vk: Implement scratch buffers to make spilling work
[mesa.git] / src / glsl / ir.h
1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #pragma once
26 #ifndef IR_H
27 #define IR_H
28
29 #include <stdio.h>
30 #include <stdlib.h>
31
32 #include "util/ralloc.h"
33 #include "glsl_types.h"
34 #include "list.h"
35 #include "ir_visitor.h"
36 #include "ir_hierarchical_visitor.h"
37 #include "main/mtypes.h"
38
39 #ifdef __cplusplus
40
41 /**
42 * \defgroup IR Intermediate representation nodes
43 *
44 * @{
45 */
46
47 /**
48 * Class tags
49 *
50 * Each concrete class derived from \c ir_instruction has a value in this
51 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
52 * by the constructor. While using type tags is not very C++, it is extremely
53 * convenient. For example, during debugging you can simply inspect
54 * \c ir_instruction::ir_type to find out the actual type of the object.
55 *
56 * In addition, it is possible to use a switch-statement based on \c
57 * \c ir_instruction::ir_type to select different behavior for different object
58 * types. For functions that have only slight differences for several object
59 * types, this allows writing very straightforward, readable code.
60 */
61 enum ir_node_type {
62 ir_type_dereference_array,
63 ir_type_dereference_record,
64 ir_type_dereference_variable,
65 ir_type_constant,
66 ir_type_expression,
67 ir_type_swizzle,
68 ir_type_texture,
69 ir_type_variable,
70 ir_type_assignment,
71 ir_type_call,
72 ir_type_function,
73 ir_type_function_signature,
74 ir_type_if,
75 ir_type_loop,
76 ir_type_loop_jump,
77 ir_type_return,
78 ir_type_discard,
79 ir_type_emit_vertex,
80 ir_type_end_primitive,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
233
234 ir_rvalue *as_rvalue_to_saturate();
235
236 virtual bool is_lvalue() const
237 {
238 return false;
239 }
240
241 /**
242 * Get the variable that is ultimately referenced by an r-value
243 */
244 virtual ir_variable *variable_referenced() const
245 {
246 return NULL;
247 }
248
249
250 /**
251 * If an r-value is a reference to a whole variable, get that variable
252 *
253 * \return
254 * Pointer to a variable that is completely dereferenced by the r-value. If
255 * the r-value is not a dereference or the dereference does not access the
256 * entire variable (i.e., it's just one array element, struct field), \c NULL
257 * is returned.
258 */
259 virtual ir_variable *whole_variable_referenced()
260 {
261 return NULL;
262 }
263
264 /**
265 * Determine if an r-value has the value zero
266 *
267 * The base implementation of this function always returns \c false. The
268 * \c ir_constant class over-rides this function to return \c true \b only
269 * for vector and scalar types that have all elements set to the value
270 * zero (or \c false for booleans).
271 *
272 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
273 */
274 virtual bool is_zero() const;
275
276 /**
277 * Determine if an r-value has the value one
278 *
279 * The base implementation of this function always returns \c false. The
280 * \c ir_constant class over-rides this function to return \c true \b only
281 * for vector and scalar types that have all elements set to the value
282 * one (or \c true for booleans).
283 *
284 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
285 */
286 virtual bool is_one() const;
287
288 /**
289 * Determine if an r-value has the value negative one
290 *
291 * The base implementation of this function always returns \c false. The
292 * \c ir_constant class over-rides this function to return \c true \b only
293 * for vector and scalar types that have all elements set to the value
294 * negative one. For boolean types, the result is always \c false.
295 *
296 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
297 */
298 virtual bool is_negative_one() const;
299
300 /**
301 * Determine if an r-value is an unsigned integer constant which can be
302 * stored in 16 bits.
303 *
304 * \sa ir_constant::is_uint16_constant.
305 */
306 virtual bool is_uint16_constant() const { return false; }
307
308 /**
309 * Return a generic value of error_type.
310 *
311 * Allocation will be performed with 'mem_ctx' as ralloc owner.
312 */
313 static ir_rvalue *error_value(void *mem_ctx);
314
315 protected:
316 ir_rvalue(enum ir_node_type t);
317 };
318
319
320 /**
321 * Variable storage classes
322 */
323 enum ir_variable_mode {
324 ir_var_auto = 0, /**< Function local variables and globals. */
325 ir_var_uniform, /**< Variable declared as a uniform. */
326 ir_var_shader_in,
327 ir_var_shader_out,
328 ir_var_function_in,
329 ir_var_function_out,
330 ir_var_function_inout,
331 ir_var_const_in, /**< "in" param that must be a constant expression */
332 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
333 ir_var_temporary, /**< Temporary variable generated during compilation. */
334 ir_var_mode_count /**< Number of variable modes */
335 };
336
337 /**
338 * Enum keeping track of how a variable was declared. For error checking of
339 * the gl_PerVertex redeclaration rules.
340 */
341 enum ir_var_declaration_type {
342 /**
343 * Normal declaration (for most variables, this means an explicit
344 * declaration. Exception: temporaries are always implicitly declared, but
345 * they still use ir_var_declared_normally).
346 *
347 * Note: an ir_variable that represents a named interface block uses
348 * ir_var_declared_normally.
349 */
350 ir_var_declared_normally = 0,
351
352 /**
353 * Variable was explicitly declared (or re-declared) in an unnamed
354 * interface block.
355 */
356 ir_var_declared_in_block,
357
358 /**
359 * Variable is an implicitly declared built-in that has not been explicitly
360 * re-declared by the shader.
361 */
362 ir_var_declared_implicitly,
363
364 /**
365 * Variable is implicitly generated by the compiler and should not be
366 * visible via the API.
367 */
368 ir_var_hidden,
369 };
370
371 /**
372 * \brief Layout qualifiers for gl_FragDepth.
373 *
374 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
375 * with a layout qualifier.
376 */
377 enum ir_depth_layout {
378 ir_depth_layout_none, /**< No depth layout is specified. */
379 ir_depth_layout_any,
380 ir_depth_layout_greater,
381 ir_depth_layout_less,
382 ir_depth_layout_unchanged
383 };
384
385 /**
386 * \brief Convert depth layout qualifier to string.
387 */
388 const char*
389 depth_layout_string(ir_depth_layout layout);
390
391 /**
392 * Description of built-in state associated with a uniform
393 *
394 * \sa ir_variable::state_slots
395 */
396 struct ir_state_slot {
397 int tokens[5];
398 int swizzle;
399 };
400
401
402 /**
403 * Get the string value for an interpolation qualifier
404 *
405 * \return The string that would be used in a shader to specify \c
406 * mode will be returned.
407 *
408 * This function is used to generate error messages of the form "shader
409 * uses %s interpolation qualifier", so in the case where there is no
410 * interpolation qualifier, it returns "no".
411 *
412 * This function should only be used on a shader input or output variable.
413 */
414 const char *interpolation_string(unsigned interpolation);
415
416
417 class ir_variable : public ir_instruction {
418 public:
419 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
420
421 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
422
423 virtual void accept(ir_visitor *v)
424 {
425 v->visit(this);
426 }
427
428 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
429
430
431 /**
432 * Determine how this variable should be interpolated based on its
433 * interpolation qualifier (if present), whether it is gl_Color or
434 * gl_SecondaryColor, and whether flatshading is enabled in the current GL
435 * state.
436 *
437 * The return value will always be either INTERP_QUALIFIER_SMOOTH,
438 * INTERP_QUALIFIER_NOPERSPECTIVE, or INTERP_QUALIFIER_FLAT.
439 */
440 glsl_interp_qualifier determine_interpolation_mode(bool flat_shade);
441
442 /**
443 * Determine whether or not a variable is part of a uniform block.
444 */
445 inline bool is_in_uniform_block() const
446 {
447 return this->data.mode == ir_var_uniform && this->interface_type != NULL;
448 }
449
450 /**
451 * Determine whether or not a variable is the declaration of an interface
452 * block
453 *
454 * For the first declaration below, there will be an \c ir_variable named
455 * "instance" whose type and whose instance_type will be the same
456 * \cglsl_type. For the second declaration, there will be an \c ir_variable
457 * named "f" whose type is float and whose instance_type is B2.
458 *
459 * "instance" is an interface instance variable, but "f" is not.
