glsl: Process redeclarations before initializers
[mesa.git] / src / glsl / ast_to_hir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file ast_to_hir.c
26 * Convert abstract syntax to to high-level intermediate reprensentation (HIR).
27 *
28 * During the conversion to HIR, the majority of the symantic checking is
29 * preformed on the program. This includes:
30 *
31 * * Symbol table management
32 * * Type checking
33 * * Function binding
34 *
35 * The majority of this work could be done during parsing, and the parser could
36 * probably generate HIR directly. However, this results in frequent changes
37 * to the parser code. Since we do not assume that every system this complier
38 * is built on will have Flex and Bison installed, we have to store the code
39 * generated by these tools in our version control system. In other parts of
40 * the system we've seen problems where a parser was changed but the generated
41 * code was not committed, merge conflicts where created because two developers
42 * had slightly different versions of Bison installed, etc.
43 *
44 * I have also noticed that running Bison generated parsers in GDB is very
45 * irritating. When you get a segfault on '$$ = $1->foo', you can't very
46 * well 'print $1' in GDB.
47 *
48 * As a result, my preference is to put as little C code as possible in the
49 * parser (and lexer) sources.
50 */
51
52 #include "main/core.h" /* for struct gl_extensions */
53 #include "glsl_symbol_table.h"
54 #include "glsl_parser_extras.h"
55 #include "ast.h"
56 #include "glsl_types.h"
57 #include "ir.h"
58
59 void
60 _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
61 {
62 _mesa_glsl_initialize_variables(instructions, state);
63 _mesa_glsl_initialize_functions(state);
64
65 state->symbols->language_version = state->language_version;
66
67 state->current_function = NULL;
68
69 /* Section 4.2 of the GLSL 1.20 specification states:
70 * "The built-in functions are scoped in a scope outside the global scope
71 * users declare global variables in. That is, a shader's global scope,
72 * available for user-defined functions and global variables, is nested
73 * inside the scope containing the built-in functions."
74 *
75 * Since built-in functions like ftransform() access built-in variables,
76 * it follows that those must be in the outer scope as well.
77 *
78 * We push scope here to create this nesting effect...but don't pop.
79 * This way, a shader's globals are still in the symbol table for use
80 * by the linker.
81 */
82 state->symbols->push_scope();
83
84 foreach_list_typed (ast_node, ast, link, & state->translation_unit)
85 ast->hir(instructions, state);
86 }
87
88
89 /**
90 * If a conversion is available, convert one operand to a different type
91 *
92 * The \c from \c ir_rvalue is converted "in place".
93 *
94 * \param to Type that the operand it to be converted to
95 * \param from Operand that is being converted
96 * \param state GLSL compiler state
97 *
98 * \return
99 * If a conversion is possible (or unnecessary), \c true is returned.
100 * Otherwise \c false is returned.
101 */
102 bool
103 apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
104 struct _mesa_glsl_parse_state *state)
105 {
106 void *ctx = state;
107 if (to->base_type == from->type->base_type)
108 return true;
109
110 /* This conversion was added in GLSL 1.20. If the compilation mode is
111 * GLSL 1.10, the conversion is skipped.
112 */
113 if (state->language_version < 120)
114 return false;
115
116 /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
117 *
118 * "There are no implicit array or structure conversions. For
119 * example, an array of int cannot be implicitly converted to an
120 * array of float. There are no implicit conversions between
121 * signed and unsigned integers."
122 */
123 /* FINISHME: The above comment is partially a lie. There is int/uint
124 * FINISHME: conversion for immediate constants.
125 */
126 if (!to->is_float() || !from->type->is_numeric())
127 return false;
128
129 /* Convert to a floating point type with the same number of components
130 * as the original type - i.e. int to float, not int to vec4.
131 */
132 to = glsl_type::get_instance(GLSL_TYPE_FLOAT, from->type->vector_elements,
133 from->type->matrix_columns);
134
135 switch (from->type->base_type) {
136 case GLSL_TYPE_INT:
137 from = new(ctx) ir_expression(ir_unop_i2f, to, from, NULL);
138 break;
139 case GLSL_TYPE_UINT:
140 from = new(ctx) ir_expression(ir_unop_u2f, to, from, NULL);
141 break;
142 case GLSL_TYPE_BOOL:
143 from = new(ctx) ir_expression(ir_unop_b2f, to, from, NULL);
144 break;
145 default:
146 assert(0);
147 }
148
149 return true;
150 }
151
152
153 static const struct glsl_type *
154 arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
155 bool multiply,
156 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
157 {
158 const glsl_type *type_a = value_a->type;
159 const glsl_type *type_b = value_b->type;
160
161 /* From GLSL 1.50 spec, page 56:
162 *
163 * "The arithmetic binary operators add (+), subtract (-),
164 * multiply (*), and divide (/) operate on integer and
165 * floating-point scalars, vectors, and matrices."
166 */
167 if (!type_a->is_numeric() || !type_b->is_numeric()) {
168 _mesa_glsl_error(loc, state,
169 "Operands to arithmetic operators must be numeric");
170 return glsl_type::error_type;
171 }
172
173
174 /* "If one operand is floating-point based and the other is
175 * not, then the conversions from Section 4.1.10 "Implicit
176 * Conversions" are applied to the non-floating-point-based operand."
177 */
178 if (!apply_implicit_conversion(type_a, value_b, state)
179 && !apply_implicit_conversion(type_b, value_a, state)) {
180 _mesa_glsl_error(loc, state,
181 "Could not implicitly convert operands to "
182 "arithmetic operator");
183 return glsl_type::error_type;
184 }
185 type_a = value_a->type;
186 type_b = value_b->type;
187
188 /* "If the operands are integer types, they must both be signed or
189 * both be unsigned."
190 *
191 * From this rule and the preceeding conversion it can be inferred that
192 * both types must be GLSL_TYPE_FLOAT, or GLSL_TYPE_UINT, or GLSL_TYPE_INT.
193 * The is_numeric check above already filtered out the case where either
194 * type is not one of these, so now the base types need only be tested for
195 * equality.
196 */
197 if (type_a->base_type != type_b->base_type) {
198 _mesa_glsl_error(loc, state,
199 "base type mismatch for arithmetic operator");
200 return glsl_type::error_type;
201 }
202
203 /* "All arithmetic binary operators result in the same fundamental type
204 * (signed integer, unsigned integer, or floating-point) as the
205 * operands they operate on, after operand type conversion. After
206 * conversion, the following cases are valid
207 *
208 * * The two operands are scalars. In this case the operation is
209 * applied, resulting in a scalar."
210 */
211 if (type_a->is_scalar() && type_b->is_scalar())
212 return type_a;
213
214 /* "* One operand is a scalar, and the other is a vector or matrix.
215 * In this case, the scalar operation is applied independently to each
216 * component of the vector or matrix, resulting in the same size
217 * vector or matrix."
218 */
219 if (type_a->is_scalar()) {
220 if (!type_b->is_scalar())
221 return type_b;
222 } else if (type_b->is_scalar()) {
223 return type_a;
224 }
225
226 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
227 * <scalar, vector>, <scalar, matrix>, and <matrix, scalar> have been
228 * handled.
229 */
230 assert(!type_a->is_scalar());
231 assert(!type_b->is_scalar());
232
233 /* "* The two operands are vectors of the same size. In this case, the
234 * operation is done component-wise resulting in the same size
235 * vector."
236 */
237 if (type_a->is_vector() && type_b->is_vector()) {
238 if (type_a == type_b) {
239 return type_a;
240 } else {
241 _mesa_glsl_error(loc, state,
242 "vector size mismatch for arithmetic operator");
243 return glsl_type::error_type;
244 }
245 }
246
247 /* All of the combinations of <scalar, scalar>, <vector, scalar>,
248 * <scalar, vector>, <scalar, matrix>, <matrix, scalar>, and
249 * <vector, vector> have been handled. At least one of the operands must
250 * be matrix. Further, since there are no integer matrix types, the base
251 * type of both operands must be float.
252 */
253 assert(type_a->is_matrix() || type_b->is_matrix());
254 assert(type_a->base_type == GLSL_TYPE_FLOAT);
255 assert(type_b->base_type == GLSL_TYPE_FLOAT);
256
257 /* "* The operator is add (+), subtract (-), or divide (/), and the
258 * operands are matrices with the same number of rows and the same
259 * number of columns. In this case, the operation is done component-
260 * wise resulting in the same size matrix."
261 * * The operator is multiply (*), where both operands are matrices or
262 * one operand is a vector and the other a matrix. A right vector
263 * operand is treated as a column vector and a left vector operand as a
264 * row vector. In all these cases, it is required that the number of
265 * columns of the left operand is equal to the number of rows of the
266 * right operand. Then, the multiply (*) operation does a linear
267 * algebraic multiply, yielding an object that has the same number of
268 * rows as the left operand and the same number of columns as the right
269 * operand. Section 5.10 "Vector and Matrix Operations" explains in
270 * more detail how vectors and matrices are operated on."
271 */
272 if (! multiply) {
273 if (type_a == type_b)
274 return type_a;
275 } else {
276 if (type_a->is_matrix() && type_b->is_matrix()) {
277 /* Matrix multiply. The columns of A must match the rows of B. Given
278 * the other previously tested constraints, this means the vector type
279 * of a row from A must be the same as the vector type of a column from
280 * B.
281 */
282 if (type_a->row_type() == type_b->column_type()) {
283 /* The resulting matrix has the number of columns of matrix B and
284 * the number of rows of matrix A. We get the row count of A by
285 * looking at the size of a vector that makes up a column. The
286 * transpose (size of a row) is done for B.
287 */
288 const glsl_type *const type =
289 glsl_type::get_instance(type_a->base_type,
290 type_a->column_type()->vector_elements,
291 type_b->row_type()->vector_elements);
292 assert(type != glsl_type::error_type);
293
294 return type;
295 }
296 } else if (type_a->is_matrix()) {
297 /* A is a matrix and B is a column vector. Columns of A must match
298 * rows of B. Given the other previously tested constraints, this
299 * means the vector type of a row from A must be the same as the
300 * vector the type of B.
301 */
302 if (type_a->row_type() == type_b) {
303 /* The resulting vector has a number of elements equal to
304 * the number of rows of matrix A. */
305 const glsl_type *const type =
306 glsl_type::get_instance(type_a->base_type,
307 type_a->column_type()->vector_elements,
308 1);
309 assert(type != glsl_type::error_type);
310
311 return type;
312 }
313 } else {
314 assert(type_b->is_matrix());
315
316 /* A is a row vector and B is a matrix. Columns of A must match rows
317 * of B. Given the other previously tested constraints, this means
318 * the type of A must be the same as the vector type of a column from
319 * B.
320 */
321 if (type_a == type_b->column_type()) {
322 /* The resulting vector has a number of elements equal to
323 * the number of columns of matrix B. */
324 const glsl_type *const type =
325 glsl_type::get_instance(type_a->base_type,
326 type_b->row_type()->vector_elements,
327 1);
328 assert(type != glsl_type::error_type);
329
330 return type;
331 }
332 }
333
334 _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
335 return glsl_type::error_type;
336 }
337
338
339 /* "All other cases are illegal."
340 */
341 _mesa_glsl_error(loc, state, "type mismatch");
342 return glsl_type::error_type;
343 }
344
345
346 static const struct glsl_type *
347 unary_arithmetic_result_type(const struct glsl_type *type,
348 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
349 {
350 /* From GLSL 1.50 spec, page 57:
351 *
352 * "The arithmetic unary operators negate (-), post- and pre-increment
353 * and decrement (-- and ++) operate on integer or floating-point
354 * values (including vectors and matrices). All unary operators work
355 * component-wise on their operands. These result with the same type
356 * they operated on."
357 */
358 if (!type->is_numeric()) {
359 _mesa_glsl_error(loc, state,
360 "Operands to arithmetic operators must be numeric");
361 return glsl_type::error_type;
362 }
363
364 return type;
365 }
366
367 /**
368 * \brief Return the result type of a bit-logic operation.
369 *
370 * If the given types to the bit-logic operator are invalid, return
371 * glsl_type::error_type.
372 *
373 * \param type_a Type of LHS of bit-logic op
374 * \param type_b Type of RHS of bit-logic op
375 */
376 static const struct glsl_type *
377 bit_logic_result_type(const struct glsl_type *type_a,
378 const struct glsl_type *type_b,
379 ast_operators op,
380 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
381 {
382 if (state->language_version < 130) {
383 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
384 return glsl_type::error_type;
385 }
386
387 /* From page 50 (page 56 of PDF) of GLSL 1.30 spec:
388 *
389 * "The bitwise operators and (&), exclusive-or (^), and inclusive-or
390 * (|). The operands must be of type signed or unsigned integers or
391 * integer vectors."
392 */
393 if (!type_a->is_integer()) {
394 _mesa_glsl_error(loc, state, "LHS of `%s' must be an integer",
395 ast_expression::operator_string(op));
396 return glsl_type::error_type;
397 }
398 if (!type_b->is_integer()) {
399 _mesa_glsl_error(loc, state, "RHS of `%s' must be an integer",
400 ast_expression::operator_string(op));
401 return glsl_type::error_type;
402 }
403
404 /* "The fundamental types of the operands (signed or unsigned) must
405 * match,"
406 */
407 if (type_a->base_type != type_b->base_type) {
408 _mesa_glsl_error(loc, state, "operands of `%s' must have the same "
409 "base type", ast_expression::operator_string(op));
410 return glsl_type::error_type;
411 }
412
413 /* "The operands cannot be vectors of differing size." */
414 if (type_a->is_vector() &&
415 type_b->is_vector() &&
416 type_a->vector_elements != type_b->vector_elements) {
417 _mesa_glsl_error(loc, state, "operands of `%s' cannot be vectors of "
418 "different sizes", ast_expression::operator_string(op));
419 return glsl_type::error_type;
420 }
421
422 /* "If one operand is a scalar and the other a vector, the scalar is
423 * applied component-wise to the vector, resulting in the same type as
424 * the vector. The fundamental types of the operands [...] will be the
425 * resulting fundamental type."
426 */
427 if (type_a->is_scalar())
428 return type_b;
429 else
430 return type_a;
431 }
432
433 static const struct glsl_type *
434 modulus_result_type(const struct glsl_type *type_a,
435 const struct glsl_type *type_b,
436 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
437 {
438 if (state->language_version < 130) {
439 _mesa_glsl_error(loc, state,
440 "operator '%%' is reserved in %s",
441 state->version_string);
442 return glsl_type::error_type;
443 }
444
445 /* From GLSL 1.50 spec, page 56:
446 * "The operator modulus (%) operates on signed or unsigned integers or
447 * integer vectors. The operand types must both be signed or both be
448 * unsigned."
449 */
450 if (!type_a->is_integer() || !type_b->is_integer()
451 || (type_a->base_type != type_b->base_type)) {
452 _mesa_glsl_error(loc, state, "type mismatch");
453 return glsl_type::error_type;
454 }
455
456 /* "The operands cannot be vectors of differing size. If one operand is
457 * a scalar and the other vector, then the scalar is applied component-
458 * wise to the vector, resulting in the same type as the vector. If both
459 * are vectors of the same size, the result is computed component-wise."
