glsl: Drop unused call_ir parameter from generate_call().
[mesa.git] / src / glsl / ast_function.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29
30 static ir_rvalue *
31 convert_component(ir_rvalue *src, const glsl_type *desired_type);
32
33 bool
34 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
35 struct _mesa_glsl_parse_state *state);
36
37 static unsigned
38 process_parameters(exec_list *instructions, exec_list *actual_parameters,
39 exec_list *parameters,
40 struct _mesa_glsl_parse_state *state)
41 {
42 unsigned count = 0;
43
44 foreach_list (n, parameters) {
45 ast_node *const ast = exec_node_data(ast_node, n, link);
46 ir_rvalue *result = ast->hir(instructions, state);
47
48 ir_constant *const constant = result->constant_expression_value();
49 if (constant != NULL)
50 result = constant;
51
52 actual_parameters->push_tail(result);
53 count++;
54 }
55
56 return count;
57 }
58
59
60 /**
61 * Generate a source prototype for a function signature
62 *
63 * \param return_type Return type of the function. May be \c NULL.
64 * \param name Name of the function.
65 * \param parameters List of \c ir_instruction nodes representing the
66 * parameter list for the function. This may be either a
67 * formal (\c ir_variable) or actual (\c ir_rvalue)
68 * parameter list. Only the type is used.
69 *
70 * \return
71 * A ralloced string representing the prototype of the function.
72 */
73 char *
74 prototype_string(const glsl_type *return_type, const char *name,
75 exec_list *parameters)
76 {
77 char *str = NULL;
78
79 if (return_type != NULL)
80 str = ralloc_asprintf(NULL, "%s ", return_type->name);
81
82 ralloc_asprintf_append(&str, "%s(", name);
83
84 const char *comma = "";
85 foreach_list(node, parameters) {
86 const ir_variable *const param = (ir_variable *) node;
87
88 ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
89 comma = ", ";
90 }
91
92 ralloc_strcat(&str, ")");
93 return str;
94 }
95
96 /**
97 * Verify that 'out' and 'inout' actual parameters are lvalues. Also, verify
98 * that 'const_in' formal parameters (an extension in our IR) correspond to
99 * ir_constant actual parameters.
100 */
101 static bool
102 verify_parameter_modes(_mesa_glsl_parse_state *state,
103 ir_function_signature *sig,
104 exec_list &actual_ir_parameters,
105 exec_list &actual_ast_parameters)
106 {
107 exec_node *actual_ir_node = actual_ir_parameters.head;
108 exec_node *actual_ast_node = actual_ast_parameters.head;
109
110 foreach_list(formal_node, &sig->parameters) {
111 /* The lists must be the same length. */
112 assert(!actual_ir_node->is_tail_sentinel());
113 assert(!actual_ast_node->is_tail_sentinel());
114
115 const ir_variable *const formal = (ir_variable *) formal_node;
116 const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
117 const ast_expression *const actual_ast =
118 exec_node_data(ast_expression, actual_ast_node, link);
119
120 /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
121 * FIXME: 0:0(0).
122 */
123 YYLTYPE loc = actual_ast->get_location();
124
125 /* Verify that 'const_in' parameters are ir_constants. */
126 if (formal->mode == ir_var_const_in &&
127 actual->ir_type != ir_type_constant) {
128 _mesa_glsl_error(&loc, state,
129 "parameter `in %s' must be a constant expression",
130 formal->name);
131 return false;
132 }
133
134 /* Verify that 'out' and 'inout' actual parameters are lvalues. */
135 if (formal->mode == ir_var_function_out
136 || formal->mode == ir_var_function_inout) {
137 const char *mode = NULL;
138 switch (formal->mode) {
139 case ir_var_function_out: mode = "out"; break;
140 case ir_var_function_inout: mode = "inout"; break;
141 default: assert(false); break;
142 }
143
144 /* This AST-based check catches errors like f(i++). The IR-based
145 * is_lvalue() is insufficient because the actual parameter at the
146 * IR-level is just a temporary value, which is an l-value.
147 */
148 if (actual_ast->non_lvalue_description != NULL) {
149 _mesa_glsl_error(&loc, state,
150 "function parameter '%s %s' references a %s",
151 mode, formal->name,
152 actual_ast->non_lvalue_description);
153 return false;
154 }
155
156 ir_variable *var = actual->variable_referenced();
157 if (var)
158 var->assigned = true;
159
160 if (var && var->read_only) {
161 _mesa_glsl_error(&loc, state,
162 "function parameter '%s %s' references the "
163 "read-only variable '%s'",
164 mode, formal->name,
165 actual->variable_referenced()->name);
166 return false;
167 } else if (!actual->is_lvalue()) {
168 /* Even though ir_binop_vector_extract is not an l-value, let it
169 * slop through. generate_call will handle it correctly.
170 */
171 ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
172 if (expr == NULL
173 || expr->operation != ir_binop_vector_extract
174 || !expr->operands[0]->is_lvalue()) {
175 _mesa_glsl_error(&loc, state,
176 "function parameter '%s %s' is not an lvalue",
177 mode, formal->name);
178 return false;
179 }
180 }
181 }
182
183 actual_ir_node = actual_ir_node->next;
184 actual_ast_node = actual_ast_node->next;
185 }
186 return true;
187 }
188
189 static void
190 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
191 exec_list *before_instructions, exec_list *after_instructions,
192 bool parameter_is_inout)
193 {
194 ir_expression *const expr = actual->as_expression();
195
196 /* If the types match exactly and the parameter is not a vector-extract,
197 * nothing needs to be done to fix the parameter.
198 */
199 if (formal_type == actual->type
200 && (expr == NULL || expr->operation != ir_binop_vector_extract))
201 return;
202
203 /* To convert an out parameter, we need to create a temporary variable to
204 * hold the value before conversion, and then perform the conversion after
205 * the function call returns.
206 *
207 * This has the effect of transforming code like this:
208 *
209 * void f(out int x);
210 * float value;
211 * f(value);
212 *
213 * Into IR that's equivalent to this:
214 *
215 * void f(out int x);
216 * float value;
217 * int out_parameter_conversion;
218 * f(out_parameter_conversion);
219 * value = float(out_parameter_conversion);
220 *
221 * If the parameter is an ir_expression of ir_binop_vector_extract,
222 * additional conversion is needed in the post-call re-write.
223 */
224 ir_variable *tmp =
225 new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
226
227 before_instructions->push_tail(tmp);
228
229 /* If the parameter is an inout parameter, copy the value of the actual
230 * parameter to the new temporary. Note that no type conversion is allowed
231 * here because inout parameters must match types exactly.
232 */
233 if (parameter_is_inout) {
234 /* Inout parameters should never require conversion, since that would
235 * require an implicit conversion to exist both to and from the formal
236 * parameter type, and there are no bidirectional implicit conversions.