460 *
461 * uniform B1 {
462 * float f;
463 * } instance;
464 *
465 * uniform B2 {
466 * float f;
467 * };
468 */
469 inline bool is_interface_instance() const
470 {
471 return this->type->without_array() == this->interface_type;
472 }
473
474 /**
475 * Set this->interface_type on a newly created variable.
476 */
477 void init_interface_type(const struct glsl_type *type)
478 {
479 assert(this->interface_type == NULL);
480 this->interface_type = type;
481 if (this->is_interface_instance()) {
482 this->u.max_ifc_array_access =
483 rzalloc_array(this, unsigned, type->length);
484 }
485 }
486
487 /**
488 * Change this->interface_type on a variable that previously had a
489 * different, but compatible, interface_type. This is used during linking
490 * to set the size of arrays in interface blocks.
491 */
492 void change_interface_type(const struct glsl_type *type)
493 {
494 if (this->u.max_ifc_array_access != NULL) {
495 /* max_ifc_array_access has already been allocated, so make sure the
496 * new interface has the same number of fields as the old one.
497 */
498 assert(this->interface_type->length == type->length);
499 }
500 this->interface_type = type;
501 }
502
503 /**
504 * Change this->interface_type on a variable that previously had a
505 * different, and incompatible, interface_type. This is used during
506 * compilation to handle redeclaration of the built-in gl_PerVertex
507 * interface block.
508 */
509 void reinit_interface_type(const struct glsl_type *type)
510 {
511 if (this->u.max_ifc_array_access != NULL) {
512 #ifndef NDEBUG
513 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
514 * it defines have been accessed yet; so it's safe to throw away the
515 * old max_ifc_array_access pointer, since all of its values are
516 * zero.
517 */
518 for (unsigned i = 0; i < this->interface_type->length; i++)
519 assert(this->u.max_ifc_array_access[i] == 0);
520 #endif
521 ralloc_free(this->u.max_ifc_array_access);
522 this->u.max_ifc_array_access = NULL;
523 }
524 this->interface_type = NULL;
525 init_interface_type(type);
526 }
527
528 const glsl_type *get_interface_type() const
529 {
530 return this->interface_type;
531 }
532
533 /**
534 * Get the max_ifc_array_access pointer
535 *
536 * A "set" function is not needed because the array is dynmically allocated
537 * as necessary.
538 */
539 inline unsigned *get_max_ifc_array_access()
540 {
541 assert(this->data._num_state_slots == 0);
542 return this->u.max_ifc_array_access;
543 }
544
545 inline unsigned get_num_state_slots() const
546 {
547 assert(!this->is_interface_instance()
548 || this->data._num_state_slots == 0);
549 return this->data._num_state_slots;
550 }
551
552 inline void set_num_state_slots(unsigned n)
553 {
554 assert(!this->is_interface_instance()
555 || n == 0);
556 this->data._num_state_slots = n;
557 }
558
559 inline ir_state_slot *get_state_slots()
560 {
561 return this->is_interface_instance() ? NULL : this->u.state_slots;
562 }
563
564 inline const ir_state_slot *get_state_slots() const
565 {
566 return this->is_interface_instance() ? NULL : this->u.state_slots;
567 }
568
569 inline ir_state_slot *allocate_state_slots(unsigned n)
570 {
571 assert(!this->is_interface_instance());
572
573 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
574 this->data._num_state_slots = 0;
575
576 if (this->u.state_slots != NULL)
577 this->data._num_state_slots = n;
578
579 return this->u.state_slots;
580 }
581
582 inline bool is_name_ralloced() const
583 {
584 return this->name != ir_variable::tmp_name;
585 }
586
587 /**
588 * Enable emitting extension warnings for this variable
589 */
590 void enable_extension_warning(const char *extension);
591
592 /**
593 * Get the extension warning string for this variable
594 *
595 * If warnings are not enabled, \c NULL is returned.
596 */
597 const char *get_extension_warning() const;
598
599 /**
600 * Declared type of the variable
601 */
602 const struct glsl_type *type;
603
604 /**
605 * Declared name of the variable
606 */
607 const char *name;
608
609 struct ir_variable_data {
610
611 /**
612 * Is the variable read-only?
613 *
614 * This is set for variables declared as \c const, shader inputs,
615 * and uniforms.
616 */
617 unsigned read_only:1;
618 unsigned centroid:1;
619 unsigned sample:1;
620 unsigned invariant:1;
621 unsigned precise:1;
622
623 /**
624 * Has this variable been used for reading or writing?
625 *
626 * Several GLSL semantic checks require knowledge of whether or not a
627 * variable has been used. For example, it is an error to redeclare a
628 * variable as invariant after it has been used.
629 *
630 * This is only maintained in the ast_to_hir.cpp path, not in
631 * Mesa's fixed function or ARB program paths.
632 */
633 unsigned used:1;
634
635 /**
636 * Has this variable been statically assigned?
637 *
638 * This answers whether the variable was assigned in any path of
639 * the shader during ast_to_hir. This doesn't answer whether it is
640 * still written after dead code removal, nor is it maintained in
641 * non-ast_to_hir.cpp (GLSL parsing) paths.
642 */
643 unsigned assigned:1;
644
645 /**
646 * Enum indicating how the variable was declared. See
647 * ir_var_declaration_type.
648 *
649 * This is used to detect certain kinds of illegal variable redeclarations.
650 */
651 unsigned how_declared:2;
652
653 /**
654 * Storage class of the variable.
655 *
656 * \sa ir_variable_mode
657 */
658 unsigned mode:4;
659
660 /**
661 * Interpolation mode for shader inputs / outputs
662 *
663 * \sa ir_variable_interpolation
664 */
665 unsigned interpolation:2;
666
667 /**
668 * \name ARB_fragment_coord_conventions
669 * @{
670 */
671 unsigned origin_upper_left:1;
672 unsigned pixel_center_integer:1;
673 /*@}*/
674
675 /**
676 * Was the location explicitly set in the shader?
677 *
678 * If the location is explicitly set in the shader, it \b cannot be changed
679 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
680 * no effect).
681 */
682 unsigned explicit_location:1;
683 unsigned explicit_index:1;
684
685 /**
686 * Do we have a Vulkan (group, index) qualifier for this variable?
687 */
688 unsigned vk_set:1;
689
690 /**
691 * Was an initial binding explicitly set in the shader?
692 *
693 * If so, constant_value contains an integer ir_constant representing the
694 * initial binding point.
695 */
696 unsigned explicit_binding:1;
697
698 /**
699 * Does this variable have an initializer?
700 *
701 * This is used by the linker to cross-validiate initializers of global
702 * variables.
703 */
704 unsigned has_initializer:1;
705
706 /**
707 * Is this variable a generic output or input that has not yet been matched
708 * up to a variable in another stage of the pipeline?
709 *
710 * This is used by the linker as scratch storage while assigning locations
711 * to generic inputs and outputs.
712 */
713 unsigned is_unmatched_generic_inout:1;
714
715 /**
716 * If non-zero, then this variable may be packed along with other variables
717 * into a single varying slot, so this offset should be applied when
718 * accessing components. For example, an offset of 1 means that the x
719 * component of this variable is actually stored in component y of the
720 * location specified by \c location.
721 */
722 unsigned location_frac:2;
723
724 /**
725 * Layout of the matrix. Uses glsl_matrix_layout values.
726 */
727 unsigned matrix_layout:2;
728
729 /**
730 * Non-zero if this variable was created by lowering a named interface
731 * block which was not an array.
732 *
733 * Note that this variable and \c from_named_ifc_block_array will never
734 * both be non-zero.
735 */
736 unsigned from_named_ifc_block_nonarray:1;
737
738 /**
739 * Non-zero if this variable was created by lowering a named interface
740 * block which was an array.
741 *
742 * Note that this variable and \c from_named_ifc_block_nonarray will never
743 * both be non-zero.
744 */
745 unsigned from_named_ifc_block_array:1;
746
747 /**
748 * Non-zero if the variable must be a shader input. This is useful for
749 * constraints on function parameters.
750 */
751 unsigned must_be_shader_input:1;
752
753 /**
754 * Output index for dual source blending.
755 *
756 * \note
757 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
758 * source blending.
759 *
760 * This is now also used for the Vulkan descriptor set index.
761 */
762 int16_t index;
763
764 /**
765 * \brief Layout qualifier for gl_FragDepth.