460 */
461 if (type_a->is_vector()) {
462 if (!type_b->is_vector()
463 || (type_a->vector_elements == type_b->vector_elements))
464 return type_a;
465 } else
466 return type_b;
467
468 /* "The operator modulus (%) is not defined for any other data types
469 * (non-integer types)."
470 */
471 _mesa_glsl_error(loc, state, "type mismatch");
472 return glsl_type::error_type;
473 }
474
475
476 static const struct glsl_type *
477 relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
478 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
479 {
480 const glsl_type *type_a = value_a->type;
481 const glsl_type *type_b = value_b->type;
482
483 /* From GLSL 1.50 spec, page 56:
484 * "The relational operators greater than (>), less than (<), greater
485 * than or equal (>=), and less than or equal (<=) operate only on
486 * scalar integer and scalar floating-point expressions."
487 */
488 if (!type_a->is_numeric()
489 || !type_b->is_numeric()
490 || !type_a->is_scalar()
491 || !type_b->is_scalar()) {
492 _mesa_glsl_error(loc, state,
493 "Operands to relational operators must be scalar and "
494 "numeric");
495 return glsl_type::error_type;
496 }
497
498 /* "Either the operands' types must match, or the conversions from
499 * Section 4.1.10 "Implicit Conversions" will be applied to the integer
500 * operand, after which the types must match."
501 */
502 if (!apply_implicit_conversion(type_a, value_b, state)
503 && !apply_implicit_conversion(type_b, value_a, state)) {
504 _mesa_glsl_error(loc, state,
505 "Could not implicitly convert operands to "
506 "relational operator");
507 return glsl_type::error_type;
508 }
509 type_a = value_a->type;
510 type_b = value_b->type;
511
512 if (type_a->base_type != type_b->base_type) {
513 _mesa_glsl_error(loc, state, "base type mismatch");
514 return glsl_type::error_type;
515 }
516
517 /* "The result is scalar Boolean."
518 */
519 return glsl_type::bool_type;
520 }
521
522 /**
523 * \brief Return the result type of a bit-shift operation.
524 *
525 * If the given types to the bit-shift operator are invalid, return
526 * glsl_type::error_type.
527 *
528 * \param type_a Type of LHS of bit-shift op
529 * \param type_b Type of RHS of bit-shift op
530 */
531 static const struct glsl_type *
532 shift_result_type(const struct glsl_type *type_a,
533 const struct glsl_type *type_b,
534 ast_operators op,
535 struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
536 {
537 if (state->language_version < 130) {
538 _mesa_glsl_error(loc, state, "bit operations require GLSL 1.30");
539 return glsl_type::error_type;
540 }
541
542 /* From page 50 (page 56 of the PDF) of the GLSL 1.30 spec:
543 *
544 * "The shift operators (<<) and (>>). For both operators, the operands
545 * must be signed or unsigned integers or integer vectors. One operand
546 * can be signed while the other is unsigned."
547 */
548 if (!type_a->is_integer()) {
549 _mesa_glsl_error(loc, state, "LHS of operator %s must be an integer or "
550 "integer vector", ast_expression::operator_string(op));
551 return glsl_type::error_type;
552
553 }
554 if (!type_b->is_integer()) {
555 _mesa_glsl_error(loc, state, "RHS of operator %s must be an integer or "
556 "integer vector", ast_expression::operator_string(op));
557 return glsl_type::error_type;
558 }
559
560 /* "If the first operand is a scalar, the second operand has to be
561 * a scalar as well."
562 */
563 if (type_a->is_scalar() && !type_b->is_scalar()) {
564 _mesa_glsl_error(loc, state, "If the first operand of %s is scalar, the "
565 "second must be scalar as well",
566 ast_expression::operator_string(op));
567 return glsl_type::error_type;
568 }
569
570 /* If both operands are vectors, check that they have same number of
571 * elements.
572 */
573 if (type_a->is_vector() &&
574 type_b->is_vector() &&
575 type_a->vector_elements != type_b->vector_elements) {
576 _mesa_glsl_error(loc, state, "Vector operands to operator %s must "
577 "have same number of elements",
578 ast_expression::operator_string(op));
579 return glsl_type::error_type;
580 }
581
582 /* "In all cases, the resulting type will be the same type as the left
583 * operand."
584 */
585 return type_a;
586 }
587
588 /**
589 * Validates that a value can be assigned to a location with a specified type
590 *
591 * Validates that \c rhs can be assigned to some location. If the types are
592 * not an exact match but an automatic conversion is possible, \c rhs will be
593 * converted.
594 *
595 * \return
596 * \c NULL if \c rhs cannot be assigned to a location with type \c lhs_type.
597 * Otherwise the actual RHS to be assigned will be returned. This may be
598 * \c rhs, or it may be \c rhs after some type conversion.
599 *
600 * \note
601 * In addition to being used for assignments, this function is used to
602 * type-check return values.
603 */
604 ir_rvalue *
605 validate_assignment(struct _mesa_glsl_parse_state *state,
606 const glsl_type *lhs_type, ir_rvalue *rhs)
607 {
608 /* If there is already some error in the RHS, just return it. Anything
609 * else will lead to an avalanche of error message back to the user.
610 */
611 if (rhs->type->is_error())
612 return rhs;
613
614 /* If the types are identical, the assignment can trivially proceed.
615 */
616 if (rhs->type == lhs_type)
617 return rhs;
618
619 /* If the array element types are the same and the size of the LHS is zero,
620 * the assignment is okay.
621 *
622 * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
623 * is handled by ir_dereference::is_lvalue.
624 */
625 if (lhs_type->is_array() && rhs->type->is_array()
626 && (lhs_type->element_type() == rhs->type->element_type())
627 && (lhs_type->array_size() == 0)) {
628 return rhs;
629 }
630
631 /* Check for implicit conversion in GLSL 1.20 */
632 if (apply_implicit_conversion(lhs_type, rhs, state)) {
633 if (rhs->type == lhs_type)
634 return rhs;
635 }
636
637 return NULL;
638 }
639
640 ir_rvalue *
641 do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
642 ir_rvalue *lhs, ir_rvalue *rhs,
643 YYLTYPE lhs_loc)
644 {
645 void *ctx = state;
646 bool error_emitted = (lhs->type->is_error() || rhs->type->is_error());
647
648 if (!error_emitted) {
649 if (lhs->variable_referenced() != NULL
650 && lhs->variable_referenced()->read_only) {
651 _mesa_glsl_error(&lhs_loc, state,
652 "assignment to read-only variable '%s'",
653 lhs->variable_referenced()->name);
654 error_emitted = true;
655
656 } else if (!lhs->is_lvalue()) {
657 _mesa_glsl_error(& lhs_loc, state, "non-lvalue in assignment");
658 error_emitted = true;
659 }
660
661 if (state->es_shader && lhs->type->is_array()) {
662 _mesa_glsl_error(&lhs_loc, state, "whole array assignment is not "
663 "allowed in GLSL ES 1.00.");
664 error_emitted = true;
665 }
666 }
667
668 ir_rvalue *new_rhs = validate_assignment(state, lhs->type, rhs);
669 if (new_rhs == NULL) {
670 _mesa_glsl_error(& lhs_loc, state, "type mismatch");
671 } else {
672 rhs = new_rhs;
673
674 /* If the LHS array was not declared with a size, it takes it size from
675 * the RHS. If the LHS is an l-value and a whole array, it must be a
676 * dereference of a variable. Any other case would require that the LHS
677 * is either not an l-value or not a whole array.
678 */
679 if (lhs->type->array_size() == 0) {
680 ir_dereference *const d = lhs->as_dereference();
681
682 assert(d != NULL);
683
684 ir_variable *const var = d->variable_referenced();
685
686 assert(var != NULL);
687
688 if (var->max_array_access >= unsigned(rhs->type->array_size())) {
689 /* FINISHME: This should actually log the location of the RHS. */
690 _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
691 "previous access",
692 var->max_array_access);
693 }
694
695 var->type = glsl_type::get_array_instance(lhs->type->element_type(),
696 rhs->type->array_size());
697 d->type = var->type;
698 }
699 }
700
701 /* Most callers of do_assignment (assign, add_assign, pre_inc/dec,
702 * but not post_inc) need the converted assigned value as an rvalue
703 * to handle things like:
704 *
705 * i = j += 1;
706 *
707 * So we always just store the computed value being assigned to a
708 * temporary and return a deref of that temporary. If the rvalue
709 * ends up not being used, the temp will get copy-propagated out.
710 */
711 ir_variable *var = new(ctx) ir_variable(rhs->type, "assignment_tmp",
712 ir_var_temporary);
713 ir_dereference_variable *deref_var = new(ctx) ir_dereference_variable(var);
714 instructions->push_tail(var);
715 instructions->push_tail(new(ctx) ir_assignment(deref_var,
716 rhs,
717 NULL));
718 deref_var = new(ctx) ir_dereference_variable(var);
719
720 if (!error_emitted)
721 instructions->push_tail(new(ctx) ir_assignment(lhs, deref_var, NULL));
722
723 return new(ctx) ir_dereference_variable(var);
724 }
725
726 static ir_rvalue *
727 get_lvalue_copy(exec_list *instructions, ir_rvalue *lvalue)
728 {
729 void *ctx = ralloc_parent(lvalue);
730 ir_variable *var;
731
732 var = new(ctx) ir_variable(lvalue->type, "_post_incdec_tmp",
733 ir_var_temporary);
734 instructions->push_tail(var);
735 var->mode = ir_var_auto;
736
737 instructions->push_tail(new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
738 lvalue, NULL));
739
740 /* Once we've created this temporary, mark it read only so it's no
741 * longer considered an lvalue.
742 */
743 var->read_only = true;
744
745 return new(ctx) ir_dereference_variable(var);
746 }
747
748
749 ir_rvalue *
750 ast_node::hir(exec_list *instructions,
751 struct _mesa_glsl_parse_state *state)
752 {
753 (void) instructions;
754 (void) state;
755
756 return NULL;
757 }
758
759 static void
760 mark_whole_array_access(ir_rvalue *access)
761 {
762 ir_dereference_variable *deref = access->as_dereference_variable();
763
764 if (deref) {
765 deref->var->max_array_access = deref->type->length - 1;
766 }
767 }
768
769 static ir_rvalue *
770 do_comparison(void *mem_ctx, int operation, ir_rvalue *op0, ir_rvalue *op1)
771 {
772 int join_op;
773 ir_rvalue *cmp = NULL;
774
775 if (operation == ir_binop_all_equal)
776 join_op = ir_binop_logic_and;
777 else
778 join_op = ir_binop_logic_or;
779
780 switch (op0->type->base_type) {
781 case GLSL_TYPE_FLOAT:
782 case GLSL_TYPE_UINT:
783 case GLSL_TYPE_INT:
784 case GLSL_TYPE_BOOL:
785 return new(mem_ctx) ir_expression(operation, op0, op1);
786
787 case GLSL_TYPE_ARRAY: {
788 for (unsigned int i = 0; i < op0->type->length; i++) {
789 ir_rvalue *e0, *e1, *result;
790
791 e0 = new(mem_ctx) ir_dereference_array(op0->clone(mem_ctx, NULL),
792 new(mem_ctx) ir_constant(i));
793 e1 = new(mem_ctx) ir_dereference_array(op1->clone(mem_ctx, NULL),
794 new(mem_ctx) ir_constant(i));
795 result = do_comparison(mem_ctx, operation, e0, e1);
796
797 if (cmp) {
798 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
799 } else {
800 cmp = result;
801 }
802 }
803
804 mark_whole_array_access(op0);
805 mark_whole_array_access(op1);
806 break;
807 }
808
809 case GLSL_TYPE_STRUCT: {
810 for (unsigned int i = 0; i < op0->type->length; i++) {
811 ir_rvalue *e0, *e1, *result;
812 const char *field_name = op0->type->fields.structure[i].name;
813
814 e0 = new(mem_ctx) ir_dereference_record(op0->clone(mem_ctx, NULL),
815 field_name);
816 e1 = new(mem_ctx) ir_dereference_record(op1->clone(mem_ctx, NULL),
817 field_name);
818 result = do_comparison(mem_ctx, operation, e0, e1);
819
820 if (cmp) {
821 cmp = new(mem_ctx) ir_expression(join_op, cmp, result);
822 } else {
823 cmp = result;
824 }
825 }
826 break;
827 }
828
829 case GLSL_TYPE_ERROR:
830 case GLSL_TYPE_VOID:
831 case GLSL_TYPE_SAMPLER:
832 /* I assume a comparison of a struct containing a sampler just
833 * ignores the sampler present in the type.
834 */
835 break;
836
837 default:
838 assert(!"Should not get here.");
839 break;
840 }
841
842 if (cmp == NULL)
843 cmp = new(mem_ctx) ir_constant(true);
844
845 return cmp;
846 }
847
848 ir_rvalue *
849 ast_expression::hir(exec_list *instructions,
850 struct _mesa_glsl_parse_state *state)
851 {
852 void *ctx = state;
853 static const int operations[AST_NUM_OPERATORS] = {
854 -1, /* ast_assign doesn't convert to ir_expression. */
855 -1, /* ast_plus doesn't convert to ir_expression. */
856 ir_unop_neg,
857 ir_binop_add,
858 ir_binop_sub,
859 ir_binop_mul,
860 ir_binop_div,
861 ir_binop_mod,
862 ir_binop_lshift,
863 ir_binop_rshift,
864 ir_binop_less,
865 ir_binop_greater,
866 ir_binop_lequal,
867 ir_binop_gequal,
868 ir_binop_all_equal,
869 ir_binop_any_nequal,
870 ir_binop_bit_and,
871 ir_binop_bit_xor,
872 ir_binop_bit_or,
873 ir_unop_bit_not,
874 ir_binop_logic_and,
875 ir_binop_logic_xor,
876 ir_binop_logic_or,
877 ir_unop_logic_not,
878
879 /* Note: The following block of expression types actually convert
880 * to multiple IR instructions.