237 */
238 assert (actual->type == formal_type);
239
240 ir_dereference_variable *const deref_tmp_1 =
241 new(mem_ctx) ir_dereference_variable(tmp);
242 ir_assignment *const assignment =
243 new(mem_ctx) ir_assignment(deref_tmp_1, actual);
244 before_instructions->push_tail(assignment);
245 }
246
247 /* Replace the parameter in the call with a dereference of the new
248 * temporary.
249 */
250 ir_dereference_variable *const deref_tmp_2 =
251 new(mem_ctx) ir_dereference_variable(tmp);
252 actual->replace_with(deref_tmp_2);
253
254
255 /* Copy the temporary variable to the actual parameter with optional
256 * type conversion applied.
257 */
258 ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
259 if (actual->type != formal_type)
260 rhs = convert_component(rhs, actual->type);
261
262 ir_rvalue *lhs = actual;
263 if (expr != NULL && expr->operation == ir_binop_vector_extract) {
264 rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
265 expr->operands[0]->type,
266 expr->operands[0]->clone(mem_ctx, NULL),
267 rhs,
268 expr->operands[1]->clone(mem_ctx, NULL));
269 lhs = expr->operands[0]->clone(mem_ctx, NULL);
270 }
271
272 ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
273 after_instructions->push_tail(assignment_2);
274 }
275
276 /**
277 * Generate a function call.
278 *
279 * For non-void functions, this returns a dereference of the temporary variable
280 * which stores the return value for the call. For void functions, this returns
281 * NULL.
282 */
283 static ir_rvalue *
284 generate_call(exec_list *instructions, ir_function_signature *sig,
285 exec_list *actual_parameters,
286 struct _mesa_glsl_parse_state *state)
287 {
288 void *ctx = state;
289 exec_list post_call_conversions;
290
291 /* Perform implicit conversion of arguments. For out parameters, we need
292 * to place them in a temporary variable and do the conversion after the
293 * call takes place. Since we haven't emitted the call yet, we'll place
294 * the post-call conversions in a temporary exec_list, and emit them later.
295 */
296 exec_list_iterator actual_iter = actual_parameters->iterator();
297 exec_list_iterator formal_iter = sig->parameters.iterator();
298
299 while (actual_iter.has_next()) {
300 ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
301 ir_variable *formal = (ir_variable *) formal_iter.get();
302
303 assert(actual != NULL);
304 assert(formal != NULL);
305
306 if (formal->type->is_numeric() || formal->type->is_boolean()) {
307 switch (formal->mode) {
308 case ir_var_const_in:
309 case ir_var_function_in: {
310 ir_rvalue *converted
311 = convert_component(actual, formal->type);
312 actual->replace_with(converted);
313 break;
314 }
315 case ir_var_function_out:
316 case ir_var_function_inout:
317 fix_parameter(ctx, actual, formal->type,
318 instructions, &post_call_conversions,
319 formal->mode == ir_var_function_inout);
320 break;
321 default:
322 assert (!"Illegal formal parameter mode");
323 break;
324 }
325 }
326
327 actual_iter.next();
328 formal_iter.next();
329 }
330
331 /* If the function call is a constant expression, don't generate any
332 * instructions; just generate an ir_constant.
333 *
334 * Function calls were first allowed to be constant expressions in GLSL
335 * 1.20 and GLSL ES 3.00.
336 */
337 if (state->is_version(120, 300)) {
338 ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
339 if (value != NULL) {
340 return value;
341 }
342 }
343
344 ir_dereference_variable *deref = NULL;
345 if (!sig->return_type->is_void()) {
346 /* Create a new temporary to hold the return value. */
347 ir_variable *var;
348
349 var = new(ctx) ir_variable(sig->return_type,
350 ralloc_asprintf(ctx, "%s_retval",
351 sig->function_name()),
352 ir_var_temporary);
353 instructions->push_tail(var);
354
355 deref = new(ctx) ir_dereference_variable(var);
356 }
357 ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
358 instructions->push_tail(call);
359
360 /* Also emit any necessary out-parameter conversions. */
361 instructions->append_list(&post_call_conversions);
362
363 return deref ? deref->clone(ctx, NULL) : NULL;
364 }
365
366 /**
367 * Given a function name and parameter list, find the matching signature.
368 */
369 static ir_function_signature *
370 match_function_by_name(const char *name,
371 exec_list *actual_parameters,
372 struct _mesa_glsl_parse_state *state)
373 {
374 void *ctx = state;
375 ir_function *f = state->symbols->get_function(name);
376 ir_function_signature *local_sig = NULL;
377 ir_function_signature *sig = NULL;
378
379 /* Is the function hidden by a record type constructor? */
380 if (state->symbols->get_type(name))
381 goto done; /* no match */
382
383 /* Is the function hidden by a variable (impossible in 1.10)? */
384 if (!state->symbols->separate_function_namespace
385 && state->symbols->get_variable(name))
386 goto done; /* no match */
387
388 if (f != NULL) {
389 /* Look for a match in the local shader. If exact, we're done. */
390 bool is_exact = false;
391 sig = local_sig = f->matching_signature(state, actual_parameters,
392 &is_exact);
393 if (is_exact)
394 goto done;
395
396 if (!state->es_shader && f->has_user_signature()) {
397 /* In desktop GL, the presence of a user-defined signature hides any
398 * built-in signatures, so we must ignore them. In contrast, in ES2
399 * user-defined signatures add new overloads, so we must proceed.
400 */
401 goto done;
402 }
403 }
404
405 /* Local shader has no exact candidates; check the built-ins. */
406 _mesa_glsl_initialize_builtin_functions();
407 sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
408
409 done:
410 if (sig != NULL) {
411 /* If the match is from a linked built-in shader, import the prototype. */
412 if (sig != local_sig) {
413 if (f == NULL) {
414 f = new(ctx) ir_function(name);
415 state->symbols->add_global_function(f);
416 emit_function(state, f);
417 }
418 f->add_signature(sig->clone_prototype(f, NULL));
419 }
420 }
421 return sig;
422 }
423
424 /**
425 * Raise a "no matching function" error, listing all possible overloads the
426 * compiler considered so developers can figure out what went wrong.