766 *
767 * This is not equal to \c ir_depth_layout_none if and only if this
768 * variable is \c gl_FragDepth and a layout qualifier is specified.
769 */
770 ir_depth_layout depth_layout:3;
771
772 /**
773 * ARB_shader_image_load_store qualifiers.
774 */
775 unsigned image_read_only:1; /**< "readonly" qualifier. */
776 unsigned image_write_only:1; /**< "writeonly" qualifier. */
777 unsigned image_coherent:1;
778 unsigned image_volatile:1;
779 unsigned image_restrict:1;
780
781 /**
782 * Emit a warning if this variable is accessed.
783 */
784 private:
785 uint8_t warn_extension_index;
786
787 public:
788 /** Image internal format if specified explicitly, otherwise GL_NONE. */
789 uint16_t image_format;
790
791 private:
792 /**
793 * Number of state slots used
794 *
795 * \note
796 * This could be stored in as few as 7-bits, if necessary. If it is made
797 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
798 * be safe.
799 */
800 uint16_t _num_state_slots;
801
802 public:
803 /**
804 * Initial binding point for a sampler, atomic, or UBO.
805 *
806 * For array types, this represents the binding point for the first element.
807 */
808 int16_t binding;
809
810 /**
811 * Vulkan descriptor set for the resource.
812 */
813 int16_t set;
814
815 /**
816 * Storage location of the base of this variable
817 *
818 * The precise meaning of this field depends on the nature of the variable.
819 *
820 * - Vertex shader input: one of the values from \c gl_vert_attrib.
821 * - Vertex shader output: one of the values from \c gl_varying_slot.
822 * - Geometry shader input: one of the values from \c gl_varying_slot.
823 * - Geometry shader output: one of the values from \c gl_varying_slot.
824 * - Fragment shader input: one of the values from \c gl_varying_slot.
825 * - Fragment shader output: one of the values from \c gl_frag_result.
826 * - Uniforms: Per-stage uniform slot number for default uniform block.
827 * - Uniforms: Index within the uniform block definition for UBO members.
828 * - Other: This field is not currently used.
829 *
830 * If the variable is a uniform, shader input, or shader output, and the
831 * slot has not been assigned, the value will be -1.
832 */
833 int location;
834
835 /**
836 * Vertex stream output identifier.
837 */
838 unsigned stream;
839
840 /**
841 * Location an atomic counter is stored at.
842 */
843 struct {
844 unsigned offset;
845 } atomic;
846
847 /**
848 * Highest element accessed with a constant expression array index
849 *
850 * Not used for non-array variables.
851 */
852 unsigned max_array_access;
853
854 /**
855 * Allow (only) ir_variable direct access private members.
856 */
857 friend class ir_variable;
858 } data;
859
860 /**
861 * Value assigned in the initializer of a variable declared "const"
862 */
863 ir_constant *constant_value;
864
865 /**
866 * Constant expression assigned in the initializer of the variable
867 *
868 * \warning
869 * This field and \c ::constant_value are distinct. Even if the two fields
870 * refer to constants with the same value, they must point to separate
871 * objects.
872 */
873 ir_constant *constant_initializer;
874
875 private:
876 static const char *const warn_extension_table[];
877
878 union {
879 /**
880 * For variables which satisfy the is_interface_instance() predicate,
881 * this points to an array of integers such that if the ith member of
882 * the interface block is an array, max_ifc_array_access[i] is the
883 * maximum array element of that member that has been accessed. If the
884 * ith member of the interface block is not an array,
885 * max_ifc_array_access[i] is unused.
886 *
887 * For variables whose type is not an interface block, this pointer is
888 * NULL.
889 */
890 unsigned *max_ifc_array_access;
891
892 /**
893 * Built-in state that backs this uniform
894 *
895 * Once set at variable creation, \c state_slots must remain invariant.
896 *
897 * If the variable is not a uniform, \c _num_state_slots will be zero
898 * and \c state_slots will be \c NULL.
899 */
900 ir_state_slot *state_slots;
901 } u;
902
903 /**
904 * For variables that are in an interface block or are an instance of an
905 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
906 *
907 * \sa ir_variable::location
908 */
909 const glsl_type *interface_type;
910
911 /**
912 * Name used for anonymous compiler temporaries
913 */
914 static const char tmp_name[];
915
916 public:
917 /**
918 * Should the construct keep names for ir_var_temporary variables?
919 *
920 * When this global is false, names passed to the constructor for
921 * \c ir_var_temporary variables will be dropped. Instead, the variable will
922 * be named "compiler_temp". This name will be in static storage.
923 *
924 * \warning
925 * \b NEVER change the mode of an \c ir_var_temporary.
926 *
927 * \warning
928 * This variable is \b not thread-safe. It is global, \b not
929 * per-context. It begins life false. A context can, at some point, make
930 * it true. From that point on, it will be true forever. This should be
931 * okay since it will only be set true while debugging.
932 */
933 static bool temporaries_allocate_names;
934 };
935
936 /**
937 * A function that returns whether a built-in function is available in the
938 * current shading language (based on version, ES or desktop, and extensions).
939 */
940 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
941
942 /*@{*/
943 /**
944 * The representation of a function instance; may be the full definition or
945 * simply a prototype.
946 */
947 class ir_function_signature : public ir_instruction {
948 /* An ir_function_signature will be part of the list of signatures in
949 * an ir_function.
950 */
951 public:
952 ir_function_signature(const glsl_type *return_type,
953 builtin_available_predicate builtin_avail = NULL);
954
955 virtual ir_function_signature *clone(void *mem_ctx,
956 struct hash_table *ht) const;
957 ir_function_signature *clone_prototype(void *mem_ctx,
958 struct hash_table *ht) const;
959
960 virtual void accept(ir_visitor *v)
961 {
962 v->visit(this);
963 }
964
965 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
966
967 /**
968 * Attempt to evaluate this function as a constant expression,
969 * given a list of the actual parameters and the variable context.
970 * Returns NULL for non-built-ins.
971 */
972 ir_constant *constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context);
973
974 /**
975 * Get the name of the function for which this is a signature
976 */
977 const char *function_name() const;
978
979 /**
980 * Get a handle to the function for which this is a signature
981 *
982 * There is no setter function, this function returns a \c const pointer,
983 * and \c ir_function_signature::_function is private for a reason. The
984 * only way to make a connection between a function and function signature
985 * is via \c ir_function::add_signature. This helps ensure that certain
986 * invariants (i.e., a function signature is in the list of signatures for
987 * its \c _function) are met.
988 *
989 * \sa ir_function::add_signature
990 */
991 inline const class ir_function *function() const
992 {
993 return this->_function;
994 }
995
996 /**
997 * Check whether the qualifiers match between this signature's parameters
998 * and the supplied parameter list. If not, returns the name of the first
999 * parameter with mismatched qualifiers (for use in error messages).
1000 */
1001 const char *qualifiers_match(exec_list *params);
1002
1003 /**
1004 * Replace the current parameter list with the given one. This is useful
1005 * if the current information came from a prototype, and either has invalid
1006 * or missing parameter names.
1007 */
1008 void replace_parameters(exec_list *new_params);
1009
1010 /**
1011 * Function return type.
1012 *
1013 * \note This discards the optional precision qualifier.
1014 */
1015 const struct glsl_type *return_type;
1016
1017 /**
1018 * List of ir_variable of function parameters.
1019 *
1020 * This represents the storage. The paramaters passed in a particular
1021 * call will be in ir_call::actual_paramaters.
1022 */
1023 struct exec_list parameters;
1024
1025 /** Whether or not this function has a body (which may be empty). */
1026 unsigned is_defined:1;
1027
1028 /** Whether or not this function signature is a built-in. */
1029 bool is_builtin() const;
1030
1031 /**
1032 * Whether or not this function is an intrinsic to be implemented
1033 * by the driver.
1034 */
1035 bool is_intrinsic;
1036
1037 /** Whether or not a built-in is available for this shader. */
1038 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1039
1040 /** Body of instructions in the function. */
1041 struct exec_list body;
1042
1043 private:
1044 /**
1045 * A function pointer to a predicate that answers whether a built-in
1046 * function is available in the current shader. NULL if not a built-in.