881 */
882 ir_binop_mul, /* ast_mul_assign */
883 ir_binop_div, /* ast_div_assign */
884 ir_binop_mod, /* ast_mod_assign */
885 ir_binop_add, /* ast_add_assign */
886 ir_binop_sub, /* ast_sub_assign */
887 ir_binop_lshift, /* ast_ls_assign */
888 ir_binop_rshift, /* ast_rs_assign */
889 ir_binop_bit_and, /* ast_and_assign */
890 ir_binop_bit_xor, /* ast_xor_assign */
891 ir_binop_bit_or, /* ast_or_assign */
892
893 -1, /* ast_conditional doesn't convert to ir_expression. */
894 ir_binop_add, /* ast_pre_inc. */
895 ir_binop_sub, /* ast_pre_dec. */
896 ir_binop_add, /* ast_post_inc. */
897 ir_binop_sub, /* ast_post_dec. */
898 -1, /* ast_field_selection doesn't conv to ir_expression. */
899 -1, /* ast_array_index doesn't convert to ir_expression. */
900 -1, /* ast_function_call doesn't conv to ir_expression. */
901 -1, /* ast_identifier doesn't convert to ir_expression. */
902 -1, /* ast_int_constant doesn't convert to ir_expression. */
903 -1, /* ast_uint_constant doesn't conv to ir_expression. */
904 -1, /* ast_float_constant doesn't conv to ir_expression. */
905 -1, /* ast_bool_constant doesn't conv to ir_expression. */
906 -1, /* ast_sequence doesn't convert to ir_expression. */
907 };
908 ir_rvalue *result = NULL;
909 ir_rvalue *op[3];
910 const struct glsl_type *type = glsl_type::error_type;
911 bool error_emitted = false;
912 YYLTYPE loc;
913
914 loc = this->get_location();
915
916 switch (this->oper) {
917 case ast_assign: {
918 op[0] = this->subexpressions[0]->hir(instructions, state);
919 op[1] = this->subexpressions[1]->hir(instructions, state);
920
921 result = do_assignment(instructions, state, op[0], op[1],
922 this->subexpressions[0]->get_location());
923 error_emitted = result->type->is_error();
924 type = result->type;
925 break;
926 }
927
928 case ast_plus:
929 op[0] = this->subexpressions[0]->hir(instructions, state);
930
931 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
932
933 error_emitted = type->is_error();
934
935 result = op[0];
936 break;
937
938 case ast_neg:
939 op[0] = this->subexpressions[0]->hir(instructions, state);
940
941 type = unary_arithmetic_result_type(op[0]->type, state, & loc);
942
943 error_emitted = type->is_error();
944
945 result = new(ctx) ir_expression(operations[this->oper], type,
946 op[0], NULL);
947 break;
948
949 case ast_add:
950 case ast_sub:
951 case ast_mul:
952 case ast_div:
953 op[0] = this->subexpressions[0]->hir(instructions, state);
954 op[1] = this->subexpressions[1]->hir(instructions, state);
955
956 type = arithmetic_result_type(op[0], op[1],
957 (this->oper == ast_mul),
958 state, & loc);
959 error_emitted = type->is_error();
960
961 result = new(ctx) ir_expression(operations[this->oper], type,
962 op[0], op[1]);
963 break;
964
965 case ast_mod:
966 op[0] = this->subexpressions[0]->hir(instructions, state);
967 op[1] = this->subexpressions[1]->hir(instructions, state);
968
969 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
970
971 assert(operations[this->oper] == ir_binop_mod);
972
973 result = new(ctx) ir_expression(operations[this->oper], type,
974 op[0], op[1]);
975 error_emitted = type->is_error();
976 break;
977
978 case ast_lshift:
979 case ast_rshift:
980 if (state->language_version < 130) {
981 _mesa_glsl_error(&loc, state, "operator %s requires GLSL 1.30",
982 operator_string(this->oper));
983 error_emitted = true;
984 }
985
986 op[0] = this->subexpressions[0]->hir(instructions, state);
987 op[1] = this->subexpressions[1]->hir(instructions, state);
988 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
989 &loc);
990 result = new(ctx) ir_expression(operations[this->oper], type,
991 op[0], op[1]);
992 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
993 break;
994
995 case ast_less:
996 case ast_greater:
997 case ast_lequal:
998 case ast_gequal:
999 op[0] = this->subexpressions[0]->hir(instructions, state);
1000 op[1] = this->subexpressions[1]->hir(instructions, state);
1001
1002 type = relational_result_type(op[0], op[1], state, & loc);
1003
1004 /* The relational operators must either generate an error or result
1005 * in a scalar boolean. See page 57 of the GLSL 1.50 spec.
1006 */
1007 assert(type->is_error()
1008 || ((type->base_type == GLSL_TYPE_BOOL)
1009 && type->is_scalar()));
1010
1011 result = new(ctx) ir_expression(operations[this->oper], type,
1012 op[0], op[1]);
1013 error_emitted = type->is_error();
1014 break;
1015
1016 case ast_nequal:
1017 case ast_equal:
1018 op[0] = this->subexpressions[0]->hir(instructions, state);
1019 op[1] = this->subexpressions[1]->hir(instructions, state);
1020
1021 /* From page 58 (page 64 of the PDF) of the GLSL 1.50 spec:
1022 *
1023 * "The equality operators equal (==), and not equal (!=)
1024 * operate on all types. They result in a scalar Boolean. If
1025 * the operand types do not match, then there must be a
1026 * conversion from Section 4.1.10 "Implicit Conversions"
1027 * applied to one operand that can make them match, in which
1028 * case this conversion is done."
1029 */
1030 if ((!apply_implicit_conversion(op[0]->type, op[1], state)
1031 && !apply_implicit_conversion(op[1]->type, op[0], state))
1032 || (op[0]->type != op[1]->type)) {
1033 _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
1034 "type", (this->oper == ast_equal) ? "==" : "!=");
1035 error_emitted = true;
1036 } else if ((state->language_version <= 110)
1037 && (op[0]->type->is_array() || op[1]->type->is_array())) {
1038 _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
1039 "GLSL 1.10");
1040 error_emitted = true;
1041 }
1042
1043 result = do_comparison(ctx, operations[this->oper], op[0], op[1]);
1044 type = glsl_type::bool_type;
1045
1046 assert(error_emitted || (result->type == glsl_type::bool_type));
1047 break;
1048
1049 case ast_bit_and:
1050 case ast_bit_xor:
1051 case ast_bit_or:
1052 op[0] = this->subexpressions[0]->hir(instructions, state);
1053 op[1] = this->subexpressions[1]->hir(instructions, state);
1054 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1055 state, &loc);
1056 result = new(ctx) ir_expression(operations[this->oper], type,
1057 op[0], op[1]);
1058 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1059 break;
1060
1061 case ast_bit_not:
1062 op[0] = this->subexpressions[0]->hir(instructions, state);
1063
1064 if (state->language_version < 130) {
1065 _mesa_glsl_error(&loc, state, "bit-wise operations require GLSL 1.30");
1066 error_emitted = true;
1067 }
1068
1069 if (!op[0]->type->is_integer()) {
1070 _mesa_glsl_error(&loc, state, "operand of `~' must be an integer");
1071 error_emitted = true;
1072 }
1073
1074 type = op[0]->type;
1075 result = new(ctx) ir_expression(ir_unop_bit_not, type, op[0], NULL);
1076 break;
1077
1078 case ast_logic_and: {
1079 op[0] = this->subexpressions[0]->hir(instructions, state);
1080
1081 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1082 YYLTYPE loc = this->subexpressions[0]->get_location();
1083
1084 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1085 operator_string(this->oper));
1086 error_emitted = true;
1087 }
1088
1089 ir_constant *op0_const = op[0]->constant_expression_value();
1090 if (op0_const) {
1091 if (op0_const->value.b[0]) {
1092 op[1] = this->subexpressions[1]->hir(instructions, state);
1093
1094 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1095 YYLTYPE loc = this->subexpressions[1]->get_location();
1096
1097 _mesa_glsl_error(& loc, state,
1098 "RHS of `%s' must be scalar boolean",
1099 operator_string(this->oper));
1100 error_emitted = true;
1101 }
1102 result = op[1];
1103 } else {
1104 result = op0_const;
1105 }
1106 type = glsl_type::bool_type;
1107 } else {
1108 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1109 "and_tmp",
1110 ir_var_temporary);
1111 instructions->push_tail(tmp);
1112
1113 ir_if *const stmt = new(ctx) ir_if(op[0]);
1114 instructions->push_tail(stmt);
1115
1116 op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
1117
1118 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1119 YYLTYPE loc = this->subexpressions[1]->get_location();
1120
1121 _mesa_glsl_error(& loc, state,
1122 "RHS of `%s' must be scalar boolean",
1123 operator_string(this->oper));
1124 error_emitted = true;
1125 }
1126
1127 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1128 ir_assignment *const then_assign =
1129 new(ctx) ir_assignment(then_deref, op[1], NULL);
1130 stmt->then_instructions.push_tail(then_assign);
1131
1132 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1133 ir_assignment *const else_assign =
1134 new(ctx) ir_assignment(else_deref, new(ctx) ir_constant(false), NULL);
1135 stmt->else_instructions.push_tail(else_assign);
1136
1137 result = new(ctx) ir_dereference_variable(tmp);
1138 type = tmp->type;
1139 }
1140 break;
1141 }
1142
1143 case ast_logic_or: {
1144 op[0] = this->subexpressions[0]->hir(instructions, state);
1145
1146 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1147 YYLTYPE loc = this->subexpressions[0]->get_location();
1148
1149 _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
1150 operator_string(this->oper));
1151 error_emitted = true;
1152 }
1153
1154 ir_constant *op0_const = op[0]->constant_expression_value();
1155 if (op0_const) {
1156 if (op0_const->value.b[0]) {
1157 result = op0_const;
1158 } else {
1159 op[1] = this->subexpressions[1]->hir(instructions, state);
1160
1161 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1162 YYLTYPE loc = this->subexpressions[1]->get_location();
1163
1164 _mesa_glsl_error(& loc, state,
1165 "RHS of `%s' must be scalar boolean",
1166 operator_string(this->oper));
1167 error_emitted = true;
1168 }
1169 result = op[1];
1170 }
1171 type = glsl_type::bool_type;
1172 } else {
1173 ir_variable *const tmp = new(ctx) ir_variable(glsl_type::bool_type,
1174 "or_tmp",
1175 ir_var_temporary);
1176 instructions->push_tail(tmp);
1177
1178 ir_if *const stmt = new(ctx) ir_if(op[0]);
1179 instructions->push_tail(stmt);
1180
1181 op[1] = this->subexpressions[1]->hir(&stmt->else_instructions, state);
1182
1183 if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
1184 YYLTYPE loc = this->subexpressions[1]->get_location();
1185
1186 _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
1187 operator_string(this->oper));
1188 error_emitted = true;
1189 }
1190
1191 ir_dereference *const then_deref = new(ctx) ir_dereference_variable(tmp);
1192 ir_assignment *const then_assign =
1193 new(ctx) ir_assignment(then_deref, new(ctx) ir_constant(true), NULL);
1194 stmt->then_instructions.push_tail(then_assign);
1195
1196 ir_dereference *const else_deref = new(ctx) ir_dereference_variable(tmp);
1197 ir_assignment *const else_assign =
1198 new(ctx) ir_assignment(else_deref, op[1], NULL);
1199 stmt->else_instructions.push_tail(else_assign);
1200
1201 result = new(ctx) ir_dereference_variable(tmp);
1202 type = tmp->type;
1203 }
1204 break;
1205 }
1206
1207 case ast_logic_xor:
1208 op[0] = this->subexpressions[0]->hir(instructions, state);
1209 op[1] = this->subexpressions[1]->hir(instructions, state);
1210
1211
1212 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1213 op[0], op[1]);
1214 type = glsl_type::bool_type;
1215 break;
1216
1217 case ast_logic_not:
1218 op[0] = this->subexpressions[0]->hir(instructions, state);
1219
1220 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1221 YYLTYPE loc = this->subexpressions[0]->get_location();
1222
1223 _mesa_glsl_error(& loc, state,
1224 "operand of `!' must be scalar boolean");
1225 error_emitted = true;
1226 }
1227
1228 result = new(ctx) ir_expression(operations[this->oper], glsl_type::bool_type,
1229 op[0], NULL);
1230 type = glsl_type::bool_type;
1231 break;
1232
1233 case ast_mul_assign:
1234 case ast_div_assign:
1235 case ast_add_assign:
1236 case ast_sub_assign: {
1237 op[0] = this->subexpressions[0]->hir(instructions, state);
1238 op[1] = this->subexpressions[1]->hir(instructions, state);
1239
1240 type = arithmetic_result_type(op[0], op[1],
1241 (this->oper == ast_mul_assign),
1242 state, & loc);
1243
1244 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1245 op[0], op[1]);
1246
1247 result = do_assignment(instructions, state,
1248 op[0]->clone(ctx, NULL), temp_rhs,
1249 this->subexpressions[0]->get_location());
1250 type = result->type;
1251 error_emitted = (op[0]->type->is_error());
1252
1253 /* GLSL 1.10 does not allow array assignment. However, we don't have to
1254 * explicitly test for this because none of the binary expression
1255 * operators allow array operands either.
1256 */
1257
1258 break;
1259 }
1260
1261 case ast_mod_assign: {
1262 op[0] = this->subexpressions[0]->hir(instructions, state);
1263 op[1] = this->subexpressions[1]->hir(instructions, state);
1264
1265 type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
1266
1267 assert(operations[this->oper] == ir_binop_mod);
1268
1269 ir_rvalue *temp_rhs;
1270 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1271 op[0], op[1]);
1272
1273 result = do_assignment(instructions, state,
1274 op[0]->clone(ctx, NULL), temp_rhs,
1275 this->subexpressions[0]->get_location());
1276 type = result->type;
1277 error_emitted = type->is_error();
1278 break;
1279 }
1280
1281 case ast_ls_assign:
1282 case ast_rs_assign: {
1283 op[0] = this->subexpressions[0]->hir(instructions, state);
1284 op[1] = this->subexpressions[1]->hir(instructions, state);
1285 type = shift_result_type(op[0]->type, op[1]->type, this->oper, state,
1286 &loc);
1287 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1288 type, op[0], op[1]);
1289 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1290 temp_rhs,
1291 this->subexpressions[0]->get_location());
1292 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1293 break;
1294 }
1295
1296 case ast_and_assign:
1297 case ast_xor_assign:
1298 case ast_or_assign: {
1299 op[0] = this->subexpressions[0]->hir(instructions, state);
1300 op[1] = this->subexpressions[1]->hir(instructions, state);
1301 type = bit_logic_result_type(op[0]->type, op[1]->type, this->oper,
1302 state, &loc);
1303 ir_rvalue *temp_rhs = new(ctx) ir_expression(operations[this->oper],
1304 type, op[0], op[1]);
1305 result = do_assignment(instructions, state, op[0]->clone(ctx, NULL),
1306 temp_rhs,
1307 this->subexpressions[0]->get_location());
1308 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1309 break;
1310 }
1311
1312 case ast_conditional: {
1313 op[0] = this->subexpressions[0]->hir(instructions, state);
1314
1315 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1316 *
1317 * "The ternary selection operator (?:). It operates on three
1318 * expressions (exp1 ? exp2 : exp3). This operator evaluates the
1319 * first expression, which must result in a scalar Boolean."
1320 */
1321 if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
1322 YYLTYPE loc = this->subexpressions[0]->get_location();
1323
1324 _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
1325 error_emitted = true;
1326 }
1327
1328 /* The :? operator is implemented by generating an anonymous temporary
1329 * followed by an if-statement. The last instruction in each branch of
1330 * the if-statement assigns a value to the anonymous temporary. This
1331 * temporary is the r-value of the expression.
1332 */
1333 exec_list then_instructions;
1334 exec_list else_instructions;
1335
1336 op[1] = this->subexpressions[1]->hir(&then_instructions, state);
1337 op[2] = this->subexpressions[2]->hir(&else_instructions, state);
1338
1339 /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
1340 *
1341 * "The second and third expressions can be any type, as
1342 * long their types match, or there is a conversion in
1343 * Section 4.1.10 "Implicit Conversions" that can be applied
1344 * to one of the expressions to make their types match. This
1345 * resulting matching type is the type of the entire
1346 * expression."
