constructor(constructor_type,
1470 instructions,
1471 &actual_parameters,
1472 ctx);
1473 } else {
1474 assert(constructor_type->is_matrix());
1475 return emit_inline_matrix_constructor(constructor_type,
1476 instructions,
1477 &actual_parameters,
1478 ctx);
1479 }
1480 } else {
1481 const ast_expression *id = subexpressions[0];
1482 const char *func_name = id->primary_expression.identifier;
1483 YYLTYPE loc = id->get_location();
1484 exec_list actual_parameters;
1485
1486 process_parameters(instructions, &actual_parameters, &this->expressions,
1487 state);
1488
1489 ir_function_signature *sig =
1490 match_function_by_name(func_name, &actual_parameters, state);
1491
1492 ir_call *call = NULL;
1493 ir_rvalue *value = NULL;
1494 if (sig == NULL) {
1495 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1496 value = ir_rvalue::error_value(ctx);
1497 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1498 /* an error has already been emitted */
1499 value = ir_rvalue::error_value(ctx);
1500 } else {
1501 value = generate_call(instructions, sig, &loc, &actual_parameters,
1502 &call, state);
1503 }
1504
1505 return value;
1506 }
1507
1508 return ir_rvalue::error_value(ctx);
1509 }