1047 */
1048 builtin_available_predicate builtin_avail;
1049
1050 /** Function of which this signature is one overload. */
1051 class ir_function *_function;
1052
1053 /** Function signature of which this one is a prototype clone */
1054 const ir_function_signature *origin;
1055
1056 friend class ir_function;
1057
1058 /**
1059 * Helper function to run a list of instructions for constant
1060 * expression evaluation.
1061 *
1062 * The hash table represents the values of the visible variables.
1063 * There are no scoping issues because the table is indexed on
1064 * ir_variable pointers, not variable names.
1065 *
1066 * Returns false if the expression is not constant, true otherwise,
1067 * and the value in *result if result is non-NULL.
1068 */
1069 bool constant_expression_evaluate_expression_list(const struct exec_list &body,
1070 struct hash_table *variable_context,
1071 ir_constant **result);
1072 };
1073
1074
1075 /**
1076 * Header for tracking multiple overloaded functions with the same name.
1077 * Contains a list of ir_function_signatures representing each of the
1078 * actual functions.
1079 */
1080 class ir_function : public ir_instruction {
1081 public:
1082 ir_function(const char *name);
1083
1084 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1085
1086 virtual void accept(ir_visitor *v)
1087 {
1088 v->visit(this);
1089 }
1090
1091 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1092
1093 void add_signature(ir_function_signature *sig)
1094 {
1095 sig->_function = this;
1096 this->signatures.push_tail(sig);
1097 }
1098
1099 /**
1100 * Find a signature that matches a set of actual parameters, taking implicit
1101 * conversions into account. Also flags whether the match was exact.
1102 */
1103 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1104 const exec_list *actual_param,
1105 bool allow_builtins,
1106 bool *match_is_exact);
1107
1108 /**
1109 * Find a signature that matches a set of actual parameters, taking implicit
1110 * conversions into account.
1111 */
1112 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1113 const exec_list *actual_param,
1114 bool allow_builtins);
1115
1116 /**
1117 * Find a signature that exactly matches a set of actual parameters without
1118 * any implicit type conversions.
1119 */
1120 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1121 const exec_list *actual_ps);
1122
1123 /**
1124 * Name of the function.
1125 */
1126 const char *name;
1127
1128 /** Whether or not this function has a signature that isn't a built-in. */
1129 bool has_user_signature();
1130
1131 /**
1132 * List of ir_function_signature for each overloaded function with this name.
1133 */
1134 struct exec_list signatures;
1135 };
1136
1137 inline const char *ir_function_signature::function_name() const
1138 {
1139 return this->_function->name;
1140 }
1141 /*@}*/
1142
1143
1144 /**
1145 * IR instruction representing high-level if-statements
1146 */
1147 class ir_if : public ir_instruction {
1148 public:
1149 ir_if(ir_rvalue *condition)
1150 : ir_instruction(ir_type_if), condition(condition)
1151 {
1152 }
1153
1154 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1155
1156 virtual void accept(ir_visitor *v)
1157 {
1158 v->visit(this);
1159 }
1160
1161 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1162
1163 ir_rvalue *condition;
1164 /** List of ir_instruction for the body of the then branch */
1165 exec_list then_instructions;
1166 /** List of ir_instruction for the body of the else branch */
1167 exec_list else_instructions;
1168 };
1169
1170
1171 /**
1172 * IR instruction representing a high-level loop structure.
1173 */
1174 class ir_loop : public ir_instruction {
1175 public:
1176 ir_loop();
1177
1178 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1179
1180 virtual void accept(ir_visitor *v)
1181 {
1182 v->visit(this);
1183 }
1184
1185 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1186
1187 /** List of ir_instruction that make up the body of the loop. */
1188 exec_list body_instructions;
1189 };
1190
1191
1192 class ir_assignment : public ir_instruction {
1193 public:
1194 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1195
1196 /**
1197 * Construct an assignment with an explicit write mask
1198 *
1199 * \note
1200 * Since a write mask is supplied, the LHS must already be a bare
1201 * \c ir_dereference. The cannot be any swizzles in the LHS.
1202 */
1203 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1204 unsigned write_mask);
1205
1206 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1207
1208 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1209
1210 virtual void accept(ir_visitor *v)
1211 {
1212 v->visit(this);
1213 }
1214
1215 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1216
1217 /**
1218 * Get a whole variable written by an assignment
1219 *
1220 * If the LHS of the assignment writes a whole variable, the variable is
1221 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1222 * assignment are:
1223 *
1224 * - Assigning to a scalar
1225 * - Assigning to all components of a vector
1226 * - Whole array (or matrix) assignment
1227 * - Whole structure assignment
1228 */
1229 ir_variable *whole_variable_written();
1230
1231 /**
1232 * Set the LHS of an assignment
1233 */
1234 void set_lhs(ir_rvalue *lhs);
1235
1236 /**
1237 * Left-hand side of the assignment.
1238 *
1239 * This should be treated as read only. If you need to set the LHS of an
1240 * assignment, use \c ir_assignment::set_lhs.
1241 */
1242 ir_dereference *lhs;
1243
1244 /**
1245 * Value being assigned
1246 */
1247 ir_rvalue *rhs;
1248
1249 /**
1250 * Optional condition for the assignment.
1251 */
1252 ir_rvalue *condition;
1253
1254
1255 /**
1256 * Component mask written
1257 *
1258 * For non-vector types in the LHS, this field will be zero. For vector
1259 * types, a bit will be set for each component that is written. Note that
1260 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1261 *
1262 * A partially-set write mask means that each enabled channel gets
1263 * the value from a consecutive channel of the rhs. For example,
1264 * to write just .xyw of gl_FrontColor with color:
1265 *
1266 * (assign (constant bool (1)) (xyw)
1267 * (var_ref gl_FragColor)
1268 * (swiz xyw (var_ref color)))
1269 */
1270 unsigned write_mask:4;
1271 };
1272
1273 /* Update ir_expression::get_num_operands() and operator_strs when
1274 * updating this list.
1275 */
1276 enum ir_expression_operation {
1277 ir_unop_bit_not,
1278 ir_unop_logic_not,
1279 ir_unop_neg,
1280 ir_unop_abs,
1281 ir_unop_sign,
1282 ir_unop_rcp,
1283 ir_unop_rsq,
1284 ir_unop_sqrt,
1285 ir_unop_exp, /**< Log base e on gentype */
1286 ir_unop_log, /**< Natural log on gentype */
1287 ir_unop_exp2,
1288 ir_unop_log2,
1289 ir_unop_f2i, /**< Float-to-integer conversion. */
1290 ir_unop_f2u, /**< Float-to-unsigned conversion. */
1291 ir_unop_i2f, /**< Integer-to-float conversion. */
1292 ir_unop_f2b, /**< Float-to-boolean conversion */
1293 ir_unop_b2f, /**< Boolean-to-float conversion */
1294 ir_unop_i2b, /**< int-to-boolean conversion */
1295 ir_unop_b2i, /**< Boolean-to-int conversion */
1296 ir_unop_u2f, /**< Unsigned-to-float conversion. */
1297 ir_unop_i2u, /**< Integer-to-unsigned conversion. */
1298 ir_unop_u2i, /**< Unsigned-to-integer conversion. */
1299 ir_unop_d2f, /**< Double-to-float conversion. */
1300 ir_unop_f2d, /**< Float-to-double conversion. */
1301 ir_unop_d2i, /**< Double-to-integer conversion. */
1302 ir_unop_i2d, /**< Integer-to-double conversion. */
1303 ir_unop_d2u, /**< Double-to-unsigned conversion. */
1304 ir_unop_u2d, /**< Unsigned-to-double conversion. */
1305 ir_unop_d2b, /**< Double-to-boolean conversion. */
1306 ir_unop_bitcast_i2f, /**< Bit-identical int-to-float "conversion" */
1307 ir_unop_bitcast_f2i, /**< Bit-identical float-to-int "conversion" */
1308 ir_unop_bitcast_u2f, /**< Bit-identical uint-to-float "conversion" */
1309 ir_unop_bitcast_f2u, /**< Bit-identical float-to-uint "conversion" */
1310 ir_unop_any,
1311
1312 /**
1313 * \name Unary floating-point rounding operations.
1314 */
1315 /*@{*/
1316 ir_unop_trunc,
1317 ir_unop_ceil,
1318 ir_unop_floor,
1319 ir_unop_fract,
1320 ir_unop_round_even,
1321 /*@}*/
1322
1323 /**
1324 * \name Trigonometric operations.