1347 */
1348 if ((!apply_implicit_conversion(op[1]->type, op[2], state)
1349 && !apply_implicit_conversion(op[2]->type, op[1], state))
1350 || (op[1]->type != op[2]->type)) {
1351 YYLTYPE loc = this->subexpressions[1]->get_location();
1352
1353 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1354 "operator must have matching types.");
1355 error_emitted = true;
1356 type = glsl_type::error_type;
1357 } else {
1358 type = op[1]->type;
1359 }
1360
1361 /* From page 33 (page 39 of the PDF) of the GLSL 1.10 spec:
1362 *
1363 * "The second and third expressions must be the same type, but can
1364 * be of any type other than an array."
1365 */
1366 if ((state->language_version <= 110) && type->is_array()) {
1367 _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
1368 "operator must not be arrays.");
1369 error_emitted = true;
1370 }
1371
1372 ir_constant *cond_val = op[0]->constant_expression_value();
1373 ir_constant *then_val = op[1]->constant_expression_value();
1374 ir_constant *else_val = op[2]->constant_expression_value();
1375
1376 if (then_instructions.is_empty()
1377 && else_instructions.is_empty()
1378 && (cond_val != NULL) && (then_val != NULL) && (else_val != NULL)) {
1379 result = (cond_val->value.b[0]) ? then_val : else_val;
1380 } else {
1381 ir_variable *const tmp =
1382 new(ctx) ir_variable(type, "conditional_tmp", ir_var_temporary);
1383 instructions->push_tail(tmp);
1384
1385 ir_if *const stmt = new(ctx) ir_if(op[0]);
1386 instructions->push_tail(stmt);
1387
1388 then_instructions.move_nodes_to(& stmt->then_instructions);
1389 ir_dereference *const then_deref =
1390 new(ctx) ir_dereference_variable(tmp);
1391 ir_assignment *const then_assign =
1392 new(ctx) ir_assignment(then_deref, op[1], NULL);
1393 stmt->then_instructions.push_tail(then_assign);
1394
1395 else_instructions.move_nodes_to(& stmt->else_instructions);
1396 ir_dereference *const else_deref =
1397 new(ctx) ir_dereference_variable(tmp);
1398 ir_assignment *const else_assign =
1399 new(ctx) ir_assignment(else_deref, op[2], NULL);
1400 stmt->else_instructions.push_tail(else_assign);
1401
1402 result = new(ctx) ir_dereference_variable(tmp);
1403 }
1404 break;
1405 }
1406
1407 case ast_pre_inc:
1408 case ast_pre_dec: {
1409 op[0] = this->subexpressions[0]->hir(instructions, state);
1410 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1411 op[1] = new(ctx) ir_constant(1.0f);
1412 else
1413 op[1] = new(ctx) ir_constant(1);
1414
1415 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1416
1417 ir_rvalue *temp_rhs;
1418 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1419 op[0], op[1]);
1420
1421 result = do_assignment(instructions, state,
1422 op[0]->clone(ctx, NULL), temp_rhs,
1423 this->subexpressions[0]->get_location());
1424 type = result->type;
1425 error_emitted = op[0]->type->is_error();
1426 break;
1427 }
1428
1429 case ast_post_inc:
1430 case ast_post_dec: {
1431 op[0] = this->subexpressions[0]->hir(instructions, state);
1432 if (op[0]->type->base_type == GLSL_TYPE_FLOAT)
1433 op[1] = new(ctx) ir_constant(1.0f);
1434 else
1435 op[1] = new(ctx) ir_constant(1);
1436
1437 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1438
1439 type = arithmetic_result_type(op[0], op[1], false, state, & loc);
1440
1441 ir_rvalue *temp_rhs;
1442 temp_rhs = new(ctx) ir_expression(operations[this->oper], type,
1443 op[0], op[1]);
1444
1445 /* Get a temporary of a copy of the lvalue before it's modified.
1446 * This may get thrown away later.
1447 */
1448 result = get_lvalue_copy(instructions, op[0]->clone(ctx, NULL));
1449
1450 (void)do_assignment(instructions, state,
1451 op[0]->clone(ctx, NULL), temp_rhs,
1452 this->subexpressions[0]->get_location());
1453
1454 type = result->type;
1455 error_emitted = op[0]->type->is_error();
1456 break;
1457 }
1458
1459 case ast_field_selection:
1460 result = _mesa_ast_field_selection_to_hir(this, instructions, state);
1461 type = result->type;
1462 break;
1463
1464 case ast_array_index: {
1465 YYLTYPE index_loc = subexpressions[1]->get_location();
1466
1467 op[0] = subexpressions[0]->hir(instructions, state);
1468 op[1] = subexpressions[1]->hir(instructions, state);
1469
1470 error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
1471
1472 ir_rvalue *const array = op[0];
1473
1474 result = new(ctx) ir_dereference_array(op[0], op[1]);
1475
1476 /* Do not use op[0] after this point. Use array.
1477 */
1478 op[0] = NULL;
1479
1480
1481 if (error_emitted)
1482 break;
1483
1484 if (!array->type->is_array()
1485 && !array->type->is_matrix()
1486 && !array->type->is_vector()) {
1487 _mesa_glsl_error(& index_loc, state,
1488 "cannot dereference non-array / non-matrix / "
1489 "non-vector");
1490 error_emitted = true;
1491 }
1492
1493 if (!op[1]->type->is_integer()) {
1494 _mesa_glsl_error(& index_loc, state,
1495 "array index must be integer type");
1496 error_emitted = true;
1497 } else if (!op[1]->type->is_scalar()) {
1498 _mesa_glsl_error(& index_loc, state,
1499 "array index must be scalar");
1500 error_emitted = true;
1501 }
1502
1503 /* If the array index is a constant expression and the array has a
1504 * declared size, ensure that the access is in-bounds. If the array
1505 * index is not a constant expression, ensure that the array has a
1506 * declared size.
1507 */
1508 ir_constant *const const_index = op[1]->constant_expression_value();
1509 if (const_index != NULL) {
1510 const int idx = const_index->value.i[0];
1511 const char *type_name;
1512 unsigned bound = 0;
1513
1514 if (array->type->is_matrix()) {
1515 type_name = "matrix";
1516 } else if (array->type->is_vector()) {
1517 type_name = "vector";
1518 } else {
1519 type_name = "array";
1520 }
1521
1522 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
1523 *
1524 * "It is illegal to declare an array with a size, and then
1525 * later (in the same shader) index the same array with an
1526 * integral constant expression greater than or equal to the
1527 * declared size. It is also illegal to index an array with a
1528 * negative constant expression."
1529 */
1530 if (array->type->is_matrix()) {
1531 if (array->type->row_type()->vector_elements <= idx) {
1532 bound = array->type->row_type()->vector_elements;
1533 }
1534 } else if (array->type->is_vector()) {
1535 if (array->type->vector_elements <= idx) {
1536 bound = array->type->vector_elements;
1537 }
1538 } else {
1539 if ((array->type->array_size() > 0)
1540 && (array->type->array_size() <= idx)) {
1541 bound = array->type->array_size();
1542 }
1543 }
1544
1545 if (bound > 0) {
1546 _mesa_glsl_error(& loc, state, "%s index must be < %u",
1547 type_name, bound);
1548 error_emitted = true;
1549 } else if (idx < 0) {
1550 _mesa_glsl_error(& loc, state, "%s index must be >= 0",
1551 type_name);
1552 error_emitted = true;
1553 }
1554
1555 if (array->type->is_array()) {
1556 /* If the array is a variable dereference, it dereferences the
1557 * whole array, by definition. Use this to get the variable.
1558 *
1559 * FINISHME: Should some methods for getting / setting / testing
1560 * FINISHME: array access limits be added to ir_dereference?
1561 */
1562 ir_variable *const v = array->whole_variable_referenced();
1563 if ((v != NULL) && (unsigned(idx) > v->max_array_access))
1564 v->max_array_access = idx;
1565 }
1566 } else if (array->type->array_size() == 0) {
1567 _mesa_glsl_error(&loc, state, "unsized array index must be constant");
1568 } else {
1569 if (array->type->is_array()) {
1570 /* whole_variable_referenced can return NULL if the array is a
1571 * member of a structure. In this case it is safe to not update
1572 * the max_array_access field because it is never used for fields
1573 * of structures.
1574 */
1575 ir_variable *v = array->whole_variable_referenced();
1576 if (v != NULL)
1577 v->max_array_access = array->type->array_size();
1578 }
1579 }
1580
1581 /* From page 23 (29 of the PDF) of the GLSL 1.30 spec:
1582 *
1583 * "Samplers aggregated into arrays within a shader (using square
1584 * brackets [ ]) can only be indexed with integral constant
1585 * expressions [...]."
1586 *
1587 * This restriction was added in GLSL 1.30. Shaders using earlier version
1588 * of the language should not be rejected by the compiler front-end for
1589 * using this construct. This allows useful things such as using a loop
1590 * counter as the index to an array of samplers. If the loop in unrolled,
1591 * the code should compile correctly. Instead, emit a warning.
1592 */
1593 if (array->type->is_array() &&
1594 array->type->element_type()->is_sampler() &&
1595 const_index == NULL) {
1596
1597 if (state->language_version == 100) {
1598 _mesa_glsl_warning(&loc, state,
1599 "sampler arrays indexed with non-constant "
1600 "expressions is optional in GLSL ES 1.00");
1601 } else if (state->language_version < 130) {
1602 _mesa_glsl_warning(&loc, state,
1603 "sampler arrays indexed with non-constant "
1604 "expressions is forbidden in GLSL 1.30 and "
1605 "later");
1606 } else {
1607 _mesa_glsl_error(&loc, state,
1608 "sampler arrays indexed with non-constant "
1609 "expressions is forbidden in GLSL 1.30 and "
1610 "later");
1611 error_emitted = true;
1612 }
1613 }
1614
1615 if (error_emitted)
1616 result->type = glsl_type::error_type;
1617
1618 type = result->type;
1619 break;
1620 }
1621
1622 case ast_function_call:
1623 /* Should *NEVER* get here. ast_function_call should always be handled
1624 * by ast_function_expression::hir.
1625 */
1626 assert(0);
1627 break;
1628
1629 case ast_identifier: {
1630 /* ast_identifier can appear several places in a full abstract syntax
1631 * tree. This particular use must be at location specified in the grammar
1632 * as 'variable_identifier'.
1633 */
1634 ir_variable *var =
1635 state->symbols->get_variable(this->primary_expression.identifier);
1636
1637 result = new(ctx) ir_dereference_variable(var);
1638
1639 if (var != NULL) {
1640 var->used = true;
1641 type = result->type;
1642 } else {
1643 _mesa_glsl_error(& loc, state, "`%s' undeclared",
1644 this->primary_expression.identifier);
1645
1646 error_emitted = true;
1647 }
1648 break;
1649 }
1650
1651 case ast_int_constant:
1652 type = glsl_type::int_type;
1653 result = new(ctx) ir_constant(this->primary_expression.int_constant);
1654 break;
1655
1656 case ast_uint_constant:
1657 type = glsl_type::uint_type;
1658 result = new(ctx) ir_constant(this->primary_expression.uint_constant);
1659 break;
1660
1661 case ast_float_constant:
1662 type = glsl_type::float_type;
1663 result = new(ctx) ir_constant(this->primary_expression.float_constant);
1664 break;
1665
1666 case ast_bool_constant:
1667 type = glsl_type::bool_type;
1668 result = new(ctx) ir_constant(bool(this->primary_expression.bool_constant));
1669 break;
1670
1671 case ast_sequence: {
1672 /* It should not be possible to generate a sequence in the AST without
1673 * any expressions in it.
1674 */
1675 assert(!this->expressions.is_empty());
1676
1677 /* The r-value of a sequence is the last expression in the sequence. If
1678 * the other expressions in the sequence do not have side-effects (and
1679 * therefore add instructions to the instruction list), they get dropped
1680 * on the floor.
1681 */
1682 foreach_list_typed (ast_node, ast, link, &this->expressions)
1683 result = ast->hir(instructions, state);
1684
1685 type = result->type;
1686
1687 /* Any errors should have already been emitted in the loop above.
1688 */
1689 error_emitted = true;
1690 break;
1691 }
1692 }
1693
1694 if (type->is_error() && !error_emitted)
1695 _mesa_glsl_error(& loc, state, "type mismatch");
1696
1697 return result;
1698 }
1699
1700
1701 ir_rvalue *
1702 ast_expression_statement::hir(exec_list *instructions,
1703 struct _mesa_glsl_parse_state *state)
1704 {
1705 /* It is possible to have expression statements that don't have an
1706 * expression. This is the solitary semicolon:
1707 *
1708 * for (i = 0; i < 5; i++)
1709 * ;
1710 *
1711 * In this case the expression will be NULL. Test for NULL and don't do
1712 * anything in that case.
1713 */
1714 if (expression != NULL)
1715 expression->hir(instructions, state);
1716
1717 /* Statements do not have r-values.
1718 */
1719 return NULL;
1720 }
1721
1722
1723 ir_rvalue *
1724 ast_compound_statement::hir(exec_list *instructions,
1725 struct _mesa_glsl_parse_state *state)
1726 {
1727 if (new_scope)
1728 state->symbols->push_scope();
1729
1730 foreach_list_typed (ast_node, ast, link, &this->statements)
1731 ast->hir(instructions, state);
1732
1733 if (new_scope)
1734 state->symbols->pop_scope();
1735
1736 /* Compound statements do not have r-values.
1737 */
1738 return NULL;
1739 }
1740
1741
1742 static const glsl_type *
1743 process_array_type(YYLTYPE *loc, const glsl_type *base, ast_node *array_size,
1744 struct _mesa_glsl_parse_state *state)
1745 {
1746 unsigned length = 0;
1747
1748 /* FINISHME: Reject delcarations of multidimensional arrays. */
1749
1750 if (array_size != NULL) {
1751 exec_list dummy_instructions;
1752 ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
1753 YYLTYPE loc = array_size->get_location();
1754
1755 /* FINISHME: Verify that the grammar forbids side-effects in array
1756 * FINISHME: sizes. i.e., 'vec4 [x = 12] data'
1757 */
1758 assert(dummy_instructions.is_empty());
1759
1760 if (ir != NULL) {
1761 if (!ir->type->is_integer()) {
1762 _mesa_glsl_error(& loc, state, "array size must be integer type");
1763 } else if (!ir->type->is_scalar()) {
1764 _mesa_glsl_error(& loc, state, "array size must be scalar type");
1765 } else {
1766 ir_constant *const size = ir->constant_expression_value();
1767
1768 if (size == NULL) {
1769 _mesa_glsl_error(& loc, state, "array size must be a "
1770 "constant valued expression");
1771 } else if (size->value.i[0] <= 0) {
1772 _mesa_glsl_error(& loc, state, "array size must be > 0");
1773 } else {
1774 assert(size->type == ir->type);
1775 length = size->value.u[0];
1776 }
1777 }
1778 }
1779 } else if (state->es_shader) {
1780 /* Section 10.17 of the GLSL ES 1.00 specification states that unsized
1781 * array declarations have been removed from the language.