427 */
428 static void
429 no_matching_function_error(const char *name,
430 YYLTYPE *loc,
431 exec_list *actual_parameters,
432 _mesa_glsl_parse_state *state)
433 {
434 char *str = prototype_string(NULL, name, actual_parameters);
435 _mesa_glsl_error(loc, state, "no matching function for call to `%s'", str);
436 ralloc_free(str);
437
438 const char *prefix = "candidates are: ";
439
440 for (int i = -1; i < (int) state->num_builtins_to_link; i++) {
441 glsl_symbol_table *syms = i >= 0 ? state->builtins_to_link[i]->symbols
442 : state->symbols;
443 ir_function *f = syms->get_function(name);
444 if (f == NULL)
445 continue;
446
447 foreach_list (node, &f->signatures) {
448 ir_function_signature *sig = (ir_function_signature *) node;
449
450 if (sig->is_builtin() && !sig->is_builtin_available(state))
451 continue;
452
453 str = prototype_string(sig->return_type, f->name, &sig->parameters);
454 _mesa_glsl_error(loc, state, "%s%s", prefix, str);
455 ralloc_free(str);
456
457 prefix = " ";
458 }
459 }
460 }
461
462 /**
463 * Perform automatic type conversion of constructor parameters
464 *
465 * This implements the rules in the "Conversion and Scalar Constructors"
466 * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
467 */
468 static ir_rvalue *
469 convert_component(ir_rvalue *src, const glsl_type *desired_type)
470 {
471 void *ctx = ralloc_parent(src);
472 const unsigned a = desired_type->base_type;
473 const unsigned b = src->type->base_type;
474 ir_expression *result = NULL;
475
476 if (src->type->is_error())
477 return src;
478
479 assert(a <= GLSL_TYPE_BOOL);
480 assert(b <= GLSL_TYPE_BOOL);
481
482 if (a == b)
483 return src;
484
485 switch (a) {
486 case GLSL_TYPE_UINT:
487 switch (b) {
488 case GLSL_TYPE_INT:
489 result = new(ctx) ir_expression(ir_unop_i2u, src);
490 break;
491 case GLSL_TYPE_FLOAT:
492 result = new(ctx) ir_expression(ir_unop_f2u, src);
493 break;
494 case GLSL_TYPE_BOOL:
495 result = new(ctx) ir_expression(ir_unop_i2u,
496 new(ctx) ir_expression(ir_unop_b2i, src));
497 break;
498 }
499 break;
500 case GLSL_TYPE_INT:
501 switch (b) {
502 case GLSL_TYPE_UINT:
503 result = new(ctx) ir_expression(ir_unop_u2i, src);
504 break;
505 case GLSL_TYPE_FLOAT:
506 result = new(ctx) ir_expression(ir_unop_f2i, src);
507 break;
508 case GLSL_TYPE_BOOL:
509 result = new(ctx) ir_expression(ir_unop_b2i, src);
510 break;
511 }
512 break;
513 case GLSL_TYPE_FLOAT:
514 switch (b) {
515 case GLSL_TYPE_UINT:
516 result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
517 break;
518 case GLSL_TYPE_INT:
519 result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
520 break;
521 case GLSL_TYPE_BOOL:
522 result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
523 break;
524 }
525 break;
526 case GLSL_TYPE_BOOL:
527 switch (b) {
528 case GLSL_TYPE_UINT:
529 result = new(ctx) ir_expression(ir_unop_i2b,
530 new(ctx) ir_expression(ir_unop_u2i, src));
531 break;
532 case GLSL_TYPE_INT:
533 result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
534 break;
535 case GLSL_TYPE_FLOAT:
536 result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
537 break;
538 }
539 break;
540 }
541
542 assert(result != NULL);
543 assert(result->type == desired_type);
544
545 /* Try constant folding; it may fold in the conversion we just added. */
546 ir_constant *const constant = result->constant_expression_value();
547 return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
548 }
549
550 /**
551 * Dereference a specific component from a scalar, vector, or matrix
552 */
553 static ir_rvalue *
554 dereference_component(ir_rvalue *src, unsigned component)
555 {
556 void *ctx = ralloc_parent(src);
557 assert(component < src->type->components());
558
559 /* If the source is a constant, just create a new constant instead of a
560 * dereference of the existing constant.
561 */
562 ir_constant *constant = src->as_constant();
563 if (constant)
564 return new(ctx) ir_constant(constant, component);
565
566 if (src->type->is_scalar()) {
567 return src;
568 } else if (src->type->is_vector()) {
569 return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
570 } else {
571 assert(src->type->is_matrix());
572
573 /* Dereference a row of the matrix, then call this function again to get
574 * a specific element from that row.
575 */
576 const int c = component / src->type->column_type()->vector_elements;
577 const int r = component % src->type->column_type()->vector_elements;
578 ir_constant *const col_index = new(ctx) ir_constant(c);
579 ir_dereference *const col = new(ctx) ir_dereference_array(src, col_index);
580
581 col->type = src->type->column_type();
582
583 return dereference_component(col, r);
584 }
585
586 assert(!"Should not get here.");
587 return NULL;
588 }
589
590
591 static ir_rvalue *
592 process_vec_mat_constructor(exec_list *instructions,
593 const glsl_type *constructor_type,
594 YYLTYPE *loc, exec_list *parameters,
595 struct _mesa_glsl_parse_state *state)
596 {
597 void *ctx = state;
598
599 /* The ARB_shading_language_420pack spec says:
600 *
601 * "If an initializer is a list of initializers enclosed in curly braces,
602 * the variable being declared must be a vector, a matrix, an array, or a
603 * structure.
604 *
605 * int i = { 1 }; // illegal, i is not an aggregate"
606 */
607 if (constructor_type->vector_elements <= 1) {
608 _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
609 "matrices, arrays, and structs");
610 return ir_rvalue::error_value(ctx);
611 }
612
613 exec_list actual_parameters;
614 const unsigned parameter_count =
615 process_parameters(instructions, &actual_parameters, parameters, state);
616
617 if (parameter_count == 0
618 || (constructor_type->is_vector() &&
619 constructor_type->vector_elements != parameter_count)
620 || (constructor_type->is_matrix() &&
621 constructor_type->matrix_columns != parameter_count)) {
622 _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
623 constructor_type->is_vector() ? "vector" : "matrix",
624 constructor_type->vector_elements);
625 return ir_rvalue::error_value(ctx);
626 }
627
628 bool all_parameters_are_constant = true;
629
630 /* Type cast each parameter and, if possible, fold constants. */
631 foreach_list_safe(n, &actual_parameters) {
632 ir_rvalue *ir = (ir_rvalue *) n;
633 ir_rvalue *result = ir;
634
635 /* Apply implicit conversions (not the scalar constructor rules!). See
636 * the spec quote above. */
637 if (constructor_type->is_float()) {
638 const glsl_type *desired_type =
639 glsl_type::get_instance(GLSL_TYPE_FLOAT,
640 ir->type->vector_elements,
641 ir->type->matrix_columns);
642 if (result->type->can_implicitly_convert_to(desired_type)) {
643 /* Even though convert_component() implements the constructor
644 * conversion rules (not the implicit conversion rules), its safe
645 * to use it here because we already checked that the implicit
646 * conversion is legal.
647 */
648 result = convert_component(ir, desired_type);
649 }
650 }
651
652 if (constructor_type->is_matrix()) {
653 if (result->type != constructor_type->column_type()) {
654 _mesa_glsl_error(loc, state, "type error in matrix constructor: "
655 "expected: %s, found %s",
656 constructor_type->column_type()->name,
657 result->type->name);
658 return ir_rvalue::error_value(ctx);
659 }
660 } else if (result->type != constructor_type->get_scalar_type()) {
661 _mesa_glsl_error(loc, state, "type error in vector constructor: "
662 "expected: %s, found %s",
663 constructor_type->get_scalar_type()->name,
664 result->type->name);
665 return ir_rvalue::error_value(ctx);
666 }
667
668 /* Attempt to convert the parameter to a constant valued expression.