1325 */
1326 /*@{*/
1327 ir_unop_sin,
1328 ir_unop_cos,
1329 /*@}*/
1330
1331 /**
1332 * \name Partial derivatives.
1333 */
1334 /*@{*/
1335 ir_unop_dFdx,
1336 ir_unop_dFdx_coarse,
1337 ir_unop_dFdx_fine,
1338 ir_unop_dFdy,
1339 ir_unop_dFdy_coarse,
1340 ir_unop_dFdy_fine,
1341 /*@}*/
1342
1343 /**
1344 * \name Floating point pack and unpack operations.
1345 */
1346 /*@{*/
1347 ir_unop_pack_snorm_2x16,
1348 ir_unop_pack_snorm_4x8,
1349 ir_unop_pack_unorm_2x16,
1350 ir_unop_pack_unorm_4x8,
1351 ir_unop_pack_half_2x16,
1352 ir_unop_unpack_snorm_2x16,
1353 ir_unop_unpack_snorm_4x8,
1354 ir_unop_unpack_unorm_2x16,
1355 ir_unop_unpack_unorm_4x8,
1356 ir_unop_unpack_half_2x16,
1357 /*@}*/
1358
1359 /**
1360 * \name Lowered floating point unpacking operations.
1361 *
1362 * \see lower_packing_builtins_visitor::split_unpack_half_2x16
1363 */
1364 /*@{*/
1365 ir_unop_unpack_half_2x16_split_x,
1366 ir_unop_unpack_half_2x16_split_y,
1367 /*@}*/
1368
1369 /**
1370 * \name Bit operations, part of ARB_gpu_shader5.
1371 */
1372 /*@{*/
1373 ir_unop_bitfield_reverse,
1374 ir_unop_bit_count,
1375 ir_unop_find_msb,
1376 ir_unop_find_lsb,
1377 /*@}*/
1378
1379 ir_unop_saturate,
1380
1381 /**
1382 * \name Double packing, part of ARB_gpu_shader_fp64.
1383 */
1384 /*@{*/
1385 ir_unop_pack_double_2x32,
1386 ir_unop_unpack_double_2x32,
1387 /*@}*/
1388
1389 ir_unop_frexp_sig,
1390 ir_unop_frexp_exp,
1391
1392 ir_unop_noise,
1393
1394 /**
1395 * Interpolate fs input at centroid
1396 *
1397 * operand0 is the fs input.
1398 */
1399 ir_unop_interpolate_at_centroid,
1400
1401 /**
1402 * A sentinel marking the last of the unary operations.
1403 */
1404 ir_last_unop = ir_unop_interpolate_at_centroid,
1405
1406 ir_binop_add,
1407 ir_binop_sub,
1408 ir_binop_mul, /**< Floating-point or low 32-bit integer multiply. */
1409 ir_binop_imul_high, /**< Calculates the high 32-bits of a 64-bit multiply. */
1410 ir_binop_div,
1411
1412 /**
1413 * Returns the carry resulting from the addition of the two arguments.
1414 */
1415 /*@{*/
1416 ir_binop_carry,
1417 /*@}*/
1418
1419 /**
1420 * Returns the borrow resulting from the subtraction of the second argument
1421 * from the first argument.
1422 */
1423 /*@{*/
1424 ir_binop_borrow,
1425 /*@}*/
1426
1427 /**
1428 * Takes one of two combinations of arguments:
1429 *
1430 * - mod(vecN, vecN)
1431 * - mod(vecN, float)
1432 *
1433 * Does not take integer types.
1434 */
1435 ir_binop_mod,
1436
1437 /**
1438 * \name Binary comparison operators which return a boolean vector.
1439 * The type of both operands must be equal.
1440 */
1441 /*@{*/
1442 ir_binop_less,
1443 ir_binop_greater,
1444 ir_binop_lequal,
1445 ir_binop_gequal,
1446 ir_binop_equal,
1447 ir_binop_nequal,
1448 /**
1449 * Returns single boolean for whether all components of operands[0]
1450 * equal the components of operands[1].
1451 */
1452 ir_binop_all_equal,
1453 /**
1454 * Returns single boolean for whether any component of operands[0]
1455 * is not equal to the corresponding component of operands[1].
1456 */
1457 ir_binop_any_nequal,
1458 /*@}*/
1459
1460 /**
1461 * \name Bit-wise binary operations.
1462 */
1463 /*@{*/
1464 ir_binop_lshift,
1465 ir_binop_rshift,
1466 ir_binop_bit_and,
1467 ir_binop_bit_xor,
1468 ir_binop_bit_or,
1469 /*@}*/
1470
1471 ir_binop_logic_and,
1472 ir_binop_logic_xor,
1473 ir_binop_logic_or,
1474
1475 ir_binop_dot,
1476 ir_binop_min,
1477 ir_binop_max,
1478
1479 ir_binop_pow,
1480
1481 /**
1482 * \name Lowered floating point packing operations.
1483 *
1484 * \see lower_packing_builtins_visitor::split_pack_half_2x16
1485 */
1486 /*@{*/
1487 ir_binop_pack_half_2x16_split,
1488 /*@}*/
1489
1490 /**
1491 * \name First half of a lowered bitfieldInsert() operation.
1492 *
1493 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1494 */
1495 /*@{*/
1496 ir_binop_bfm,
1497 /*@}*/
1498
1499 /**
1500 * Load a value the size of a given GLSL type from a uniform block.
1501 *
1502 * operand0 is the ir_constant uniform block index in the linked shader.
1503 * operand1 is a byte offset within the uniform block.
1504 */
1505 ir_binop_ubo_load,
1506
1507 /**
1508 * \name Multiplies a number by two to a power, part of ARB_gpu_shader5.
1509 */
1510 /*@{*/
1511 ir_binop_ldexp,
1512 /*@}*/
1513
1514 /**
1515 * Extract a scalar from a vector
1516 *
1517 * operand0 is the vector
1518 * operand1 is the index of the field to read from operand0
1519 */
1520 ir_binop_vector_extract,
1521
1522 /**
1523 * Interpolate fs input at offset
1524 *
1525 * operand0 is the fs input
1526 * operand1 is the offset from the pixel center
1527 */
1528 ir_binop_interpolate_at_offset,
1529
1530 /**
1531 * Interpolate fs input at sample position
1532 *
1533 * operand0 is the fs input
1534 * operand1 is the sample ID
1535 */
1536 ir_binop_interpolate_at_sample,
1537
1538 /**
1539 * A sentinel marking the last of the binary operations.
1540 */
1541 ir_last_binop = ir_binop_interpolate_at_sample,
1542
1543 /**
1544 * \name Fused floating-point multiply-add, part of ARB_gpu_shader5.
1545 */
1546 /*@{*/
1547 ir_triop_fma,
1548 /*@}*/
1549
1550 ir_triop_lrp,
1551
1552 /**
1553 * \name Conditional Select
1554 *
1555 * A vector conditional select instruction (like ?:, but operating per-
1556 * component on vectors).
1557 *
1558 * \see lower_instructions_visitor::ldexp_to_arith
1559 */
1560 /*@{*/
1561 ir_triop_csel,
1562 /*@}*/
1563
1564 /**
1565 * \name Second half of a lowered bitfieldInsert() operation.
1566 *
1567 * \see lower_instructions::bitfield_insert_to_bfm_bfi
1568 */
1569 /*@{*/
1570 ir_triop_bfi,
1571 /*@}*/
1572
1573 ir_triop_bitfield_extract,
1574
1575 /**
1576 * Generate a value with one field of a vector changed
1577 *
1578 * operand0 is the vector
1579 * operand1 is the value to write into the vector result
1580 * operand2 is the index in operand0 to be modified
1581 */
1582 ir_triop_vector_insert,
1583
1584 /**
1585 * A sentinel marking the last of the ternary operations.
1586 */
1587 ir_last_triop = ir_triop_vector_insert,
1588
1589 ir_quadop_bitfield_insert,
1590
1591 ir_quadop_vector,
1592
1593 /**
1594 * A sentinel marking the last of the ternary operations.
1595 */
1596 ir_last_quadop = ir_quadop_vector,
1597
1598 /**
1599 * A sentinel marking the last of all operations.