1782 */
1783 _mesa_glsl_error(loc, state, "unsized array declarations are not "
1784 "allowed in GLSL ES 1.00.");
1785 }
1786
1787 return glsl_type::get_array_instance(base, length);
1788 }
1789
1790
1791 const glsl_type *
1792 ast_type_specifier::glsl_type(const char **name,
1793 struct _mesa_glsl_parse_state *state) const
1794 {
1795 const struct glsl_type *type;
1796
1797 type = state->symbols->get_type(this->type_name);
1798 *name = this->type_name;
1799
1800 if (this->is_array) {
1801 YYLTYPE loc = this->get_location();
1802 type = process_array_type(&loc, type, this->array_size, state);
1803 }
1804
1805 return type;
1806 }
1807
1808
1809 static void
1810 apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
1811 ir_variable *var,
1812 struct _mesa_glsl_parse_state *state,
1813 YYLTYPE *loc)
1814 {
1815 if (qual->flags.q.invariant) {
1816 if (var->used) {
1817 _mesa_glsl_error(loc, state,
1818 "variable `%s' may not be redeclared "
1819 "`invariant' after being used",
1820 var->name);
1821 } else {
1822 var->invariant = 1;
1823 }
1824 }
1825
1826 if (qual->flags.q.constant || qual->flags.q.attribute
1827 || qual->flags.q.uniform
1828 || (qual->flags.q.varying && (state->target == fragment_shader)))
1829 var->read_only = 1;
1830
1831 if (qual->flags.q.centroid)
1832 var->centroid = 1;
1833
1834 if (qual->flags.q.attribute && state->target != vertex_shader) {
1835 var->type = glsl_type::error_type;
1836 _mesa_glsl_error(loc, state,
1837 "`attribute' variables may not be declared in the "
1838 "%s shader",
1839 _mesa_glsl_shader_target_name(state->target));
1840 }
1841
1842 /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
1843 *
1844 * "The varying qualifier can be used only with the data types
1845 * float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
1846 * these."
1847 */
1848 if (qual->flags.q.varying) {
1849 const glsl_type *non_array_type;
1850
1851 if (var->type && var->type->is_array())
1852 non_array_type = var->type->fields.array;
1853 else
1854 non_array_type = var->type;
1855
1856 if (non_array_type && non_array_type->base_type != GLSL_TYPE_FLOAT) {
1857 var->type = glsl_type::error_type;
1858 _mesa_glsl_error(loc, state,
1859 "varying variables must be of base type float");
1860 }
1861 }
1862
1863 /* If there is no qualifier that changes the mode of the variable, leave
1864 * the setting alone.
1865 */
1866 if (qual->flags.q.in && qual->flags.q.out)
1867 var->mode = ir_var_inout;
1868 else if (qual->flags.q.attribute || qual->flags.q.in
1869 || (qual->flags.q.varying && (state->target == fragment_shader)))
1870 var->mode = ir_var_in;
1871 else if (qual->flags.q.out
1872 || (qual->flags.q.varying && (state->target == vertex_shader)))
1873 var->mode = ir_var_out;
1874 else if (qual->flags.q.uniform)
1875 var->mode = ir_var_uniform;
1876
1877 if (state->all_invariant && (state->current_function == NULL)) {
1878 switch (state->target) {
1879 case vertex_shader:
1880 if (var->mode == ir_var_out)
1881 var->invariant = true;
1882 break;
1883 case geometry_shader:
1884 if ((var->mode == ir_var_in) || (var->mode == ir_var_out))
1885 var->invariant = true;
1886 break;
1887 case fragment_shader:
1888 if (var->mode == ir_var_in)
1889 var->invariant = true;
1890 break;
1891 }
1892 }
1893
1894 if (qual->flags.q.flat)
1895 var->interpolation = ir_var_flat;
1896 else if (qual->flags.q.noperspective)
1897 var->interpolation = ir_var_noperspective;
1898 else
1899 var->interpolation = ir_var_smooth;
1900
1901 var->pixel_center_integer = qual->flags.q.pixel_center_integer;
1902 var->origin_upper_left = qual->flags.q.origin_upper_left;
1903 if ((qual->flags.q.origin_upper_left || qual->flags.q.pixel_center_integer)
1904 && (strcmp(var->name, "gl_FragCoord") != 0)) {
1905 const char *const qual_string = (qual->flags.q.origin_upper_left)
1906 ? "origin_upper_left" : "pixel_center_integer";
1907
1908 _mesa_glsl_error(loc, state,
1909 "layout qualifier `%s' can only be applied to "
1910 "fragment shader input `gl_FragCoord'",
1911 qual_string);
1912 }
1913
1914 if (qual->flags.q.explicit_location) {
1915 const bool global_scope = (state->current_function == NULL);
1916 bool fail = false;
1917 const char *string = "";
1918
1919 /* In the vertex shader only shader inputs can be given explicit
1920 * locations.
1921 *
1922 * In the fragment shader only shader outputs can be given explicit
1923 * locations.
1924 */
1925 switch (state->target) {
1926 case vertex_shader:
1927 if (!global_scope || (var->mode != ir_var_in)) {
1928 fail = true;
1929 string = "input";
1930 }
1931 break;
1932
1933 case geometry_shader:
1934 _mesa_glsl_error(loc, state,
1935 "geometry shader variables cannot be given "
1936 "explicit locations\n");
1937 break;
1938
1939 case fragment_shader:
1940 if (!global_scope || (var->mode != ir_var_in)) {
1941 fail = true;
1942 string = "output";
1943 }
1944 break;
1945 };
1946
1947 if (fail) {
1948 _mesa_glsl_error(loc, state,
1949 "only %s shader %s variables can be given an "
1950 "explicit location\n",
1951 _mesa_glsl_shader_target_name(state->target),
1952 string);
1953 } else {
1954 var->explicit_location = true;
1955
1956 /* This bit of silliness is needed because invalid explicit locations
1957 * are supposed to be flagged during linking. Small negative values
1958 * biased by VERT_ATTRIB_GENERIC0 or FRAG_RESULT_DATA0 could alias
1959 * built-in values (e.g., -16+VERT_ATTRIB_GENERIC0 = VERT_ATTRIB_POS).
1960 * The linker needs to be able to differentiate these cases. This
1961 * ensures that negative values stay negative.
1962 */
1963 if (qual->location >= 0) {
1964 var->location = (state->target == vertex_shader)
1965 ? (qual->location + VERT_ATTRIB_GENERIC0)
1966 : (qual->location + FRAG_RESULT_DATA0);
1967 } else {
1968 var->location = qual->location;
1969 }
1970 }
1971 }
1972
1973 /* Does the declaration use the 'layout' keyword?
1974 */
1975 const bool uses_layout = qual->flags.q.pixel_center_integer
1976 || qual->flags.q.origin_upper_left
1977 || qual->flags.q.explicit_location;
1978
1979 /* Does the declaration use the deprecated 'attribute' or 'varying'
1980 * keywords?
1981 */
1982 const bool uses_deprecated_qualifier = qual->flags.q.attribute
1983 || qual->flags.q.varying;
1984
1985 /* Is the 'layout' keyword used with parameters that allow relaxed checking.
1986 * Many implementations of GL_ARB_fragment_coord_conventions_enable and some
1987 * implementations (only Mesa?) GL_ARB_explicit_attrib_location_enable
1988 * allowed the layout qualifier to be used with 'varying' and 'attribute'.
1989 * These extensions and all following extensions that add the 'layout'
1990 * keyword have been modified to require the use of 'in' or 'out'.
1991 *
1992 * The following extension do not allow the deprecated keywords:
1993 *
1994 * GL_AMD_conservative_depth
1995 * GL_ARB_gpu_shader5
1996 * GL_ARB_separate_shader_objects
1997 * GL_ARB_tesselation_shader
1998 * GL_ARB_transform_feedback3
1999 * GL_ARB_uniform_buffer_object
2000 *
2001 * It is unknown whether GL_EXT_shader_image_load_store or GL_NV_gpu_shader5
2002 * allow layout with the deprecated keywords.
2003 */
2004 const bool relaxed_layout_qualifier_checking =
2005 state->ARB_fragment_coord_conventions_enable;
2006
2007 if (uses_layout && uses_deprecated_qualifier) {
2008 if (relaxed_layout_qualifier_checking) {
2009 _mesa_glsl_warning(loc, state,
2010 "`layout' qualifier may not be used with "
2011 "`attribute' or `varying'");
2012 } else {
2013 _mesa_glsl_error(loc, state,
2014 "`layout' qualifier may not be used with "
2015 "`attribute' or `varying'");
2016 }
2017 }
2018
2019 /* Layout qualifiers for gl_FragDepth, which are enabled by extension
2020 * AMD_conservative_depth.
2021 */
2022 int depth_layout_count = qual->flags.q.depth_any
2023 + qual->flags.q.depth_greater
2024 + qual->flags.q.depth_less
2025 + qual->flags.q.depth_unchanged;
2026 if (depth_layout_count > 0
2027 && !state->AMD_conservative_depth_enable) {
2028 _mesa_glsl_error(loc, state,
2029 "extension GL_AMD_conservative_depth must be enabled "
2030 "to use depth layout qualifiers");
2031 } else if (depth_layout_count > 0
2032 && strcmp(var->name, "gl_FragDepth") != 0) {
2033 _mesa_glsl_error(loc, state,
2034 "depth layout qualifiers can be applied only to "
2035 "gl_FragDepth");
2036 } else if (depth_layout_count > 1
2037 && strcmp(var->name, "gl_FragDepth") == 0) {
2038 _mesa_glsl_error(loc, state,
2039 "at most one depth layout qualifier can be applied to "
2040 "gl_FragDepth");
2041 }
2042 if (qual->flags.q.depth_any)
2043 var->depth_layout = ir_depth_layout_any;
2044 else if (qual->flags.q.depth_greater)
2045 var->depth_layout = ir_depth_layout_greater;
2046 else if (qual->flags.q.depth_less)
2047 var->depth_layout = ir_depth_layout_less;
2048 else if (qual->flags.q.depth_unchanged)
2049 var->depth_layout = ir_depth_layout_unchanged;
2050 else
2051 var->depth_layout = ir_depth_layout_none;
2052
2053 if (var->type->is_array() && state->language_version != 110) {
2054 var->array_lvalue = true;
2055 }
2056 }
2057
2058 /**
2059 * Get the variable that is being redeclared by this declaration
2060 *
2061 * Semantic checks to verify the validity of the redeclaration are also
2062 * performed. If semantic checks fail, compilation error will be emitted via
2063 * \c _mesa_glsl_error, but a non-\c NULL pointer will still be returned.
2064 *
2065 * \returns
2066 * A pointer to an existing variable in the current scope if the declaration
2067 * is a redeclaration, \c NULL otherwise.
2068 */
2069 ir_variable *
2070 get_variable_being_redeclared(ir_variable *var, ast_declaration *decl,
2071 struct _mesa_glsl_parse_state *state)
2072 {
2073 /* Check if this declaration is actually a re-declaration, either to
2074 * resize an array or add qualifiers to an existing variable.
2075 *
2076 * This is allowed for variables in the current scope, or when at
2077 * global scope (for built-ins in the implicit outer scope).
2078 */
2079 ir_variable *earlier = state->symbols->get_variable(decl->identifier);
2080 if (earlier == NULL ||
2081 (state->current_function != NULL &&
2082 !state->symbols->name_declared_this_scope(decl->identifier))) {
2083 return NULL;
2084 }
2085
2086
2087 YYLTYPE loc = decl->get_location();
2088
2089 /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
2090 *
2091 * "It is legal to declare an array without a size and then
2092 * later re-declare the same name as an array of the same
2093 * type and specify a size."
2094 */
2095 if ((earlier->type->array_size() == 0)
2096 && var->type->is_array()
2097 && (var->type->element_type() == earlier->type->element_type())) {
2098 /* FINISHME: This doesn't match the qualifiers on the two
2099 * FINISHME: declarations. It's not 100% clear whether this is
2100 * FINISHME: required or not.
2101 */
2102
2103 /* From page 54 (page 60 of the PDF) of the GLSL 1.20 spec:
2104 *
2105 * "The size [of gl_TexCoord] can be at most
2106 * gl_MaxTextureCoords."
2107 */
2108 const unsigned size = unsigned(var->type->array_size());
2109 if ((strcmp("gl_TexCoord", var->name) == 0)
2110 && (size > state->Const.MaxTextureCoords)) {
2111 _mesa_glsl_error(& loc, state, "`gl_TexCoord' array size cannot "
2112 "be larger than gl_MaxTextureCoords (%u)\n",
2113 state->Const.MaxTextureCoords);
2114 } else if ((size > 0) && (size <= earlier->max_array_access)) {
2115 _mesa_glsl_error(& loc, state, "array size must be > %u due to "
2116 "previous access",
2117 earlier->max_array_access);
2118 }
2119
2120 earlier->type = var->type;
2121 delete var;
2122 var = NULL;
2123 } else if (state->ARB_fragment_coord_conventions_enable
2124 && strcmp(var->name, "gl_FragCoord") == 0
2125 && earlier->type == var->type
2126 && earlier->mode == var->mode) {
2127 /* Allow redeclaration of gl_FragCoord for ARB_fcc layout
2128 * qualifiers.
2129 */
2130 earlier->origin_upper_left = var->origin_upper_left;
2131 earlier->pixel_center_integer = var->pixel_center_integer;
2132
2133 /* According to section 4.3.7 of the GLSL 1.30 spec,
2134 * the following built-in varaibles can be redeclared with an
2135 * interpolation qualifier:
2136 * * gl_FrontColor
2137 * * gl_BackColor
2138 * * gl_FrontSecondaryColor
2139 * * gl_BackSecondaryColor
2140 * * gl_Color
2141 * * gl_SecondaryColor
2142 */
2143 } else if (state->language_version >= 130
2144 && (strcmp(var->name, "gl_FrontColor") == 0
2145 || strcmp(var->name, "gl_BackColor") == 0
2146 || strcmp(var->name, "gl_FrontSecondaryColor") == 0
2147 || strcmp(var->name, "gl_BackSecondaryColor") == 0
2148 || strcmp(var->name, "gl_Color") == 0
2149 || strcmp(var->name, "gl_SecondaryColor") == 0)
2150 && earlier->type == var->type
2151 && earlier->mode == var->mode) {
2152 earlier->interpolation = var->interpolation;
2153
2154 /* Layout qualifiers for gl_FragDepth. */
2155 } else if (state->AMD_conservative_depth_enable
2156 && strcmp(var->name, "gl_FragDepth") == 0
2157 && earlier->type == var->type
2158 && earlier->mode == var->mode) {
2159
2160 /** From the AMD_conservative_depth spec:
2161 * Within any shader, the first redeclarations of gl_FragDepth
2162 * must appear before any use of gl_FragDepth.