669 * After doing so, track whether or not all the parameters to the
670 * constructor are trivially constant valued expressions.
671 */
672 ir_rvalue *const constant = result->constant_expression_value();
673
674 if (constant != NULL)
675 result = constant;
676 else
677 all_parameters_are_constant = false;
678
679 ir->replace_with(result);
680 }
681
682 if (all_parameters_are_constant)
683 return new(ctx) ir_constant(constructor_type, &actual_parameters);
684
685 ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
686 ir_var_temporary);
687 instructions->push_tail(var);
688
689 int i = 0;
690 foreach_list(node, &actual_parameters) {
691 ir_rvalue *rhs = (ir_rvalue *) node;
692 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
693 new(ctx) ir_constant(i));
694
695 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
696 instructions->push_tail(assignment);
697
698 i++;
699 }
700
701 return new(ctx) ir_dereference_variable(var);
702 }
703
704
705 static ir_rvalue *
706 process_array_constructor(exec_list *instructions,
707 const glsl_type *constructor_type,
708 YYLTYPE *loc, exec_list *parameters,
709 struct _mesa_glsl_parse_state *state)
710 {
711 void *ctx = state;
712 /* Array constructors come in two forms: sized and unsized. Sized array
713 * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
714 * variables. In this case the number of parameters must exactly match the
715 * specified size of the array.
716 *
717 * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
718 * are vec4 variables. In this case the size of the array being constructed
719 * is determined by the number of parameters.
720 *
721 * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
722 *
723 * "There must be exactly the same number of arguments as the size of
724 * the array being constructed. If no size is present in the
725 * constructor, then the array is explicitly sized to the number of
726 * arguments provided. The arguments are assigned in order, starting at
727 * element 0, to the elements of the constructed array. Each argument
728 * must be the same type as the element type of the array, or be a type
729 * that can be converted to the element type of the array according to
730 * Section 4.1.10 "Implicit Conversions.""
731 */
732 exec_list actual_parameters;
733 const unsigned parameter_count =
734 process_parameters(instructions, &actual_parameters, parameters, state);
735 bool is_unsized_array = constructor_type->is_unsized_array();
736
737 if ((parameter_count == 0) ||
738 (!is_unsized_array && (constructor_type->length != parameter_count))) {
739 const unsigned min_param = is_unsized_array
740 ? 1 : constructor_type->length;
741
742 _mesa_glsl_error(loc, state, "array constructor must have %s %u "
743 "parameter%s",
744 is_unsized_array ? "at least" : "exactly",
745 min_param, (min_param <= 1) ? "" : "s");
746 return ir_rvalue::error_value(ctx);
747 }
748
749 if (is_unsized_array) {
750 constructor_type =
751 glsl_type::get_array_instance(constructor_type->element_type(),
752 parameter_count);
753 assert(constructor_type != NULL);
754 assert(constructor_type->length == parameter_count);
755 }
756
757 bool all_parameters_are_constant = true;
758
759 /* Type cast each parameter and, if possible, fold constants. */
760 foreach_list_safe(n, &actual_parameters) {
761 ir_rvalue *ir = (ir_rvalue *) n;
762 ir_rvalue *result = ir;
763
764 /* Apply implicit conversions (not the scalar constructor rules!). See
765 * the spec quote above. */
766 if (constructor_type->element_type()->is_float()) {
767 const glsl_type *desired_type =
768 glsl_type::get_instance(GLSL_TYPE_FLOAT,
769 ir->type->vector_elements,
770 ir->type->matrix_columns);
771 if (result->type->can_implicitly_convert_to(desired_type)) {
772 /* Even though convert_component() implements the constructor
773 * conversion rules (not the implicit conversion rules), its safe
774 * to use it here because we already checked that the implicit
775 * conversion is legal.
776 */
777 result = convert_component(ir, desired_type);
778 }
779 }
780
781 if (result->type != constructor_type->element_type()) {
782 _mesa_glsl_error(loc, state, "type error in array constructor: "
783 "expected: %s, found %s",
784 constructor_type->element_type()->name,
785 result->type->name);
786 return ir_rvalue::error_value(ctx);
787 }
788
789 /* Attempt to convert the parameter to a constant valued expression.
790 * After doing so, track whether or not all the parameters to the
791 * constructor are trivially constant valued expressions.
792 */
793 ir_rvalue *const constant = result->constant_expression_value();
794
795 if (constant != NULL)
796 result = constant;
797 else
798 all_parameters_are_constant = false;
799
800 ir->replace_with(result);
801 }
802
803 if (all_parameters_are_constant)
804 return new(ctx) ir_constant(constructor_type, &actual_parameters);
805
806 ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
807 ir_var_temporary);
808 instructions->push_tail(var);
809
810 int i = 0;
811 foreach_list(node, &actual_parameters) {
812 ir_rvalue *rhs = (ir_rvalue *) node;
813 ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
814 new(ctx) ir_constant(i));
815
816 ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
817 instructions->push_tail(assignment);
818
819 i++;
820 }
821
822 return new(ctx) ir_dereference_variable(var);
823 }
824
825
826 /**
827 * Try to convert a record constructor to a constant expression
828 */
829 static ir_constant *
830 constant_record_constructor(const glsl_type *constructor_type,
831 exec_list *parameters, void *mem_ctx)
832 {
833 foreach_list(node, parameters) {
834 ir_constant *constant = ((ir_instruction *) node)->as_constant();
835 if (constant == NULL)
836 return NULL;
837 node->replace_with(constant);
838 }
839
840 return new(mem_ctx) ir_constant(constructor_type, parameters);
841 }
842
843
844 /**
845 * Determine if a list consists of a single scalar r-value
846 */
847 bool
848 single_scalar_parameter(exec_list *parameters)
849 {
850 const ir_rvalue *const p = (ir_rvalue *) parameters->head;
851 assert(((ir_rvalue *)p)->as_rvalue() != NULL);
852
853 return (p->type->is_scalar() && p->next->is_tail_sentinel());
854 }
855
856
857 /**
858 * Generate inline code for a vector constructor
859 *
860 * The generated constructor code will consist of a temporary variable
861 * declaration of the same type as the constructor. A sequence of assignments
862 * from constructor parameters to the temporary will follow.
863 *
864 * \return
865 * An \c ir_dereference_variable of the temprorary generated in the constructor
866 * body.
867 */
868 ir_rvalue *
869 emit_inline_vector_constructor(const glsl_type *type,
870 exec_list *instructions,
871 exec_list *parameters,
872 void *ctx)
873 {
874 assert(!parameters->is_empty());
875
876 ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
877 instructions->push_tail(var);
878
879 /* There are two kinds of vector constructors.