1600 */
1601 ir_last_opcode = ir_quadop_vector
1602 };
1603
1604 class ir_expression : public ir_rvalue {
1605 public:
1606 ir_expression(int op, const struct glsl_type *type,
1607 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1608 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1609
1610 /**
1611 * Constructor for unary operation expressions
1612 */
1613 ir_expression(int op, ir_rvalue *);
1614
1615 /**
1616 * Constructor for binary operation expressions
1617 */
1618 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1619
1620 /**
1621 * Constructor for ternary operation expressions
1622 */
1623 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1624
1625 virtual bool equals(const ir_instruction *ir,
1626 enum ir_node_type ignore = ir_type_unset) const;
1627
1628 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1629
1630 /**
1631 * Attempt to constant-fold the expression
1632 *
1633 * The "variable_context" hash table links ir_variable * to ir_constant *
1634 * that represent the variables' values. \c NULL represents an empty
1635 * context.
1636 *
1637 * If the expression cannot be constant folded, this method will return
1638 * \c NULL.
1639 */
1640 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1641
1642 /**
1643 * Determine the number of operands used by an expression
1644 */
1645 static unsigned int get_num_operands(ir_expression_operation);
1646
1647 /**
1648 * Determine the number of operands used by an expression
1649 */
1650 unsigned int get_num_operands() const
1651 {
1652 return (this->operation == ir_quadop_vector)
1653 ? this->type->vector_elements : get_num_operands(operation);
1654 }
1655
1656 /**
1657 * Return whether the expression operates on vectors horizontally.
1658 */
1659 bool is_horizontal() const
1660 {
1661 return operation == ir_binop_all_equal ||
1662 operation == ir_binop_any_nequal ||
1663 operation == ir_unop_any ||
1664 operation == ir_binop_dot ||
1665 operation == ir_quadop_vector;
1666 }
1667
1668 /**
1669 * Return a string representing this expression's operator.
1670 */
1671 const char *operator_string();
1672
1673 /**
1674 * Return a string representing this expression's operator.
1675 */
1676 static const char *operator_string(ir_expression_operation);
1677
1678
1679 /**
1680 * Do a reverse-lookup to translate the given string into an operator.
1681 */
1682 static ir_expression_operation get_operator(const char *);
1683
1684 virtual void accept(ir_visitor *v)
1685 {
1686 v->visit(this);
1687 }
1688
1689 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1690
1691 ir_expression_operation operation;
1692 ir_rvalue *operands[4];
1693 };
1694
1695
1696 /**
1697 * HIR instruction representing a high-level function call, containing a list
1698 * of parameters and returning a value in the supplied temporary.
1699 */
1700 class ir_call : public ir_instruction {
1701 public:
1702 ir_call(ir_function_signature *callee,
1703 ir_dereference_variable *return_deref,
1704 exec_list *actual_parameters)
1705 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee)
1706 {
1707 assert(callee->return_type != NULL);
1708 actual_parameters->move_nodes_to(& this->actual_parameters);
1709 this->use_builtin = callee->is_builtin();
1710 }
1711
1712 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1713
1714 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1715
1716 virtual void accept(ir_visitor *v)
1717 {
1718 v->visit(this);
1719 }
1720
1721 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1722
1723 /**
1724 * Get the name of the function being called.
1725 */
1726 const char *callee_name() const
1727 {
1728 return callee->function_name();
1729 }
1730
1731 /**
1732 * Generates an inline version of the function before @ir,
1733 * storing the return value in return_deref.
1734 */
1735 void generate_inline(ir_instruction *ir);
1736
1737 /**
1738 * Storage for the function's return value.
1739 * This must be NULL if the return type is void.
1740 */
1741 ir_dereference_variable *return_deref;
1742
1743 /**
1744 * The specific function signature being called.
1745 */
1746 ir_function_signature *callee;
1747
1748 /* List of ir_rvalue of paramaters passed in this call. */
1749 exec_list actual_parameters;
1750
1751 /** Should this call only bind to a built-in function? */
1752 bool use_builtin;
1753 };
1754
1755
1756 /**
1757 * \name Jump-like IR instructions.
1758 *
1759 * These include \c break, \c continue, \c return, and \c discard.
1760 */
1761 /*@{*/
1762 class ir_jump : public ir_instruction {
1763 protected:
1764 ir_jump(enum ir_node_type t)
1765 : ir_instruction(t)
1766 {
1767 }
1768 };
1769
1770 class ir_return : public ir_jump {
1771 public:
1772 ir_return()
1773 : ir_jump(ir_type_return), value(NULL)
1774 {
1775 }
1776
1777 ir_return(ir_rvalue *value)
1778 : ir_jump(ir_type_return), value(value)
1779 {
1780 }
1781
1782 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1783
1784 ir_rvalue *get_value() const
1785 {
1786 return value;
1787 }
1788
1789 virtual void accept(ir_visitor *v)
1790 {
1791 v->visit(this);
1792 }
1793
1794 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1795
1796 ir_rvalue *value;
1797 };
1798
1799
1800 /**
1801 * Jump instructions used inside loops
1802 *
1803 * These include \c break and \c continue. The \c break within a loop is
1804 * different from the \c break within a switch-statement.
1805 *
1806 * \sa ir_switch_jump
1807 */
1808 class ir_loop_jump : public ir_jump {
1809 public:
1810 enum jump_mode {
1811 jump_break,
1812 jump_continue
1813 };
1814
1815 ir_loop_jump(jump_mode mode)
1816 : ir_jump(ir_type_loop_jump)
1817 {
1818 this->mode = mode;
1819 }
1820
1821 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1822
1823 virtual void accept(ir_visitor *v)
1824 {
1825 v->visit(this);
1826 }
1827
1828 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1829
1830 bool is_break() const
1831 {
1832 return mode == jump_break;
1833 }
1834
1835 bool is_continue() const
1836 {
1837 return mode == jump_continue;
1838 }
1839
1840 /** Mode selector for the jump instruction. */
1841 enum jump_mode mode;
1842 };
1843
1844 /**
1845 * IR instruction representing discard statements.
1846 */
1847 class ir_discard : public ir_jump {
1848 public:
1849 ir_discard()
1850 : ir_jump(ir_type_discard)
1851 {
1852 this->condition = NULL;
1853 }
1854
1855 ir_discard(ir_rvalue *cond)
1856 : ir_jump(ir_type_discard)
1857 {
1858 this->condition = cond;
1859 }
1860
1861 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1862
1863 virtual void accept(ir_visitor *v)
1864 {
1865 v->visit(this);
1866 }
1867
1868 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1869
1870 ir_rvalue *condition;
1871 };
1872 /*@}*/
1873
1874
1875 /**
1876 * Texture sampling opcodes used in ir_texture
1877 */
1878 enum ir_texture_opcode {
1879 ir_tex, /**< Regular texture look-up */
1880 ir_txb, /**< Texture look-up with LOD bias */
1881 ir_txl, /**< Texture look-up with explicit LOD */
1882 ir_txd, /**< Texture look-up with partial derivatvies */
1883 ir_txf, /**< Texel fetch with explicit LOD */
1884 ir_txf_ms, /**< Multisample texture fetch */
1885 ir_txs, /**< Texture size */
1886 ir_lod, /**< Texture lod query */
1887 ir_tg4, /**< Texture gather */
1888 ir_query_levels /**< Texture levels query */
1889 };
1890
1891
1892 /**
1893 * IR instruction to sample a texture
1894 *
1895 * The specific form of the IR instruction depends on the \c mode value
1896 * selected from \c ir_texture_opcodes. In the printed IR, these will
1897 * appear as:
1898 *
1899 * Texel offset (0 or an expression)
1900 * | Projection divisor
1901 * | | Shadow comparitor
1902 * | | |
1903 * v v v
1904 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1905 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1906 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1907 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1908 * (txf <type> <sampler> <coordinate> 0 <lod>)
1909 * (txf_ms
1910 * <type> <sampler> <coordinate> <sample_index>)
1911 * (txs <type> <sampler> <lod>)
1912 * (lod <type> <sampler> <coordinate>)
1913 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1914 * (query_levels <type> <sampler>)
1915 */
1916 class ir_texture : public ir_rvalue {
1917 public:
1918 ir_texture(enum ir_texture_opcode op)
1919 : ir_rvalue(ir_type_texture),
1920 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1921 shadow_comparitor(NULL), offset(NULL)
1922 {
1923 memset(&lod_info, 0, sizeof(lod_info));
1924 }
1925
1926 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1927
1928 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
1929
1930 virtual void accept(ir_visitor *v)
1931 {
1932 v->visit(this);
1933 }
1934
1935 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1936
1937 virtual bool equals(const ir_instruction *ir,
1938 enum ir_node_type ignore = ir_type_unset) const;
1939
1940 /**
1941 * Return a string representing the ir_texture_opcode.