2163 */
2164 if (earlier->used) {
2165 _mesa_glsl_error(&loc, state,
2166 "the first redeclaration of gl_FragDepth "
2167 "must appear before any use of gl_FragDepth");
2168 }
2169
2170 /* Prevent inconsistent redeclaration of depth layout qualifier. */
2171 if (earlier->depth_layout != ir_depth_layout_none
2172 && earlier->depth_layout != var->depth_layout) {
2173 _mesa_glsl_error(&loc, state,
2174 "gl_FragDepth: depth layout is declared here "
2175 "as '%s, but it was previously declared as "
2176 "'%s'",
2177 depth_layout_string(var->depth_layout),
2178 depth_layout_string(earlier->depth_layout));
2179 }
2180
2181 earlier->depth_layout = var->depth_layout;
2182
2183 } else {
2184 _mesa_glsl_error(&loc, state, "`%s' redeclared", decl->identifier);
2185 }
2186
2187 return earlier;
2188 }
2189
2190 /**
2191 * Generate the IR for an initializer in a variable declaration
2192 */
2193 ir_rvalue *
2194 process_initializer(ir_variable *var, ast_declaration *decl,
2195 ast_fully_specified_type *type,
2196 exec_list *initializer_instructions,
2197 struct _mesa_glsl_parse_state *state)
2198 {
2199 ir_rvalue *result = NULL;
2200
2201 YYLTYPE initializer_loc = decl->initializer->get_location();
2202
2203 /* From page 24 (page 30 of the PDF) of the GLSL 1.10 spec:
2204 *
2205 * "All uniform variables are read-only and are initialized either
2206 * directly by an application via API commands, or indirectly by
2207 * OpenGL."
2208 */
2209 if ((state->language_version <= 110)
2210 && (var->mode == ir_var_uniform)) {
2211 _mesa_glsl_error(& initializer_loc, state,
2212 "cannot initialize uniforms in GLSL 1.10");
2213 }
2214
2215 if (var->type->is_sampler()) {
2216 _mesa_glsl_error(& initializer_loc, state,
2217 "cannot initialize samplers");
2218 }
2219
2220 if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
2221 _mesa_glsl_error(& initializer_loc, state,
2222 "cannot initialize %s shader input / %s",
2223 _mesa_glsl_shader_target_name(state->target),
2224 (state->target == vertex_shader)
2225 ? "attribute" : "varying");
2226 }
2227
2228 ir_dereference *const lhs = new(state) ir_dereference_variable(var);
2229 ir_rvalue *rhs = decl->initializer->hir(initializer_instructions,
2230 state);
2231
2232 /* Calculate the constant value if this is a const or uniform
2233 * declaration.
2234 */
2235 if (type->qualifier.flags.q.constant
2236 || type->qualifier.flags.q.uniform) {
2237 ir_rvalue *new_rhs = validate_assignment(state, var->type, rhs);
2238 if (new_rhs != NULL) {
2239 rhs = new_rhs;
2240
2241 ir_constant *constant_value = rhs->constant_expression_value();
2242 if (!constant_value) {
2243 _mesa_glsl_error(& initializer_loc, state,
2244 "initializer of %s variable `%s' must be a "
2245 "constant expression",
2246 (type->qualifier.flags.q.constant)
2247 ? "const" : "uniform",
2248 decl->identifier);
2249 if (var->type->is_numeric()) {
2250 /* Reduce cascading errors. */
2251 var->constant_value = ir_constant::zero(state, var->type);
2252 }
2253 } else {
2254 rhs = constant_value;
2255 var->constant_value = constant_value;
2256 }
2257 } else {
2258 _mesa_glsl_error(&initializer_loc, state,
2259 "initializer of type %s cannot be assigned to "
2260 "variable of type %s",
2261 rhs->type->name, var->type->name);
2262 if (var->type->is_numeric()) {
2263 /* Reduce cascading errors. */
2264 var->constant_value = ir_constant::zero(state, var->type);
2265 }
2266 }
2267 }
2268
2269 if (rhs && !rhs->type->is_error()) {
2270 bool temp = var->read_only;
2271 if (type->qualifier.flags.q.constant)
2272 var->read_only = false;
2273
2274 /* Never emit code to initialize a uniform.
2275 */
2276 const glsl_type *initializer_type;
2277 if (!type->qualifier.flags.q.uniform) {
2278 result = do_assignment(initializer_instructions, state,
2279 lhs, rhs,
2280 type->get_location());
2281 initializer_type = result->type;
2282 } else
2283 initializer_type = rhs->type;
2284
2285 /* If the declared variable is an unsized array, it must inherrit
2286 * its full type from the initializer. A declaration such as
2287 *
2288 * uniform float a[] = float[](1.0, 2.0, 3.0, 3.0);
2289 *
2290 * becomes
2291 *
2292 * uniform float a[4] = float[](1.0, 2.0, 3.0, 3.0);
2293 *
2294 * The assignment generated in the if-statement (below) will also
2295 * automatically handle this case for non-uniforms.
2296 *
2297 * If the declared variable is not an array, the types must
2298 * already match exactly. As a result, the type assignment
2299 * here can be done unconditionally. For non-uniforms the call
2300 * to do_assignment can change the type of the initializer (via
2301 * the implicit conversion rules). For uniforms the initializer
2302 * must be a constant expression, and the type of that expression
2303 * was validated above.
2304 */
2305 var->type = initializer_type;
2306
2307 var->read_only = temp;
2308 }
2309
2310 return result;
2311 }
2312
2313 ir_rvalue *
2314 ast_declarator_list::hir(exec_list *instructions,
2315 struct _mesa_glsl_parse_state *state)
2316 {
2317 void *ctx = state;
2318 const struct glsl_type *decl_type;
2319 const char *type_name = NULL;
2320 ir_rvalue *result = NULL;
2321 YYLTYPE loc = this->get_location();
2322
2323 /* From page 46 (page 52 of the PDF) of the GLSL 1.50 spec:
2324 *
2325 * "To ensure that a particular output variable is invariant, it is
2326 * necessary to use the invariant qualifier. It can either be used to
2327 * qualify a previously declared variable as being invariant
2328 *
2329 * invariant gl_Position; // make existing gl_Position be invariant"
2330 *
2331 * In these cases the parser will set the 'invariant' flag in the declarator
2332 * list, and the type will be NULL.
2333 */
2334 if (this->invariant) {
2335 assert(this->type == NULL);
2336
2337 if (state->current_function != NULL) {
2338 _mesa_glsl_error(& loc, state,
2339 "All uses of `invariant' keyword must be at global "
2340 "scope\n");
2341 }
2342
2343 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2344 assert(!decl->is_array);
2345 assert(decl->array_size == NULL);
2346 assert(decl->initializer == NULL);
2347
2348 ir_variable *const earlier =
2349 state->symbols->get_variable(decl->identifier);
2350 if (earlier == NULL) {
2351 _mesa_glsl_error(& loc, state,
2352 "Undeclared variable `%s' cannot be marked "
2353 "invariant\n", decl->identifier);
2354 } else if ((state->target == vertex_shader)
2355 && (earlier->mode != ir_var_out)) {
2356 _mesa_glsl_error(& loc, state,
2357 "`%s' cannot be marked invariant, vertex shader "
2358 "outputs only\n", decl->identifier);
2359 } else if ((state->target == fragment_shader)
2360 && (earlier->mode != ir_var_in)) {
2361 _mesa_glsl_error(& loc, state,
2362 "`%s' cannot be marked invariant, fragment shader "
2363 "inputs only\n", decl->identifier);
2364 } else if (earlier->used) {
2365 _mesa_glsl_error(& loc, state,
2366 "variable `%s' may not be redeclared "
2367 "`invariant' after being used",
2368 earlier->name);
2369 } else {
2370 earlier->invariant = true;
2371 }
2372 }
2373
2374 /* Invariant redeclarations do not have r-values.
2375 */
2376 return NULL;
2377 }
2378
2379 assert(this->type != NULL);
2380 assert(!this->invariant);
2381
2382 /* The type specifier may contain a structure definition. Process that
2383 * before any of the variable declarations.
2384 */
2385 (void) this->type->specifier->hir(instructions, state);
2386
2387 decl_type = this->type->specifier->glsl_type(& type_name, state);
2388 if (this->declarations.is_empty()) {
2389 /* The only valid case where the declaration list can be empty is when
2390 * the declaration is setting the default precision of a built-in type
2391 * (e.g., 'precision highp vec4;').
2392 */
2393
2394 if (decl_type != NULL) {
2395 } else {
2396 _mesa_glsl_error(& loc, state, "incomplete declaration");
2397 }
2398 }
2399
2400 foreach_list_typed (ast_declaration, decl, link, &this->declarations) {
2401 const struct glsl_type *var_type;
2402 ir_variable *var;
2403
2404 /* FINISHME: Emit a warning if a variable declaration shadows a
2405 * FINISHME: declaration at a higher scope.
2406 */
2407
2408 if ((decl_type == NULL) || decl_type->is_void()) {
2409 if (type_name != NULL) {
2410 _mesa_glsl_error(& loc, state,
2411 "invalid type `%s' in declaration of `%s'",
2412 type_name, decl->identifier);
2413 } else {
2414 _mesa_glsl_error(& loc, state,
2415 "invalid type in declaration of `%s'",
2416 decl->identifier);
2417 }
2418 continue;
2419 }
2420
2421 if (decl->is_array) {
2422 var_type = process_array_type(&loc, decl_type, decl->array_size,
2423 state);
2424 } else {
2425 var_type = decl_type;
2426 }
2427
2428 var = new(ctx) ir_variable(var_type, decl->identifier, ir_var_auto);
2429
2430 /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
2431 *
2432 * "Global variables can only use the qualifiers const,
2433 * attribute, uni form, or varying. Only one may be
2434 * specified.
2435 *
2436 * Local variables can only use the qualifier const."
2437 *
2438 * This is relaxed in GLSL 1.30. It is also relaxed by any extension
2439 * that adds the 'layout' keyword.
2440 */
2441 if ((state->language_version < 130)
2442 && !state->ARB_explicit_attrib_location_enable
2443 && !state->ARB_fragment_coord_conventions_enable) {
2444 if (this->type->qualifier.flags.q.out) {
2445 _mesa_glsl_error(& loc, state,
2446 "`out' qualifier in declaration of `%s' "
2447 "only valid for function parameters in %s.",
2448 decl->identifier, state->version_string);
2449 }
2450 if (this->type->qualifier.flags.q.in) {
2451 _mesa_glsl_error(& loc, state,
2452 "`in' qualifier in declaration of `%s' "
2453 "only valid for function parameters in %s.",
2454 decl->identifier, state->version_string);
2455 }
2456 /* FINISHME: Test for other invalid qualifiers. */
2457 }
2458
2459 apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
2460 & loc);
2461
2462 if (this->type->qualifier.flags.q.invariant) {
2463 if ((state->target == vertex_shader) && !(var->mode == ir_var_out ||
2464 var->mode == ir_var_inout)) {
2465 /* FINISHME: Note that this doesn't work for invariant on
2466 * a function signature outval
2467 */
2468 _mesa_glsl_error(& loc, state,
2469 "`%s' cannot be marked invariant, vertex shader "
2470 "outputs only\n", var->name);
2471 } else if ((state->target == fragment_shader) &&
2472 !(var->mode == ir_var_in || var->mode == ir_var_inout)) {
2473 /* FINISHME: Note that this doesn't work for invariant on
2474 * a function signature inval
2475 */
2476 _mesa_glsl_error(& loc, state,
2477 "`%s' cannot be marked invariant, fragment shader "
2478 "inputs only\n", var->name);
2479 }
2480 }
2481
2482 if (state->current_function != NULL) {
2483 const char *mode = NULL;
2484 const char *extra = "";
2485
2486 /* There is no need to check for 'inout' here because the parser will
2487 * only allow that in function parameter lists.
2488 */
2489 if (this->type->qualifier.flags.q.attribute) {
2490 mode = "attribute";
2491 } else if (this->type->qualifier.flags.q.uniform) {
2492 mode = "uniform";
2493 } else if (this->type->qualifier.flags.q.varying) {
2494 mode = "varying";
2495 } else if (this->type->qualifier.flags.q.in) {
2496 mode = "in";
2497 extra = " or in function parameter list";
2498 } else if (this->type->qualifier.flags.q.out) {
2499 mode = "out";
2500 extra = " or in function parameter list";
2501 }
2502
2503 if (mode) {
2504 _mesa_glsl_error(& loc, state,
2505 "%s variable `%s' must be declared at "
2506 "global scope%s",
2507 mode, var->name, extra);
2508 }
2509 } else if (var->mode == ir_var_in) {
2510 var->read_only = true;
2511
2512 if (state->target == vertex_shader) {
2513 bool error_emitted = false;
2514
2515 /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
2516 *
2517 * "Vertex shader inputs can only be float, floating-point
2518 * vectors, matrices, signed and unsigned integers and integer
2519 * vectors. Vertex shader inputs can also form arrays of these
2520 * types, but not structures."
2521 *
2522 * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
2523 *
2524 * "Vertex shader inputs can only be float, floating-point
2525 * vectors, matrices, signed and unsigned integers and integer
2526 * vectors. They cannot be arrays or structures."
2527 *
2528 * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
2529 *
2530 * "The attribute qualifier can be used only with float,
2531 * floating-point vectors, and matrices. Attribute variables
2532 * cannot be declared as arrays or structures."
2533 */
2534 const glsl_type *check_type = var->type->is_array()
2535 ? var->type->fields.array : var->type;
2536
2537 switch (check_type->base_type) {
2538 case GLSL_TYPE_FLOAT:
2539 break;
2540 case GLSL_TYPE_UINT:
2541 case GLSL_TYPE_INT:
2542 if (state->language_version > 120)
2543 break;
2544 /* FALLTHROUGH */
2545 default:
2546 _mesa_glsl_error(& loc, state,
2547 "vertex shader input / attribute cannot have "
2548 "type %s`%s'",
2549 var->type->is_array() ? "array of " : "",
2550 check_type->name);
2551 error_emitted = true;
2552 }
2553
2554 if (!error_emitted && (state->language_version <= 130)
2555 && var->type->is_array()) {
2556 _mesa_glsl_error(& loc, state,
2557 "vertex shader input / attribute cannot have "
2558 "array type");
2559 error_emitted = true;
2560 }
2561 }
2562 }
2563
2564 /* Integer vertex outputs must be qualified with 'flat'.
2565 *
2566 * From section 4.3.6 of the GLSL 1.30 spec:
2567 * "If a vertex output is a signed or unsigned integer or integer
2568 * vector, then it must be qualified with the interpolation qualifier
2569 * flat."
2570 */
2571 if (state->language_version >= 130
2572 && state->target == vertex_shader
2573 && state->current_function == NULL
2574 && var->type->is_integer()
2575 && var->mode == ir_var_out
2576 && var->interpolation != ir_var_flat) {
2577
2578 _mesa_glsl_error(&loc, state, "If a vertex output is an integer, "
2579 "then it must be qualified with 'flat'");
2580 }
2581
2582
2583 /* Interpolation qualifiers cannot be applied to 'centroid' and
2584 * 'centroid varying'.
2585 *
2586 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2587 * "interpolation qualifiers may only precede the qualifiers in,
2588 * centroid in, out, or centroid out in a declaration. They do not apply
2589 * to the deprecated storage qualifiers varying or centroid varying."
2590 */
2591 if (state->language_version >= 130
2592 && this->type->qualifier.has_interpolation()
2593 && this->type->qualifier.flags.q.varying) {
2594
2595 const char *i = this->type->qualifier.interpolation_string();
2596 assert(i != NULL);
2597 const char *s;
2598 if (this->type->qualifier.flags.q.centroid)
2599 s = "centroid varying";
2600 else
2601 s = "varying";
2602
2603 _mesa_glsl_error(&loc, state,
2604 "qualifier '%s' cannot be applied to the "
2605 "deprecated storage qualifier '%s'", i, s);
2606 }
2607
2608
2609 /* Interpolation qualifiers can only apply to vertex shader outputs and
2610 * fragment shader inputs.