880 *
881 * - Construct a vector from a single scalar by replicating that scalar to
882 * all components of the vector.
883 *
884 * - Construct a vector from an arbirary combination of vectors and
885 * scalars. The components of the constructor parameters are assigned
886 * to the vector in order until the vector is full.
887 */
888 const unsigned lhs_components = type->components();
889 if (single_scalar_parameter(parameters)) {
890 ir_rvalue *first_param = (ir_rvalue *)parameters->head;
891 ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
892 lhs_components);
893 ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
894 const unsigned mask = (1U << lhs_components) - 1;
895
896 assert(rhs->type == lhs->type);
897
898 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
899 instructions->push_tail(inst);
900 } else {
901 unsigned base_component = 0;
902 unsigned base_lhs_component = 0;
903 ir_constant_data data;
904 unsigned constant_mask = 0, constant_components = 0;
905
906 memset(&data, 0, sizeof(data));
907
908 foreach_list(node, parameters) {
909 ir_rvalue *param = (ir_rvalue *) node;
910 unsigned rhs_components = param->type->components();
911
912 /* Do not try to assign more components to the vector than it has!
913 */
914 if ((rhs_components + base_lhs_component) > lhs_components) {
915 rhs_components = lhs_components - base_lhs_component;
916 }
917
918 const ir_constant *const c = param->as_constant();
919 if (c != NULL) {
920 for (unsigned i = 0; i < rhs_components; i++) {
921 switch (c->type->base_type) {
922 case GLSL_TYPE_UINT:
923 data.u[i + base_component] = c->get_uint_component(i);
924 break;
925 case GLSL_TYPE_INT:
926 data.i[i + base_component] = c->get_int_component(i);
927 break;
928 case GLSL_TYPE_FLOAT:
929 data.f[i + base_component] = c->get_float_component(i);
930 break;
931 case GLSL_TYPE_BOOL:
932 data.b[i + base_component] = c->get_bool_component(i);
933 break;
934 default:
935 assert(!"Should not get here.");
936 break;
937 }
938 }
939
940 /* Mask of fields to be written in the assignment.
941 */
942 constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
943 constant_components += rhs_components;
944
945 base_component += rhs_components;
946 }
947 /* Advance the component index by the number of components
948 * that were just assigned.
949 */
950 base_lhs_component += rhs_components;
951 }
952
953 if (constant_mask != 0) {
954 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
955 const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
956 constant_components,
957 1);
958 ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
959
960 ir_instruction *inst =
961 new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
962 instructions->push_tail(inst);
963 }
964
965 base_component = 0;
966 foreach_list(node, parameters) {
967 ir_rvalue *param = (ir_rvalue *) node;
968 unsigned rhs_components = param->type->components();
969
970 /* Do not try to assign more components to the vector than it has!
971 */
972 if ((rhs_components + base_component) > lhs_components) {
973 rhs_components = lhs_components - base_component;
974 }
975
976 const ir_constant *const c = param->as_constant();
977 if (c == NULL) {
978 /* Mask of fields to be written in the assignment.
979 */
980 const unsigned write_mask = ((1U << rhs_components) - 1)
981 << base_component;
982
983 ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
984
985 /* Generate a swizzle so that LHS and RHS sizes match.
986 */
987 ir_rvalue *rhs =
988 new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
989
990 ir_instruction *inst =
991 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
992 instructions->push_tail(inst);
993 }
994
995 /* Advance the component index by the number of components that were
996 * just assigned.
997 */
998 base_component += rhs_components;
999 }
1000 }
1001 return new(ctx) ir_dereference_variable(var);
1002 }
1003
1004
1005 /**
1006 * Generate assignment of a portion of a vector to a portion of a matrix column
1007 *
1008 * \param src_base First component of the source to be used in assignment
1009 * \param column Column of destination to be assiged
1010 * \param row_base First component of the destination column to be assigned
1011 * \param count Number of components to be assigned
1012 *
1013 * \note
1014 * \c src_base + \c count must be less than or equal to the number of components
1015 * in the source vector.
1016 */
1017 ir_instruction *
1018 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1019 ir_rvalue *src, unsigned src_base, unsigned count,
1020 void *mem_ctx)
1021 {
1022 ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1023 ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var, col_idx);
1024
1025 assert(column_ref->type->components() >= (row_base + count));
1026 assert(src->type->components() >= (src_base + count));
1027
1028 /* Generate a swizzle that extracts the number of components from the source
1029 * that are to be assigned to the column of the matrix.
1030 */
1031 if (count < src->type->vector_elements) {
1032 src = new(mem_ctx) ir_swizzle(src,
1033 src_base + 0, src_base + 1,
1034 src_base + 2, src_base + 3,
1035 count);
1036 }
1037
1038 /* Mask of fields to be written in the assignment.
1039 */
1040 const unsigned write_mask = ((1U << count) - 1) << row_base;
1041
1042 return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1043 }
1044
1045
1046 /**
1047 * Generate inline code for a matrix constructor
1048 *
1049 * The generated constructor code will consist of a temporary variable
1050 * declaration of the same type as the constructor. A sequence of assignments
1051 * from constructor parameters to the temporary will follow.
1052 *
1053 * \return
1054 * An \c ir_dereference_variable of the temprorary generated in the constructor
1055 * body.
1056 */
1057 ir_rvalue *
1058 emit_inline_matrix_constructor(const glsl_type *type,
1059 exec_list *instructions,
1060 exec_list *parameters,
1061 void *ctx)
1062 {
1063 assert(!parameters->is_empty());
1064
1065 ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1066 instructions->push_tail(var);
1067
1068 /* There are three kinds of matrix constructors.
1069 *
1070 * - Construct a matrix from a single scalar by replicating that scalar to
1071 * along the diagonal of the matrix and setting all other components to
1072 * zero.
1073 *
1074 * - Construct a matrix from an arbirary combination of vectors and
1075 * scalars. The components of the constructor parameters are assigned
1076 * to the matrix in colum-major order until the matrix is full.
1077 *
1078 * - Construct a matrix from a single matrix. The source matrix is copied
1079 * to the upper left portion of the constructed matrix, and the remaining
1080 * elements take values from the identity matrix.
1081 */
1082 ir_rvalue *const first_param = (ir_rvalue *) parameters->head;
1083 if (single_scalar_parameter(parameters)) {
1084 /* Assign the scalar to the X component of a vec4, and fill the remaining
1085 * components with zero.