1942 */
1943 const char *opcode_string();
1944
1945 /** Set the sampler and type. */
1946 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1947
1948 /**
1949 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1950 */
1951 static ir_texture_opcode get_opcode(const char *);
1952
1953 enum ir_texture_opcode op;
1954
1955 /** Sampler to use for the texture access. */
1956 ir_dereference *sampler;
1957
1958 /** Texture coordinate to sample */
1959 ir_rvalue *coordinate;
1960
1961 /**
1962 * Value used for projective divide.
1963 *
1964 * If there is no projective divide (the common case), this will be
1965 * \c NULL. Optimization passes should check for this to point to a constant
1966 * of 1.0 and replace that with \c NULL.
1967 */
1968 ir_rvalue *projector;
1969
1970 /**
1971 * Coordinate used for comparison on shadow look-ups.
1972 *
1973 * If there is no shadow comparison, this will be \c NULL. For the
1974 * \c ir_txf opcode, this *must* be \c NULL.
1975 */
1976 ir_rvalue *shadow_comparitor;
1977
1978 /** Texel offset. */
1979 ir_rvalue *offset;
1980
1981 union {
1982 ir_rvalue *lod; /**< Floating point LOD */
1983 ir_rvalue *bias; /**< Floating point LOD bias */
1984 ir_rvalue *sample_index; /**< MSAA sample index */
1985 ir_rvalue *component; /**< Gather component selector */
1986 struct {
1987 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1988 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1989 } grad;
1990 } lod_info;
1991 };
1992
1993
1994 struct ir_swizzle_mask {
1995 unsigned x:2;
1996 unsigned y:2;
1997 unsigned z:2;
1998 unsigned w:2;
1999
2000 /**
2001 * Number of components in the swizzle.
2002 */
2003 unsigned num_components:3;
2004
2005 /**
2006 * Does the swizzle contain duplicate components?
2007 *
2008 * L-value swizzles cannot contain duplicate components.
2009 */
2010 unsigned has_duplicates:1;
2011 };
2012
2013
2014 class ir_swizzle : public ir_rvalue {
2015 public:
2016 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
2017 unsigned count);
2018
2019 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
2020
2021 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
2022
2023 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
2024
2025 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2026
2027 /**
2028 * Construct an ir_swizzle from the textual representation. Can fail.
2029 */
2030 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
2031
2032 virtual void accept(ir_visitor *v)
2033 {
2034 v->visit(this);
2035 }
2036
2037 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2038
2039 virtual bool equals(const ir_instruction *ir,
2040 enum ir_node_type ignore = ir_type_unset) const;
2041
2042 bool is_lvalue() const
2043 {
2044 return val->is_lvalue() && !mask.has_duplicates;
2045 }
2046
2047 /**
2048 * Get the variable that is ultimately referenced by an r-value
2049 */
2050 virtual ir_variable *variable_referenced() const;
2051
2052 ir_rvalue *val;
2053 ir_swizzle_mask mask;
2054
2055 private:
2056 /**
2057 * Initialize the mask component of a swizzle
2058 *
2059 * This is used by the \c ir_swizzle constructors.
2060 */
2061 void init_mask(const unsigned *components, unsigned count);
2062 };
2063
2064
2065 class ir_dereference : public ir_rvalue {
2066 public:
2067 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
2068
2069 bool is_lvalue() const;
2070
2071 /**
2072 * Get the variable that is ultimately referenced by an r-value
2073 */
2074 virtual ir_variable *variable_referenced() const = 0;
2075
2076 protected:
2077 ir_dereference(enum ir_node_type t)
2078 : ir_rvalue(t)
2079 {
2080 }
2081 };
2082
2083
2084 class ir_dereference_variable : public ir_dereference {
2085 public:
2086 ir_dereference_variable(ir_variable *var);
2087
2088 virtual ir_dereference_variable *clone(void *mem_ctx,
2089 struct hash_table *) const;
2090
2091 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2092
2093 virtual bool equals(const ir_instruction *ir,
2094 enum ir_node_type ignore = ir_type_unset) const;
2095
2096 /**
2097 * Get the variable that is ultimately referenced by an r-value
2098 */
2099 virtual ir_variable *variable_referenced() const
2100 {
2101 return this->var;
2102 }
2103
2104 virtual ir_variable *whole_variable_referenced()
2105 {
2106 /* ir_dereference_variable objects always dereference the entire
2107 * variable. However, if this dereference is dereferenced by anything
2108 * else, the complete deferefernce chain is not a whole-variable
2109 * dereference. This method should only be called on the top most
2110 * ir_rvalue in a dereference chain.
2111 */
2112 return this->var;
2113 }
2114
2115 virtual void accept(ir_visitor *v)
2116 {
2117 v->visit(this);
2118 }
2119
2120 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2121
2122 /**
2123 * Object being dereferenced.
2124 */
2125 ir_variable *var;
2126 };
2127
2128
2129 class ir_dereference_array : public ir_dereference {
2130 public:
2131 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2132
2133 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2134
2135 virtual ir_dereference_array *clone(void *mem_ctx,
2136 struct hash_table *) const;
2137
2138 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2139
2140 virtual bool equals(const ir_instruction *ir,
2141 enum ir_node_type ignore = ir_type_unset) const;
2142
2143 /**
2144 * Get the variable that is ultimately referenced by an r-value
2145 */
2146 virtual ir_variable *variable_referenced() const
2147 {
2148 return this->array->variable_referenced();
2149 }
2150
2151 virtual void accept(ir_visitor *v)
2152 {
2153 v->visit(this);
2154 }
2155
2156 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2157
2158 ir_rvalue *array;
2159 ir_rvalue *array_index;
2160
2161 private:
2162 void set_array(ir_rvalue *value);
2163 };
2164
2165
2166 class ir_dereference_record : public ir_dereference {
2167 public:
2168 ir_dereference_record(ir_rvalue *value, const char *field);
2169
2170 ir_dereference_record(ir_variable *var, const char *field);
2171
2172 virtual ir_dereference_record *clone(void *mem_ctx,
2173 struct hash_table *) const;
2174
2175 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2176
2177 /**
2178 * Get the variable that is ultimately referenced by an r-value
2179 */
2180 virtual ir_variable *variable_referenced() const
2181 {
2182 return this->record->variable_referenced();
2183 }
2184
2185 virtual void accept(ir_visitor *v)
2186 {
2187 v->visit(this);
2188 }
2189
2190 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2191
2192 ir_rvalue *record;
2193 const char *field;
2194 };
2195
2196
2197 /**
2198 * Data stored in an ir_constant
2199 */
2200 union ir_constant_data {
2201 unsigned u[16];
2202 int i[16];
2203 float f[16];
2204 bool b[16];
2205 double d[16];
2206 };
2207
2208
2209 class ir_constant : public ir_rvalue {
2210 public:
2211 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2212 ir_constant(bool b, unsigned vector_elements=1);
2213 ir_constant(unsigned int u, unsigned vector_elements=1);
2214 ir_constant(int i, unsigned vector_elements=1);
2215 ir_constant(float f, unsigned vector_elements=1);
2216 ir_constant(double d, unsigned vector_elements=1);
2217
2218 /**
2219 * Construct an ir_constant from a list of ir_constant values
2220 */
2221 ir_constant(const struct glsl_type *type, exec_list *values);
2222
2223 /**
2224 * Construct an ir_constant from a scalar component of another ir_constant
2225 *
2226 * The new \c ir_constant inherits the type of the component from the
2227 * source constant.
2228 *
2229 * \note
2230 * In the case of a matrix constant, the new constant is a scalar, \b not
2231 * a vector.
2232 */
2233 ir_constant(const ir_constant *c, unsigned i);
2234
2235 /**
2236 * Return a new ir_constant of the specified type containing all zeros.