2611 *
2612 * From page 29 (page 35 of the PDF) of the GLSL 1.30 spec:
2613 * "Outputs from a vertex shader (out) and inputs to a fragment
2614 * shader (in) can be further qualified with one or more of these
2615 * interpolation qualifiers"
2616 */
2617 if (state->language_version >= 130
2618 && this->type->qualifier.has_interpolation()) {
2619
2620 const char *i = this->type->qualifier.interpolation_string();
2621 assert(i != NULL);
2622
2623 switch (state->target) {
2624 case vertex_shader:
2625 if (this->type->qualifier.flags.q.in) {
2626 _mesa_glsl_error(&loc, state,
2627 "qualifier '%s' cannot be applied to vertex "
2628 "shader inputs", i);
2629 }
2630 break;
2631 case fragment_shader:
2632 if (this->type->qualifier.flags.q.out) {
2633 _mesa_glsl_error(&loc, state,
2634 "qualifier '%s' cannot be applied to fragment "
2635 "shader outputs", i);
2636 }
2637 break;
2638 default:
2639 assert(0);
2640 }
2641 }
2642
2643
2644 /* From section 4.3.4 of the GLSL 1.30 spec:
2645 * "It is an error to use centroid in in a vertex shader."
2646 */
2647 if (state->language_version >= 130
2648 && this->type->qualifier.flags.q.centroid
2649 && this->type->qualifier.flags.q.in
2650 && state->target == vertex_shader) {
2651
2652 _mesa_glsl_error(&loc, state,
2653 "'centroid in' cannot be used in a vertex shader");
2654 }
2655
2656
2657 /* Precision qualifiers exists only in GLSL versions 1.00 and >= 1.30.
2658 */
2659 if (this->type->specifier->precision != ast_precision_none
2660 && state->language_version != 100
2661 && state->language_version < 130) {
2662
2663 _mesa_glsl_error(&loc, state,
2664 "precision qualifiers are supported only in GLSL ES "
2665 "1.00, and GLSL 1.30 and later");
2666 }
2667
2668
2669 /* Precision qualifiers only apply to floating point and integer types.
2670 *
2671 * From section 4.5.2 of the GLSL 1.30 spec:
2672 * "Any floating point or any integer declaration can have the type
2673 * preceded by one of these precision qualifiers [...] Literal
2674 * constants do not have precision qualifiers. Neither do Boolean
2675 * variables.
2676 */
2677 if (this->type->specifier->precision != ast_precision_none
2678 && !var->type->is_float()
2679 && !var->type->is_integer()
2680 && !(var->type->is_array()
2681 && (var->type->fields.array->is_float()
2682 || var->type->fields.array->is_integer()))) {
2683
2684 _mesa_glsl_error(&loc, state,
2685 "precision qualifiers apply only to floating point "
2686 "and integer types");
2687 }
2688
2689 /* Process the initializer and add its instructions to a temporary
2690 * list. This list will be added to the instruction stream (below) after
2691 * the declaration is added. This is done because in some cases (such as
2692 * redeclarations) the declaration may not actually be added to the
2693 * instruction stream.
2694 */
2695 exec_list initializer_instructions;
2696 ir_variable *earlier = get_variable_being_redeclared(var, decl, state);
2697
2698 if (decl->initializer != NULL) {
2699 result = process_initializer((earlier == NULL) ? var : earlier,
2700 decl, this->type,
2701 &initializer_instructions, state);
2702 }
2703
2704 /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
2705 *
2706 * "It is an error to write to a const variable outside of
2707 * its declaration, so they must be initialized when
2708 * declared."
2709 */
2710 if (this->type->qualifier.flags.q.constant && decl->initializer == NULL) {
2711 _mesa_glsl_error(& loc, state,
2712 "const declaration of `%s' must be initialized",
2713 decl->identifier);
2714 }
2715
2716 /* If the declaration is not a redeclaration, there are a few additional
2717 * semantic checks that must be applied. In addition, variable that was
2718 * created for the declaration should be added to the IR stream.
2719 */
2720 if (earlier == NULL) {
2721 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2722 *
2723 * "Identifiers starting with "gl_" are reserved for use by
2724 * OpenGL, and may not be declared in a shader as either a
2725 * variable or a function."
2726 */
2727 if (strncmp(decl->identifier, "gl_", 3) == 0)
2728 _mesa_glsl_error(& loc, state,
2729 "identifier `%s' uses reserved `gl_' prefix",
2730 decl->identifier);
2731
2732 /* Add the variable to the symbol table. Note that the initializer's
2733 * IR was already processed earlier (though it hasn't been emitted
2734 * yet), without the variable in scope.
2735 *
2736 * This differs from most C-like languages, but it follows the GLSL
2737 * specification. From page 28 (page 34 of the PDF) of the GLSL 1.50
2738 * spec:
2739 *
2740 * "Within a declaration, the scope of a name starts immediately
2741 * after the initializer if present or immediately after the name
2742 * being declared if not."
2743 */
2744 if (!state->symbols->add_variable(var)) {
2745 YYLTYPE loc = this->get_location();
2746 _mesa_glsl_error(&loc, state, "name `%s' already taken in the "
2747 "current scope", decl->identifier);
2748 continue;
2749 }
2750
2751 /* Push the variable declaration to the top. It means that all the
2752 * variable declarations will appear in a funny last-to-first order,
2753 * but otherwise we run into trouble if a function is prototyped, a
2754 * global var is decled, then the function is defined with usage of
2755 * the global var. See glslparsertest's CorrectModule.frag.
2756 */
2757 instructions->push_head(var);
2758 }
2759
2760 instructions->append_list(&initializer_instructions);
2761 }
2762
2763
2764 /* Generally, variable declarations do not have r-values. However,
2765 * one is used for the declaration in
2766 *
2767 * while (bool b = some_condition()) {
2768 * ...
2769 * }
2770 *
2771 * so we return the rvalue from the last seen declaration here.
2772 */
2773 return result;
2774 }
2775
2776
2777 ir_rvalue *
2778 ast_parameter_declarator::hir(exec_list *instructions,
2779 struct _mesa_glsl_parse_state *state)
2780 {
2781 void *ctx = state;
2782 const struct glsl_type *type;
2783 const char *name = NULL;
2784 YYLTYPE loc = this->get_location();
2785
2786 type = this->type->specifier->glsl_type(& name, state);
2787
2788 if (type == NULL) {
2789 if (name != NULL) {
2790 _mesa_glsl_error(& loc, state,
2791 "invalid type `%s' in declaration of `%s'",
2792 name, this->identifier);
2793 } else {
2794 _mesa_glsl_error(& loc, state,
2795 "invalid type in declaration of `%s'",
2796 this->identifier);
2797 }
2798
2799 type = glsl_type::error_type;
2800 }
2801
2802 /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
2803 *
2804 * "Functions that accept no input arguments need not use void in the
2805 * argument list because prototypes (or definitions) are required and
2806 * therefore there is no ambiguity when an empty argument list "( )" is
2807 * declared. The idiom "(void)" as a parameter list is provided for
2808 * convenience."
2809 *
2810 * Placing this check here prevents a void parameter being set up
2811 * for a function, which avoids tripping up checks for main taking
2812 * parameters and lookups of an unnamed symbol.
2813 */
2814 if (type->is_void()) {
2815 if (this->identifier != NULL)
2816 _mesa_glsl_error(& loc, state,
2817 "named parameter cannot have type `void'");
2818
2819 is_void = true;
2820 return NULL;
2821 }
2822
2823 if (formal_parameter && (this->identifier == NULL)) {
2824 _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
2825 return NULL;
2826 }
2827
2828 /* This only handles "vec4 foo[..]". The earlier specifier->glsl_type(...)
2829 * call already handled the "vec4[..] foo" case.
2830 */
2831 if (this->is_array) {
2832 type = process_array_type(&loc, type, this->array_size, state);
2833 }
2834
2835 if (type->array_size() == 0) {
2836 _mesa_glsl_error(&loc, state, "arrays passed as parameters must have "
2837 "a declared size.");
2838 type = glsl_type::error_type;
2839 }
2840
2841 is_void = false;
2842 ir_variable *var = new(ctx) ir_variable(type, this->identifier, ir_var_in);
2843
2844 /* Apply any specified qualifiers to the parameter declaration. Note that
2845 * for function parameters the default mode is 'in'.
2846 */
2847 apply_type_qualifier_to_variable(& this->type->qualifier, var, state, & loc);
2848
2849 instructions->push_tail(var);
2850
2851 /* Parameter declarations do not have r-values.
2852 */
2853 return NULL;
2854 }
2855
2856
2857 void
2858 ast_parameter_declarator::parameters_to_hir(exec_list *ast_parameters,
2859 bool formal,
2860 exec_list *ir_parameters,
2861 _mesa_glsl_parse_state *state)
2862 {
2863 ast_parameter_declarator *void_param = NULL;
2864 unsigned count = 0;
2865
2866 foreach_list_typed (ast_parameter_declarator, param, link, ast_parameters) {
2867 param->formal_parameter = formal;
2868 param->hir(ir_parameters, state);
2869
2870 if (param->is_void)
2871 void_param = param;
2872
2873 count++;
2874 }
2875
2876 if ((void_param != NULL) && (count > 1)) {
2877 YYLTYPE loc = void_param->get_location();
2878
2879 _mesa_glsl_error(& loc, state,
2880 "`void' parameter must be only parameter");
2881 }
2882 }
2883
2884
2885 void
2886 emit_function(_mesa_glsl_parse_state *state, exec_list *instructions,
2887 ir_function *f)
2888 {
2889 /* Emit the new function header */
2890 if (state->current_function == NULL) {
2891 instructions->push_tail(f);
2892 } else {
2893 /* IR invariants disallow function declarations or definitions nested
2894 * within other function definitions. Insert the new ir_function
2895 * block in the instruction sequence before the ir_function block
2896 * containing the current ir_function_signature.
2897 */
2898 ir_function *const curr =
2899 const_cast<ir_function *>(state->current_function->function());
2900
2901 curr->insert_before(f);
2902 }
2903 }
2904
2905
2906 ir_rvalue *
2907 ast_function::hir(exec_list *instructions,
2908 struct _mesa_glsl_parse_state *state)
2909 {
2910 void *ctx = state;
2911 ir_function *f = NULL;
2912 ir_function_signature *sig = NULL;
2913 exec_list hir_parameters;
2914
2915 const char *const name = identifier;
2916
2917 /* From page 21 (page 27 of the PDF) of the GLSL 1.20 spec,
2918 *
2919 * "Function declarations (prototypes) cannot occur inside of functions;
2920 * they must be at global scope, or for the built-in functions, outside
2921 * the global scope."
2922 *
2923 * From page 27 (page 33 of the PDF) of the GLSL ES 1.00.16 spec,
2924 *
2925 * "User defined functions may only be defined within the global scope."
2926 *
2927 * Note that this language does not appear in GLSL 1.10.
2928 */
2929 if ((state->current_function != NULL) && (state->language_version != 110)) {
2930 YYLTYPE loc = this->get_location();
2931 _mesa_glsl_error(&loc, state,
2932 "declaration of function `%s' not allowed within "
2933 "function body", name);
2934 }
2935
2936 /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
2937 *
2938 * "Identifiers starting with "gl_" are reserved for use by
2939 * OpenGL, and may not be declared in a shader as either a
2940 * variable or a function."
2941 */
2942 if (strncmp(name, "gl_", 3) == 0) {
2943 YYLTYPE loc = this->get_location();
2944 _mesa_glsl_error(&loc, state,
2945 "identifier `%s' uses reserved `gl_' prefix", name);
2946 }
2947
2948 /* Convert the list of function parameters to HIR now so that they can be
2949 * used below to compare this function's signature with previously seen
2950 * signatures for functions with the same name.
2951 */
2952 ast_parameter_declarator::parameters_to_hir(& this->parameters,
2953 is_definition,
2954 & hir_parameters, state);
2955
2956 const char *return_type_name;
2957 const glsl_type *return_type =
2958 this->return_type->specifier->glsl_type(& return_type_name, state);
2959
2960 if (!return_type) {
2961 YYLTYPE loc = this->get_location();
2962 _mesa_glsl_error(&loc, state,
2963 "function `%s' has undeclared return type `%s'",
2964 name, return_type_name);
2965 return_type = glsl_type::error_type;
2966 }
2967
2968 /* From page 56 (page 62 of the PDF) of the GLSL 1.30 spec:
2969 * "No qualifier is allowed on the return type of a function."
2970 */
2971 if (this->return_type->has_qualifiers()) {
2972 YYLTYPE loc = this->get_location();
2973 _mesa_glsl_error(& loc, state,
2974 "function `%s' return type has qualifiers", name);
2975 }
2976
2977 /* Verify that this function's signature either doesn't match a previously
2978 * seen signature for a function with the same name, or, if a match is found,
2979 * that the previously seen signature does not have an associated definition.
2980 */
2981 f = state->symbols->get_function(name);
2982 if (f != NULL && (state->es_shader || f->has_user_signature())) {
2983 sig = f->exact_matching_signature(&hir_parameters);
2984 if (sig != NULL) {
2985 const char *badvar = sig->qualifiers_match(&hir_parameters);
2986 if (badvar != NULL) {
2987 YYLTYPE loc = this->get_location();
2988
2989 _mesa_glsl_error(&loc, state, "function `%s' parameter `%s' "
2990 "qualifiers don't match prototype", name, badvar);
2991 }
2992
2993 if (sig->return_type != return_type) {
2994 YYLTYPE loc = this->get_location();
2995
2996 _mesa_glsl_error(&loc, state, "function `%s' return type doesn't "
2997 "match prototype", name);
2998 }
2999
3000 if (is_definition && sig->is_defined) {
3001 YYLTYPE loc = this->get_location();
3002
3003 _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
3004 }
3005 }
3006 } else {
3007 f = new(ctx) ir_function(name);
3008 if (!state->symbols->add_function(f)) {
3009 /* This function name shadows a non-function use of the same name. */
3010 YYLTYPE loc = this->get_location();
3011
3012 _mesa_glsl_error(&loc, state, "function name `%s' conflicts with "
3013 "non-function", name);
3014 return NULL;
3015 }
3016
3017 emit_function(state, instructions, f);
3018 }
3019
3020 /* Verify the return type of main() */
3021 if (strcmp(name, "main") == 0) {
3022 if (! return_type->is_void()) {
3023 YYLTYPE loc = this->get_location();
3024
3025 _mesa_glsl_error(& loc, state, "main() must return void");
3026 }
3027
3028 if (!hir_parameters.is_empty()) {
3029 YYLTYPE loc = this->get_location();
3030
3031 _mesa_glsl_error(& loc, state, "main() must not take any parameters");
3032 }
3033 }
3034
3035 /* Finish storing the information about this new function in its signature.
3036 */
3037 if (sig == NULL) {
3038 sig = new(ctx) ir_function_signature(return_type);
3039 f->add_signature(sig);
3040 }
3041
3042 sig->replace_parameters(&hir_parameters);
3043 signature = sig;
3044
3045 /* Function declarations (prototypes) do not have r-values.