1086 */
1087 ir_variable *rhs_var =
1088 new(ctx) ir_variable(glsl_type::vec4_type, "mat_ctor_vec",
1089 ir_var_temporary);
1090 instructions->push_tail(rhs_var);
1091
1092 ir_constant_data zero;
1093 zero.f[0] = 0.0;
1094 zero.f[1] = 0.0;
1095 zero.f[2] = 0.0;
1096 zero.f[3] = 0.0;
1097
1098 ir_instruction *inst =
1099 new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1100 new(ctx) ir_constant(rhs_var->type, &zero),
1101 NULL);
1102 instructions->push_tail(inst);
1103
1104 ir_dereference *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1105
1106 inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1107 instructions->push_tail(inst);
1108
1109 /* Assign the temporary vector to each column of the destination matrix
1110 * with a swizzle that puts the X component on the diagonal of the
1111 * matrix. In some cases this may mean that the X component does not
1112 * get assigned into the column at all (i.e., when the matrix has more
1113 * columns than rows).
1114 */
1115 static const unsigned rhs_swiz[4][4] = {
1116 { 0, 1, 1, 1 },
1117 { 1, 0, 1, 1 },
1118 { 1, 1, 0, 1 },
1119 { 1, 1, 1, 0 }
1120 };
1121
1122 const unsigned cols_to_init = MIN2(type->matrix_columns,
1123 type->vector_elements);
1124 for (unsigned i = 0; i < cols_to_init; i++) {
1125 ir_constant *const col_idx = new(ctx) ir_constant(i);
1126 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1127
1128 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1129 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1130 type->vector_elements);
1131
1132 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1133 instructions->push_tail(inst);
1134 }
1135
1136 for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1137 ir_constant *const col_idx = new(ctx) ir_constant(i);
1138 ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var, col_idx);
1139
1140 ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1141 ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1142 type->vector_elements);
1143
1144 inst = new(ctx) ir_assignment(col_ref, rhs, NULL);
1145 instructions->push_tail(inst);
1146 }
1147 } else if (first_param->type->is_matrix()) {
1148 /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1149 *
1150 * "If a matrix is constructed from a matrix, then each component
1151 * (column i, row j) in the result that has a corresponding
1152 * component (column i, row j) in the argument will be initialized
1153 * from there. All other components will be initialized to the
1154 * identity matrix. If a matrix argument is given to a matrix
1155 * constructor, it is an error to have any other arguments."
1156 */
1157 assert(first_param->next->is_tail_sentinel());
1158 ir_rvalue *const src_matrix = first_param;
1159
1160 /* If the source matrix is smaller, pre-initialize the relavent parts of
1161 * the destination matrix to the identity matrix.
1162 */
1163 if ((src_matrix->type->matrix_columns < var->type->matrix_columns)
1164 || (src_matrix->type->vector_elements < var->type->vector_elements)) {
1165
1166 /* If the source matrix has fewer rows, every column of the destination
1167 * must be initialized. Otherwise only the columns in the destination
1168 * that do not exist in the source must be initialized.
1169 */
1170 unsigned col =
1171 (src_matrix->type->vector_elements < var->type->vector_elements)
1172 ? 0 : src_matrix->type->matrix_columns;
1173
1174 const glsl_type *const col_type = var->type->column_type();
1175 for (/* empty */; col < var->type->matrix_columns; col++) {
1176 ir_constant_data ident;
1177
1178 ident.f[0] = 0.0;
1179 ident.f[1] = 0.0;
1180 ident.f[2] = 0.0;
1181 ident.f[3] = 0.0;
1182
1183 ident.f[col] = 1.0;
1184
1185 ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1186
1187 ir_rvalue *const lhs =
1188 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1189
1190 ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL);
1191 instructions->push_tail(inst);
1192 }
1193 }
1194
1195 /* Assign columns from the source matrix to the destination matrix.
1196 *
1197 * Since the parameter will be used in the RHS of multiple assignments,
1198 * generate a temporary and copy the paramter there.
1199 */
1200 ir_variable *const rhs_var =
1201 new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1202 ir_var_temporary);
1203 instructions->push_tail(rhs_var);
1204
1205 ir_dereference *const rhs_var_ref =
1206 new(ctx) ir_dereference_variable(rhs_var);
1207 ir_instruction *const inst =
1208 new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
1209 instructions->push_tail(inst);
1210
1211 const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1212 var->type->vector_elements);
1213 const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1214 var->type->matrix_columns);
1215
1216 unsigned swiz[4] = { 0, 0, 0, 0 };
1217 for (unsigned i = 1; i < last_row; i++)
1218 swiz[i] = i;
1219
1220 const unsigned write_mask = (1U << last_row) - 1;
1221
1222 for (unsigned i = 0; i < last_col; i++) {
1223 ir_dereference *const lhs =
1224 new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1225 ir_rvalue *const rhs_col =
1226 new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1227
1228 /* If one matrix has columns that are smaller than the columns of the
1229 * other matrix, wrap the column access of the larger with a swizzle
1230 * so that the LHS and RHS of the assignment have the same size (and
1231 * therefore have the same type).
1232 *
1233 * It would be perfectly valid to unconditionally generate the
1234 * swizzles, this this will typically result in a more compact IR tree.
1235 */
1236 ir_rvalue *rhs;
1237 if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1238 rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1239 } else {
1240 rhs = rhs_col;
1241 }
1242
1243 ir_instruction *inst =
1244 new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1245 instructions->push_tail(inst);
1246 }
1247 } else {
1248 const unsigned cols = type->matrix_columns;
1249 const unsigned rows = type->vector_elements;
1250 unsigned col_idx = 0;
1251 unsigned row_idx = 0;
1252
1253 foreach_list (node, parameters) {
1254 ir_rvalue *const rhs = (ir_rvalue *) node;
1255 const unsigned components_remaining_this_column = rows - row_idx;
1256 unsigned rhs_components = rhs->type->components();
1257 unsigned rhs_base = 0;
1258
1259 /* Since the parameter might be used in the RHS of two assignments,
1260 * generate a temporary and copy the paramter there.
1261 */
1262 ir_variable *rhs_var =
1263 new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1264 instructions->push_tail(rhs_var);
1265
1266 ir_dereference *rhs_var_ref =
1267 new(ctx) ir_dereference_variable(rhs_var);
1268 ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs, NULL);
1269 instructions->push_tail(inst);
1270
1271 /* Assign the current parameter to as many components of the matrix
1272 * as it will fill.
1273 *
1274 * NOTE: A single vector parameter can span two matrix columns. A
1275 * single vec4, for example, can completely fill a mat2.
1276 */
1277 if (rhs_components >= components_remaining_this_column) {
1278 const unsigned count = MIN2(rhs_components,
1279 components_remaining_this_column);
1280
1281 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1282
1283 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1284 row_idx,
1285 rhs_var_ref, 0,
1286 count, ctx);
1287 instructions->push_tail(inst);
1288
1289 rhs_base = count;
1290
1291 col_idx++;
1292 row_idx = 0;
1293 }
1294
1295 /* If there is data left in the parameter and components left to be
1296 * set in the destination, emit another assignment. It is possible
1297 * that the assignment could be of a vec4 to the last element of the
1298 * matrix. In this case col_idx==cols, but there is still data
1299 * left in the source parameter. Obviously, don't emit an assignment
1300 * to data outside the destination matrix.