2237 */
2238 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2239
2240 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2241
2242 virtual ir_constant *constant_expression_value(struct hash_table *variable_context = NULL);
2243
2244 virtual void accept(ir_visitor *v)
2245 {
2246 v->visit(this);
2247 }
2248
2249 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2250
2251 virtual bool equals(const ir_instruction *ir,
2252 enum ir_node_type ignore = ir_type_unset) const;
2253
2254 /**
2255 * Get a particular component of a constant as a specific type
2256 *
2257 * This is useful, for example, to get a value from an integer constant
2258 * as a float or bool. This appears frequently when constructors are
2259 * called with all constant parameters.
2260 */
2261 /*@{*/
2262 bool get_bool_component(unsigned i) const;
2263 float get_float_component(unsigned i) const;
2264 double get_double_component(unsigned i) const;
2265 int get_int_component(unsigned i) const;
2266 unsigned get_uint_component(unsigned i) const;
2267 /*@}*/
2268
2269 ir_constant *get_array_element(unsigned i) const;
2270
2271 ir_constant *get_record_field(const char *name);
2272
2273 /**
2274 * Copy the values on another constant at a given offset.
2275 *
2276 * The offset is ignored for array or struct copies, it's only for
2277 * scalars or vectors into vectors or matrices.
2278 *
2279 * With identical types on both sides and zero offset it's clone()
2280 * without creating a new object.
2281 */
2282
2283 void copy_offset(ir_constant *src, int offset);
2284
2285 /**
2286 * Copy the values on another constant at a given offset and
2287 * following an assign-like mask.
2288 *
2289 * The mask is ignored for scalars.
2290 *
2291 * Note that this function only handles what assign can handle,
2292 * i.e. at most a vector as source and a column of a matrix as
2293 * destination.
2294 */
2295
2296 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2297
2298 /**
2299 * Determine whether a constant has the same value as another constant
2300 *
2301 * \sa ir_constant::is_zero, ir_constant::is_one,
2302 * ir_constant::is_negative_one
2303 */
2304 bool has_value(const ir_constant *) const;
2305
2306 /**
2307 * Return true if this ir_constant represents the given value.
2308 *
2309 * For vectors, this checks that each component is the given value.
2310 */
2311 virtual bool is_value(float f, int i) const;
2312 virtual bool is_zero() const;
2313 virtual bool is_one() const;
2314 virtual bool is_negative_one() const;
2315
2316 /**
2317 * Return true for constants that could be stored as 16-bit unsigned values.
2318 *
2319 * Note that this will return true even for signed integer ir_constants, as
2320 * long as the value is non-negative and fits in 16-bits.
2321 */
2322 virtual bool is_uint16_constant() const;
2323
2324 /**
2325 * Value of the constant.
2326 *
2327 * The field used to back the values supplied by the constant is determined
2328 * by the type associated with the \c ir_instruction. Constants may be
2329 * scalars, vectors, or matrices.
2330 */
2331 union ir_constant_data value;
2332
2333 /* Array elements */
2334 ir_constant **array_elements;
2335
2336 /* Structure fields */
2337 exec_list components;
2338
2339 private:
2340 /**
2341 * Parameterless constructor only used by the clone method
2342 */
2343 ir_constant(void);
2344 };
2345
2346 /**
2347 * IR instruction to emit a vertex in a geometry shader.
2348 */
2349 class ir_emit_vertex : public ir_instruction {
2350 public:
2351 ir_emit_vertex(ir_rvalue *stream)
2352 : ir_instruction(ir_type_emit_vertex),
2353 stream(stream)
2354 {
2355 assert(stream);
2356 }
2357
2358 virtual void accept(ir_visitor *v)
2359 {
2360 v->visit(this);
2361 }
2362
2363 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2364 {
2365 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2366 }
2367
2368 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2369
2370 int stream_id() const
2371 {
2372 return stream->as_constant()->value.i[0];
2373 }
2374
2375 ir_rvalue *stream;
2376 };
2377
2378 /**
2379 * IR instruction to complete the current primitive and start a new one in a
2380 * geometry shader.
2381 */
2382 class ir_end_primitive : public ir_instruction {
2383 public:
2384 ir_end_primitive(ir_rvalue *stream)
2385 : ir_instruction(ir_type_end_primitive),
2386 stream(stream)
2387 {
2388 assert(stream);
2389 }
2390
2391 virtual void accept(ir_visitor *v)
2392 {
2393 v->visit(this);
2394 }
2395
2396 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2397 {
2398 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2399 }
2400
2401 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2402
2403 int stream_id() const
2404 {
2405 return stream->as_constant()->value.i[0];
2406 }
2407
2408 ir_rvalue *stream;
2409 };
2410
2411 /*@}*/
2412
2413 /**
2414 * Apply a visitor to each IR node in a list
2415 */
2416 void
2417 visit_exec_list(exec_list *list, ir_visitor *visitor);
2418
2419 /**
2420 * Validate invariants on each IR node in a list
2421 */
2422 void validate_ir_tree(exec_list *instructions);
2423
2424 struct _mesa_glsl_parse_state;
2425 struct gl_shader_program;
2426
2427 /**
2428 * Detect whether an unlinked shader contains static recursion
2429 *
2430 * If the list of instructions is determined to contain static recursion,
2431 * \c _mesa_glsl_error will be called to emit error messages for each function
2432 * that is in the recursion cycle.
2433 */
2434 void
2435 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2436 exec_list *instructions);
2437
2438 /**
2439 * Detect whether a linked shader contains static recursion
2440 *
2441 * If the list of instructions is determined to contain static recursion,
2442 * \c link_error_printf will be called to emit error messages for each function
2443 * that is in the recursion cycle. In addition,
2444 * \c gl_shader_program::LinkStatus will be set to false.
2445 */
2446 void
2447 detect_recursion_linked(struct gl_shader_program *prog,
2448 exec_list *instructions);
2449
2450 /**
2451 * Make a clone of each IR instruction in a list
2452 *
2453 * \param in List of IR instructions that are to be cloned
2454 * \param out List to hold the cloned instructions
2455 */
2456 void
2457 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2458
2459 extern void
2460 _mesa_glsl_initialize_variables(exec_list *instructions,
2461 struct _mesa_glsl_parse_state *state);
2462
2463 extern void
2464 _mesa_glsl_initialize_functions(_mesa_glsl_parse_state *state);
2465
2466 extern void
2467 _mesa_glsl_initialize_builtin_functions();
2468
2469 extern ir_function_signature *
2470 _mesa_glsl_find_builtin_function(_mesa_glsl_parse_state *state,
2471 const char *name, exec_list *actual_parameters);
2472
2473 extern ir_function *
2474 _mesa_glsl_find_builtin_function_by_name(_mesa_glsl_parse_state *state,
2475 const char *name);
2476
2477 extern gl_shader *
2478 _mesa_glsl_get_builtin_function_shader(void);
2479
2480 extern void
2481 _mesa_glsl_release_functions(void);
2482
2483 extern void
2484 _mesa_glsl_release_builtin_functions(void);
2485
2486 extern void
2487 reparent_ir(exec_list *list, void *mem_ctx);
2488
2489 struct glsl_symbol_table;
2490
2491 extern void
2492 import_prototypes(const exec_list *source, exec_list *dest,
2493 struct glsl_symbol_table *symbols, void *mem_ctx);
2494
2495 extern bool
2496 ir_has_call(ir_instruction *ir);
2497
2498 extern void
2499 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2500 gl_shader_stage shader_stage);
2501
2502 extern char *
2503 prototype_string(const glsl_type *return_type, const char *name,
2504 exec_list *parameters);
2505
2506 const char *
2507 mode_string(const ir_variable *var);
2508
2509 /**
2510 * Built-in / reserved GL variables names start with "gl_"
2511 */
2512 static inline bool
2513 is_gl_identifier(const char *s)
2514 {
2515 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2516 }
2517
2518 extern "C" {
2519 #endif /* __cplusplus */
2520
2521 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2522 struct _mesa_glsl_parse_state *state);
2523
2524 extern void
2525 fprint_ir(FILE *f, const void *instruction);
2526
2527 #ifdef __cplusplus
2528 } /* extern "C" */
2529 #endif
2530
2531 unsigned
2532 vertices_per_prim(GLenum prim);
2533
2534 #endif /* IR_H */