3046 */
3047 return NULL;
3048 }
3049
3050
3051 ir_rvalue *
3052 ast_function_definition::hir(exec_list *instructions,
3053 struct _mesa_glsl_parse_state *state)
3054 {
3055 prototype->is_definition = true;
3056 prototype->hir(instructions, state);
3057
3058 ir_function_signature *signature = prototype->signature;
3059 if (signature == NULL)
3060 return NULL;
3061
3062 assert(state->current_function == NULL);
3063 state->current_function = signature;
3064 state->found_return = false;
3065
3066 /* Duplicate parameters declared in the prototype as concrete variables.
3067 * Add these to the symbol table.
3068 */
3069 state->symbols->push_scope();
3070 foreach_iter(exec_list_iterator, iter, signature->parameters) {
3071 ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
3072
3073 assert(var != NULL);
3074
3075 /* The only way a parameter would "exist" is if two parameters have
3076 * the same name.
3077 */
3078 if (state->symbols->name_declared_this_scope(var->name)) {
3079 YYLTYPE loc = this->get_location();
3080
3081 _mesa_glsl_error(& loc, state, "parameter `%s' redeclared", var->name);
3082 } else {
3083 state->symbols->add_variable(var);
3084 }
3085 }
3086
3087 /* Convert the body of the function to HIR. */
3088 this->body->hir(&signature->body, state);
3089 signature->is_defined = true;
3090
3091 state->symbols->pop_scope();
3092
3093 assert(state->current_function == signature);
3094 state->current_function = NULL;
3095
3096 if (!signature->return_type->is_void() && !state->found_return) {
3097 YYLTYPE loc = this->get_location();
3098 _mesa_glsl_error(& loc, state, "function `%s' has non-void return type "
3099 "%s, but no return statement",
3100 signature->function_name(),
3101 signature->return_type->name);
3102 }
3103
3104 /* Function definitions do not have r-values.
3105 */
3106 return NULL;
3107 }
3108
3109
3110 ir_rvalue *
3111 ast_jump_statement::hir(exec_list *instructions,
3112 struct _mesa_glsl_parse_state *state)
3113 {
3114 void *ctx = state;
3115
3116 switch (mode) {
3117 case ast_return: {
3118 ir_return *inst;
3119 assert(state->current_function);
3120
3121 if (opt_return_value) {
3122 ir_rvalue *const ret = opt_return_value->hir(instructions, state);
3123
3124 /* The value of the return type can be NULL if the shader says
3125 * 'return foo();' and foo() is a function that returns void.
3126 *
3127 * NOTE: The GLSL spec doesn't say that this is an error. The type
3128 * of the return value is void. If the return type of the function is
3129 * also void, then this should compile without error. Seriously.
3130 */
3131 const glsl_type *const ret_type =
3132 (ret == NULL) ? glsl_type::void_type : ret->type;
3133
3134 /* Implicit conversions are not allowed for return values. */
3135 if (state->current_function->return_type != ret_type) {
3136 YYLTYPE loc = this->get_location();
3137
3138 _mesa_glsl_error(& loc, state,
3139 "`return' with wrong type %s, in function `%s' "
3140 "returning %s",
3141 ret_type->name,
3142 state->current_function->function_name(),
3143 state->current_function->return_type->name);
3144 }
3145
3146 inst = new(ctx) ir_return(ret);
3147 } else {
3148 if (state->current_function->return_type->base_type !=
3149 GLSL_TYPE_VOID) {
3150 YYLTYPE loc = this->get_location();
3151
3152 _mesa_glsl_error(& loc, state,
3153 "`return' with no value, in function %s returning "
3154 "non-void",
3155 state->current_function->function_name());
3156 }
3157 inst = new(ctx) ir_return;
3158 }
3159
3160 state->found_return = true;
3161 instructions->push_tail(inst);
3162 break;
3163 }
3164
3165 case ast_discard:
3166 if (state->target != fragment_shader) {
3167 YYLTYPE loc = this->get_location();
3168
3169 _mesa_glsl_error(& loc, state,
3170 "`discard' may only appear in a fragment shader");
3171 }
3172 instructions->push_tail(new(ctx) ir_discard);
3173 break;
3174
3175 case ast_break:
3176 case ast_continue:
3177 /* FINISHME: Handle switch-statements. They cannot contain 'continue',
3178 * FINISHME: and they use a different IR instruction for 'break'.
3179 */
3180 /* FINISHME: Correctly handle the nesting. If a switch-statement is
3181 * FINISHME: inside a loop, a 'continue' is valid and will bind to the
3182 * FINISHME: loop.
3183 */
3184 if (state->loop_or_switch_nesting == NULL) {
3185 YYLTYPE loc = this->get_location();
3186
3187 _mesa_glsl_error(& loc, state,
3188 "`%s' may only appear in a loop",
3189 (mode == ast_break) ? "break" : "continue");
3190 } else {
3191 ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
3192
3193 /* Inline the for loop expression again, since we don't know
3194 * where near the end of the loop body the normal copy of it
3195 * is going to be placed.
3196 */
3197 if (mode == ast_continue &&
3198 state->loop_or_switch_nesting_ast->rest_expression) {
3199 state->loop_or_switch_nesting_ast->rest_expression->hir(instructions,
3200 state);
3201 }
3202
3203 if (loop != NULL) {
3204 ir_loop_jump *const jump =
3205 new(ctx) ir_loop_jump((mode == ast_break)
3206 ? ir_loop_jump::jump_break
3207 : ir_loop_jump::jump_continue);
3208 instructions->push_tail(jump);
3209 }
3210 }
3211
3212 break;
3213 }
3214
3215 /* Jump instructions do not have r-values.
3216 */
3217 return NULL;
3218 }
3219
3220
3221 ir_rvalue *
3222 ast_selection_statement::hir(exec_list *instructions,
3223 struct _mesa_glsl_parse_state *state)
3224 {
3225 void *ctx = state;
3226
3227 ir_rvalue *const condition = this->condition->hir(instructions, state);
3228
3229 /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
3230 *
3231 * "Any expression whose type evaluates to a Boolean can be used as the
3232 * conditional expression bool-expression. Vector types are not accepted
3233 * as the expression to if."
3234 *
3235 * The checks are separated so that higher quality diagnostics can be
3236 * generated for cases where both rules are violated.
3237 */
3238 if (!condition->type->is_boolean() || !condition->type->is_scalar()) {
3239 YYLTYPE loc = this->condition->get_location();
3240
3241 _mesa_glsl_error(& loc, state, "if-statement condition must be scalar "
3242 "boolean");
3243 }
3244
3245 ir_if *const stmt = new(ctx) ir_if(condition);
3246
3247 if (then_statement != NULL) {
3248 state->symbols->push_scope();
3249 then_statement->hir(& stmt->then_instructions, state);
3250 state->symbols->pop_scope();
3251 }
3252
3253 if (else_statement != NULL) {
3254 state->symbols->push_scope();
3255 else_statement->hir(& stmt->else_instructions, state);
3256 state->symbols->pop_scope();
3257 }
3258
3259 instructions->push_tail(stmt);
3260
3261 /* if-statements do not have r-values.
3262 */
3263 return NULL;
3264 }
3265
3266
3267 void
3268 ast_iteration_statement::condition_to_hir(ir_loop *stmt,
3269 struct _mesa_glsl_parse_state *state)
3270 {
3271 void *ctx = state;
3272
3273 if (condition != NULL) {
3274 ir_rvalue *const cond =
3275 condition->hir(& stmt->body_instructions, state);
3276
3277 if ((cond == NULL)
3278 || !cond->type->is_boolean() || !cond->type->is_scalar()) {
3279 YYLTYPE loc = condition->get_location();
3280
3281 _mesa_glsl_error(& loc, state,
3282 "loop condition must be scalar boolean");
3283 } else {
3284 /* As the first code in the loop body, generate a block that looks
3285 * like 'if (!condition) break;' as the loop termination condition.
3286 */
3287 ir_rvalue *const not_cond =
3288 new(ctx) ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
3289 NULL);
3290
3291 ir_if *const if_stmt = new(ctx) ir_if(not_cond);
3292
3293 ir_jump *const break_stmt =
3294 new(ctx) ir_loop_jump(ir_loop_jump::jump_break);
3295
3296 if_stmt->then_instructions.push_tail(break_stmt);
3297 stmt->body_instructions.push_tail(if_stmt);
3298 }
3299 }
3300 }
3301
3302
3303 ir_rvalue *
3304 ast_iteration_statement::hir(exec_list *instructions,
3305 struct _mesa_glsl_parse_state *state)
3306 {
3307 void *ctx = state;
3308
3309 /* For-loops and while-loops start a new scope, but do-while loops do not.
3310 */
3311 if (mode != ast_do_while)
3312 state->symbols->push_scope();
3313
3314 if (init_statement != NULL)
3315 init_statement->hir(instructions, state);
3316
3317 ir_loop *const stmt = new(ctx) ir_loop();
3318 instructions->push_tail(stmt);
3319
3320 /* Track the current loop and / or switch-statement nesting.
3321 */
3322 ir_instruction *const nesting = state->loop_or_switch_nesting;
3323 ast_iteration_statement *nesting_ast = state->loop_or_switch_nesting_ast;
3324
3325 state->loop_or_switch_nesting = stmt;
3326 state->loop_or_switch_nesting_ast = this;
3327
3328 if (mode != ast_do_while)
3329 condition_to_hir(stmt, state);
3330
3331 if (body != NULL)
3332 body->hir(& stmt->body_instructions, state);
3333
3334 if (rest_expression != NULL)
3335 rest_expression->hir(& stmt->body_instructions, state);
3336
3337 if (mode == ast_do_while)
3338 condition_to_hir(stmt, state);
3339
3340 if (mode != ast_do_while)
3341 state->symbols->pop_scope();
3342
3343 /* Restore previous nesting before returning.
3344 */
3345 state->loop_or_switch_nesting = nesting;
3346 state->loop_or_switch_nesting_ast = nesting_ast;
3347
3348 /* Loops do not have r-values.
3349 */
3350 return NULL;
3351 }
3352
3353
3354 ir_rvalue *
3355 ast_type_specifier::hir(exec_list *instructions,
3356 struct _mesa_glsl_parse_state *state)
3357 {
3358 if (!this->is_precision_statement && this->structure == NULL)
3359 return NULL;
3360
3361 YYLTYPE loc = this->get_location();
3362
3363 if (this->precision != ast_precision_none
3364 && state->language_version != 100
3365 && state->language_version < 130) {
3366 _mesa_glsl_error(&loc, state,
3367 "precision qualifiers exist only in "
3368 "GLSL ES 1.00, and GLSL 1.30 and later");
3369 return NULL;
3370 }
3371 if (this->precision != ast_precision_none
3372 && this->structure != NULL) {
3373 _mesa_glsl_error(&loc, state,
3374 "precision qualifiers do not apply to structures");
3375 return NULL;
3376 }
3377
3378 /* If this is a precision statement, check that the type to which it is
3379 * applied is either float or int.
3380 *
3381 * From section 4.5.3 of the GLSL 1.30 spec:
3382 * "The precision statement
3383 * precision precision-qualifier type;
3384 * can be used to establish a default precision qualifier. The type
3385 * field can be either int or float [...]. Any other types or
3386 * qualifiers will result in an error.
3387 */
3388 if (this->is_precision_statement) {
3389 assert(this->precision != ast_precision_none);
3390 assert(this->structure == NULL); /* The check for structures was
3391 * performed above. */
3392 if (this->is_array) {
3393 _mesa_glsl_error(&loc, state,
3394 "default precision statements do not apply to "
3395 "arrays");
3396 return NULL;
3397 }
3398 if (this->type_specifier != ast_float
3399 && this->type_specifier != ast_int) {
3400 _mesa_glsl_error(&loc, state,
3401 "default precision statements apply only to types "
3402 "float and int");
3403 return NULL;
3404 }
3405
3406 /* FINISHME: Translate precision statements into IR. */
3407 return NULL;
3408 }
3409
3410 if (this->structure != NULL)
3411 return this->structure->hir(instructions, state);
3412
3413 return NULL;
3414 }
3415
3416
3417 ir_rvalue *
3418 ast_struct_specifier::hir(exec_list *instructions,
3419 struct _mesa_glsl_parse_state *state)
3420 {
3421 unsigned decl_count = 0;
3422
3423 /* Make an initial pass over the list of structure fields to determine how
3424 * many there are. Each element in this list is an ast_declarator_list.
3425 * This means that we actually need to count the number of elements in the
3426 * 'declarations' list in each of the elements.
3427 */
3428 foreach_list_typed (ast_declarator_list, decl_list, link,
3429 &this->declarations) {
3430 foreach_list_const (decl_ptr, & decl_list->declarations) {
3431 decl_count++;
3432 }
3433 }
3434
3435 /* Allocate storage for the structure fields and process the field
3436 * declarations. As the declarations are processed, try to also convert
3437 * the types to HIR. This ensures that structure definitions embedded in
3438 * other structure definitions are processed.
3439 */
3440 glsl_struct_field *const fields = ralloc_array(state, glsl_struct_field,
3441 decl_count);
3442
3443 unsigned i = 0;
3444 foreach_list_typed (ast_declarator_list, decl_list, link,
3445 &this->declarations) {
3446 const char *type_name;
3447
3448 decl_list->type->specifier->hir(instructions, state);
3449
3450 /* Section 10.9 of the GLSL ES 1.00 specification states that
3451 * embedded structure definitions have been removed from the language.
3452 */
3453 if (state->es_shader && decl_list->type->specifier->structure != NULL) {
3454 YYLTYPE loc = this->get_location();
3455 _mesa_glsl_error(&loc, state, "Embedded structure definitions are "
3456 "not allowed in GLSL ES 1.00.");
3457 }
3458
3459 const glsl_type *decl_type =
3460 decl_list->type->specifier->glsl_type(& type_name, state);
3461
3462 foreach_list_typed (ast_declaration, decl, link,
3463 &decl_list->declarations) {
3464 const struct glsl_type *field_type = decl_type;
3465 if (decl->is_array) {
3466 YYLTYPE loc = decl->get_location();
3467 field_type = process_array_type(&loc, decl_type, decl->array_size,
3468 state);
3469 }
3470 fields[i].type = (field_type != NULL)
3471 ? field_type : glsl_type::error_type;
3472 fields[i].name = decl->identifier;
3473 i++;
3474 }
3475 }
3476
3477 assert(i == decl_count);
3478
3479 const glsl_type *t =
3480 glsl_type::get_record_instance(fields, decl_count, this->name);
3481
3482 YYLTYPE loc = this->get_location();
3483 if (!state->symbols->add_type(name, t)) {
3484 _mesa_glsl_error(& loc, state, "struct `%s' previously defined", name);
3485 } else {
3486 const glsl_type **s = reralloc(state, state->user_structures,
3487 const glsl_type *,
3488 state->num_user_structures + 1);
3489 if (s != NULL) {
3490 s[state->num_user_structures] = t;
3491 state->user_structures = s;
3492 state->num_user_structures++;
3493 }
3494 }
3495
3496 /* Structure type definitions do not have r-values.
3497 */
3498 return NULL;
3499 }