1301 */
1302 if ((col_idx < cols) && (rhs_base < rhs_components)) {
1303 const unsigned count = rhs_components - rhs_base;
1304
1305 rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1306
1307 ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1308 row_idx,
1309 rhs_var_ref,
1310 rhs_base,
1311 count, ctx);
1312 instructions->push_tail(inst);
1313
1314 row_idx += count;
1315 }
1316 }
1317 }
1318
1319 return new(ctx) ir_dereference_variable(var);
1320 }
1321
1322
1323 ir_rvalue *
1324 emit_inline_record_constructor(const glsl_type *type,
1325 exec_list *instructions,
1326 exec_list *parameters,
1327 void *mem_ctx)
1328 {
1329 ir_variable *const var =
1330 new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1331 ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
1332
1333 instructions->push_tail(var);
1334
1335 exec_node *node = parameters->head;
1336 for (unsigned i = 0; i < type->length; i++) {
1337 assert(!node->is_tail_sentinel());
1338
1339 ir_dereference *const lhs =
1340 new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1341 type->fields.structure[i].name);
1342
1343 ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1344 assert(rhs != NULL);
1345
1346 ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
1347
1348 instructions->push_tail(assign);
1349 node = node->next;
1350 }
1351
1352 return d;
1353 }
1354
1355
1356 static ir_rvalue *
1357 process_record_constructor(exec_list *instructions,
1358 const glsl_type *constructor_type,
1359 YYLTYPE *loc, exec_list *parameters,
1360 struct _mesa_glsl_parse_state *state)
1361 {
1362 void *ctx = state;
1363 exec_list actual_parameters;
1364
1365 process_parameters(instructions, &actual_parameters,
1366 parameters, state);
1367
1368 exec_node *node = actual_parameters.head;
1369 for (unsigned i = 0; i < constructor_type->length; i++) {
1370 ir_rvalue *ir = (ir_rvalue *) node;
1371
1372 if (node->is_tail_sentinel()) {
1373 _mesa_glsl_error(loc, state,
1374 "insufficient parameters to constructor for `%s'",
1375 constructor_type->name);
1376 return ir_rvalue::error_value(ctx);
1377 }
1378
1379 if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
1380 ir, state)) {
1381 node->replace_with(ir);
1382 } else {
1383 _mesa_glsl_error(loc, state,
1384 "parameter type mismatch in constructor for `%s.%s' "
1385 "(%s vs %s)",
1386 constructor_type->name,
1387 constructor_type->fields.structure[i].name,
1388 ir->type->name,
1389 constructor_type->fields.structure[i].type->name);
1390 return ir_rvalue::error_value(ctx);;
1391 }
1392
1393 node = node->next;
1394 }
1395
1396 if (!node->is_tail_sentinel()) {
1397 _mesa_glsl_error(loc, state, "too many parameters in constructor "
1398 "for `%s'", constructor_type->name);
1399 return ir_rvalue::error_value(ctx);
1400 }
1401
1402 ir_rvalue *const constant =
1403 constant_record_constructor(constructor_type, &actual_parameters,
1404 state);
1405
1406 return (constant != NULL)
1407 ? constant
1408 : emit_inline_record_constructor(constructor_type, instructions,
1409 &actual_parameters, state);
1410 }
1411
1412
1413 ir_rvalue *
1414 ast_function_expression::hir(exec_list *instructions,
1415 struct _mesa_glsl_parse_state *state)
1416 {
1417 void *ctx = state;
1418 /* There are three sorts of function calls.
1419 *
1420 * 1. constructors - The first subexpression is an ast_type_specifier.
1421 * 2. methods - Only the .length() method of array types.
1422 * 3. functions - Calls to regular old functions.
1423 *
1424 * Method calls are actually detected when the ast_field_selection
1425 * expression is handled.
1426 */
1427 if (is_constructor()) {
1428 const ast_type_specifier *type = (ast_type_specifier *) subexpressions[0];
1429 YYLTYPE loc = type->get_location();
1430 const char *name;
1431
1432 const glsl_type *const constructor_type = type->glsl_type(& name, state);
1433
1434 /* constructor_type can be NULL if a variable with the same name as the
1435 * structure has come into scope.
1436 */
1437 if (constructor_type == NULL) {
1438 _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
1439 "may be shadowed by a variable with the same name)",
1440 type->type_name);
1441 return ir_rvalue::error_value(ctx);
1442 }
1443
1444
1445 /* Constructors for samplers are illegal.
1446 */
1447 if (constructor_type->is_sampler()) {
1448 _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
1449 constructor_type->name);
1450 return ir_rvalue::error_value(ctx);
1451 }
1452
1453 if (constructor_type->is_array()) {
1454 if (!state->check_version(120, 300, &loc,
1455 "array constructors forbidden")) {
1456 return ir_rvalue::error_value(ctx);
1457 }
1458
1459 return process_array_constructor(instructions, constructor_type,
1460 & loc, &this->expressions, state);
1461 }
1462
1463
1464 /* There are two kinds of constructor calls. Constructors for arrays and
1465 * structures must have the exact number of arguments with matching types
1466 * in the correct order. These constructors follow essentially the same
1467 * type matching rules as functions.
1468 *
1469 * Constructors for built-in language types, such as mat4 and vec2, are
1470 * free form. The only requirements are that the parameters must provide
1471 * enough values of the correct scalar type and that no arguments are
1472 * given past the last used argument.
1473 *
1474 * When using the C-style initializer syntax from GLSL 4.20, constructors
1475 * must have the exact number of arguments with matching types in the
1476 * correct order.
1477 */
1478 if (constructor_type->is_record()) {
1479 return process_record_constructor(instructions, constructor_type,
1480 &loc, &this->expressions,
1481 state);
1482 }
1483
1484 if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
1485 return ir_rvalue::error_value(ctx);
1486
1487 /* Total number of components of the type being constructed. */
1488 const unsigned type_components = constructor_type->components();
1489
1490 /* Number of components from parameters that have actually been
1491 * consumed. This is used to perform several kinds of error checking.
1492 */
1493 unsigned components_used = 0;
1494
1495 unsigned matrix_parameters = 0;
1496 unsigned nonmatrix_parameters = 0;
1497 exec_list actual_parameters;
1498
1499 foreach_list (n, &this->expressions) {
1500 ast_node *ast = exec_node_data(ast_node, n, link);
1501 ir_rvalue *result = ast->hir(instructions, state)->as_rvalue();
1502
1503 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1504 *
1505 * "It is an error to provide extra arguments beyond this
1506 * last used argument."
1507 */
1508 if (components_used >= type_components) {
1509 _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
1510 "constructor",
1511 constructor_type->name);
1512 return ir_rvalue::error_value(ctx);
1513 }
1514
1515 if (!result->type->is_numeric() && !result->type->is_boolean()) {
1516 _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
1517 "non-numeric data type",
1518 constructor_type->name);
1519 return ir_rvalue::error_value(ctx);
1520 }
1521
1522 /* Count the number of matrix and nonmatrix parameters. This
1523 * is used below to enforce some of the constructor rules.
1524 */
1525 if (result->type->is_matrix())
1526 matrix_parameters++;
1527 else
1528 nonmatrix_parameters++;
1529
1530 actual_parameters.push_tail(result);
1531 components_used += result->type->components();
1532 }
1533
1534 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1535 *
1536 * "It is an error to construct matrices from other matrices. This
1537 * is reserved for future use."
1538 */
1539 if (matrix_parameters > 0
1540 && constructor_type->is_matrix()
1541 && !state->check_version(120, 100, &loc,
1542 "cannot construct `%s' from a matrix",
1543 constructor_type->name)) {
1544 return ir_rvalue::error_value(ctx);
1545 }
1546
1547 /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
1548 *
1549 * "If a matrix argument is given to a matrix constructor, it is
1550 * an error to have any other arguments."
1551 */
1552 if ((matrix_parameters > 0)
1553 && ((matrix_parameters + nonmatrix_parameters) > 1)
1554 && constructor_type->is_matrix()) {
1555 _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
1556 "matrix must be only parameter",
1557 constructor_type->name);
1558 return ir_rvalue::error_value(ctx);
1559 }
1560
1561 /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
1562 *
1563 * "In these cases, there must be enough components provided in the
1564 * arguments to provide an initializer for every component in the
1565 * constructed value."
1566 */
1567 if (components_used < type_components && components_used != 1
1568 && matrix_parameters == 0) {
1569 _mesa_glsl_error(& loc, state, "too few components to construct "
1570 "`%s'",
1571 constructor_type->name);
1572 return ir_rvalue::error_value(ctx);
1573 }
1574
1575 /* Later, we cast each parameter to the same base type as the
1576 * constructor. Since there are no non-floating point matrices, we
1577 * need to break them up into a series of column vectors.
1578 */
1579 if (constructor_type->base_type != GLSL_TYPE_FLOAT) {
1580 foreach_list_safe(n, &actual_parameters) {
1581 ir_rvalue *matrix = (ir_rvalue *) n;
1582
1583 if (!matrix->type->is_matrix())
1584 continue;
1585
1586 /* Create a temporary containing the matrix. */
1587 ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
1588 ir_var_temporary);
1589 instructions->push_tail(var);
1590 instructions->push_tail(new(ctx) ir_assignment(new(ctx)
1591 ir_dereference_variable(var), matrix, NULL));
1592 var->constant_value = matrix->constant_expression_value();
1593
1594 /* Replace the matrix with dereferences of its columns. */
1595 for (int i = 0; i < matrix->type->matrix_columns; i++) {
1596 matrix->insert_before(new (ctx) ir_dereference_array(var,
1597 new(ctx) ir_constant(i)));
1598 }
1599 matrix->remove();
1600 }
1601 }
1602
1603 bool all_parameters_are_constant = true;
1604
1605 /* Type cast each parameter and, if possible, fold constants.*/
1606 foreach_list_safe(n, &actual_parameters) {
1607 ir_rvalue *ir = (ir_rvalue *) n;
1608
1609 const glsl_type *desired_type =
1610 glsl_type::get_instance(constructor_type->base_type,
1611 ir->type->vector_elements,
1612 ir->type->matrix_columns);
1613 ir_rvalue *result = convert_component(ir, desired_type);
1614
1615 /* Attempt to convert the parameter to a constant valued expression.
1616 * After doing so, track whether or not all the parameters to the
1617 * constructor are trivially constant valued expressions.
1618 */
1619 ir_rvalue *const constant = result->constant_expression_value();
1620
1621 if (constant != NULL)
1622 result = constant;
1623 else
1624 all_parameters_are_constant = false;
1625
1626 if (result != ir) {
1627 ir->replace_with(result);
1628 }
1629 }
1630
1631 /* If all of the parameters are trivially constant, create a
1632 * constant representing the complete collection of parameters.
1633 */
1634 if (all_parameters_are_constant) {
1635 return new(ctx) ir_constant(constructor_type, &actual_parameters);
1636 } else if (constructor_type->is_scalar()) {
1637 return dereference_component((ir_rvalue *) actual_parameters.head,
1638 0);
1639 } else if (constructor_type->is_vector()) {
1640 return emit_inline_vector_constructor(constructor_type,
1641 instructions,
1642 &actual_parameters,
1643 ctx);
1644 } else {
1645 assert(constructor_type->is_matrix());
1646 return emit_inline_matrix_constructor(constructor_type,
1647 instructions,
1648 &actual_parameters,
1649 ctx);
1650 }
1651 } else {
1652 const ast_expression *id = subexpressions[0];
1653 const char *func_name = id->primary_expression.identifier;
1654 YYLTYPE loc = id->get_location();
1655 exec_list actual_parameters;
1656
1657 process_parameters(instructions, &actual_parameters, &this->expressions,
1658 state);
1659
1660 ir_function_signature *sig =
1661 match_function_by_name(func_name, &actual_parameters, state);
1662
1663 ir_rvalue *value = NULL;
1664 if (sig == NULL) {
1665 no_matching_function_error(func_name, &loc, &actual_parameters, state);
1666 value = ir_rvalue::error_value(ctx);
1667 } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
1668 /* an error has already been emitted */
1669 value = ir_rvalue::error_value(ctx);
1670 } else {
1671 value = generate_call(instructions, sig, &actual_parameters, state);
1672 }
1673
1674 return value;
1675 }
1676
1677 return ir_rvalue::error_value(ctx);
1678 }
1679
1680 ir_rvalue *
1681 ast_aggregate_initializer::hir(exec_list *instructions,
1682 struct _mesa_glsl_parse_state *state)
1683 {
1684 void *ctx = state;
1685 YYLTYPE loc = this->get_location();
1686 const char *name;
1687
1688 if (!this->constructor_type) {
1689 _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
1690 return ir_rvalue::error_value(ctx);
1691 }
1692 const glsl_type *const constructor_type =
1693 this->constructor_type->glsl_type(&name, state);
1694
1695 if (!state->ARB_shading_language_420pack_enable) {
1696 _mesa_glsl_error(&loc, state, "C-style initialization requires the "
1697 "GL_ARB_shading_language_420pack extension");
1698 return ir_rvalue::error_value(ctx);
1699 }
1700
1701 if (this->constructor_type->is_array) {
1702 return process_array_constructor(instructions, constructor_type, &loc,
1703 &this->expressions, state);
1704 }
1705
1706 if (this->constructor_type->structure) {
1707 return process_record_constructor(instructions, constructor_type, &loc,
1708 &this->expressions, state);
1709 }
1710
1711 return process_vec_mat_constructor(instructions, constructor_type, &loc,
1712 &this->expressions, state);
1713 }